Titanium Implant Surface Effects on Adherent Macrophage Phenotype: A Systematic Review
Immunomodulatory biomaterials have the potential to stimulate an immune response able to promote constructive and functional tissue remodeling responses as opposed to persistent inflammation and scar tissue formation. As such, the controlled activation of macrophages and modulation of their phenotyp...
Saved in:
Published in | Materials Vol. 15; no. 20; p. 7314 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
19.10.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Immunomodulatory biomaterials have the potential to stimulate an immune response able to promote constructive and functional tissue remodeling responses as opposed to persistent inflammation and scar tissue formation. As such, the controlled activation of macrophages and modulation of their phenotype through implant surface modification has emerged as a key therapeutic strategy. Methods: Online databases were searched for in vitro studies between January 1991 and June 2020 which examined the effect of titanium implant surface topography on the adherent macrophage phenotype at either the gene or protein level. Results: Thirty-nine studies were subsequently included for review. Although there was significant heterogeneity between studies, treatment of titanium surfaces increased the surface roughness or hydrophilicity, and hence increased macrophage attachment but decreased cell spreading. Physical coating of the titanium surface also tended to promote the formation of cell clusters. Titanium and titanium-zirconium alloy with a micro- or nano-scale rough topography combined with a hydrophilic surface chemistry were the most effective surfaces for inducing an anti-inflammatory phenotype in adherent macrophages, as indicated by significant changes in cytokine gene expression and or cytokine secretion profiles. Conclusions: The published data support the hypothesis that incorporation of specific topographical and physiochemical surface modifications to titanium can modulate the phenotypic response of adherent macrophages. |
---|---|
AbstractList | Immunomodulatory biomaterials have the potential to stimulate an immune response able to promote constructive and functional tissue remodeling responses as opposed to persistent inflammation and scar tissue formation. As such, the controlled activation of macrophages and modulation of their phenotype through implant surface modification has emerged as a key therapeutic strategy.Immunomodulatory biomaterials have the potential to stimulate an immune response able to promote constructive and functional tissue remodeling responses as opposed to persistent inflammation and scar tissue formation. As such, the controlled activation of macrophages and modulation of their phenotype through implant surface modification has emerged as a key therapeutic strategy.Online databases were searched for in vitro studies between January 1991 and June 2020 which examined the effect of titanium implant surface topography on the adherent macrophage phenotype at either the gene or protein level.METHODSOnline databases were searched for in vitro studies between January 1991 and June 2020 which examined the effect of titanium implant surface topography on the adherent macrophage phenotype at either the gene or protein level.Thirty-nine studies were subsequently included for review. Although there was significant heterogeneity between studies, treatment of titanium surfaces increased the surface roughness or hydrophilicity, and hence increased macrophage attachment but decreased cell spreading. Physical coating of the titanium surface also tended to promote the formation of cell clusters. Titanium and titanium-zirconium alloy with a micro- or nano-scale rough topography combined with a hydrophilic surface chemistry were the most effective surfaces for inducing an anti-inflammatory phenotype in adherent macrophages, as indicated by significant changes in cytokine gene expression and or cytokine secretion profiles.RESULTSThirty-nine studies were subsequently included for review. Although there was significant heterogeneity between studies, treatment of titanium surfaces increased the surface roughness or hydrophilicity, and hence increased macrophage attachment but decreased cell spreading. Physical coating of the titanium surface also tended to promote the formation of cell clusters. Titanium and titanium-zirconium alloy with a micro- or nano-scale rough topography combined with a hydrophilic surface chemistry were the most effective surfaces for inducing an anti-inflammatory phenotype in adherent macrophages, as indicated by significant changes in cytokine gene expression and or cytokine secretion profiles.The published data support the hypothesis that incorporation of specific topographical and physiochemical surface modifications to titanium can modulate the phenotypic response of adherent macrophages.CONCLUSIONSThe published data support the hypothesis that incorporation of specific topographical and physiochemical surface modifications to titanium can modulate the phenotypic response of adherent macrophages. Immunomodulatory biomaterials have the potential to stimulate an immune response able to promote constructive and functional tissue remodeling responses as opposed to persistent inflammation and scar tissue formation. As such, the controlled activation of macrophages and modulation of their phenotype through implant surface modification has emerged as a key therapeutic strategy. Online databases were searched for in vitro studies between January 1991 and June 2020 which examined the effect of titanium implant surface topography on the adherent macrophage phenotype at either the gene or protein level. Thirty-nine studies were subsequently included for review. Although there was significant heterogeneity between studies, treatment of titanium surfaces increased the surface roughness or hydrophilicity, and hence increased macrophage attachment but decreased cell spreading. Physical coating of the titanium surface also tended to promote the formation of cell clusters. Titanium and titanium-zirconium alloy with a micro- or nano-scale rough topography combined with a hydrophilic surface chemistry were the most effective surfaces for inducing an anti-inflammatory phenotype in adherent macrophages, as indicated by significant changes in cytokine gene expression and or cytokine secretion profiles. The published data support the hypothesis that incorporation of specific topographical and physiochemical surface modifications to titanium can modulate the phenotypic response of adherent macrophages. Immunomodulatory biomaterials have the potential to stimulate an immune response able to promote constructive and functional tissue remodeling responses as opposed to persistent inflammation and scar tissue formation. As such, the controlled activation of macrophages and modulation of their phenotype through implant surface modification has emerged as a key therapeutic strategy. Methods: Online databases were searched for in vitro studies between January 1991 and June 2020 which examined the effect of titanium implant surface topography on the adherent macrophage phenotype at either the gene or protein level. Results: Thirty-nine studies were subsequently included for review. Although there was significant heterogeneity between studies, treatment of titanium surfaces increased the surface roughness or hydrophilicity, and hence increased macrophage attachment but decreased cell spreading. Physical coating of the titanium surface also tended to promote the formation of cell clusters. Titanium and titanium-zirconium alloy with a micro- or nano-scale rough topography combined with a hydrophilic surface chemistry were the most effective surfaces for inducing an anti-inflammatory phenotype in adherent macrophages, as indicated by significant changes in cytokine gene expression and or cytokine secretion profiles. Conclusions: The published data support the hypothesis that incorporation of specific topographical and physiochemical surface modifications to titanium can modulate the phenotypic response of adherent macrophages. |
Audience | Academic |
Author | Tadakamadla, Santosh Hamlet, Stephen Ipe, Deepak Pitchai, Manju |
AuthorAffiliation | School of Medicine and Dentistry, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia |
AuthorAffiliation_xml | – name: School of Medicine and Dentistry, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia |
Author_xml | – sequence: 1 givenname: Manju surname: Pitchai fullname: Pitchai, Manju – sequence: 2 givenname: Deepak orcidid: 0000-0003-3771-6507 surname: Ipe fullname: Ipe, Deepak – sequence: 3 givenname: Santosh orcidid: 0000-0003-2775-2897 surname: Tadakamadla fullname: Tadakamadla, Santosh – sequence: 4 givenname: Stephen orcidid: 0000-0003-1283-3395 surname: Hamlet fullname: Hamlet, Stephen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36295379$$D View this record in MEDLINE/PubMed |
BookMark | eNptkt9LHDEQx0OxVKu-9A8ogb6Uwml-7Y_0oXCIbQWlRW1fQy47uYvsbtZk13L_fefQ2lNMHhIyn5nMfGfekp0-9kDIO86OpNTsuLO8EKySXL0ie1zrcsa1Ujtb911ymPMNwyUlr4V-Q3ZlKXQhK71Hfl-H0fZh6uhZN7S2H-nVlLx1QE-9BzdmGns6b1aQAG0X1qU4rOwS6M8V9HFcD_CZzunVOo_Q2TE4egl3Af4ckNfethkOH8598uvr6fXJ99n5j29nJ_PzmSukHmdQ1CCdK7VnlnOhKrGoC1Fw55RonBa-kb62vCq9Bitr7jHpBpOX3C1Uwxu5T77cxx2mRQeNwySTbc2QQmfT2kQbzFNLH1ZmGe-MLplGLTDAx4cAKd5OkEfTheygRSkgTtmICpXiJecM0Q_P0Js4pR7L21C10rVmW9TStmBC7yP-6zZBzbxSRaVYVQukjl6gcDfQBYcd9gHfnzi83y70scJ_nUTg0z2AHco5gX9EODObSTH_JwVh9gx2OAZjiBuRQvuSy1--wL3F |
CitedBy_id | crossref_primary_10_1016_j_jds_2024_06_014 crossref_primary_10_1038_s41598_024_70244_6 crossref_primary_10_3390_antibiotics13080690 crossref_primary_10_3389_fbioe_2024_1458091 crossref_primary_10_1016_j_bioactmat_2024_01_017 crossref_primary_10_1016_j_actbio_2023_10_030 crossref_primary_10_3390_ijms24044200 crossref_primary_10_4012_dmj_2024_066 crossref_primary_10_1002_adfm_202418849 crossref_primary_10_1016_j_surfin_2024_105381 crossref_primary_10_1039_D3RA03414C crossref_primary_10_3390_ma17010114 |
Cites_doi | 10.1016/j.actbio.2013.06.027 10.1016/j.biomaterials.2018.02.010 10.1039/C9BM01158G 10.1016/j.biomaterials.2013.01.019 10.1039/D1NA00741F 10.1016/j.socscimed.2019.05.035 10.1186/s12951-019-0488-9 10.2147/IJN.S163956 10.1016/j.msec.2019.04.064 10.4049/jimmunol.164.12.6166 10.1021/am4060035 10.1016/j.colsurfb.2019.05.039 10.1563/AAID-JOI-D-12-00137 10.1016/j.biomaterials.2014.08.025 10.1136/bmj.l6890 10.1002/jbm.a.36107 10.4236/jbnb.2011.23036 10.1016/j.mattod.2015.01.019 10.1016/j.dental.2018.11.011 10.1002/jbm.a.30988 10.1111/j.1600-0501.2009.01775.x 10.1002/masy.200550705 10.1002/jbm.a.34666 10.1088/1748-605X/aa6b7c 10.1177/0022034515616760 10.1002/jbm.a.34562 10.1016/j.actbio.2015.12.003 10.1016/j.biomaterials.2018.08.029 10.1039/C6TB03364D 10.1006/rtph.1996.1076 10.1016/j.jcms.2019.05.004 10.1111/j.1600-0501.2011.02325.x 10.1016/j.tice.2012.08.002 10.1016/j.toxlet.2009.05.013 10.1073/pnas.1308887110 10.1002/jbm.a.36490 10.2147/IJN.S244349 10.1038/35046196 10.1111/clr.12814 10.22203/eCM.v036a02 10.1016/j.biomaterials.2015.08.027 10.1016/j.actbio.2018.06.023 10.3389/fimmu.2020.00058 10.1111/clr.13522 10.22203/eCM.v021a32 10.2147/IJN.S190766 10.1002/jbm.a.35667 10.1038/srep39612 10.1016/j.biomaterials.2017.11.003 10.1111/cpr.12072 10.1016/j.actbio.2020.01.029 10.7326/ACPJC-1995-123-3-A12 10.1016/j.immuni.2005.10.001 10.1021/acsbiomaterials.9b01717 10.1080/21691401.2018.1446442 10.1021/acsami.8b10992 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/ma15207314 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Collection (ProQuest) Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | PMC9609829 A745740782 36295379 10_3390_ma15207314 |
Genre | Journal Article Review |
GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM TR2 TUS NPM PQGLB 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c539t-e58e3cc69f0a112472b85251cc42dc92fd3f8a176f9ea381f537d36231cb4d1d3 |
IEDL.DBID | BENPR |
ISSN | 1996-1944 |
IngestDate | Thu Aug 21 18:38:43 EDT 2025 Fri Jul 11 15:17:15 EDT 2025 Fri Jul 25 11:56:57 EDT 2025 Thu Jul 03 02:35:11 EDT 2025 Tue Jul 01 05:42:56 EDT 2025 Mon Jul 21 06:08:03 EDT 2025 Thu Apr 24 23:14:52 EDT 2025 Tue Jul 01 03:10:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | phenotype titanium topography macrophage implant osseointegration hydrophilicity |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c539t-e58e3cc69f0a112472b85251cc42dc92fd3f8a176f9ea381f537d36231cb4d1d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3771-6507 0000-0003-1283-3395 0000-0003-2775-2897 |
OpenAccessLink | https://www.proquest.com/docview/2728498900?pq-origsite=%requestingapplication% |
PMID | 36295379 |
PQID | 2728498900 |
PQPubID | 2032366 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9609829 proquest_miscellaneous_2729516110 proquest_journals_2728498900 gale_infotracmisc_A745740782 gale_infotracacademiconefile_A745740782 pubmed_primary_36295379 crossref_primary_10_3390_ma15207314 crossref_citationtrail_10_3390_ma15207314 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221019 |
PublicationDateYYYYMMDD | 2022-10-19 |
PublicationDate_xml | – month: 10 year: 2022 text: 20221019 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Materials |
PublicationTitleAlternate | Materials (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Campbell (ref_59) 2020; 368 Mills (ref_8) 2000; 164 Wang (ref_35) 2017; 5 Ma (ref_34) 2014; 35 Hotchkiss (ref_25) 2016; 28 Zhang (ref_53) 2018; 10 Chen (ref_51) 2020; 105 Morra (ref_52) 2015; 41 Hotchkiss (ref_23) 2015; 31 Chamberlain (ref_58) 2011; 2 Ma (ref_37) 2018; 154 Bai (ref_41) 2018; 162 Zhu (ref_33) 2019; 17 Jennissen (ref_11) 2005; 225 Arron (ref_5) 2000; 408 Johnson (ref_15) 2019; 233 Zhang (ref_50) 2019; 181 Zhang (ref_42) 2018; 46 Richardson (ref_14) 1995; 123 Alfarsi (ref_21) 2013; 102 Hamlet (ref_19) 2011; 23 Schneider (ref_16) 2009; 189 Omar (ref_49) 2016; 28 Kaur (ref_1) 2019; 102 Cui (ref_6) 2021; 4 Mantovani (ref_9) 2005; 23 Eger (ref_24) 2017; 7 Wu (ref_47) 2015; 71 Sridharan (ref_4) 2015; 18 Pajarinen (ref_3) 2013; 9 Hotchkiss (ref_28) 2018; 182 Li (ref_39) 2020; 6 Wennerberg (ref_10) 2009; 20 Milleret (ref_18) 2011; 21 Menaszek (ref_44) 2012; 44 Zhang (ref_55) 2019; 14 McWhorter (ref_56) 2013; 110 Wu (ref_46) 2014; 6 Nagasawa (ref_22) 2015; 95 Hamlet (ref_31) 2019; 30 Yang (ref_29) 2021; 36 Pan (ref_13) 2017; 12 Schwarz (ref_12) 2008; 88 Bai (ref_40) 2018; 76 Nayak (ref_45) 2013; 34 Klimisch (ref_17) 1997; 25 Takebe (ref_43) 2007; 80 Donath (ref_2) 1984; 1 Choi (ref_27) 2018; 106 He (ref_54) 2019; 7 Hotchkiss (ref_32) 2019; 35 Barth (ref_20) 2013; 101A Wang (ref_36) 2018; 13 Chen (ref_38) 2020; 15 Huang (ref_48) 2016; 104 Guder (ref_7) 2020; 11 Sun (ref_57) 2013; 46 Becker (ref_30) 2019; 47 Kianoush (ref_26) 2017; 105 |
References_xml | – volume: 9 start-page: 9229 year: 2013 ident: ref_3 article-title: The response of macrophages to titanium particles is determined by macrophage polarization publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.06.027 – volume: 162 start-page: 154 year: 2018 ident: ref_41 article-title: A multifaceted coating on titanium dictates osteoimmunomodulation and osteo/angio-genesis towards ameliorative osseointegration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.02.010 – volume: 7 start-page: 5492 year: 2019 ident: ref_54 article-title: Regulation of MSC and macrophage functions in bone healing by peptide LL-37-loaded silk fibroin nanoparticles on a titanium surface publication-title: Biomater. Sci. doi: 10.1039/C9BM01158G – volume: 88 start-page: 544 year: 2008 ident: ref_12 article-title: Potential of chemically modified hydrophilic surface characteristics to support tissue integration of titanium dental implants publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater. – volume: 34 start-page: 2855 year: 2013 ident: ref_45 article-title: The promotion of osseointegration of titanium surfaces by coating with silk protein sericin publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.01.019 – volume: 4 start-page: 334 year: 2021 ident: ref_6 article-title: Novel insights into nanomaterials for immunomodulatory bone regeneration publication-title: Nanoscale Adv. doi: 10.1039/D1NA00741F – volume: 233 start-page: 237 year: 2019 ident: ref_15 article-title: Systematic reviews and meta-analyses in the health sciences: Best practice methods for research syntheses publication-title: Soc. Sci. Med. doi: 10.1016/j.socscimed.2019.05.035 – volume: 17 start-page: 55 year: 2019 ident: ref_33 article-title: Enhanced corrosion resistance of zinc-containing nanowires-modified titanium surface under exposure to oxidizing microenvironment publication-title: Nanobiotechnology doi: 10.1186/s12951-019-0488-9 – volume: 13 start-page: 4029 year: 2018 ident: ref_36 article-title: Nanostructured titanium regulates osseointegration via influencing macrophage polarization in the osteogenic environment publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S163956 – volume: 102 start-page: 844 year: 2019 ident: ref_1 article-title: Review on titanium and titanium based alloys as biomaterials for orthopaedic applications publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. doi: 10.1016/j.msec.2019.04.064 – volume: 164 start-page: 6166 year: 2000 ident: ref_8 article-title: M-1/M-2 Macrophages and the Th1/Th2 Paradigm publication-title: J. Immunol. doi: 10.4049/jimmunol.164.12.6166 – volume: 6 start-page: 4264 year: 2014 ident: ref_46 article-title: Multidirectional Effects of Sr-, Mg-, and Si-Containing Bioceramic Coatings with High Bonding Strength on Inflammation, Osteoclastogenesis, and Osteogenesis publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am4060035 – volume: 181 start-page: 125 year: 2019 ident: ref_50 article-title: Complement proteins regulating macrophage polarisation on biomaterials publication-title: Colloids Surfaces B Biointerfaces doi: 10.1016/j.colsurfb.2019.05.039 – volume: 41 start-page: 10 year: 2015 ident: ref_52 article-title: Adherent Endotoxin on Dental Implant Surfaces: A Reappraisal publication-title: J. Oral Implant. doi: 10.1563/AAID-JOI-D-12-00137 – volume: 35 start-page: 9853 year: 2014 ident: ref_34 article-title: Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.08.025 – volume: 368 start-page: l6890 year: 2020 ident: ref_59 article-title: Synthesis without meta-analysis (SWiM) in systematic reviews: Reporting guideline publication-title: BMJ doi: 10.1136/bmj.l6890 – volume: 105 start-page: 2499 year: 2017 ident: ref_26 article-title: Regulation of RAW264.7 macrophage polarization on smooth and rough surface topographies by galectin-3 publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.36107 – volume: 2 start-page: 293 year: 2011 ident: ref_58 article-title: Macrophage Inflammatory Response to TiO2 Nanotube Surfaces publication-title: J. Biomater. Nanobiotechnol. doi: 10.4236/jbnb.2011.23036 – volume: 18 start-page: 313 year: 2015 ident: ref_4 article-title: Biomaterial based modulation of macrophage polarization: A review and suggested design principles publication-title: Mater. Today doi: 10.1016/j.mattod.2015.01.019 – volume: 35 start-page: 176 year: 2019 ident: ref_32 article-title: Novel in vitro comparative model of osteogenic and inflammatory cell response to dental implants publication-title: Dent. Mater. doi: 10.1016/j.dental.2018.11.011 – volume: 1 start-page: 55 year: 1984 ident: ref_2 article-title: Zelluläre Dynamik um enossale Titanimplantate publication-title: Fortschr. Zahnärztl. Implantol. – volume: 80 start-page: 711 year: 2007 ident: ref_43 article-title: Anodic oxidation and hydrothermal treatment of commercially pure titanium surfaces increases expression of bone morphogenetic protein-2 in the adherent macrophage cell line J774A.1 publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.30988 – volume: 20 start-page: 172 year: 2009 ident: ref_10 article-title: Effects of titanium surface topography on bone integration: A systematic review publication-title: Clin. Oral Implants Res. doi: 10.1111/j.1600-0501.2009.01775.x – volume: 225 start-page: 43 year: 2005 ident: ref_11 article-title: Ultra-Hydrophilic Transition Metals as Histophilic Biomaterials publication-title: Macromol. Symp. doi: 10.1002/masy.200550705 – volume: 102 start-page: 60 year: 2013 ident: ref_21 article-title: Titanium surface hydrophilicity modulates the human macrophage inflammatory cytokine response publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.34666 – volume: 12 start-page: 45006 year: 2017 ident: ref_13 article-title: Immunomodulation effect of a hierarchical macropore/nanosurface on osteogenesis and angiogenesis publication-title: Biomed. Mater. doi: 10.1088/1748-605X/aa6b7c – volume: 95 start-page: 319 year: 2015 ident: ref_22 article-title: Topography Influences Adherent Cell Regulation of Osteoclastogenesis publication-title: J. Dent. Res. doi: 10.1177/0022034515616760 – volume: 101A start-page: 2679 year: 2013 ident: ref_20 article-title: The effect of surface roughness on RAW 264.7 macrophage phenotype publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.34562 – volume: 31 start-page: 425 year: 2015 ident: ref_23 article-title: Titanium surface characteristics, including topography and wettability, alter macrophage activation publication-title: Acta Biomater. doi: 10.1016/j.actbio.2015.12.003 – volume: 182 start-page: 202 year: 2018 ident: ref_28 article-title: Macrophage response to hydrophilic biomaterials regulates MSC recruitment and T-helper cell populations publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.08.029 – volume: 5 start-page: 3364 year: 2017 ident: ref_35 article-title: M2 macrophages contribute to osteogenesis and angiogenesis on nanotubular TiO2 surfaces publication-title: J. Mater. Chem. B doi: 10.1039/C6TB03364D – volume: 25 start-page: 1 year: 1997 ident: ref_17 article-title: A Systematic Approach for Evaluating the Quality of Experimental Toxicological and Ecotoxicological Data publication-title: Regul. Toxicol. Pharmacol. doi: 10.1006/rtph.1996.1076 – volume: 47 start-page: 1255 year: 2019 ident: ref_30 article-title: In vitro proinflammatory gene expression changes in human whole blood after contact with plasma-treated implant surfaces publication-title: J. Cranio-Maxillofac. Surg. doi: 10.1016/j.jcms.2019.05.004 – volume: 23 start-page: 584 year: 2011 ident: ref_19 article-title: The effect of hydrophilic titanium surface modification on macrophage inflammatory cytokine gene expression publication-title: Clin. Oral Implants Res. doi: 10.1111/j.1600-0501.2011.02325.x – volume: 44 start-page: 391 year: 2012 ident: ref_44 article-title: Ceramic modifications of porous titanium: Effects on macrophage activation publication-title: Tissue Cell doi: 10.1016/j.tice.2012.08.002 – volume: 189 start-page: 138 year: 2009 ident: ref_16 article-title: “ToxRTool”, a new tool to assess the reliability of toxicological data publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2009.05.013 – volume: 110 start-page: 17253 year: 2013 ident: ref_56 article-title: Modulation of macrophage phenotype by cell shape publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1308887110 – volume: 106 start-page: 3009 year: 2018 ident: ref_27 article-title: Multifunctional effects of a modification of SLA titanium implant surface with strontium-containing nanostructures on immunoinflammatory and osteogenic cell function publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.36490 – volume: 15 start-page: 2095 year: 2020 ident: ref_38 article-title: Zn-Incorporated TiO2 Nanotube Surface Improves Osteogenesis Ability Through Influencing Immunomodulatory Function of Macrophages publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S244349 – volume: 408 start-page: 535 year: 2000 ident: ref_5 article-title: Bone versus immune system publication-title: Nature doi: 10.1038/35046196 – volume: 28 start-page: 414 year: 2016 ident: ref_25 article-title: Dental implant surface chemistry and energy alter macrophage activation in vitro publication-title: Clin. Oral Implant. Res. doi: 10.1111/clr.12814 – volume: 36 start-page: 15 year: 2021 ident: ref_29 article-title: Modulation of macrophage phenotype through controlled release of interleukin-4 from gelatine coatings on titanium surfaces publication-title: Eur. Cells Mater. doi: 10.22203/eCM.v036a02 – volume: 71 start-page: 35 year: 2015 ident: ref_47 article-title: Clinoenstatite coatings have high bonding strength, bioactive ion release, and osteoimmunomodulatory effects that enhance in vivo osseointegration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.08.027 – volume: 76 start-page: 344 year: 2018 ident: ref_40 article-title: Differential effect of hydroxyapatite nano-particle versus nano-rod decorated titanium micro-surface on osseointegration publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.06.023 – volume: 28 start-page: 9 year: 2016 ident: ref_49 article-title: Inflammatory cell response to ultra-thin amorphous and crystalline hydroxyapatite surfaces publication-title: J. Mater. Sci. Mater. Med. – volume: 11 start-page: 58 year: 2020 ident: ref_7 article-title: Osteoimmunology: A Current Update of the Interplay between Bone and the Immune System publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.00058 – volume: 30 start-page: 1085 year: 2019 ident: ref_31 article-title: Hydrophilic titanium surface-induced macrophage modulation promotes pro-osteogenic signalling publication-title: Clin. Oral Implant. Res. doi: 10.1111/clr.13522 – volume: 21 start-page: 430 year: 2011 ident: ref_18 article-title: Alkali treatment of microrough titanium surfaces affects macrophage/monocyte adhesion, platelet activation and architecture of blood clot formation publication-title: Eur. Cells Mater. doi: 10.22203/eCM.v021a32 – volume: 14 start-page: 977 year: 2019 ident: ref_55 article-title: Establishing an osteoimmunomodulatory coating loaded with aspirin on the surface of titanium primed with phase-transited lysozyme publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S190766 – volume: 104 start-page: 1437 year: 2016 ident: ref_48 article-title: Enhancement of local bone remodeling in osteoporotic rabbits by biomimic multilayered structures on Ti6Al4V implants publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.35667 – volume: 7 start-page: 39612 year: 2017 ident: ref_24 article-title: Scaling of titanium implants entrains inflammation-induced osteolysis publication-title: Sci. Rep. doi: 10.1038/srep39612 – volume: 154 start-page: 234 year: 2018 ident: ref_37 article-title: Bone mesenchymal stem cell secretion of sRANKL/OPG/M-CSF in response to macrophage-mediated inflammatory response influences osteogenesis on nanostructured Ti surfaces publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.11.003 – volume: 46 start-page: 685 year: 2013 ident: ref_57 article-title: Effects of TiO2nanotube layers on RAW 264.7 macrophage behaviour and bone morphogenetic protein-2 expression publication-title: Cell Prolif. doi: 10.1111/cpr.12072 – volume: 105 start-page: 304 year: 2020 ident: ref_51 article-title: Construction of multilayered molecular reservoirs on a titanium alloy implant for combinational drug delivery to promote osseointegration in osteoporotic conditions publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.01.029 – volume: 123 start-page: A12 year: 1995 ident: ref_14 article-title: The well-built clinical question: A key to evidence-based decisions publication-title: ACP J. Club doi: 10.7326/ACPJC-1995-123-3-A12 – volume: 23 start-page: 344 year: 2005 ident: ref_9 article-title: Macrophage Polarization Comes of Age publication-title: Immunity doi: 10.1016/j.immuni.2005.10.001 – volume: 6 start-page: 969 year: 2020 ident: ref_39 article-title: Optimized Nanointerface Engineering of Micro/Nanostructured Titanium Implants to Enhance Cell–Nanotopography Interactions and Osseointegration publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.9b01717 – volume: 46 start-page: 1123 year: 2018 ident: ref_42 article-title: The immunomodulatory effects of Zn-incorporated micro/nanostructured coating in inducing osteogenesis publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.1080/21691401.2018.1446442 – volume: 10 start-page: 36652 year: 2018 ident: ref_53 article-title: Combinatorial Surface Roughness Effects on Osteoclastogenesis and Osteogenesis publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b10992 |
SSID | ssj0000331829 |
Score | 2.4264972 |
SecondaryResourceType | review_article |
Snippet | Immunomodulatory biomaterials have the potential to stimulate an immune response able to promote constructive and functional tissue remodeling responses as... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 7314 |
SubjectTerms | Biological products Biomedical materials Citation management software Cytokines Dental implants Gene expression Genotype & phenotype Health aspects Heterogeneity Immune response Immune system Immunotherapy Inflammation Investigations Macrophages Mechanical properties Medical equipment Morphology Online databases Physiochemistry Subject heading schemes Surface roughness Surgical implants Systematic Review Titanium Titanium alloys Titanium base alloys Topography |
Title | Titanium Implant Surface Effects on Adherent Macrophage Phenotype: A Systematic Review |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36295379 https://www.proquest.com/docview/2728498900 https://www.proquest.com/docview/2729516110 https://pubmed.ncbi.nlm.nih.gov/PMC9609829 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_W9mV7GPuuu65obDD2YBrrw5b2MrLRtAxaytqOvBlJlklhtdsm-f93FytuPMYeg85B3J3uQ7r7HcBHqzNb516lea5VKoNxqQmiTgnzzrqq5spR7_DpWX5yJX9M1TReuM1jWeXaJq4MddV6uiM_5AUaUqPNaPT19i6lqVH0uhpHaGzBDppgjcnXzrejs_Of_S3LSKDOctPhkgrM7w9vLHos1OtMDjzR3_Z4wyENiyU3vM_kGTyNYSMbd3J-Do9C8wKebIAJvoRfl5jmN9fLG0aIv8gwdrG8r60PrEMonrO2YeNqRv19C3ZqaXbXDK0JO5-FpqWr2C9szC56ZGfWPRu8gqvJ0eX3kzROTUi9EmaRBqWD8D439chiMCUL7rTCKMZ7yStveF2JWtusyGsTLPrrWomiQjcmMu9klVXiNWw3bRN2gdH0TO0K7xymXSJwmweTG1VZ6WWQXCbwec3B0kdIcZps8bvE1IK4XT5wO4EPPe1tB6TxT6pPJIiSThf-k7exSQD3QzhV5biQqqCnR57A_oAST4UfLq9FWcZTOS8fdCiB9_0yfUmVZk1olysaDDpzjIoSeNNJvt8vcskgt0wCxUAnegLC6h6uNNezFWY3AfuhIu79f1tv4TGn9gqqmDH7sL24X4Z3GPQs3AFs6cnxQdRv_HU8zf4AMUkEeg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDcuBRYBQhys2vuwvUgIRUBIaVMhNa16M-v1WonU2qVJhPhT_EZm4kdjhLj1vGNrNe_dnfkG4JVJQlNEVvlRlChfOp352onCJ8w7k-UFVxn1Do8PotGR_HqiTjbgd9sLQ2WVrU9cOeq8snRHvsNjdKQ60UHw4fyHT1Oj6HW1HaFRq8We-_UTj2zz97ufUL6vOR9-nnwc-c1UAd8qoRe-U4kT1ka6CAwmGzLmWaIwylsreW41L3JRJCaMo0I7g_GsUCLO0c2L0GYyD3OB_70G16UQmiwqGX7p7nQCgRbCdY2CiuvBzpnB-IhWFMpe3Pvb-6-Fv35p5lqsG96B202Syga1Vt2FDVfeg1tr0IX34Xgyw7RytjxjhC-M4mGHy4vCWMdqPOQ5q0o2yKfUTbhgY0OTwqbou9i3qSsruvh9xwbssMORZvUjxQM4uhJuPoTNsirdY2A0qzPJYptleMgTjpvI6Uir3EgrneTSg7ctB1PbAJjTHI3TFA8yxO30ktsevOxoz2vYjn9SvSFBpGTL-CdrmpYE3A-hYqWDWKqYHjq5B9s9SrRB219uRZk2PmCeXmqsBy-6ZfqS6tpKVy1XNJjiRpiDefColny3X-SSRm5pD-KeTnQEhAzeXyln0xVCOMEIoiJu_X9bz-HGaDLeT_d3D_aewE1OjR1Uq6O3YXNxsXRPMd1aZM9WOs7g-1Ub1R8PTj3r |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVELwgLgxFFgECPFgxd7D9iIhFGijltIooof6ZtbrtRKJOqVJhPhr_Dpm4qMxQrz1ecer1dy7nvkG4JVJQlNEVvlRlChfOp352onCJ8w7k-UFVxn1Dh-Mot1j-flUnW7A76YXhsoqG5-4ctT5zNIbeZ_H6Eh1ooOgX9RlEePt4YfzHz5NkKI_rc04jUpF9t2vn3h9m7_f20ZZv-Z8uHP0adevJwz4Vgm98J1KnLA20kVgMPGQMc8ShRHfWslzq3mRiyIxYRwV2hmMbYUScY4uX4Q2k3mYC9z3GmzGeCsKerD5cWc0_tq-8AQC7YXrChNVCB30zwxGS7SpUHai4N-xYC0Ydgs11yLf8DbcqlNWNqh07A5suPIu3FwDMrwHJ0dTTDKnyzNGaMMoLHa4vCiMdaxCR56zWckG-YR6CxfswNDcsAl6MjaeuHJGz8Dv2IAdtqjSrPplcR-Or4SfD6BXzkr3CBhN7kyy2GYZXvmE4yZyOtIqN9JKJ7n04G3DwdTWcOY0VeN7itca4nZ6yW0PXra05xWIxz-p3pAgUrJs3MmaukEBz0MYWekglooknXAPtjqUaJG2u9yIMq09wjy91F8PXrTL9CVVuZVutlzRYMIbYUbmwcNK8u15kUsauaU9iDs60RIQTnh3pZxOVnjhBCqIivj4_8d6DtfRoNIve6P9J3CDU5cHFe7oLegtLpbuKeZei-xZreQMvl21Xf0BE89DfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Titanium+Implant+Surface+Effects+on+Adherent+Macrophage+Phenotype%3A+A+Systematic+Review&rft.jtitle=Materials&rft.au=Pitchai%2C+Manju&rft.au=Ipe%2C+Deepak&rft.au=Tadakamadla%2C+Santosh&rft.au=Hamlet%2C+Stephen&rft.date=2022-10-19&rft.pub=MDPI+AG&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=15&rft.issue=20&rft_id=info:doi/10.3390%2Fma15207314&rft.externalDocID=A745740782 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |