Titanium Implant Surface Effects on Adherent Macrophage Phenotype: A Systematic Review

Immunomodulatory biomaterials have the potential to stimulate an immune response able to promote constructive and functional tissue remodeling responses as opposed to persistent inflammation and scar tissue formation. As such, the controlled activation of macrophages and modulation of their phenotyp...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 15; no. 20; p. 7314
Main Authors Pitchai, Manju, Ipe, Deepak, Tadakamadla, Santosh, Hamlet, Stephen
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 19.10.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Immunomodulatory biomaterials have the potential to stimulate an immune response able to promote constructive and functional tissue remodeling responses as opposed to persistent inflammation and scar tissue formation. As such, the controlled activation of macrophages and modulation of their phenotype through implant surface modification has emerged as a key therapeutic strategy. Methods: Online databases were searched for in vitro studies between January 1991 and June 2020 which examined the effect of titanium implant surface topography on the adherent macrophage phenotype at either the gene or protein level. Results: Thirty-nine studies were subsequently included for review. Although there was significant heterogeneity between studies, treatment of titanium surfaces increased the surface roughness or hydrophilicity, and hence increased macrophage attachment but decreased cell spreading. Physical coating of the titanium surface also tended to promote the formation of cell clusters. Titanium and titanium-zirconium alloy with a micro- or nano-scale rough topography combined with a hydrophilic surface chemistry were the most effective surfaces for inducing an anti-inflammatory phenotype in adherent macrophages, as indicated by significant changes in cytokine gene expression and or cytokine secretion profiles. Conclusions: The published data support the hypothesis that incorporation of specific topographical and physiochemical surface modifications to titanium can modulate the phenotypic response of adherent macrophages.
AbstractList Immunomodulatory biomaterials have the potential to stimulate an immune response able to promote constructive and functional tissue remodeling responses as opposed to persistent inflammation and scar tissue formation. As such, the controlled activation of macrophages and modulation of their phenotype through implant surface modification has emerged as a key therapeutic strategy.Immunomodulatory biomaterials have the potential to stimulate an immune response able to promote constructive and functional tissue remodeling responses as opposed to persistent inflammation and scar tissue formation. As such, the controlled activation of macrophages and modulation of their phenotype through implant surface modification has emerged as a key therapeutic strategy.Online databases were searched for in vitro studies between January 1991 and June 2020 which examined the effect of titanium implant surface topography on the adherent macrophage phenotype at either the gene or protein level.METHODSOnline databases were searched for in vitro studies between January 1991 and June 2020 which examined the effect of titanium implant surface topography on the adherent macrophage phenotype at either the gene or protein level.Thirty-nine studies were subsequently included for review. Although there was significant heterogeneity between studies, treatment of titanium surfaces increased the surface roughness or hydrophilicity, and hence increased macrophage attachment but decreased cell spreading. Physical coating of the titanium surface also tended to promote the formation of cell clusters. Titanium and titanium-zirconium alloy with a micro- or nano-scale rough topography combined with a hydrophilic surface chemistry were the most effective surfaces for inducing an anti-inflammatory phenotype in adherent macrophages, as indicated by significant changes in cytokine gene expression and or cytokine secretion profiles.RESULTSThirty-nine studies were subsequently included for review. Although there was significant heterogeneity between studies, treatment of titanium surfaces increased the surface roughness or hydrophilicity, and hence increased macrophage attachment but decreased cell spreading. Physical coating of the titanium surface also tended to promote the formation of cell clusters. Titanium and titanium-zirconium alloy with a micro- or nano-scale rough topography combined with a hydrophilic surface chemistry were the most effective surfaces for inducing an anti-inflammatory phenotype in adherent macrophages, as indicated by significant changes in cytokine gene expression and or cytokine secretion profiles.The published data support the hypothesis that incorporation of specific topographical and physiochemical surface modifications to titanium can modulate the phenotypic response of adherent macrophages.CONCLUSIONSThe published data support the hypothesis that incorporation of specific topographical and physiochemical surface modifications to titanium can modulate the phenotypic response of adherent macrophages.
Immunomodulatory biomaterials have the potential to stimulate an immune response able to promote constructive and functional tissue remodeling responses as opposed to persistent inflammation and scar tissue formation. As such, the controlled activation of macrophages and modulation of their phenotype through implant surface modification has emerged as a key therapeutic strategy. Online databases were searched for in vitro studies between January 1991 and June 2020 which examined the effect of titanium implant surface topography on the adherent macrophage phenotype at either the gene or protein level. Thirty-nine studies were subsequently included for review. Although there was significant heterogeneity between studies, treatment of titanium surfaces increased the surface roughness or hydrophilicity, and hence increased macrophage attachment but decreased cell spreading. Physical coating of the titanium surface also tended to promote the formation of cell clusters. Titanium and titanium-zirconium alloy with a micro- or nano-scale rough topography combined with a hydrophilic surface chemistry were the most effective surfaces for inducing an anti-inflammatory phenotype in adherent macrophages, as indicated by significant changes in cytokine gene expression and or cytokine secretion profiles. The published data support the hypothesis that incorporation of specific topographical and physiochemical surface modifications to titanium can modulate the phenotypic response of adherent macrophages.
Immunomodulatory biomaterials have the potential to stimulate an immune response able to promote constructive and functional tissue remodeling responses as opposed to persistent inflammation and scar tissue formation. As such, the controlled activation of macrophages and modulation of their phenotype through implant surface modification has emerged as a key therapeutic strategy. Methods: Online databases were searched for in vitro studies between January 1991 and June 2020 which examined the effect of titanium implant surface topography on the adherent macrophage phenotype at either the gene or protein level. Results: Thirty-nine studies were subsequently included for review. Although there was significant heterogeneity between studies, treatment of titanium surfaces increased the surface roughness or hydrophilicity, and hence increased macrophage attachment but decreased cell spreading. Physical coating of the titanium surface also tended to promote the formation of cell clusters. Titanium and titanium-zirconium alloy with a micro- or nano-scale rough topography combined with a hydrophilic surface chemistry were the most effective surfaces for inducing an anti-inflammatory phenotype in adherent macrophages, as indicated by significant changes in cytokine gene expression and or cytokine secretion profiles. Conclusions: The published data support the hypothesis that incorporation of specific topographical and physiochemical surface modifications to titanium can modulate the phenotypic response of adherent macrophages.
Audience Academic
Author Tadakamadla, Santosh
Hamlet, Stephen
Ipe, Deepak
Pitchai, Manju
AuthorAffiliation School of Medicine and Dentistry, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
AuthorAffiliation_xml – name: School of Medicine and Dentistry, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
Author_xml – sequence: 1
  givenname: Manju
  surname: Pitchai
  fullname: Pitchai, Manju
– sequence: 2
  givenname: Deepak
  orcidid: 0000-0003-3771-6507
  surname: Ipe
  fullname: Ipe, Deepak
– sequence: 3
  givenname: Santosh
  orcidid: 0000-0003-2775-2897
  surname: Tadakamadla
  fullname: Tadakamadla, Santosh
– sequence: 4
  givenname: Stephen
  orcidid: 0000-0003-1283-3395
  surname: Hamlet
  fullname: Hamlet, Stephen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36295379$$D View this record in MEDLINE/PubMed
BookMark eNptkt9LHDEQx0OxVKu-9A8ogb6Uwml-7Y_0oXCIbQWlRW1fQy47uYvsbtZk13L_fefQ2lNMHhIyn5nMfGfekp0-9kDIO86OpNTsuLO8EKySXL0ie1zrcsa1Ujtb911ymPMNwyUlr4V-Q3ZlKXQhK71Hfl-H0fZh6uhZN7S2H-nVlLx1QE-9BzdmGns6b1aQAG0X1qU4rOwS6M8V9HFcD_CZzunVOo_Q2TE4egl3Af4ckNfethkOH8598uvr6fXJ99n5j29nJ_PzmSukHmdQ1CCdK7VnlnOhKrGoC1Fw55RonBa-kb62vCq9Bitr7jHpBpOX3C1Uwxu5T77cxx2mRQeNwySTbc2QQmfT2kQbzFNLH1ZmGe-MLplGLTDAx4cAKd5OkEfTheygRSkgTtmICpXiJecM0Q_P0Js4pR7L21C10rVmW9TStmBC7yP-6zZBzbxSRaVYVQukjl6gcDfQBYcd9gHfnzi83y70scJ_nUTg0z2AHco5gX9EODObSTH_JwVh9gx2OAZjiBuRQvuSy1--wL3F
CitedBy_id crossref_primary_10_1016_j_jds_2024_06_014
crossref_primary_10_1038_s41598_024_70244_6
crossref_primary_10_3390_antibiotics13080690
crossref_primary_10_3389_fbioe_2024_1458091
crossref_primary_10_1016_j_bioactmat_2024_01_017
crossref_primary_10_1016_j_actbio_2023_10_030
crossref_primary_10_3390_ijms24044200
crossref_primary_10_4012_dmj_2024_066
crossref_primary_10_1002_adfm_202418849
crossref_primary_10_1016_j_surfin_2024_105381
crossref_primary_10_1039_D3RA03414C
crossref_primary_10_3390_ma17010114
Cites_doi 10.1016/j.actbio.2013.06.027
10.1016/j.biomaterials.2018.02.010
10.1039/C9BM01158G
10.1016/j.biomaterials.2013.01.019
10.1039/D1NA00741F
10.1016/j.socscimed.2019.05.035
10.1186/s12951-019-0488-9
10.2147/IJN.S163956
10.1016/j.msec.2019.04.064
10.4049/jimmunol.164.12.6166
10.1021/am4060035
10.1016/j.colsurfb.2019.05.039
10.1563/AAID-JOI-D-12-00137
10.1016/j.biomaterials.2014.08.025
10.1136/bmj.l6890
10.1002/jbm.a.36107
10.4236/jbnb.2011.23036
10.1016/j.mattod.2015.01.019
10.1016/j.dental.2018.11.011
10.1002/jbm.a.30988
10.1111/j.1600-0501.2009.01775.x
10.1002/masy.200550705
10.1002/jbm.a.34666
10.1088/1748-605X/aa6b7c
10.1177/0022034515616760
10.1002/jbm.a.34562
10.1016/j.actbio.2015.12.003
10.1016/j.biomaterials.2018.08.029
10.1039/C6TB03364D
10.1006/rtph.1996.1076
10.1016/j.jcms.2019.05.004
10.1111/j.1600-0501.2011.02325.x
10.1016/j.tice.2012.08.002
10.1016/j.toxlet.2009.05.013
10.1073/pnas.1308887110
10.1002/jbm.a.36490
10.2147/IJN.S244349
10.1038/35046196
10.1111/clr.12814
10.22203/eCM.v036a02
10.1016/j.biomaterials.2015.08.027
10.1016/j.actbio.2018.06.023
10.3389/fimmu.2020.00058
10.1111/clr.13522
10.22203/eCM.v021a32
10.2147/IJN.S190766
10.1002/jbm.a.35667
10.1038/srep39612
10.1016/j.biomaterials.2017.11.003
10.1111/cpr.12072
10.1016/j.actbio.2020.01.029
10.7326/ACPJC-1995-123-3-A12
10.1016/j.immuni.2005.10.001
10.1021/acsbiomaterials.9b01717
10.1080/21691401.2018.1446442
10.1021/acsami.8b10992
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ma15207314
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Collection (ProQuest)
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC9609829
A745740782
36295379
10_3390_ma15207314
Genre Journal Article
Review
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TR2
TUS
NPM
PQGLB
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c539t-e58e3cc69f0a112472b85251cc42dc92fd3f8a176f9ea381f537d36231cb4d1d3
IEDL.DBID BENPR
ISSN 1996-1944
IngestDate Thu Aug 21 18:38:43 EDT 2025
Fri Jul 11 15:17:15 EDT 2025
Fri Jul 25 11:56:57 EDT 2025
Thu Jul 03 02:35:11 EDT 2025
Tue Jul 01 05:42:56 EDT 2025
Mon Jul 21 06:08:03 EDT 2025
Thu Apr 24 23:14:52 EDT 2025
Tue Jul 01 03:10:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords phenotype
titanium
topography
macrophage
implant
osseointegration
hydrophilicity
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c539t-e58e3cc69f0a112472b85251cc42dc92fd3f8a176f9ea381f537d36231cb4d1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3771-6507
0000-0003-1283-3395
0000-0003-2775-2897
OpenAccessLink https://www.proquest.com/docview/2728498900?pq-origsite=%requestingapplication%
PMID 36295379
PQID 2728498900
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9609829
proquest_miscellaneous_2729516110
proquest_journals_2728498900
gale_infotracmisc_A745740782
gale_infotracacademiconefile_A745740782
pubmed_primary_36295379
crossref_primary_10_3390_ma15207314
crossref_citationtrail_10_3390_ma15207314
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221019
PublicationDateYYYYMMDD 2022-10-19
PublicationDate_xml – month: 10
  year: 2022
  text: 20221019
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Campbell (ref_59) 2020; 368
Mills (ref_8) 2000; 164
Wang (ref_35) 2017; 5
Ma (ref_34) 2014; 35
Hotchkiss (ref_25) 2016; 28
Zhang (ref_53) 2018; 10
Chen (ref_51) 2020; 105
Morra (ref_52) 2015; 41
Hotchkiss (ref_23) 2015; 31
Chamberlain (ref_58) 2011; 2
Ma (ref_37) 2018; 154
Bai (ref_41) 2018; 162
Zhu (ref_33) 2019; 17
Jennissen (ref_11) 2005; 225
Arron (ref_5) 2000; 408
Johnson (ref_15) 2019; 233
Zhang (ref_50) 2019; 181
Zhang (ref_42) 2018; 46
Richardson (ref_14) 1995; 123
Alfarsi (ref_21) 2013; 102
Hamlet (ref_19) 2011; 23
Schneider (ref_16) 2009; 189
Omar (ref_49) 2016; 28
Kaur (ref_1) 2019; 102
Cui (ref_6) 2021; 4
Mantovani (ref_9) 2005; 23
Eger (ref_24) 2017; 7
Wu (ref_47) 2015; 71
Sridharan (ref_4) 2015; 18
Pajarinen (ref_3) 2013; 9
Hotchkiss (ref_28) 2018; 182
Li (ref_39) 2020; 6
Wennerberg (ref_10) 2009; 20
Milleret (ref_18) 2011; 21
Menaszek (ref_44) 2012; 44
Zhang (ref_55) 2019; 14
McWhorter (ref_56) 2013; 110
Wu (ref_46) 2014; 6
Nagasawa (ref_22) 2015; 95
Hamlet (ref_31) 2019; 30
Yang (ref_29) 2021; 36
Pan (ref_13) 2017; 12
Schwarz (ref_12) 2008; 88
Bai (ref_40) 2018; 76
Nayak (ref_45) 2013; 34
Klimisch (ref_17) 1997; 25
Takebe (ref_43) 2007; 80
Donath (ref_2) 1984; 1
Choi (ref_27) 2018; 106
He (ref_54) 2019; 7
Hotchkiss (ref_32) 2019; 35
Barth (ref_20) 2013; 101A
Wang (ref_36) 2018; 13
Chen (ref_38) 2020; 15
Huang (ref_48) 2016; 104
Guder (ref_7) 2020; 11
Sun (ref_57) 2013; 46
Becker (ref_30) 2019; 47
Kianoush (ref_26) 2017; 105
References_xml – volume: 9
  start-page: 9229
  year: 2013
  ident: ref_3
  article-title: The response of macrophages to titanium particles is determined by macrophage polarization
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.06.027
– volume: 162
  start-page: 154
  year: 2018
  ident: ref_41
  article-title: A multifaceted coating on titanium dictates osteoimmunomodulation and osteo/angio-genesis towards ameliorative osseointegration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.02.010
– volume: 7
  start-page: 5492
  year: 2019
  ident: ref_54
  article-title: Regulation of MSC and macrophage functions in bone healing by peptide LL-37-loaded silk fibroin nanoparticles on a titanium surface
  publication-title: Biomater. Sci.
  doi: 10.1039/C9BM01158G
– volume: 88
  start-page: 544
  year: 2008
  ident: ref_12
  article-title: Potential of chemically modified hydrophilic surface characteristics to support tissue integration of titanium dental implants
  publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater.
– volume: 34
  start-page: 2855
  year: 2013
  ident: ref_45
  article-title: The promotion of osseointegration of titanium surfaces by coating with silk protein sericin
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.01.019
– volume: 4
  start-page: 334
  year: 2021
  ident: ref_6
  article-title: Novel insights into nanomaterials for immunomodulatory bone regeneration
  publication-title: Nanoscale Adv.
  doi: 10.1039/D1NA00741F
– volume: 233
  start-page: 237
  year: 2019
  ident: ref_15
  article-title: Systematic reviews and meta-analyses in the health sciences: Best practice methods for research syntheses
  publication-title: Soc. Sci. Med.
  doi: 10.1016/j.socscimed.2019.05.035
– volume: 17
  start-page: 55
  year: 2019
  ident: ref_33
  article-title: Enhanced corrosion resistance of zinc-containing nanowires-modified titanium surface under exposure to oxidizing microenvironment
  publication-title: Nanobiotechnology
  doi: 10.1186/s12951-019-0488-9
– volume: 13
  start-page: 4029
  year: 2018
  ident: ref_36
  article-title: Nanostructured titanium regulates osseointegration via influencing macrophage polarization in the osteogenic environment
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S163956
– volume: 102
  start-page: 844
  year: 2019
  ident: ref_1
  article-title: Review on titanium and titanium based alloys as biomaterials for orthopaedic applications
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
  doi: 10.1016/j.msec.2019.04.064
– volume: 164
  start-page: 6166
  year: 2000
  ident: ref_8
  article-title: M-1/M-2 Macrophages and the Th1/Th2 Paradigm
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.164.12.6166
– volume: 6
  start-page: 4264
  year: 2014
  ident: ref_46
  article-title: Multidirectional Effects of Sr-, Mg-, and Si-Containing Bioceramic Coatings with High Bonding Strength on Inflammation, Osteoclastogenesis, and Osteogenesis
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am4060035
– volume: 181
  start-page: 125
  year: 2019
  ident: ref_50
  article-title: Complement proteins regulating macrophage polarisation on biomaterials
  publication-title: Colloids Surfaces B Biointerfaces
  doi: 10.1016/j.colsurfb.2019.05.039
– volume: 41
  start-page: 10
  year: 2015
  ident: ref_52
  article-title: Adherent Endotoxin on Dental Implant Surfaces: A Reappraisal
  publication-title: J. Oral Implant.
  doi: 10.1563/AAID-JOI-D-12-00137
– volume: 35
  start-page: 9853
  year: 2014
  ident: ref_34
  article-title: Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.08.025
– volume: 368
  start-page: l6890
  year: 2020
  ident: ref_59
  article-title: Synthesis without meta-analysis (SWiM) in systematic reviews: Reporting guideline
  publication-title: BMJ
  doi: 10.1136/bmj.l6890
– volume: 105
  start-page: 2499
  year: 2017
  ident: ref_26
  article-title: Regulation of RAW264.7 macrophage polarization on smooth and rough surface topographies by galectin-3
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.36107
– volume: 2
  start-page: 293
  year: 2011
  ident: ref_58
  article-title: Macrophage Inflammatory Response to TiO2 Nanotube Surfaces
  publication-title: J. Biomater. Nanobiotechnol.
  doi: 10.4236/jbnb.2011.23036
– volume: 18
  start-page: 313
  year: 2015
  ident: ref_4
  article-title: Biomaterial based modulation of macrophage polarization: A review and suggested design principles
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.01.019
– volume: 35
  start-page: 176
  year: 2019
  ident: ref_32
  article-title: Novel in vitro comparative model of osteogenic and inflammatory cell response to dental implants
  publication-title: Dent. Mater.
  doi: 10.1016/j.dental.2018.11.011
– volume: 1
  start-page: 55
  year: 1984
  ident: ref_2
  article-title: Zelluläre Dynamik um enossale Titanimplantate
  publication-title: Fortschr. Zahnärztl. Implantol.
– volume: 80
  start-page: 711
  year: 2007
  ident: ref_43
  article-title: Anodic oxidation and hydrothermal treatment of commercially pure titanium surfaces increases expression of bone morphogenetic protein-2 in the adherent macrophage cell line J774A.1
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.30988
– volume: 20
  start-page: 172
  year: 2009
  ident: ref_10
  article-title: Effects of titanium surface topography on bone integration: A systematic review
  publication-title: Clin. Oral Implants Res.
  doi: 10.1111/j.1600-0501.2009.01775.x
– volume: 225
  start-page: 43
  year: 2005
  ident: ref_11
  article-title: Ultra-Hydrophilic Transition Metals as Histophilic Biomaterials
  publication-title: Macromol. Symp.
  doi: 10.1002/masy.200550705
– volume: 102
  start-page: 60
  year: 2013
  ident: ref_21
  article-title: Titanium surface hydrophilicity modulates the human macrophage inflammatory cytokine response
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.34666
– volume: 12
  start-page: 45006
  year: 2017
  ident: ref_13
  article-title: Immunomodulation effect of a hierarchical macropore/nanosurface on osteogenesis and angiogenesis
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-605X/aa6b7c
– volume: 95
  start-page: 319
  year: 2015
  ident: ref_22
  article-title: Topography Influences Adherent Cell Regulation of Osteoclastogenesis
  publication-title: J. Dent. Res.
  doi: 10.1177/0022034515616760
– volume: 101A
  start-page: 2679
  year: 2013
  ident: ref_20
  article-title: The effect of surface roughness on RAW 264.7 macrophage phenotype
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.34562
– volume: 31
  start-page: 425
  year: 2015
  ident: ref_23
  article-title: Titanium surface characteristics, including topography and wettability, alter macrophage activation
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2015.12.003
– volume: 182
  start-page: 202
  year: 2018
  ident: ref_28
  article-title: Macrophage response to hydrophilic biomaterials regulates MSC recruitment and T-helper cell populations
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.08.029
– volume: 5
  start-page: 3364
  year: 2017
  ident: ref_35
  article-title: M2 macrophages contribute to osteogenesis and angiogenesis on nanotubular TiO2 surfaces
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C6TB03364D
– volume: 25
  start-page: 1
  year: 1997
  ident: ref_17
  article-title: A Systematic Approach for Evaluating the Quality of Experimental Toxicological and Ecotoxicological Data
  publication-title: Regul. Toxicol. Pharmacol.
  doi: 10.1006/rtph.1996.1076
– volume: 47
  start-page: 1255
  year: 2019
  ident: ref_30
  article-title: In vitro proinflammatory gene expression changes in human whole blood after contact with plasma-treated implant surfaces
  publication-title: J. Cranio-Maxillofac. Surg.
  doi: 10.1016/j.jcms.2019.05.004
– volume: 23
  start-page: 584
  year: 2011
  ident: ref_19
  article-title: The effect of hydrophilic titanium surface modification on macrophage inflammatory cytokine gene expression
  publication-title: Clin. Oral Implants Res.
  doi: 10.1111/j.1600-0501.2011.02325.x
– volume: 44
  start-page: 391
  year: 2012
  ident: ref_44
  article-title: Ceramic modifications of porous titanium: Effects on macrophage activation
  publication-title: Tissue Cell
  doi: 10.1016/j.tice.2012.08.002
– volume: 189
  start-page: 138
  year: 2009
  ident: ref_16
  article-title: “ToxRTool”, a new tool to assess the reliability of toxicological data
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2009.05.013
– volume: 110
  start-page: 17253
  year: 2013
  ident: ref_56
  article-title: Modulation of macrophage phenotype by cell shape
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1308887110
– volume: 106
  start-page: 3009
  year: 2018
  ident: ref_27
  article-title: Multifunctional effects of a modification of SLA titanium implant surface with strontium-containing nanostructures on immunoinflammatory and osteogenic cell function
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.36490
– volume: 15
  start-page: 2095
  year: 2020
  ident: ref_38
  article-title: Zn-Incorporated TiO2 Nanotube Surface Improves Osteogenesis Ability Through Influencing Immunomodulatory Function of Macrophages
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S244349
– volume: 408
  start-page: 535
  year: 2000
  ident: ref_5
  article-title: Bone versus immune system
  publication-title: Nature
  doi: 10.1038/35046196
– volume: 28
  start-page: 414
  year: 2016
  ident: ref_25
  article-title: Dental implant surface chemistry and energy alter macrophage activation in vitro
  publication-title: Clin. Oral Implant. Res.
  doi: 10.1111/clr.12814
– volume: 36
  start-page: 15
  year: 2021
  ident: ref_29
  article-title: Modulation of macrophage phenotype through controlled release of interleukin-4 from gelatine coatings on titanium surfaces
  publication-title: Eur. Cells Mater.
  doi: 10.22203/eCM.v036a02
– volume: 71
  start-page: 35
  year: 2015
  ident: ref_47
  article-title: Clinoenstatite coatings have high bonding strength, bioactive ion release, and osteoimmunomodulatory effects that enhance in vivo osseointegration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.08.027
– volume: 76
  start-page: 344
  year: 2018
  ident: ref_40
  article-title: Differential effect of hydroxyapatite nano-particle versus nano-rod decorated titanium micro-surface on osseointegration
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.06.023
– volume: 28
  start-page: 9
  year: 2016
  ident: ref_49
  article-title: Inflammatory cell response to ultra-thin amorphous and crystalline hydroxyapatite surfaces
  publication-title: J. Mater. Sci. Mater. Med.
– volume: 11
  start-page: 58
  year: 2020
  ident: ref_7
  article-title: Osteoimmunology: A Current Update of the Interplay between Bone and the Immune System
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.00058
– volume: 30
  start-page: 1085
  year: 2019
  ident: ref_31
  article-title: Hydrophilic titanium surface-induced macrophage modulation promotes pro-osteogenic signalling
  publication-title: Clin. Oral Implant. Res.
  doi: 10.1111/clr.13522
– volume: 21
  start-page: 430
  year: 2011
  ident: ref_18
  article-title: Alkali treatment of microrough titanium surfaces affects macrophage/monocyte adhesion, platelet activation and architecture of blood clot formation
  publication-title: Eur. Cells Mater.
  doi: 10.22203/eCM.v021a32
– volume: 14
  start-page: 977
  year: 2019
  ident: ref_55
  article-title: Establishing an osteoimmunomodulatory coating loaded with aspirin on the surface of titanium primed with phase-transited lysozyme
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S190766
– volume: 104
  start-page: 1437
  year: 2016
  ident: ref_48
  article-title: Enhancement of local bone remodeling in osteoporotic rabbits by biomimic multilayered structures on Ti6Al4V implants
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.35667
– volume: 7
  start-page: 39612
  year: 2017
  ident: ref_24
  article-title: Scaling of titanium implants entrains inflammation-induced osteolysis
  publication-title: Sci. Rep.
  doi: 10.1038/srep39612
– volume: 154
  start-page: 234
  year: 2018
  ident: ref_37
  article-title: Bone mesenchymal stem cell secretion of sRANKL/OPG/M-CSF in response to macrophage-mediated inflammatory response influences osteogenesis on nanostructured Ti surfaces
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.11.003
– volume: 46
  start-page: 685
  year: 2013
  ident: ref_57
  article-title: Effects of TiO2nanotube layers on RAW 264.7 macrophage behaviour and bone morphogenetic protein-2 expression
  publication-title: Cell Prolif.
  doi: 10.1111/cpr.12072
– volume: 105
  start-page: 304
  year: 2020
  ident: ref_51
  article-title: Construction of multilayered molecular reservoirs on a titanium alloy implant for combinational drug delivery to promote osseointegration in osteoporotic conditions
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.01.029
– volume: 123
  start-page: A12
  year: 1995
  ident: ref_14
  article-title: The well-built clinical question: A key to evidence-based decisions
  publication-title: ACP J. Club
  doi: 10.7326/ACPJC-1995-123-3-A12
– volume: 23
  start-page: 344
  year: 2005
  ident: ref_9
  article-title: Macrophage Polarization Comes of Age
  publication-title: Immunity
  doi: 10.1016/j.immuni.2005.10.001
– volume: 6
  start-page: 969
  year: 2020
  ident: ref_39
  article-title: Optimized Nanointerface Engineering of Micro/Nanostructured Titanium Implants to Enhance Cell–Nanotopography Interactions and Osseointegration
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.9b01717
– volume: 46
  start-page: 1123
  year: 2018
  ident: ref_42
  article-title: The immunomodulatory effects of Zn-incorporated micro/nanostructured coating in inducing osteogenesis
  publication-title: Artif. Cells Nanomed. Biotechnol.
  doi: 10.1080/21691401.2018.1446442
– volume: 10
  start-page: 36652
  year: 2018
  ident: ref_53
  article-title: Combinatorial Surface Roughness Effects on Osteoclastogenesis and Osteogenesis
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b10992
SSID ssj0000331829
Score 2.4264972
SecondaryResourceType review_article
Snippet Immunomodulatory biomaterials have the potential to stimulate an immune response able to promote constructive and functional tissue remodeling responses as...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 7314
SubjectTerms Biological products
Biomedical materials
Citation management software
Cytokines
Dental implants
Gene expression
Genotype & phenotype
Health aspects
Heterogeneity
Immune response
Immune system
Immunotherapy
Inflammation
Investigations
Macrophages
Mechanical properties
Medical equipment
Morphology
Online databases
Physiochemistry
Subject heading schemes
Surface roughness
Surgical implants
Systematic Review
Titanium
Titanium alloys
Titanium base alloys
Topography
Title Titanium Implant Surface Effects on Adherent Macrophage Phenotype: A Systematic Review
URI https://www.ncbi.nlm.nih.gov/pubmed/36295379
https://www.proquest.com/docview/2728498900
https://www.proquest.com/docview/2729516110
https://pubmed.ncbi.nlm.nih.gov/PMC9609829
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_W9mV7GPuuu65obDD2YBrrw5b2MrLRtAxaytqOvBlJlklhtdsm-f93FytuPMYeg85B3J3uQ7r7HcBHqzNb516lea5VKoNxqQmiTgnzzrqq5spR7_DpWX5yJX9M1TReuM1jWeXaJq4MddV6uiM_5AUaUqPNaPT19i6lqVH0uhpHaGzBDppgjcnXzrejs_Of_S3LSKDOctPhkgrM7w9vLHos1OtMDjzR3_Z4wyENiyU3vM_kGTyNYSMbd3J-Do9C8wKebIAJvoRfl5jmN9fLG0aIv8gwdrG8r60PrEMonrO2YeNqRv19C3ZqaXbXDK0JO5-FpqWr2C9szC56ZGfWPRu8gqvJ0eX3kzROTUi9EmaRBqWD8D439chiMCUL7rTCKMZ7yStveF2JWtusyGsTLPrrWomiQjcmMu9klVXiNWw3bRN2gdH0TO0K7xymXSJwmweTG1VZ6WWQXCbwec3B0kdIcZps8bvE1IK4XT5wO4EPPe1tB6TxT6pPJIiSThf-k7exSQD3QzhV5biQqqCnR57A_oAST4UfLq9FWcZTOS8fdCiB9_0yfUmVZk1olysaDDpzjIoSeNNJvt8vcskgt0wCxUAnegLC6h6uNNezFWY3AfuhIu79f1tv4TGn9gqqmDH7sL24X4Z3GPQs3AFs6cnxQdRv_HU8zf4AMUkEeg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDcuBRYBQhys2vuwvUgIRUBIaVMhNa16M-v1WonU2qVJhPhT_EZm4kdjhLj1vGNrNe_dnfkG4JVJQlNEVvlRlChfOp352onCJ8w7k-UFVxn1Do8PotGR_HqiTjbgd9sLQ2WVrU9cOeq8snRHvsNjdKQ60UHw4fyHT1Oj6HW1HaFRq8We-_UTj2zz97ufUL6vOR9-nnwc-c1UAd8qoRe-U4kT1ka6CAwmGzLmWaIwylsreW41L3JRJCaMo0I7g_GsUCLO0c2L0GYyD3OB_70G16UQmiwqGX7p7nQCgRbCdY2CiuvBzpnB-IhWFMpe3Pvb-6-Fv35p5lqsG96B202Syga1Vt2FDVfeg1tr0IX34Xgyw7RytjxjhC-M4mGHy4vCWMdqPOQ5q0o2yKfUTbhgY0OTwqbou9i3qSsruvh9xwbssMORZvUjxQM4uhJuPoTNsirdY2A0qzPJYptleMgTjpvI6Uir3EgrneTSg7ctB1PbAJjTHI3TFA8yxO30ktsevOxoz2vYjn9SvSFBpGTL-CdrmpYE3A-hYqWDWKqYHjq5B9s9SrRB219uRZk2PmCeXmqsBy-6ZfqS6tpKVy1XNJjiRpiDefColny3X-SSRm5pD-KeTnQEhAzeXyln0xVCOMEIoiJu_X9bz-HGaDLeT_d3D_aewE1OjR1Uq6O3YXNxsXRPMd1aZM9WOs7g-1Ub1R8PTj3r
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVELwgLgxFFgECPFgxd7D9iIhFGijltIooof6ZtbrtRKJOqVJhPhr_Dpm4qMxQrz1ecer1dy7nvkG4JVJQlNEVvlRlChfOp352onCJ8w7k-UFVxn1Dh-Mot1j-flUnW7A76YXhsoqG5-4ctT5zNIbeZ_H6Eh1ooOgX9RlEePt4YfzHz5NkKI_rc04jUpF9t2vn3h9m7_f20ZZv-Z8uHP0adevJwz4Vgm98J1KnLA20kVgMPGQMc8ShRHfWslzq3mRiyIxYRwV2hmMbYUScY4uX4Q2k3mYC9z3GmzGeCsKerD5cWc0_tq-8AQC7YXrChNVCB30zwxGS7SpUHai4N-xYC0Ydgs11yLf8DbcqlNWNqh07A5suPIu3FwDMrwHJ0dTTDKnyzNGaMMoLHa4vCiMdaxCR56zWckG-YR6CxfswNDcsAl6MjaeuHJGz8Dv2IAdtqjSrPplcR-Or4SfD6BXzkr3CBhN7kyy2GYZXvmE4yZyOtIqN9JKJ7n04G3DwdTWcOY0VeN7itca4nZ6yW0PXra05xWIxz-p3pAgUrJs3MmaukEBz0MYWekglooknXAPtjqUaJG2u9yIMq09wjy91F8PXrTL9CVVuZVutlzRYMIbYUbmwcNK8u15kUsauaU9iDs60RIQTnh3pZxOVnjhBCqIivj4_8d6DtfRoNIve6P9J3CDU5cHFe7oLegtLpbuKeZei-xZreQMvl21Xf0BE89DfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Titanium+Implant+Surface+Effects+on+Adherent+Macrophage+Phenotype%3A+A+Systematic+Review&rft.jtitle=Materials&rft.au=Pitchai%2C+Manju&rft.au=Ipe%2C+Deepak&rft.au=Tadakamadla%2C+Santosh&rft.au=Hamlet%2C+Stephen&rft.date=2022-10-19&rft.pub=MDPI+AG&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=15&rft.issue=20&rft_id=info:doi/10.3390%2Fma15207314&rft.externalDocID=A745740782
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon