Spin‐Orbit Torque Switching of a Nearly Compensated Ferrimagnet by Topological Surface States

Utilizing spin‐orbit torque (SOT) to switch a magnetic moment provides a promising route for low‐power‐dissipation spintronic devices. Here, the SOT switching of a nearly compensated ferrimagnet Gdx(FeCo)1−x by the topological insulator [Bi2Se3 and (BiSb)2Te3] is investigated at room temperature. Th...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 35; pp. e1901681 - n/a
Main Authors Wu, Hao, Xu, Yong, Deng, Peng, Pan, Quanjun, Razavi, Seyed Armin, Wong, Kin, Huang, Li, Dai, Bingqian, Shao, Qiming, Yu, Guoqiang, Han, Xiufeng, Rojas‐Sánchez, Juan‐Carlos, Mangin, Stéphane, Wang, Kang L.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2019
Wiley-VCH Verlag
Wiley Blackwell (John Wiley & Sons)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Utilizing spin‐orbit torque (SOT) to switch a magnetic moment provides a promising route for low‐power‐dissipation spintronic devices. Here, the SOT switching of a nearly compensated ferrimagnet Gdx(FeCo)1−x by the topological insulator [Bi2Se3 and (BiSb)2Te3] is investigated at room temperature. The switching current density of (BiSb)2Te3 (1.20 × 105 A cm−2) is more than one order of magnitude smaller than that in conventional heavy‐metal‐based structures, which indicates the ultrahigh efficiency of charge‐spin conversion (>1) in topological surface states. By tuning the net magnetic moment of Gdx(FeCo)1−x via changing the composition, the SOT efficiency has a significant enhancement (6.5 times) near the magnetic compensation point, and at the same time the switching speed can be as fast as several picoseconds. Combining the topological surface states and the nearly compensated ferrimagnets provides a promising route for practical energy‐efficient and high‐speed spintronic devices. Spin‐momentum locking in topological surface states promises ultrahigh spin‐orbit torque efficiency compared to bulk spin‐orbit coupling, where the energy dissipation can be reduced by one to two orders of magnitude. At the same time, near the magnetic compensation point of ferrimagnets, the spin‐orbit torque efficiency can be significantly enhanced.
AbstractList Utilizing spin‐orbit torque (SOT) to switch a magnetic moment provides a promising route for low‐power‐dissipation spintronic devices. Here, the SOT switching of a nearly compensated ferrimagnet Gdx(FeCo)1−x by the topological insulator [Bi2Se3 and (BiSb)2Te3] is investigated at room temperature. The switching current density of (BiSb)2Te3 (1.20 × 105 A cm−2) is more than one order of magnitude smaller than that in conventional heavy‐metal‐based structures, which indicates the ultrahigh efficiency of charge‐spin conversion (>1) in topological surface states. By tuning the net magnetic moment of Gdx(FeCo)1−x via changing the composition, the SOT efficiency has a significant enhancement (6.5 times) near the magnetic compensation point, and at the same time the switching speed can be as fast as several picoseconds. Combining the topological surface states and the nearly compensated ferrimagnets provides a promising route for practical energy‐efficient and high‐speed spintronic devices. Spin‐momentum locking in topological surface states promises ultrahigh spin‐orbit torque efficiency compared to bulk spin‐orbit coupling, where the energy dissipation can be reduced by one to two orders of magnitude. At the same time, near the magnetic compensation point of ferrimagnets, the spin‐orbit torque efficiency can be significantly enhanced.
Abstract Utilizing spin‐orbit torque (SOT) to switch a magnetic moment provides a promising route for low‐power‐dissipation spintronic devices. Here, the SOT switching of a nearly compensated ferrimagnet Gd x (FeCo) 1− x by the topological insulator [Bi 2 Se 3 and (BiSb) 2 Te 3 ] is investigated at room temperature. The switching current density of (BiSb) 2 Te 3 (1.20 × 10 5 A cm −2 ) is more than one order of magnitude smaller than that in conventional heavy‐metal‐based structures, which indicates the ultrahigh efficiency of charge‐spin conversion (>1) in topological surface states. By tuning the net magnetic moment of Gd x (FeCo) 1− x via changing the composition, the SOT efficiency has a significant enhancement (6.5 times) near the magnetic compensation point, and at the same time the switching speed can be as fast as several picoseconds. Combining the topological surface states and the nearly compensated ferrimagnets provides a promising route for practical energy‐efficient and high‐speed spintronic devices.
Utilizing spin-orbit torque (SOT) to switch a magnetic moment provides a promising route for low-power-dissipation spintronic devices. Here, the SOT switching of a nearly compensated ferrimagnet Gd (FeCo) by the topological insulator [Bi Se and (BiSb) Te ] is investigated at room temperature. The switching current density of (BiSb) Te (1.20 × 10 A cm ) is more than one order of magnitude smaller than that in conventional heavy-metal-based structures, which indicates the ultrahigh efficiency of charge-spin conversion (>1) in topological surface states. By tuning the net magnetic moment of Gd (FeCo) via changing the composition, the SOT efficiency has a significant enhancement (6.5 times) near the magnetic compensation point, and at the same time the switching speed can be as fast as several picoseconds. Combining the topological surface states and the nearly compensated ferrimagnets provides a promising route for practical energy-efficient and high-speed spintronic devices.
Utilizing spin‐orbit torque (SOT) to switch a magnetic moment provides a promising route for low‐power‐dissipation spintronic devices. Here, the SOT switching of a nearly compensated ferrimagnet Gdx(FeCo)1−x by the topological insulator [Bi2Se3 and (BiSb)2Te3] is investigated at room temperature. The switching current density of (BiSb)2Te3 (1.20 × 105 A cm−2) is more than one order of magnitude smaller than that in conventional heavy‐metal‐based structures, which indicates the ultrahigh efficiency of charge‐spin conversion (>1) in topological surface states. By tuning the net magnetic moment of Gdx(FeCo)1−x via changing the composition, the SOT efficiency has a significant enhancement (6.5 times) near the magnetic compensation point, and at the same time the switching speed can be as fast as several picoseconds. Combining the topological surface states and the nearly compensated ferrimagnets provides a promising route for practical energy‐efficient and high‐speed spintronic devices.
charge-spin conversion and ii) the speed of SOT switching. Generally, SOT in a magnetic layer originates from the spin current injection from the adjacent layer with strong spin-orbit coupling (SOC). The charge-spin conversion efficiency is vital and can be quantified as the θ = / SHE s 3D e 3D J J (dimensionless) or q J J t θ = = / / ICS s 3D e 2D SHE s , where s 3D J represents the 3D spin current density; e 3D J and e 2D J represent the 3D and 2D electric (charge) current density, respectively; and t s represents the effective SOC thickness. In the conventional SOC materials such as HMs, in principle, the θ SHE should be much less than 1, which limits their potential applications in the ultralow power magnetization manipulation. [4] In topological insulators (TIs), SOC from topologically protected surface states, where the spin and orbital angular momenta are locked (spin-momentum locking [5-7]), gives rise to a very large θ SHE [8-12] (or q ICS) and the resulting ultralow switching current density [13-15] at low temperature. Recently, several works have reported the room-temperature SOT switching by TIs, [16-19] which opens the door for the applications of topological insulators. However, there are fundamental limitations of FMs: the low switching speed (≈ns) and the stray-field interaction, which limit the operation speed and the density of magnetic memory, respectively. Antiferromagnets (AFMs) can afford the THz ultrafast spin dynamics; [20] however, AFMs produce zero stray field and zero spin polarization because of the opposite coupled spin lattices from the same element, which makes it difficult to detect the antiferromagnetic order efficiently. [21] Ferrimagnets have two antiferromagnetically coupled spin sublattices, and the contribution of each spin sublattice to their properties can be tuned by the composition or temperature. At the magnetic compensation point, ferrimagnets show similar properties of AFMs, such as ultrafast spin dynamics, [22,23] while the detection is still feasible because of the different responses to the optical or electrical excitations from two spin sublattices. [23-25] Here, we combine TIs [Bi 2 Se 3 and (BiSb) 2 Te 3 ] with nearly compensated ferrimagnets [Gd x (FeCo) 1−x ], and investigate the room-temperature SOT in TI/Gd x (FeCo) 1−x systems. By changing the composition of Gd x (FeCo) 1−x , we can tune the net magnetic moment and the dominated spin sublattice (CoFe-rich and Gd-rich). The robust room-temperature SOT switching Utilizing spin-orbit torque (SOT) to switch a magnetic moment provides a promising route for low-power-dissipation spintronic devices. Here, the SOT switching of a nearly compensated ferrimagnet Gd x (FeCo) 1−x by the topological insulator [Bi 2 Se 3 and (BiSb) 2 Te 3 ] is investigated at room temperature. The switching current density of (BiSb) 2 Te 3 (1.20 × 10 5 A cm −2) is more than one order of magnitude smaller than that in conventional heavy-metal-based structures, which indicates the ultrahigh efficiency of charge-spin conversion (>1) in topological surface states. By tuning the net magnetic moment of Gd x (FeCo) 1−x via changing the composition, the SOT efficiency has a significant enhancement (6.5 times) near the magnetic compensation point, and at the same time the switching speed can be as fast as several picoseconds. Combining the topological surface states and the nearly compensated ferrimagnets provides a promising route for practical energy-efficient and high-speed spintronic devices. Topological Spintronics Spintronic devices have been considered as one of the promising candidates for the next-generation memory and logic devices, and spin-orbit torque (SOT) provides an efficient way to manipulate the magnetic moment by electrical method with ultralow power dissipation and ultrafast operating speed. [1-3] Beyond previous studies of SOT switching based on conventional heavy metal/ferromagnet (HM/FM) heterostructures, two crucial issues need to be resolved: improving: i) the efficiency of
Author Mangin, Stéphane
Xu, Yong
Razavi, Seyed Armin
Wu, Hao
Huang, Li
Yu, Guoqiang
Rojas‐Sánchez, Juan‐Carlos
Shao, Qiming
Dai, Bingqian
Pan, Quanjun
Han, Xiufeng
Wong, Kin
Wang, Kang L.
Deng, Peng
Author_xml – sequence: 1
  givenname: Hao
  surname: Wu
  fullname: Wu, Hao
  organization: University of California
– sequence: 2
  givenname: Yong
  surname: Xu
  fullname: Xu, Yong
  organization: Université de Lorraine
– sequence: 3
  givenname: Peng
  surname: Deng
  fullname: Deng, Peng
  organization: University of California
– sequence: 4
  givenname: Quanjun
  surname: Pan
  fullname: Pan, Quanjun
  organization: University of California
– sequence: 5
  givenname: Seyed Armin
  surname: Razavi
  fullname: Razavi, Seyed Armin
  organization: University of California
– sequence: 6
  givenname: Kin
  surname: Wong
  fullname: Wong, Kin
  organization: University of California
– sequence: 7
  givenname: Li
  surname: Huang
  fullname: Huang, Li
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Bingqian
  surname: Dai
  fullname: Dai, Bingqian
  organization: University of California
– sequence: 9
  givenname: Qiming
  surname: Shao
  fullname: Shao, Qiming
  organization: University of California
– sequence: 10
  givenname: Guoqiang
  surname: Yu
  fullname: Yu, Guoqiang
  organization: Chinese Academy of Sciences
– sequence: 11
  givenname: Xiufeng
  surname: Han
  fullname: Han, Xiufeng
  organization: Chinese Academy of Sciences
– sequence: 12
  givenname: Juan‐Carlos
  surname: Rojas‐Sánchez
  fullname: Rojas‐Sánchez, Juan‐Carlos
  organization: Université de Lorraine
– sequence: 13
  givenname: Stéphane
  surname: Mangin
  fullname: Mangin, Stéphane
  organization: Université de Lorraine
– sequence: 14
  givenname: Kang L.
  orcidid: 0000-0002-9363-1279
  surname: Wang
  fullname: Wang, Kang L.
  email: wang@ee.ucla.edu
  organization: University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31282067$$D View this record in MEDLINE/PubMed
https://hal.univ-lorraine.fr/hal-02184543$$DView record in HAL
https://www.osti.gov/biblio/1532426$$D View this record in Osti.gov
BookMark eNqF0U9v0zAYBnALDbFucOWIInaBQ4r_xLF9rApjSIUdOs6W49itp8QOdsLUGx-Bz8gnwVVGkbhwsmT93kd-_VyAMx-8AeAlgksEIX6n2l4tMUQCopqjJ2CBKEZlBQU9AwsoCC1FXfFzcJHSPYRQ1LB-Bs4JwhzDmi2A3A7O__rx8zY2bizuQvw2mWL74Ea9d35XBFuo4otRsTsU69APxic1mra4NjG6Xu28GYvmkOeG0IWd06ortlO0SueQMcv0HDy1qkvmxeN5Cb5ef7hb35Sb24-f1qtNqWkFUSlI01jKVcMqiywjFBNNWs5Qw2gLmWHCama1YJwoalrCamQFQa2BwiieBy7B6zk3pNHJpN1o9F4H740eJaIEV7jO6O2M9qqTw3GBeJBBOXmz2sjjHcSIV7Qi31G2b2Y7xJD_JI2yd0mbrlPehClJjCnhmEMuMr36h96HKfq8blZM1JTkDrJazkrHkFI09vQCBOWxS3nsUp66zAOvHmOnpjftif8pLwMxgwfXmcN_4uTq_efV3_Dfdpmrog
CitedBy_id crossref_primary_10_1103_PhysRevB_107_104411
crossref_primary_10_7498_aps_72_20231166
crossref_primary_10_1038_s41563_021_01138_5
crossref_primary_10_1103_PhysRevB_105_024412
crossref_primary_10_1002_pssr_202000033
crossref_primary_10_1063_5_0146758
crossref_primary_10_1103_PhysRevB_103_224428
crossref_primary_10_1016_j_jmmm_2023_170881
crossref_primary_10_1063_5_0088548
crossref_primary_10_1016_j_pmatsci_2020_100761
crossref_primary_10_1063_1_5144076
crossref_primary_10_1088_1674_1056_ab9439
crossref_primary_10_1103_PhysRevApplied_14_034031
crossref_primary_10_1002_adma_201907661
crossref_primary_10_1002_qute_202400041
crossref_primary_10_1038_s41598_022_06779_3
crossref_primary_10_1063_5_0173576
crossref_primary_10_1016_j_jmmm_2021_167823
crossref_primary_10_1016_j_actamat_2023_118705
crossref_primary_10_1103_PhysRevB_103_064432
crossref_primary_10_1063_5_0041062
crossref_primary_10_1103_PhysRevLett_132_236702
crossref_primary_10_1063_5_0185559
crossref_primary_10_1103_PhysRevB_103_014419
crossref_primary_10_1016_j_apsusc_2021_150527
crossref_primary_10_1103_PhysRevApplied_21_014045
crossref_primary_10_1063_5_0189637
crossref_primary_10_1063_5_0087260
crossref_primary_10_1021_acsami_3c12551
crossref_primary_10_1002_adma_202300853
crossref_primary_10_1103_PhysRevApplied_19_034088
crossref_primary_10_1063_5_0191497
crossref_primary_10_1103_PhysRevB_104_L220407
crossref_primary_10_1038_s41467_021_26478_3
crossref_primary_10_1063_5_0026614
crossref_primary_10_1063_5_0062625
crossref_primary_10_1103_PhysRevMaterials_7_094401
crossref_primary_10_1063_5_0024950
crossref_primary_10_1016_j_jmmm_2021_167734
crossref_primary_10_1063_5_0048619
crossref_primary_10_1103_PhysRevApplied_15_024059
crossref_primary_10_1002_adfm_202107870
crossref_primary_10_1103_PhysRevB_102_115152
crossref_primary_10_1002_advs_202400967
crossref_primary_10_1002_advs_202100847
crossref_primary_10_1103_PhysRevApplied_18_064012
crossref_primary_10_1103_PhysRevB_106_214430
crossref_primary_10_1002_adma_202302350
crossref_primary_10_7498_aps_69_20200680
crossref_primary_10_1021_acs_nanolett_3c01192
crossref_primary_10_1002_sstr_202400006
crossref_primary_10_1002_aelm_202200003
crossref_primary_10_1063_5_0049044
crossref_primary_10_7566_JPSJ_90_081006
crossref_primary_10_1063_5_0067348
crossref_primary_10_1002_adma_202304905
crossref_primary_10_1038_s41467_023_37506_9
crossref_primary_10_1063_5_0049887
crossref_primary_10_1063_5_0104618
crossref_primary_10_1021_acsnano_4c00422
crossref_primary_10_1021_acsnano_2c02031
crossref_primary_10_1021_acs_jpclett_1c00378
crossref_primary_10_1103_PhysRevApplied_16_044056
crossref_primary_10_1103_PhysRevApplied_16_024040
crossref_primary_10_1063_5_0141298
crossref_primary_10_7498_aps_73_20231166
crossref_primary_10_1109_TMAG_2021_3078583
crossref_primary_10_1002_aelm_202200514
crossref_primary_10_1016_j_apsusc_2022_155352
crossref_primary_10_1063_5_0045091
crossref_primary_10_1039_D3TC00332A
crossref_primary_10_1063_5_0078995
crossref_primary_10_1021_acsnano_2c01788
crossref_primary_10_1038_s41598_020_69027_6
crossref_primary_10_1002_pssr_202100327
crossref_primary_10_7498_aps_70_20210004
crossref_primary_10_1103_PhysRevMaterials_5_090301
crossref_primary_10_1002_metm_24
crossref_primary_10_1109_JPROC_2020_2975719
crossref_primary_10_3390_s21165615
crossref_primary_10_1063_5_0121156
crossref_primary_10_1103_PhysRevApplied_17_024031
crossref_primary_10_1002_adma_202003380
crossref_primary_10_1016_j_cossms_2024_101145
crossref_primary_10_1063_5_0091944
Cites_doi 10.1103/PhysRevLett.114.257202
10.1021/acs.nanolett.6b03300
10.1103/PhysRevApplied.6.054001
10.1103/RevModPhys.90.015005
10.1038/nnano.2014.16
10.1038/nnano.2014.94
10.1038/nature13534
10.1103/PhysRevLett.109.096602
10.1103/RevModPhys.87.1213
10.1038/nature08234
10.1002/adma.201703474
10.1038/nmat3973
10.1103/PhysRevLett.118.167201
10.1103/PhysRevLett.106.257004
10.1038/s41563-018-0137-y
10.1021/acs.nanolett.5b03274
10.1038/s41565-018-0255-3
10.1103/PhysRevLett.119.077702
10.1103/PhysRevB.96.064406
10.1103/PhysRevApplied.9.064032
10.1038/nphys3833
10.1103/PhysRevApplied.9.011002
10.1038/ncomms3944
10.1103/PhysRevLett.105.186801
10.1103/PhysRev.82.565
10.1038/s41467-017-01583-4
10.1126/science.1218197
10.1103/PhysRevB.73.220402
10.1103/PhysRevB.89.144425
10.1038/s41563-018-0136-z
10.1063/1.343551
10.1103/PhysRevLett.119.137204
10.1038/nnano.2015.294
10.1038/nature10309
10.1103/PhysRevLett.117.076601
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
1XC
OTOTI
DOI 10.1002/adma.201901681
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
Hyper Article en Ligne (HAL)
OSTI.GOV
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 1532426
oai_HAL_hal_02184543v1
10_1002_adma_201901681
31282067
ADMA201901681
Genre article
Journal Article
GrantInformation_xml – fundername: Microelectronics Advanced Research Corporation
– fundername: Function Accelerated nanoMaterial Engineering (FAME)
– fundername: NSFC
  funderid: 11434014
– fundername: Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems (TANMS)
– fundername: Spins and Heat in Nanoscale Electronic Systems (SHINES)
– fundername: Defense Advanced Research Projects Agency
– fundername: U.S. Department of Energy
– fundername: National Key Research and Development Program of China
  funderid: 2017YFA0206200
– fundername: National Key Research and Development Program of China
  grantid: 2017YFA0206200
– fundername: Defense Advanced Research Projects Agency (DARPA)
– fundername: NSFC of China
  grantid: 11434014
– fundername: NSFC
  grantid: 11434014
– fundername: US Department of Energy (DOE)
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
1XC
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c5401-93bbf58ab74f1f73523c3d871b75d07e79fc7fc9783a5ed3761f931de09ea8f73
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Fri May 19 00:39:26 EDT 2023
Tue Oct 15 15:31:16 EDT 2024
Sat Aug 17 00:37:14 EDT 2024
Thu Oct 10 17:31:30 EDT 2024
Thu Sep 26 15:57:11 EDT 2024
Sat Sep 28 08:32:09 EDT 2024
Sat Aug 24 01:13:05 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Keywords ferrimagnets
spin-orbit torque
topological insulators
current-induced magnetization switching
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5401-93bbf58ab74f1f73523c3d871b75d07e79fc7fc9783a5ed3761f931de09ea8f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
ORCID 0000-0002-9363-1279
0000-0002-8497-3920
0000-0001-7044-2785
0000-0001-6046-0437
0000000293631279
OpenAccessLink https://www.osti.gov/biblio/1767456
PMID 31282067
PQID 2279653964
PQPubID 2045203
PageCount 6
ParticipantIDs osti_scitechconnect_1532426
hal_primary_oai_HAL_hal_02184543v1
proquest_miscellaneous_2253828089
proquest_journals_2279653964
crossref_primary_10_1002_adma_201901681
pubmed_primary_31282067
wiley_primary_10_1002_adma_201901681_ADMA201901681
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Wiley-VCH Verlag
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley-VCH Verlag
– name: Wiley Blackwell (John Wiley & Sons)
References 2017; 119
2015; 15
2011; 476
2017; 8
1989; 66
2013; 4
2006; 73
2010; 105
2017; 29
1951; 82
2016; 16
2014; 89
2014; 511
2012; 109
2016; 12
2016; 11
2017; 118
2018; 9
2016; 6
2018; 17
2017; 96
2011; 106
2015; 114
2015; 87
2018; 90
2014; 13
2016; 117
2009; 460
2014; 9
2012; 336
2018; 13
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 12
  start-page: 1027
  year: 2016
  publication-title: Nat. Phys.
– volume: 11
  start-page: 352
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 29
  start-page: 1703474
  year: 2017
  publication-title: Adv. Mater.
– volume: 9
  start-page: 548
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 66
  start-page: 756
  year: 1989
  publication-title: J. Appl. Phys.
– volume: 87
  start-page: 1213
  year: 2015
  publication-title: Rev. Mod. Phys.
– volume: 109
  start-page: 096602
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 119
  start-page: 137204
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 119
  start-page: 077702
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 90
  start-page: 015005
  year: 2018
  publication-title: Rev. Mod. Phys.
– volume: 9
  start-page: 064032
  year: 2018
  publication-title: Phys. Rev. Appl.
– volume: 6
  start-page: 054001
  year: 2016
  publication-title: Phys. Rev. Appl.
– volume: 106
  start-page: 257004
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 476
  start-page: 189
  year: 2011
  publication-title: Nature
– volume: 17
  start-page: 800
  year: 2018
  publication-title: Nat. Mater.
– volume: 8
  start-page: 1364
  year: 2017
  publication-title: Nat. Commun.
– volume: 13
  start-page: 1154
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 118
  start-page: 167201
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 82
  start-page: 565
  year: 1951
  publication-title: Phys. Rev.
– volume: 114
  start-page: 257202
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 117
  start-page: 076601
  year: 2016
  publication-title: Phys. Rev. Lett.
– volume: 96
  start-page: 064406
  year: 2017
  publication-title: Phys. Rev. B
– volume: 13
  start-page: 699
  year: 2014
  publication-title: Nat. Mater.
– volume: 73
  start-page: 220402
  year: 2006
  publication-title: Phys. Rev. B
– volume: 511
  start-page: 449
  year: 2014
  publication-title: Nature
– volume: 460
  start-page: 1101
  year: 2009
  publication-title: Nature
– volume: 16
  start-page: 7514
  year: 2016
  publication-title: Nano Lett.
– volume: 4
  start-page: 2944
  year: 2013
  publication-title: Nat. Commun.
– volume: 17
  start-page: 808
  year: 2018
  publication-title: Nat. Mater.
– volume: 15
  start-page: 7126
  year: 2015
  publication-title: Nano Lett.
– volume: 9
  start-page: 218
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 011002
  year: 2018
  publication-title: Phys. Rev. Appl.
– volume: 89
  start-page: 144425
  year: 2014
  publication-title: Phys. Rev. B
– volume: 336
  start-page: 555
  year: 2012
  publication-title: Science
– volume: 105
  start-page: 186801
  year: 2010
  publication-title: Phys. Rev. Lett.
– ident: e_1_2_5_10_1
  doi: 10.1103/PhysRevLett.114.257202
– ident: e_1_2_5_31_1
  doi: 10.1021/acs.nanolett.6b03300
– ident: e_1_2_5_32_1
  doi: 10.1103/PhysRevApplied.6.054001
– ident: e_1_2_5_21_1
  doi: 10.1103/RevModPhys.90.015005
– ident: e_1_2_5_7_1
  doi: 10.1038/nnano.2014.16
– ident: e_1_2_5_27_1
  doi: 10.1038/nnano.2014.94
– ident: e_1_2_5_8_1
  doi: 10.1038/nature13534
– ident: e_1_2_5_2_1
  doi: 10.1103/PhysRevLett.109.096602
– ident: e_1_2_5_4_1
  doi: 10.1103/RevModPhys.87.1213
– ident: e_1_2_5_5_1
  doi: 10.1038/nature08234
– ident: e_1_2_5_23_1
  doi: 10.1002/adma.201703474
– ident: e_1_2_5_14_1
  doi: 10.1038/nmat3973
– ident: e_1_2_5_33_1
  doi: 10.1103/PhysRevLett.118.167201
– ident: e_1_2_5_6_1
  doi: 10.1103/PhysRevLett.106.257004
– ident: e_1_2_5_18_1
  doi: 10.1038/s41563-018-0137-y
– ident: e_1_2_5_11_1
  doi: 10.1021/acs.nanolett.5b03274
– ident: e_1_2_5_24_1
  doi: 10.1038/s41565-018-0255-3
– ident: e_1_2_5_16_1
  doi: 10.1103/PhysRevLett.119.077702
– ident: e_1_2_5_29_1
  doi: 10.1103/PhysRevB.96.064406
– ident: e_1_2_5_28_1
  doi: 10.1103/PhysRevApplied.9.064032
– ident: e_1_2_5_9_1
  doi: 10.1038/nphys3833
– ident: e_1_2_5_26_1
  doi: 10.1103/PhysRevApplied.9.011002
– ident: e_1_2_5_34_1
  doi: 10.1038/ncomms3944
– ident: e_1_2_5_35_1
  doi: 10.1103/PhysRevLett.105.186801
– ident: e_1_2_5_20_1
  doi: 10.1103/PhysRev.82.565
– ident: e_1_2_5_19_1
  doi: 10.1038/s41467-017-01583-4
– ident: e_1_2_5_1_1
  doi: 10.1126/science.1218197
– ident: e_1_2_5_22_1
  doi: 10.1103/PhysRevB.73.220402
– ident: e_1_2_5_30_1
  doi: 10.1103/PhysRevB.89.144425
– ident: e_1_2_5_17_1
  doi: 10.1038/s41563-018-0136-z
– ident: e_1_2_5_25_1
  doi: 10.1063/1.343551
– ident: e_1_2_5_13_1
  doi: 10.1103/PhysRevLett.119.137204
– ident: e_1_2_5_15_1
  doi: 10.1038/nnano.2015.294
– ident: e_1_2_5_3_1
  doi: 10.1038/nature10309
– ident: e_1_2_5_12_1
  doi: 10.1103/PhysRevLett.117.076601
SSID ssj0009606
Score 2.620045
Snippet Utilizing spin‐orbit torque (SOT) to switch a magnetic moment provides a promising route for low‐power‐dissipation spintronic devices. Here, the SOT switching...
Utilizing spin-orbit torque (SOT) to switch a magnetic moment provides a promising route for low-power-dissipation spintronic devices. Here, the SOT switching...
Abstract Utilizing spin‐orbit torque (SOT) to switch a magnetic moment provides a promising route for low‐power‐dissipation spintronic devices. Here, the SOT...
charge-spin conversion and ii) the speed of SOT switching. Generally, SOT in a magnetic layer originates from the spin current injection from the adjacent...
SourceID osti
hal
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e1901681
SubjectTerms Charge efficiency
current‐induced magnetization switching
Ferrimagnetism
Ferrimagnets
Magnetic moments
Materials science
Physics
spin‐orbit torque
Switching
Topological insulators
Torque
Title Spin‐Orbit Torque Switching of a Nearly Compensated Ferrimagnet by Topological Surface States
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201901681
https://www.ncbi.nlm.nih.gov/pubmed/31282067
https://www.proquest.com/docview/2279653964
https://search.proquest.com/docview/2253828089
https://hal.univ-lorraine.fr/hal-02184543
https://www.osti.gov/biblio/1532426
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtQwEMct2BMcgPKZtiCDkDiljWMncY4r2tUK0SKxrdSbZcc2rBDJapstglMfoc_IkzDjbNIuQkKCWz7sKM54PH8n418IeZ2lnvkcyceM57EQgsc6T1zMvJCZ09ywBFcjHx3n01Px7iw7u7GKv-NDDC_c0DPCeI0Ors35_jU0VNvADcKAloe114wXmNN18PGaH4XyPMD2eBaXuZA9tTFJ9zerb0Sl258xJ3LUgI_9SXduytgQhyb3ie5b0KWffNlbtWav-vEb3PF_mviA3FuLVDruetUWueXqh-TuDXThI6Jmi3n98_Lqw9LMW3rSLOHu6ezbvA25mbTxVNNjh_RkikMOTJZB1Fo6QRDkV_2pdi0136Heoh986Wy19LqCiwT5-5icTg5P3k7j9c8a4gpEH4tLbozPpDaFAOsXoOt4xS1Mx0yR2aRwRemrwlf4pklnzsK4xnzJmXVJ6bSECk_IqG5q94zQxFpbeiG8BAHBKmuksDKXriisS3PNIvKmN5ZadEwO1dGXU4WPTA2PLCKvwJZDIURpT8fvFR4Lc9tM8AsotIOmViA5kJtbYYJR1SoIBShfIrLb9wC1du9zhdhFZPrmIiIvh9PgmPi1RdeuWWEZiCWpTGQZkaddzxluhIMqQG5-RNJg_780Q40PjsbD3va_VNohd3C7S13cJaN2uXLPQU615kVwmV90HxTk
link.rule.ids 230,315,783,787,888,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NjtMwEMctKAfYA9-7hF3AICRO2Y1jJ3GOFUtVoC0S7UrcLDu2oUIkVUlBcOIReEaehJmkyVKEhATHJHYUxzOev53xL4Q8TmLPfIrkY8bTUAjBQ51GLmReyMRpbliEu5Gns3R8Jl68SbpsQtwL0_Ih-gU39IxmvEYHxwXpk3NqqLYNOAgjWoqbry-Bz3P8e8Pp63OCFAr0BrfHkzBPhey4jVF8slt_Jy5dfIdZkYMKvOxPynNXyDaRaHSNmK4NbQLK--NNbY6Lr7_hHf-rkdfJ1a1OpcPWsG6QC668SfZ-oRfeImq-WpY_vn1_tTbLmi6qNTw-nX9e1k16Jq081XTmEKBMcdSB-TLoWktHyIL8oN-WrqbmC9RbdeMvnW_WXhdwk0YB3yZno2eLp-Nw-7-GsADdx8KcG-MTqU0mwAAykHa84BZmZCZLbJS5LPdF5gtcbNKJszC0MZ9zZl2UOy2hwj4ZlFXp7hAaWWtzL4SXoCFYYY0UVqbSZZl1capZQJ50vaVWLZZDtQDmWOErU_0rC8gj6My-ENK0x8OJwnPN9DYR_BMUOsS-VqA6EJ1bYI5RUSuIBqhgAnLUmYDaevhHheRFxPqmIiAP-8vgm_jBRZeu2mAZCCexjGQekIPWdPoH4SAMEJ0fkLgxgL80Qw1Pp8P-6O6_VHpALo8X04maPJ-9PCRX8HybyXhEBvV64-6BuqrN_cZ_fgKy0xj8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtQwEMctWCRED5RvQgsYhMQpbRI7jnNcUVYLtAtiW6k3y45tWFUkqyULoqc-Qp-RJ2Em2aRdhIQExyR2FGc8nr-d8S-EvEgTH3uB5OOYiZBzzkItIhfGnsvUaWbiCHcjH0zE-Ii_PU6PL-3ib_kQ_YIbekYzXqODz63fvYCGattwgzCgCdx7fY0LkL8oiz5eAKRQnze0PZaGueCywzZGye56_bWwdPUzJkUOKnCyPwnPdR3bBKLRJtFdE9r8k5OdZW12itPf6I7_08Zb5OZKpdJh261ukyuuvEM2LrEL7xI1nc_Kn2fn7xdmVtPDagFPT6ffZ3WTnEkrTzWdOMQnUxxzYLYMqtbSEZIgv-hPpaup-QH15t3oS6fLhdcF3KTRv_fI0ej14atxuPpbQ1iA6ovDnBnjU6lNxsH8GQg7VjAL8zGTpTbKXJb7IvMFLjXp1FkY2GKfs9i6KHdaQoX7ZFBWpXtIaGStzT3nXoKCiAtrJLdSSJdl1iVCxwF52RlLzVsoh2rxy4nCV6b6VxaQ52DLvhCytMfDfYXnmsltytk3KLSFplagORCcW2CGUVEriAWoXwKy3fUAtfLvrwq5iwj1FTwgz_rL4Jn4uUWXrlpiGQgmiYxkHpAHbc_pH4SBLEBwfkCSxv5_aYYa7h0M-6NH_1LpKbn-YW-k9t9M3m2RG3i6TWPcJoN6sXSPQVrV5knjPb8ATK8Xqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spin-Orbit+Torque+Switching+of+a+Nearly+Compensated+Ferrimagnet+by+Topological+Surface+States&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wu%2C+Hao&rft.au=Xu%2C+Yong&rft.au=Deng%2C+Peng&rft.au=Pan%2C+Quanjun&rft.date=2019-08-01&rft.eissn=1521-4095&rft.volume=31&rft.issue=35&rft.spage=e1901681&rft.epage=e1901681&rft_id=info:doi/10.1002%2Fadma.201901681&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon