Spin‐Orbit Torque Switching of a Nearly Compensated Ferrimagnet by Topological Surface States
Utilizing spin‐orbit torque (SOT) to switch a magnetic moment provides a promising route for low‐power‐dissipation spintronic devices. Here, the SOT switching of a nearly compensated ferrimagnet Gdx(FeCo)1−x by the topological insulator [Bi2Se3 and (BiSb)2Te3] is investigated at room temperature. Th...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 35; pp. e1901681 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2019
Wiley-VCH Verlag Wiley Blackwell (John Wiley & Sons) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Utilizing spin‐orbit torque (SOT) to switch a magnetic moment provides a promising route for low‐power‐dissipation spintronic devices. Here, the SOT switching of a nearly compensated ferrimagnet Gdx(FeCo)1−x by the topological insulator [Bi2Se3 and (BiSb)2Te3] is investigated at room temperature. The switching current density of (BiSb)2Te3 (1.20 × 105 A cm−2) is more than one order of magnitude smaller than that in conventional heavy‐metal‐based structures, which indicates the ultrahigh efficiency of charge‐spin conversion (>1) in topological surface states. By tuning the net magnetic moment of Gdx(FeCo)1−x via changing the composition, the SOT efficiency has a significant enhancement (6.5 times) near the magnetic compensation point, and at the same time the switching speed can be as fast as several picoseconds. Combining the topological surface states and the nearly compensated ferrimagnets provides a promising route for practical energy‐efficient and high‐speed spintronic devices.
Spin‐momentum locking in topological surface states promises ultrahigh spin‐orbit torque efficiency compared to bulk spin‐orbit coupling, where the energy dissipation can be reduced by one to two orders of magnitude. At the same time, near the magnetic compensation point of ferrimagnets, the spin‐orbit torque efficiency can be significantly enhanced. |
---|---|
AbstractList | Utilizing spin‐orbit torque (SOT) to switch a magnetic moment provides a promising route for low‐power‐dissipation spintronic devices. Here, the SOT switching of a nearly compensated ferrimagnet Gdx(FeCo)1−x by the topological insulator [Bi2Se3 and (BiSb)2Te3] is investigated at room temperature. The switching current density of (BiSb)2Te3 (1.20 × 105 A cm−2) is more than one order of magnitude smaller than that in conventional heavy‐metal‐based structures, which indicates the ultrahigh efficiency of charge‐spin conversion (>1) in topological surface states. By tuning the net magnetic moment of Gdx(FeCo)1−x via changing the composition, the SOT efficiency has a significant enhancement (6.5 times) near the magnetic compensation point, and at the same time the switching speed can be as fast as several picoseconds. Combining the topological surface states and the nearly compensated ferrimagnets provides a promising route for practical energy‐efficient and high‐speed spintronic devices.
Spin‐momentum locking in topological surface states promises ultrahigh spin‐orbit torque efficiency compared to bulk spin‐orbit coupling, where the energy dissipation can be reduced by one to two orders of magnitude. At the same time, near the magnetic compensation point of ferrimagnets, the spin‐orbit torque efficiency can be significantly enhanced. Abstract Utilizing spin‐orbit torque (SOT) to switch a magnetic moment provides a promising route for low‐power‐dissipation spintronic devices. Here, the SOT switching of a nearly compensated ferrimagnet Gd x (FeCo) 1− x by the topological insulator [Bi 2 Se 3 and (BiSb) 2 Te 3 ] is investigated at room temperature. The switching current density of (BiSb) 2 Te 3 (1.20 × 10 5 A cm −2 ) is more than one order of magnitude smaller than that in conventional heavy‐metal‐based structures, which indicates the ultrahigh efficiency of charge‐spin conversion (>1) in topological surface states. By tuning the net magnetic moment of Gd x (FeCo) 1− x via changing the composition, the SOT efficiency has a significant enhancement (6.5 times) near the magnetic compensation point, and at the same time the switching speed can be as fast as several picoseconds. Combining the topological surface states and the nearly compensated ferrimagnets provides a promising route for practical energy‐efficient and high‐speed spintronic devices. Utilizing spin-orbit torque (SOT) to switch a magnetic moment provides a promising route for low-power-dissipation spintronic devices. Here, the SOT switching of a nearly compensated ferrimagnet Gd (FeCo) by the topological insulator [Bi Se and (BiSb) Te ] is investigated at room temperature. The switching current density of (BiSb) Te (1.20 × 10 A cm ) is more than one order of magnitude smaller than that in conventional heavy-metal-based structures, which indicates the ultrahigh efficiency of charge-spin conversion (>1) in topological surface states. By tuning the net magnetic moment of Gd (FeCo) via changing the composition, the SOT efficiency has a significant enhancement (6.5 times) near the magnetic compensation point, and at the same time the switching speed can be as fast as several picoseconds. Combining the topological surface states and the nearly compensated ferrimagnets provides a promising route for practical energy-efficient and high-speed spintronic devices. Utilizing spin‐orbit torque (SOT) to switch a magnetic moment provides a promising route for low‐power‐dissipation spintronic devices. Here, the SOT switching of a nearly compensated ferrimagnet Gdx(FeCo)1−x by the topological insulator [Bi2Se3 and (BiSb)2Te3] is investigated at room temperature. The switching current density of (BiSb)2Te3 (1.20 × 105 A cm−2) is more than one order of magnitude smaller than that in conventional heavy‐metal‐based structures, which indicates the ultrahigh efficiency of charge‐spin conversion (>1) in topological surface states. By tuning the net magnetic moment of Gdx(FeCo)1−x via changing the composition, the SOT efficiency has a significant enhancement (6.5 times) near the magnetic compensation point, and at the same time the switching speed can be as fast as several picoseconds. Combining the topological surface states and the nearly compensated ferrimagnets provides a promising route for practical energy‐efficient and high‐speed spintronic devices. charge-spin conversion and ii) the speed of SOT switching. Generally, SOT in a magnetic layer originates from the spin current injection from the adjacent layer with strong spin-orbit coupling (SOC). The charge-spin conversion efficiency is vital and can be quantified as the θ = / SHE s 3D e 3D J J (dimensionless) or q J J t θ = = / / ICS s 3D e 2D SHE s , where s 3D J represents the 3D spin current density; e 3D J and e 2D J represent the 3D and 2D electric (charge) current density, respectively; and t s represents the effective SOC thickness. In the conventional SOC materials such as HMs, in principle, the θ SHE should be much less than 1, which limits their potential applications in the ultralow power magnetization manipulation. [4] In topological insulators (TIs), SOC from topologically protected surface states, where the spin and orbital angular momenta are locked (spin-momentum locking [5-7]), gives rise to a very large θ SHE [8-12] (or q ICS) and the resulting ultralow switching current density [13-15] at low temperature. Recently, several works have reported the room-temperature SOT switching by TIs, [16-19] which opens the door for the applications of topological insulators. However, there are fundamental limitations of FMs: the low switching speed (≈ns) and the stray-field interaction, which limit the operation speed and the density of magnetic memory, respectively. Antiferromagnets (AFMs) can afford the THz ultrafast spin dynamics; [20] however, AFMs produce zero stray field and zero spin polarization because of the opposite coupled spin lattices from the same element, which makes it difficult to detect the antiferromagnetic order efficiently. [21] Ferrimagnets have two antiferromagnetically coupled spin sublattices, and the contribution of each spin sublattice to their properties can be tuned by the composition or temperature. At the magnetic compensation point, ferrimagnets show similar properties of AFMs, such as ultrafast spin dynamics, [22,23] while the detection is still feasible because of the different responses to the optical or electrical excitations from two spin sublattices. [23-25] Here, we combine TIs [Bi 2 Se 3 and (BiSb) 2 Te 3 ] with nearly compensated ferrimagnets [Gd x (FeCo) 1−x ], and investigate the room-temperature SOT in TI/Gd x (FeCo) 1−x systems. By changing the composition of Gd x (FeCo) 1−x , we can tune the net magnetic moment and the dominated spin sublattice (CoFe-rich and Gd-rich). The robust room-temperature SOT switching Utilizing spin-orbit torque (SOT) to switch a magnetic moment provides a promising route for low-power-dissipation spintronic devices. Here, the SOT switching of a nearly compensated ferrimagnet Gd x (FeCo) 1−x by the topological insulator [Bi 2 Se 3 and (BiSb) 2 Te 3 ] is investigated at room temperature. The switching current density of (BiSb) 2 Te 3 (1.20 × 10 5 A cm −2) is more than one order of magnitude smaller than that in conventional heavy-metal-based structures, which indicates the ultrahigh efficiency of charge-spin conversion (>1) in topological surface states. By tuning the net magnetic moment of Gd x (FeCo) 1−x via changing the composition, the SOT efficiency has a significant enhancement (6.5 times) near the magnetic compensation point, and at the same time the switching speed can be as fast as several picoseconds. Combining the topological surface states and the nearly compensated ferrimagnets provides a promising route for practical energy-efficient and high-speed spintronic devices. Topological Spintronics Spintronic devices have been considered as one of the promising candidates for the next-generation memory and logic devices, and spin-orbit torque (SOT) provides an efficient way to manipulate the magnetic moment by electrical method with ultralow power dissipation and ultrafast operating speed. [1-3] Beyond previous studies of SOT switching based on conventional heavy metal/ferromagnet (HM/FM) heterostructures, two crucial issues need to be resolved: improving: i) the efficiency of |
Author | Mangin, Stéphane Xu, Yong Razavi, Seyed Armin Wu, Hao Huang, Li Yu, Guoqiang Rojas‐Sánchez, Juan‐Carlos Shao, Qiming Dai, Bingqian Pan, Quanjun Han, Xiufeng Wong, Kin Wang, Kang L. Deng, Peng |
Author_xml | – sequence: 1 givenname: Hao surname: Wu fullname: Wu, Hao organization: University of California – sequence: 2 givenname: Yong surname: Xu fullname: Xu, Yong organization: Université de Lorraine – sequence: 3 givenname: Peng surname: Deng fullname: Deng, Peng organization: University of California – sequence: 4 givenname: Quanjun surname: Pan fullname: Pan, Quanjun organization: University of California – sequence: 5 givenname: Seyed Armin surname: Razavi fullname: Razavi, Seyed Armin organization: University of California – sequence: 6 givenname: Kin surname: Wong fullname: Wong, Kin organization: University of California – sequence: 7 givenname: Li surname: Huang fullname: Huang, Li organization: Chinese Academy of Sciences – sequence: 8 givenname: Bingqian surname: Dai fullname: Dai, Bingqian organization: University of California – sequence: 9 givenname: Qiming surname: Shao fullname: Shao, Qiming organization: University of California – sequence: 10 givenname: Guoqiang surname: Yu fullname: Yu, Guoqiang organization: Chinese Academy of Sciences – sequence: 11 givenname: Xiufeng surname: Han fullname: Han, Xiufeng organization: Chinese Academy of Sciences – sequence: 12 givenname: Juan‐Carlos surname: Rojas‐Sánchez fullname: Rojas‐Sánchez, Juan‐Carlos organization: Université de Lorraine – sequence: 13 givenname: Stéphane surname: Mangin fullname: Mangin, Stéphane organization: Université de Lorraine – sequence: 14 givenname: Kang L. orcidid: 0000-0002-9363-1279 surname: Wang fullname: Wang, Kang L. email: wang@ee.ucla.edu organization: University of California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31282067$$D View this record in MEDLINE/PubMed https://hal.univ-lorraine.fr/hal-02184543$$DView record in HAL https://www.osti.gov/biblio/1532426$$D View this record in Osti.gov |
BookMark | eNqF0U9v0zAYBnALDbFucOWIInaBQ4r_xLF9rApjSIUdOs6W49itp8QOdsLUGx-Bz8gnwVVGkbhwsmT93kd-_VyAMx-8AeAlgksEIX6n2l4tMUQCopqjJ2CBKEZlBQU9AwsoCC1FXfFzcJHSPYRQ1LB-Bs4JwhzDmi2A3A7O__rx8zY2bizuQvw2mWL74Ea9d35XBFuo4otRsTsU69APxic1mra4NjG6Xu28GYvmkOeG0IWd06ortlO0SueQMcv0HDy1qkvmxeN5Cb5ef7hb35Sb24-f1qtNqWkFUSlI01jKVcMqiywjFBNNWs5Qw2gLmWHCama1YJwoalrCamQFQa2BwiieBy7B6zk3pNHJpN1o9F4H740eJaIEV7jO6O2M9qqTw3GBeJBBOXmz2sjjHcSIV7Qi31G2b2Y7xJD_JI2yd0mbrlPehClJjCnhmEMuMr36h96HKfq8blZM1JTkDrJazkrHkFI09vQCBOWxS3nsUp66zAOvHmOnpjftif8pLwMxgwfXmcN_4uTq_efV3_Dfdpmrog |
CitedBy_id | crossref_primary_10_1103_PhysRevB_107_104411 crossref_primary_10_7498_aps_72_20231166 crossref_primary_10_1038_s41563_021_01138_5 crossref_primary_10_1103_PhysRevB_105_024412 crossref_primary_10_1002_pssr_202000033 crossref_primary_10_1063_5_0146758 crossref_primary_10_1103_PhysRevB_103_224428 crossref_primary_10_1016_j_jmmm_2023_170881 crossref_primary_10_1063_5_0088548 crossref_primary_10_1016_j_pmatsci_2020_100761 crossref_primary_10_1063_1_5144076 crossref_primary_10_1088_1674_1056_ab9439 crossref_primary_10_1103_PhysRevApplied_14_034031 crossref_primary_10_1002_adma_201907661 crossref_primary_10_1002_qute_202400041 crossref_primary_10_1038_s41598_022_06779_3 crossref_primary_10_1063_5_0173576 crossref_primary_10_1016_j_jmmm_2021_167823 crossref_primary_10_1016_j_actamat_2023_118705 crossref_primary_10_1103_PhysRevB_103_064432 crossref_primary_10_1063_5_0041062 crossref_primary_10_1103_PhysRevLett_132_236702 crossref_primary_10_1063_5_0185559 crossref_primary_10_1103_PhysRevB_103_014419 crossref_primary_10_1016_j_apsusc_2021_150527 crossref_primary_10_1103_PhysRevApplied_21_014045 crossref_primary_10_1063_5_0189637 crossref_primary_10_1063_5_0087260 crossref_primary_10_1021_acsami_3c12551 crossref_primary_10_1002_adma_202300853 crossref_primary_10_1103_PhysRevApplied_19_034088 crossref_primary_10_1063_5_0191497 crossref_primary_10_1103_PhysRevB_104_L220407 crossref_primary_10_1038_s41467_021_26478_3 crossref_primary_10_1063_5_0026614 crossref_primary_10_1063_5_0062625 crossref_primary_10_1103_PhysRevMaterials_7_094401 crossref_primary_10_1063_5_0024950 crossref_primary_10_1016_j_jmmm_2021_167734 crossref_primary_10_1063_5_0048619 crossref_primary_10_1103_PhysRevApplied_15_024059 crossref_primary_10_1002_adfm_202107870 crossref_primary_10_1103_PhysRevB_102_115152 crossref_primary_10_1002_advs_202400967 crossref_primary_10_1002_advs_202100847 crossref_primary_10_1103_PhysRevApplied_18_064012 crossref_primary_10_1103_PhysRevB_106_214430 crossref_primary_10_1002_adma_202302350 crossref_primary_10_7498_aps_69_20200680 crossref_primary_10_1021_acs_nanolett_3c01192 crossref_primary_10_1002_sstr_202400006 crossref_primary_10_1002_aelm_202200003 crossref_primary_10_1063_5_0049044 crossref_primary_10_7566_JPSJ_90_081006 crossref_primary_10_1063_5_0067348 crossref_primary_10_1002_adma_202304905 crossref_primary_10_1038_s41467_023_37506_9 crossref_primary_10_1063_5_0049887 crossref_primary_10_1063_5_0104618 crossref_primary_10_1021_acsnano_4c00422 crossref_primary_10_1021_acsnano_2c02031 crossref_primary_10_1021_acs_jpclett_1c00378 crossref_primary_10_1103_PhysRevApplied_16_044056 crossref_primary_10_1103_PhysRevApplied_16_024040 crossref_primary_10_1063_5_0141298 crossref_primary_10_7498_aps_73_20231166 crossref_primary_10_1109_TMAG_2021_3078583 crossref_primary_10_1002_aelm_202200514 crossref_primary_10_1016_j_apsusc_2022_155352 crossref_primary_10_1063_5_0045091 crossref_primary_10_1039_D3TC00332A crossref_primary_10_1063_5_0078995 crossref_primary_10_1021_acsnano_2c01788 crossref_primary_10_1038_s41598_020_69027_6 crossref_primary_10_1002_pssr_202100327 crossref_primary_10_7498_aps_70_20210004 crossref_primary_10_1103_PhysRevMaterials_5_090301 crossref_primary_10_1002_metm_24 crossref_primary_10_1109_JPROC_2020_2975719 crossref_primary_10_3390_s21165615 crossref_primary_10_1063_5_0121156 crossref_primary_10_1103_PhysRevApplied_17_024031 crossref_primary_10_1002_adma_202003380 crossref_primary_10_1016_j_cossms_2024_101145 crossref_primary_10_1063_5_0091944 |
Cites_doi | 10.1103/PhysRevLett.114.257202 10.1021/acs.nanolett.6b03300 10.1103/PhysRevApplied.6.054001 10.1103/RevModPhys.90.015005 10.1038/nnano.2014.16 10.1038/nnano.2014.94 10.1038/nature13534 10.1103/PhysRevLett.109.096602 10.1103/RevModPhys.87.1213 10.1038/nature08234 10.1002/adma.201703474 10.1038/nmat3973 10.1103/PhysRevLett.118.167201 10.1103/PhysRevLett.106.257004 10.1038/s41563-018-0137-y 10.1021/acs.nanolett.5b03274 10.1038/s41565-018-0255-3 10.1103/PhysRevLett.119.077702 10.1103/PhysRevB.96.064406 10.1103/PhysRevApplied.9.064032 10.1038/nphys3833 10.1103/PhysRevApplied.9.011002 10.1038/ncomms3944 10.1103/PhysRevLett.105.186801 10.1103/PhysRev.82.565 10.1038/s41467-017-01583-4 10.1126/science.1218197 10.1103/PhysRevB.73.220402 10.1103/PhysRevB.89.144425 10.1038/s41563-018-0136-z 10.1063/1.343551 10.1103/PhysRevLett.119.137204 10.1038/nnano.2015.294 10.1038/nature10309 10.1103/PhysRevLett.117.076601 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 1XC OTOTI |
DOI | 10.1002/adma.201901681 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic Hyper Article en Ligne (HAL) OSTI.GOV |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 1532426 oai_HAL_hal_02184543v1 10_1002_adma_201901681 31282067 ADMA201901681 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Microelectronics Advanced Research Corporation – fundername: Function Accelerated nanoMaterial Engineering (FAME) – fundername: NSFC funderid: 11434014 – fundername: Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems (TANMS) – fundername: Spins and Heat in Nanoscale Electronic Systems (SHINES) – fundername: Defense Advanced Research Projects Agency – fundername: U.S. Department of Energy – fundername: National Key Research and Development Program of China funderid: 2017YFA0206200 – fundername: National Key Research and Development Program of China grantid: 2017YFA0206200 – fundername: Defense Advanced Research Projects Agency (DARPA) – fundername: NSFC of China grantid: 11434014 – fundername: NSFC grantid: 11434014 – fundername: US Department of Energy (DOE) |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAYOK ABEML ABTAH ACBWZ ACSCC AFFNX ASPBG AVWKF AZFZN FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH NPM PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 1XC AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI |
ID | FETCH-LOGICAL-c5401-93bbf58ab74f1f73523c3d871b75d07e79fc7fc9783a5ed3761f931de09ea8f73 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 |
IngestDate | Fri May 19 00:39:26 EDT 2023 Tue Oct 15 15:31:16 EDT 2024 Sat Aug 17 00:37:14 EDT 2024 Thu Oct 10 17:31:30 EDT 2024 Thu Sep 26 15:57:11 EDT 2024 Sat Sep 28 08:32:09 EDT 2024 Sat Aug 24 01:13:05 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Keywords | ferrimagnets spin-orbit torque topological insulators current-induced magnetization switching |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5401-93bbf58ab74f1f73523c3d871b75d07e79fc7fc9783a5ed3761f931de09ea8f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE |
ORCID | 0000-0002-9363-1279 0000-0002-8497-3920 0000-0001-7044-2785 0000-0001-6046-0437 0000000293631279 |
OpenAccessLink | https://www.osti.gov/biblio/1767456 |
PMID | 31282067 |
PQID | 2279653964 |
PQPubID | 2045203 |
PageCount | 6 |
ParticipantIDs | osti_scitechconnect_1532426 hal_primary_oai_HAL_hal_02184543v1 proquest_miscellaneous_2253828089 proquest_journals_2279653964 crossref_primary_10_1002_adma_201901681 pubmed_primary_31282067 wiley_primary_10_1002_adma_201901681_ADMA201901681 |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc Wiley-VCH Verlag Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley-VCH Verlag – name: Wiley Blackwell (John Wiley & Sons) |
References | 2017; 119 2015; 15 2011; 476 2017; 8 1989; 66 2013; 4 2006; 73 2010; 105 2017; 29 1951; 82 2016; 16 2014; 89 2014; 511 2012; 109 2016; 12 2016; 11 2017; 118 2018; 9 2016; 6 2018; 17 2017; 96 2011; 106 2015; 114 2015; 87 2018; 90 2014; 13 2016; 117 2009; 460 2014; 9 2012; 336 2018; 13 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 12 start-page: 1027 year: 2016 publication-title: Nat. Phys. – volume: 11 start-page: 352 year: 2016 publication-title: Nat. Nanotechnol. – volume: 29 start-page: 1703474 year: 2017 publication-title: Adv. Mater. – volume: 9 start-page: 548 year: 2014 publication-title: Nat. Nanotechnol. – volume: 66 start-page: 756 year: 1989 publication-title: J. Appl. Phys. – volume: 87 start-page: 1213 year: 2015 publication-title: Rev. Mod. Phys. – volume: 109 start-page: 096602 year: 2012 publication-title: Phys. Rev. Lett. – volume: 119 start-page: 137204 year: 2017 publication-title: Phys. Rev. Lett. – volume: 119 start-page: 077702 year: 2017 publication-title: Phys. Rev. Lett. – volume: 90 start-page: 015005 year: 2018 publication-title: Rev. Mod. Phys. – volume: 9 start-page: 064032 year: 2018 publication-title: Phys. Rev. Appl. – volume: 6 start-page: 054001 year: 2016 publication-title: Phys. Rev. Appl. – volume: 106 start-page: 257004 year: 2011 publication-title: Phys. Rev. Lett. – volume: 476 start-page: 189 year: 2011 publication-title: Nature – volume: 17 start-page: 800 year: 2018 publication-title: Nat. Mater. – volume: 8 start-page: 1364 year: 2017 publication-title: Nat. Commun. – volume: 13 start-page: 1154 year: 2018 publication-title: Nat. Nanotechnol. – volume: 118 start-page: 167201 year: 2017 publication-title: Phys. Rev. Lett. – volume: 82 start-page: 565 year: 1951 publication-title: Phys. Rev. – volume: 114 start-page: 257202 year: 2015 publication-title: Phys. Rev. Lett. – volume: 117 start-page: 076601 year: 2016 publication-title: Phys. Rev. Lett. – volume: 96 start-page: 064406 year: 2017 publication-title: Phys. Rev. B – volume: 13 start-page: 699 year: 2014 publication-title: Nat. Mater. – volume: 73 start-page: 220402 year: 2006 publication-title: Phys. Rev. B – volume: 511 start-page: 449 year: 2014 publication-title: Nature – volume: 460 start-page: 1101 year: 2009 publication-title: Nature – volume: 16 start-page: 7514 year: 2016 publication-title: Nano Lett. – volume: 4 start-page: 2944 year: 2013 publication-title: Nat. Commun. – volume: 17 start-page: 808 year: 2018 publication-title: Nat. Mater. – volume: 15 start-page: 7126 year: 2015 publication-title: Nano Lett. – volume: 9 start-page: 218 year: 2014 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 011002 year: 2018 publication-title: Phys. Rev. Appl. – volume: 89 start-page: 144425 year: 2014 publication-title: Phys. Rev. B – volume: 336 start-page: 555 year: 2012 publication-title: Science – volume: 105 start-page: 186801 year: 2010 publication-title: Phys. Rev. Lett. – ident: e_1_2_5_10_1 doi: 10.1103/PhysRevLett.114.257202 – ident: e_1_2_5_31_1 doi: 10.1021/acs.nanolett.6b03300 – ident: e_1_2_5_32_1 doi: 10.1103/PhysRevApplied.6.054001 – ident: e_1_2_5_21_1 doi: 10.1103/RevModPhys.90.015005 – ident: e_1_2_5_7_1 doi: 10.1038/nnano.2014.16 – ident: e_1_2_5_27_1 doi: 10.1038/nnano.2014.94 – ident: e_1_2_5_8_1 doi: 10.1038/nature13534 – ident: e_1_2_5_2_1 doi: 10.1103/PhysRevLett.109.096602 – ident: e_1_2_5_4_1 doi: 10.1103/RevModPhys.87.1213 – ident: e_1_2_5_5_1 doi: 10.1038/nature08234 – ident: e_1_2_5_23_1 doi: 10.1002/adma.201703474 – ident: e_1_2_5_14_1 doi: 10.1038/nmat3973 – ident: e_1_2_5_33_1 doi: 10.1103/PhysRevLett.118.167201 – ident: e_1_2_5_6_1 doi: 10.1103/PhysRevLett.106.257004 – ident: e_1_2_5_18_1 doi: 10.1038/s41563-018-0137-y – ident: e_1_2_5_11_1 doi: 10.1021/acs.nanolett.5b03274 – ident: e_1_2_5_24_1 doi: 10.1038/s41565-018-0255-3 – ident: e_1_2_5_16_1 doi: 10.1103/PhysRevLett.119.077702 – ident: e_1_2_5_29_1 doi: 10.1103/PhysRevB.96.064406 – ident: e_1_2_5_28_1 doi: 10.1103/PhysRevApplied.9.064032 – ident: e_1_2_5_9_1 doi: 10.1038/nphys3833 – ident: e_1_2_5_26_1 doi: 10.1103/PhysRevApplied.9.011002 – ident: e_1_2_5_34_1 doi: 10.1038/ncomms3944 – ident: e_1_2_5_35_1 doi: 10.1103/PhysRevLett.105.186801 – ident: e_1_2_5_20_1 doi: 10.1103/PhysRev.82.565 – ident: e_1_2_5_19_1 doi: 10.1038/s41467-017-01583-4 – ident: e_1_2_5_1_1 doi: 10.1126/science.1218197 – ident: e_1_2_5_22_1 doi: 10.1103/PhysRevB.73.220402 – ident: e_1_2_5_30_1 doi: 10.1103/PhysRevB.89.144425 – ident: e_1_2_5_17_1 doi: 10.1038/s41563-018-0136-z – ident: e_1_2_5_25_1 doi: 10.1063/1.343551 – ident: e_1_2_5_13_1 doi: 10.1103/PhysRevLett.119.137204 – ident: e_1_2_5_15_1 doi: 10.1038/nnano.2015.294 – ident: e_1_2_5_3_1 doi: 10.1038/nature10309 – ident: e_1_2_5_12_1 doi: 10.1103/PhysRevLett.117.076601 |
SSID | ssj0009606 |
Score | 2.620045 |
Snippet | Utilizing spin‐orbit torque (SOT) to switch a magnetic moment provides a promising route for low‐power‐dissipation spintronic devices. Here, the SOT switching... Utilizing spin-orbit torque (SOT) to switch a magnetic moment provides a promising route for low-power-dissipation spintronic devices. Here, the SOT switching... Abstract Utilizing spin‐orbit torque (SOT) to switch a magnetic moment provides a promising route for low‐power‐dissipation spintronic devices. Here, the SOT... charge-spin conversion and ii) the speed of SOT switching. Generally, SOT in a magnetic layer originates from the spin current injection from the adjacent... |
SourceID | osti hal proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e1901681 |
SubjectTerms | Charge efficiency current‐induced magnetization switching Ferrimagnetism Ferrimagnets Magnetic moments Materials science Physics spin‐orbit torque Switching Topological insulators Torque |
Title | Spin‐Orbit Torque Switching of a Nearly Compensated Ferrimagnet by Topological Surface States |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201901681 https://www.ncbi.nlm.nih.gov/pubmed/31282067 https://www.proquest.com/docview/2279653964 https://search.proquest.com/docview/2253828089 https://hal.univ-lorraine.fr/hal-02184543 https://www.osti.gov/biblio/1532426 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtQwEMct2BMcgPKZtiCDkDiljWMncY4r2tUK0SKxrdSbZcc2rBDJapstglMfoc_IkzDjbNIuQkKCWz7sKM54PH8n418IeZ2lnvkcyceM57EQgsc6T1zMvJCZ09ywBFcjHx3n01Px7iw7u7GKv-NDDC_c0DPCeI0Ors35_jU0VNvADcKAloe114wXmNN18PGaH4XyPMD2eBaXuZA9tTFJ9zerb0Sl258xJ3LUgI_9SXduytgQhyb3ie5b0KWffNlbtWav-vEb3PF_mviA3FuLVDruetUWueXqh-TuDXThI6Jmi3n98_Lqw9LMW3rSLOHu6ezbvA25mbTxVNNjh_RkikMOTJZB1Fo6QRDkV_2pdi0136Heoh986Wy19LqCiwT5-5icTg5P3k7j9c8a4gpEH4tLbozPpDaFAOsXoOt4xS1Mx0yR2aRwRemrwlf4pklnzsK4xnzJmXVJ6bSECk_IqG5q94zQxFpbeiG8BAHBKmuksDKXriisS3PNIvKmN5ZadEwO1dGXU4WPTA2PLCKvwJZDIURpT8fvFR4Lc9tM8AsotIOmViA5kJtbYYJR1SoIBShfIrLb9wC1du9zhdhFZPrmIiIvh9PgmPi1RdeuWWEZiCWpTGQZkaddzxluhIMqQG5-RNJg_780Q40PjsbD3va_VNohd3C7S13cJaN2uXLPQU615kVwmV90HxTk |
link.rule.ids | 230,315,783,787,888,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NjtMwEMctKAfYA9-7hF3AICRO2Y1jJ3GOFUtVoC0S7UrcLDu2oUIkVUlBcOIReEaehJmkyVKEhATHJHYUxzOev53xL4Q8TmLPfIrkY8bTUAjBQ51GLmReyMRpbliEu5Gns3R8Jl68SbpsQtwL0_Ih-gU39IxmvEYHxwXpk3NqqLYNOAgjWoqbry-Bz3P8e8Pp63OCFAr0BrfHkzBPhey4jVF8slt_Jy5dfIdZkYMKvOxPynNXyDaRaHSNmK4NbQLK--NNbY6Lr7_hHf-rkdfJ1a1OpcPWsG6QC668SfZ-oRfeImq-WpY_vn1_tTbLmi6qNTw-nX9e1k16Jq081XTmEKBMcdSB-TLoWktHyIL8oN-WrqbmC9RbdeMvnW_WXhdwk0YB3yZno2eLp-Nw-7-GsADdx8KcG-MTqU0mwAAykHa84BZmZCZLbJS5LPdF5gtcbNKJszC0MZ9zZl2UOy2hwj4ZlFXp7hAaWWtzL4SXoCFYYY0UVqbSZZl1capZQJ50vaVWLZZDtQDmWOErU_0rC8gj6My-ENK0x8OJwnPN9DYR_BMUOsS-VqA6EJ1bYI5RUSuIBqhgAnLUmYDaevhHheRFxPqmIiAP-8vgm_jBRZeu2mAZCCexjGQekIPWdPoH4SAMEJ0fkLgxgL80Qw1Pp8P-6O6_VHpALo8X04maPJ-9PCRX8HybyXhEBvV64-6BuqrN_cZ_fgKy0xj8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtQwEMctWCRED5RvQgsYhMQpbRI7jnNcUVYLtAtiW6k3y45tWFUkqyULoqc-Qp-RJ2Em2aRdhIQExyR2FGc8nr-d8S-EvEgTH3uB5OOYiZBzzkItIhfGnsvUaWbiCHcjH0zE-Ii_PU6PL-3ib_kQ_YIbekYzXqODz63fvYCGattwgzCgCdx7fY0LkL8oiz5eAKRQnze0PZaGueCywzZGye56_bWwdPUzJkUOKnCyPwnPdR3bBKLRJtFdE9r8k5OdZW12itPf6I7_08Zb5OZKpdJh261ukyuuvEM2LrEL7xI1nc_Kn2fn7xdmVtPDagFPT6ffZ3WTnEkrTzWdOMQnUxxzYLYMqtbSEZIgv-hPpaup-QH15t3oS6fLhdcF3KTRv_fI0ej14atxuPpbQ1iA6ovDnBnjU6lNxsH8GQg7VjAL8zGTpTbKXJb7IvMFLjXp1FkY2GKfs9i6KHdaQoX7ZFBWpXtIaGStzT3nXoKCiAtrJLdSSJdl1iVCxwF52RlLzVsoh2rxy4nCV6b6VxaQ52DLvhCytMfDfYXnmsltytk3KLSFplagORCcW2CGUVEriAWoXwKy3fUAtfLvrwq5iwj1FTwgz_rL4Jn4uUWXrlpiGQgmiYxkHpAHbc_pH4SBLEBwfkCSxv5_aYYa7h0M-6NH_1LpKbn-YW-k9t9M3m2RG3i6TWPcJoN6sXSPQVrV5knjPb8ATK8Xqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spin-Orbit+Torque+Switching+of+a+Nearly+Compensated+Ferrimagnet+by+Topological+Surface+States&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wu%2C+Hao&rft.au=Xu%2C+Yong&rft.au=Deng%2C+Peng&rft.au=Pan%2C+Quanjun&rft.date=2019-08-01&rft.eissn=1521-4095&rft.volume=31&rft.issue=35&rft.spage=e1901681&rft.epage=e1901681&rft_id=info:doi/10.1002%2Fadma.201901681&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |