Mesolimbic Dopamine Super-Sensitivity in Melanin-Concentrating Hormone-1 Receptor-Deficient Mice

Melanin-concentrating hormone (MCH) neurons and MCH-1 receptors (MCH1r) densely populate mesolimbic dopaminergic brain regions such as the nucleus accumbens (NAc). The regulation of dopamine by MCH1r was suggested to be an important mechanism underlying the hyperactive phenotype of MCH1r knock-out (...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 25; no. 4; pp. 914 - 922
Main Authors Smith, Daniel G, Tzavara, Eleni T, Shaw, Janice, Luecke, Susan, Wade, Mark, Davis, Richard, Salhoff, Craig, Nomikos, George G, Gehlert, Donald R
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 26.01.2005
Society for Neuroscience
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Melanin-concentrating hormone (MCH) neurons and MCH-1 receptors (MCH1r) densely populate mesolimbic dopaminergic brain regions such as the nucleus accumbens (NAc). The regulation of dopamine by MCH1r was suggested to be an important mechanism underlying the hyperactive phenotype of MCH1r knock-out (ko) mice. However, MCH1r modulation of monoamine neurotransmission has yet to be examined. We tested whether dopamine, norepinephrine, and serotonin function is dysregulated in MCH1r ko and wild-type (wt) mice. MCH1r ko mice exhibited robust hyperactivity in a novel or familiar environment and were super-sensitive to the locomotor activating effects of d -amphetamine and the D 1 agonist 2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benazepine HCl. The D 2 agonist, quinpirole, decreased locomotion similarly in both ko and wt mice. Tissue contents of dopamine within the NAc and caudate-putamen were not significantly different in ko compared with wt mice. Basal and amphetamine-evoked NAc dopamine, norepinephrine, and serotonin efflux, as measured using in vivo microdialysis, were not significantly different between genotypes. In contrast, D 1 -like and D 2 -like receptor binding were significantly higher within the olfactory tubercle, ventral tegmental area, and NAc core and shell of ko mice. Norepinephrine transporter (NET) binding was significantly elevated within the NAc shell and globus pallidus of ko mice, whereas serotonin transporter binding was decreased in the NAc shell. Thus, deletion of MCH1r results in an upregulation of mesolimbic dopamine receptors and NET, indicating that MCH1r may negatively modulate mesolimbic monoamine function. MCH1r may be an important therapeutic target for neuropsychiatric disorders involving dysregulation of limbic monoamine systems.
AbstractList Melanin-concentrating hormone (MCH) neurons and MCH-1 receptors (MCH1r) densely populate mesolimbic dopaminergic brain regions such as the nucleus accumbens (NAc). The regulation of dopamine by MCH1r was suggested to be an important mechanism underlying the hyperactive phenotype of MCH1r knock-out (ko) mice. However, MCH1r modulation of monoamine neurotransmission has yet to be examined. We tested whether dopamine, norepinephrine, and serotonin function is dysregulated in MCH1r ko and wild-type (wt) mice. MCH1r ko mice exhibited robust hyperactivity in a novel or familiar environment and were super-sensitive to the locomotor activating effects of d -amphetamine and the D 1 agonist 2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benazepine HCl. The D 2 agonist, quinpirole, decreased locomotion similarly in both ko and wt mice. Tissue contents of dopamine within the NAc and caudate-putamen were not significantly different in ko compared with wt mice. Basal and amphetamine-evoked NAc dopamine, norepinephrine, and serotonin efflux, as measured using in vivo microdialysis, were not significantly different between genotypes. In contrast, D 1 -like and D 2 -like receptor binding were significantly higher within the olfactory tubercle, ventral tegmental area, and NAc core and shell of ko mice. Norepinephrine transporter (NET) binding was significantly elevated within the NAc shell and globus pallidus of ko mice, whereas serotonin transporter binding was decreased in the NAc shell. Thus, deletion of MCH1r results in an upregulation of mesolimbic dopamine receptors and NET, indicating that MCH1r may negatively modulate mesolimbic monoamine function. MCH1r may be an important therapeutic target for neuropsychiatric disorders involving dysregulation of limbic monoamine systems.
Melanin-concentrating hormone (MCH) neurons and MCH-1 receptors (MCH1r) densely populate mesolimbic dopaminergic brain regions such as the nucleus accumbens (NAc). The regulation of dopamine by MCH1r was suggested to be an important mechanism underlying the hyperactive phenotype of MCH1r knock-out (ko) mice. However, MCH1r modulation of monoamine neurotransmission has yet to be examined. We tested whether dopamine, norepinephrine, and serotonin function is dysregulated in MCH1r ko and wild-type (wt) mice. MCH1r ko mice exhibited robust hyperactivity in a novel or familiar environment and were super-sensitive to the locomotor activating effects of D-amphetamine and the D sub(1) agonist 2,3,4,5- tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benazepine HCl. The D sub(2) agonist, quinpirole, decreased locomotion similarly in both ko and wt mice. Tissue contents of dopamine within the NAc and caudate-putamen were not significantly different in ko compared with wt mice. Basal and amphetamine-evoked NAc dopamine, norepinephrine, and serotonin efflux, as measured using in vivo microdialysis, were not significantly different between genotypes. In contrast, D sub(1)-like and D sub(2)-like receptor binding were significantly higher within the olfactory tubercle, ventral tegmental area, and NAc core and shell of ko mice. Norepinephrine transporter (NET) binding was significantly elevated within the NAc shell and globus pallidus of ko mice, whereas serotonin transporter binding was decreased in the NAc shell. Thus, deletion of MCH1r results in an upregulation of mesolimbic dopamine receptors and NET, indicating that MCH1r may negatively modulate mesolimbic monoamine function. MCH1r may be an important therapeutic target for neuropsychiatric disorders involving dysregulation of limbic monoamine systems.
Melanin-concentrating hormone (MCH) neurons and MCH-1 receptors (MCH1r) densely populate mesolimbic dopaminergic brain regions such as the nucleus accumbens (NAc). The regulation of dopamine by MCH1r was suggested to be an important mechanism underlying the hyperactive phenotype of MCH1r knock-out (ko) mice. However, MCH1r modulation of monoamine neurotransmission has yet to be examined. We tested whether dopamine, norepinephrine, and serotonin function is dysregulated in MCH1r ko and wild-type (wt) mice. MCH1r ko mice exhibited robust hyperactivity in a novel or familiar environment and were super-sensitive to the locomotor activating effects of d-amphetamine and the D1 agonist 2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benazepine HCl. The D2 agonist, quinpirole, decreased locomotion similarly in both ko and wt mice. Tissue contents of dopamine within the NAc and caudate-putamen were not significantly different in ko compared with wt mice. Basal and amphetamine-evoked NAc dopamine, norepinephrine, and serotonin efflux, as measured using in vivo microdialysis, were not significantly different between genotypes. In contrast, D1-like and D2-like receptor binding were significantly higher within the olfactory tubercle, ventral tegmental area, and NAc core and shell of ko mice. Norepinephrine transporter (NET) binding was significantly elevated within the NAc shell and globus pallidus of ko mice, whereas serotonin transporter binding was decreased in the NAc shell. Thus, deletion of MCH1r results in an upregulation of mesolimbic dopamine receptors and NET, indicating that MCH1r may negatively modulate mesolimbic monoamine function. MCH1r may be an important therapeutic target for neuropsychiatric disorders involving dysregulation of limbic monoamine systems.Melanin-concentrating hormone (MCH) neurons and MCH-1 receptors (MCH1r) densely populate mesolimbic dopaminergic brain regions such as the nucleus accumbens (NAc). The regulation of dopamine by MCH1r was suggested to be an important mechanism underlying the hyperactive phenotype of MCH1r knock-out (ko) mice. However, MCH1r modulation of monoamine neurotransmission has yet to be examined. We tested whether dopamine, norepinephrine, and serotonin function is dysregulated in MCH1r ko and wild-type (wt) mice. MCH1r ko mice exhibited robust hyperactivity in a novel or familiar environment and were super-sensitive to the locomotor activating effects of d-amphetamine and the D1 agonist 2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benazepine HCl. The D2 agonist, quinpirole, decreased locomotion similarly in both ko and wt mice. Tissue contents of dopamine within the NAc and caudate-putamen were not significantly different in ko compared with wt mice. Basal and amphetamine-evoked NAc dopamine, norepinephrine, and serotonin efflux, as measured using in vivo microdialysis, were not significantly different between genotypes. In contrast, D1-like and D2-like receptor binding were significantly higher within the olfactory tubercle, ventral tegmental area, and NAc core and shell of ko mice. Norepinephrine transporter (NET) binding was significantly elevated within the NAc shell and globus pallidus of ko mice, whereas serotonin transporter binding was decreased in the NAc shell. Thus, deletion of MCH1r results in an upregulation of mesolimbic dopamine receptors and NET, indicating that MCH1r may negatively modulate mesolimbic monoamine function. MCH1r may be an important therapeutic target for neuropsychiatric disorders involving dysregulation of limbic monoamine systems.
Melanin-concentrating hormone (MCH) neurons and MCH-1 receptors (MCH1r) densely populate mesolimbic dopaminergic brain regions such as the nucleus accumbens (NAc). The regulation of dopamine by MCH1r was suggested to be an important mechanism underlying the hyperactive phenotype of MCH1r knock-out (ko) mice. However, MCH1r modulation of monoamine neurotransmission has yet to be examined. We tested whether dopamine, norepinephrine, and serotonin function is dysregulated in MCH1r ko and wild-type (wt) mice. MCH1r ko mice exhibited robust hyperactivity in a novel or familiar environment and were super-sensitive to the locomotor activating effects of d-amphetamine and the D1 agonist 2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benazepine HCl. The D2 agonist, quinpirole, decreased locomotion similarly in both ko and wt mice. Tissue contents of dopamine within the NAc and caudate-putamen were not significantly different in ko compared with wt mice. Basal and amphetamine-evoked NAc dopamine, norepinephrine, and serotonin efflux, as measured using in vivo microdialysis, were not significantly different between genotypes. In contrast, D1-like and D2-like receptor binding were significantly higher within the olfactory tubercle, ventral tegmental area, and NAc core and shell of ko mice. Norepinephrine transporter (NET) binding was significantly elevated within the NAc shell and globus pallidus of ko mice, whereas serotonin transporter binding was decreased in the NAc shell. Thus, deletion of MCH1r results in an upregulation of mesolimbic dopamine receptors and NET, indicating that MCH1r may negatively modulate mesolimbic monoamine function. MCH1r may be an important therapeutic target for neuropsychiatric disorders involving dysregulation of limbic monoamine systems.
Author Smith, Daniel G
Shaw, Janice
Davis, Richard
Luecke, Susan
Wade, Mark
Salhoff, Craig
Gehlert, Donald R
Nomikos, George G
Tzavara, Eleni T
Author_xml – sequence: 1
  fullname: Smith, Daniel G
– sequence: 2
  fullname: Tzavara, Eleni T
– sequence: 3
  fullname: Shaw, Janice
– sequence: 4
  fullname: Luecke, Susan
– sequence: 5
  fullname: Wade, Mark
– sequence: 6
  fullname: Davis, Richard
– sequence: 7
  fullname: Salhoff, Craig
– sequence: 8
  fullname: Nomikos, George G
– sequence: 9
  fullname: Gehlert, Donald R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15673672$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS1URNPCK1SzgZ1T2-OfjISQUFpoUUOlhq6Nx3MnMZqxB3vSqG-Po7QRsOnGXtzvXB-fc4KOfPCA0BklUypYef7t--X93e1yfj3lRFWY8CkjRLxCkzytMOOEHqEJYYpgyRU_Ricp_SKEKELVG3RMhVSlVGyCfi4ghc71tbPFRRhM7zwUy80AES_BJze6Bzc-Fs4XC-iMdx7Pg7fgx2hG51fFVYh9doZpcQcWhjFEfAGtsy4jxcJZeItet6ZL8O7pPkX3Xy5_zK_wze3X6_nnG2xFWY24aQyw2ggFSpW2IbaSjWBglCG2FUzOGi4tty01bV0R3pgZo01rZyXUvJrRujxFn_Z7h03dQ7O32Okhut7ERx2M0_9OvFvrVXjQOQYhS5kXfHhaEMPvDaRR9y5Z6PKvIWxS5kpFeT5fAqkSkjAuMnj2t6WDl-f0M_BxD9gYUorQauvGnGvYOXSdpkTvytaHsvWubE243pWd5fI_-eGFl4Tv98K1W623LoJOvem6bJPq7XbLhOa6orz8A2L9vwU
CitedBy_id crossref_primary_10_1016_j_bbr_2013_12_052
crossref_primary_10_1016_j_ejphar_2008_10_051
crossref_primary_10_1016_j_yfrne_2024_101155
crossref_primary_10_1111_j_1471_4159_2005_03557_x
crossref_primary_10_1016_j_pnpbp_2021_110394
crossref_primary_10_1007_s00213_010_1891_y
crossref_primary_10_1016_j_ejphar_2007_10_017
crossref_primary_10_1016_j_neubiorev_2018_02_001
crossref_primary_10_1016_j_bbrc_2009_08_099
crossref_primary_10_1111_j_1527_3458_2005_tb00052_x
crossref_primary_10_1517_14728222_10_2_211
crossref_primary_10_1016_j_peptides_2009_06_024
crossref_primary_10_1016_j_jchemneu_2007_10_002
crossref_primary_10_1007_s12031_009_9207_6
crossref_primary_10_1007_s00213_016_4285_y
crossref_primary_10_1111_acer_13181
crossref_primary_10_1210_er_2006_0021
crossref_primary_10_1371_journal_pone_0015471
crossref_primary_10_1016_j_pbb_2006_11_004
crossref_primary_10_1002_cne_23273
crossref_primary_10_1016_j_bbr_2010_11_019
crossref_primary_10_1016_j_ejphar_2008_02_084
crossref_primary_10_1017_S1461145713000072
crossref_primary_10_1016_j_bbr_2008_06_033
crossref_primary_10_1016_j_neuropharm_2017_09_008
crossref_primary_10_1038_s41574_021_00559_1
crossref_primary_10_1002_jez_a_311
crossref_primary_10_1002_ddr_20029
crossref_primary_10_1038_sj_bjp_0707292
crossref_primary_10_1016_j_peptides_2020_170476
crossref_primary_10_1523_JNEUROSCI_3921_12_2013
crossref_primary_10_1016_j_brainres_2005_09_005
crossref_primary_10_1002_ddr_20030
crossref_primary_10_1016_j_neuroscience_2008_05_035
crossref_primary_10_2337_db06_1432
crossref_primary_10_1016_j_bbr_2008_08_026
crossref_primary_10_1016_j_biopsych_2007_12_011
crossref_primary_10_1016_j_neuroscience_2014_12_046
crossref_primary_10_1523_ENEURO_0069_14_2015
crossref_primary_10_1007_s00213_007_1021_7
crossref_primary_10_1016_j_pbb_2015_05_018
crossref_primary_10_1016_j_peptides_2009_05_002
crossref_primary_10_1177_0269881119895521
crossref_primary_10_1016_j_physbeh_2010_01_026
crossref_primary_10_1371_journal_pone_0099961
crossref_primary_10_1074_jbc_M109_079590
crossref_primary_10_1097_PSY_0000000000000146
crossref_primary_10_1111_j_1460_9568_2008_06129_x
crossref_primary_10_1016_j_pharmthera_2005_11_006
crossref_primary_10_1002_syn_20303
crossref_primary_10_1016_j_pbb_2025_173999
crossref_primary_10_1111_acer_12313
crossref_primary_10_3390_ijms21218048
crossref_primary_10_1038_sj_npp_1300805
crossref_primary_10_1159_000501234
crossref_primary_10_1111_j_1530_0277_2007_00427_x
crossref_primary_10_1016_j_peptides_2009_05_006
crossref_primary_10_1016_j_neubiorev_2007_10_008
crossref_primary_10_1016_j_physbeh_2007_01_001
crossref_primary_10_1016_j_tem_2008_08_007
crossref_primary_10_1073_pnas_0811331106
crossref_primary_10_7554_eLife_01462
crossref_primary_10_1016_j_peptides_2009_07_022
crossref_primary_10_3389_fnsys_2017_00032
crossref_primary_10_1038_s41598_018_21046_0
crossref_primary_10_2337_diabetes_55_03_06_db05_1302
crossref_primary_10_1016_j_molmet_2019_08_018
crossref_primary_10_1523_JNEUROSCI_5310_08_2009
crossref_primary_10_1523_JNEUROSCI_1766_08_2008
crossref_primary_10_1002_ajmg_b_30335
crossref_primary_10_1038_sj_npp_1300913
crossref_primary_10_1371_journal_pone_0019600
crossref_primary_10_1016_j_ejphar_2008_09_027
crossref_primary_10_1016_j_pbb_2012_06_010
crossref_primary_10_1210_en_2013_1738
crossref_primary_10_1124_jpet_108_143362
crossref_primary_10_1002_syn_20473
crossref_primary_10_1371_journal_pone_0019286
Cites_doi 10.1016/0006-8993(91)90935-O
10.1016/S0024-3205(03)00408-9
10.1038/380243a0
10.1016/S0006-8993(99)02258-1
10.1016/S0896-6273(02)00969-8
10.1038/22313
10.1073/pnas.052706899
10.1046/j.1460-9568.2000.00008.x
10.1016/0006-8993(89)90831-7
10.1073/pnas.261583798
10.1038/25341
10.1016/0092-8674(94)90557-6
10.1007/s002130051138
10.1111/j.1749-6632.1988.tb42108.x
10.1002/1520-6394(2000)12:1+<2::AID-DA2>3.0.CO;2-4
10.1007/BF01285563
10.1523/JNEUROSCI.18-06-01979.1998
10.1016/S0896-6273(01)00319-1
10.1016/0304-3940(90)90263-9
10.1016/S0896-6273(00)80419-5
10.1016/0361-9230(93)90206-Q
10.1073/pnas.131200698
10.1016/S0014-2999(02)01314-6
10.1111/j.1749-6632.1989.tb53242.x
10.1146/annurev.ne.16.030193.000445
10.1016/S0028-3908(98)00155-5
10.1016/S0014-2999(03)01273-1
10.1523/JNEUROSCI.23-01-00007.2003
10.1038/22321
10.1007/BF02246295
10.1073/pnas.87.17.6912
10.1210/en.138.1.351
10.1016/0165-0270(92)90111-P
10.1016/0092-8674(94)90026-4
10.1046/j.1471-4159.1998.71010274.x
10.1523/JNEUROSCI.06-08-02470.1986
10.1002/cne.903190204
10.1016/0197-0186(92)90091-5
10.1016/0006-8993(80)90695-2
10.1210/en.143.7.2469
10.1016/0166-4328(81)90004-8
10.1046/j.1460-9568.2003.02912.x
10.1073/pnas.121170598
10.1016/0361-9230(83)90166-1
10.1016/0006-3223(94)90593-2
10.1097/00008877-199711000-00010
10.1038/nm741
10.1046/j.1471-4159.2000.0750258.x
10.1172/JCI10660
10.1006/geno.2002.6771
10.1016/S0028-3908(00)00052-6
10.1016/0006-8993(94)90081-7
10.1046/j.1471-4159.1995.64062792.x
10.1523/JNEUROSCI.22-09-03306.2002
10.1016/0306-4522(90)90218-S
10.1007/s002130050327
10.1038/379606a0
10.1002/cne.1191
10.1002/syn.10271
10.1523/JNEUROSCI.06-08-02352.1986
10.1111/j.1601-183x.2004.00064.x
10.1016/S0091-3057(99)00249-X
10.1126/science.2903550
ContentType Journal Article
Copyright Copyright © 2005 Society for Neuroscience 0270-6474/05/25914-09.00/0 2005
Copyright_xml – notice: Copyright © 2005 Society for Neuroscience 0270-6474/05/25914-09.00/0 2005
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1523/JNEUROSCI.4079-04.2005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
Neurosciences Abstracts
MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 922
ExternalDocumentID PMC6725636
15673672
10_1523_JNEUROSCI_4079_04_2005
www25_4_914
Genre Journal Article
GroupedDBID -
08R
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
ABFLS
ABIVO
ABPTK
ABUFD
ACNCT
ADACO
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFMIJ
AIZTS
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FA8
FH7
GJ
GX1
H13
HYE
H~9
KQ8
L7B
MVM
O0-
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RIG
RPM
TFN
UQL
WH7
WOQ
X
X7M
XJT
ZA5
---
-DZ
-~X
.55
.GJ
18M
AAFWJ
AAJMC
AAYXX
ABBAR
ACGUR
ADHGD
ADXHL
AFCFT
AFOSN
AFSQR
AHWXS
AOIJS
BTFSW
CITATION
TR2
W8F
YBU
YHG
YKV
YNH
YSK
AFHIN
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ID FETCH-LOGICAL-c539t-ddae2ba57e773cd0c96d52ea7a0cf5268d46c4cf1afb904da821dfc83eb4981b3
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 18:11:36 EDT 2025
Thu Jul 10 23:12:51 EDT 2025
Fri Jul 11 08:54:18 EDT 2025
Wed Feb 19 02:34:03 EST 2025
Thu Apr 24 23:03:31 EDT 2025
Tue Jul 01 00:49:24 EDT 2025
Tue Nov 10 19:18:25 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c539t-ddae2ba57e773cd0c96d52ea7a0cf5268d46c4cf1afb904da821dfc83eb4981b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://www.jneurosci.org/content/jneuro/25/4/914.full.pdf
PMID 15673672
PQID 17560245
PQPubID 23462
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6725636
proquest_miscellaneous_67371467
proquest_miscellaneous_17560245
pubmed_primary_15673672
crossref_citationtrail_10_1523_JNEUROSCI_4079_04_2005
crossref_primary_10_1523_JNEUROSCI_4079_04_2005
highwire_smallpub1_www25_4_914
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-01-26
PublicationDateYYYYMMDD 2005-01-26
PublicationDate_xml – month: 01
  year: 2005
  text: 2005-01-26
  day: 26
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2005
Publisher Soc Neuroscience
Society for Neuroscience
Publisher_xml – name: Soc Neuroscience
– name: Society for Neuroscience
References 2023041303104555000_25.4.914.38
2023041303104555000_25.4.914.37
2023041303104555000_25.4.914.36
2023041303104555000_25.4.914.35
2023041303104555000_25.4.914.34
(2023041303104555000_25.4.914.27) 2002; 22
(2023041303104555000_25.4.914.62) 1993; 32
(2023041303104555000_25.4.914.24) 1989; 575
2023041303104555000_25.4.914.43
(2023041303104555000_25.4.914.31) 1988; 537
2023041303104555000_25.4.914.41
2023041303104555000_25.4.914.40
(2023041303104555000_25.4.914.4) 2002; 8
2023041303104555000_25.4.914.49
(2023041303104555000_25.4.914.67) 1986; 6
2023041303104555000_25.4.914.48
2023041303104555000_25.4.914.47
2023041303104555000_25.4.914.46
2023041303104555000_25.4.914.45
(2023041303104555000_25.4.914.22) 1977; 201
2023041303104555000_25.4.914.54
2023041303104555000_25.4.914.52
2023041303104555000_25.4.914.51
2023041303104555000_25.4.914.50
2023041303104555000_25.4.914.18
2023041303104555000_25.4.914.9
(2023041303104555000_25.4.914.10) 1986; 6
2023041303104555000_25.4.914.8
2023041303104555000_25.4.914.15
2023041303104555000_25.4.914.14
2023041303104555000_25.4.914.58
2023041303104555000_25.4.914.13
2023041303104555000_25.4.914.57
2023041303104555000_25.4.914.12
2023041303104555000_25.4.914.56
2023041303104555000_25.4.914.11
2023041303104555000_25.4.914.55
2023041303104555000_25.4.914.3
2023041303104555000_25.4.914.2
2023041303104555000_25.4.914.1
(2023041303104555000_25.4.914.17) 1992; 21
(2023041303104555000_25.4.914.33) 2003; 23
2023041303104555000_25.4.914.7
2023041303104555000_25.4.914.6
2023041303104555000_25.4.914.5
2023041303104555000_25.4.914.19
(2023041303104555000_25.4.914.42) 2000; 65
(2023041303104555000_25.4.914.53) 1999; 147
(2023041303104555000_25.4.914.26) 1998; 18
(2023041303104555000_25.4.914.59) 1995; 47
2023041303104555000_25.4.914.21
2023041303104555000_25.4.914.65
2023041303104555000_25.4.914.20
2023041303104555000_25.4.914.64
(2023041303104555000_25.4.914.44) 2000; 12
2023041303104555000_25.4.914.63
2023041303104555000_25.4.914.60
2023041303104555000_25.4.914.29
2023041303104555000_25.4.914.28
(2023041303104555000_25.4.914.16) 1995; 119
2023041303104555000_25.4.914.68
2023041303104555000_25.4.914.23
2023041303104555000_25.4.914.66
(2023041303104555000_25.4.914.25) 1990; 118
(2023041303104555000_25.4.914.39) 1994; 8
2023041303104555000_25.4.914.32
2023041303104555000_25.4.914.30
(2023041303104555000_25.4.914.61) 1985; 3
References_xml – ident: 2023041303104555000_25.4.914.38
  doi: 10.1016/0006-8993(91)90935-O
– volume: 47
  start-page: 544
  year: 1995
  ident: 2023041303104555000_25.4.914.59
  publication-title: Mol Pharmacol
– ident: 2023041303104555000_25.4.914.11
  doi: 10.1016/S0024-3205(03)00408-9
– ident: 2023041303104555000_25.4.914.43
  doi: 10.1038/380243a0
– ident: 2023041303104555000_25.4.914.65
  doi: 10.1016/S0006-8993(99)02258-1
– ident: 2023041303104555000_25.4.914.51
  doi: 10.1016/S0896-6273(02)00969-8
– ident: 2023041303104555000_25.4.914.6
  doi: 10.1038/22313
– ident: 2023041303104555000_25.4.914.36
  doi: 10.1073/pnas.052706899
– ident: 2023041303104555000_25.4.914.23
  doi: 10.1046/j.1460-9568.2000.00008.x
– ident: 2023041303104555000_25.4.914.12
  doi: 10.1016/0006-8993(89)90831-7
– ident: 2023041303104555000_25.4.914.19
  doi: 10.1073/pnas.261583798
– ident: 2023041303104555000_25.4.914.52
  doi: 10.1038/25341
– ident: 2023041303104555000_25.4.914.64
  doi: 10.1016/0092-8674(94)90557-6
– volume: 147
  start-page: 33
  year: 1999
  ident: 2023041303104555000_25.4.914.53
  publication-title: Psychopharmacology (Berl)
  doi: 10.1007/s002130051138
– volume: 537
  start-page: 216
  year: 1988
  ident: 2023041303104555000_25.4.914.31
  publication-title: Ann NY Acad Sci
  doi: 10.1111/j.1749-6632.1988.tb42108.x
– volume: 12
  start-page: 2
  year: 2000
  ident: 2023041303104555000_25.4.914.44
  publication-title: Depress Anxiety
  doi: 10.1002/1520-6394(2000)12:1+<2::AID-DA2>3.0.CO;2-4
– ident: 2023041303104555000_25.4.914.40
  doi: 10.1007/BF01285563
– volume: 18
  start-page: 1979
  year: 1998
  ident: 2023041303104555000_25.4.914.26
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.18-06-01979.1998
– ident: 2023041303104555000_25.4.914.56
  doi: 10.1016/S0896-6273(01)00319-1
– volume: 118
  start-page: 120
  year: 1990
  ident: 2023041303104555000_25.4.914.25
  publication-title: Neurosci Lett
  doi: 10.1016/0304-3940(90)90263-9
– ident: 2023041303104555000_25.4.914.60
  doi: 10.1016/S0896-6273(00)80419-5
– volume: 32
  start-page: 395
  year: 1993
  ident: 2023041303104555000_25.4.914.62
  publication-title: Brain Res Bull
  doi: 10.1016/0361-9230(93)90206-Q
– ident: 2023041303104555000_25.4.914.2
  doi: 10.1073/pnas.131200698
– ident: 2023041303104555000_25.4.914.57
  doi: 10.1016/S0014-2999(02)01314-6
– volume: 575
  start-page: 171
  year: 1989
  ident: 2023041303104555000_25.4.914.24
  publication-title: Ann NY Acad Sci
  doi: 10.1111/j.1749-6632.1989.tb53242.x
– volume: 201
  start-page: 386
  year: 1977
  ident: 2023041303104555000_25.4.914.22
  publication-title: J Pharmacol Exp Ther
– ident: 2023041303104555000_25.4.914.1
  doi: 10.1146/annurev.ne.16.030193.000445
– ident: 2023041303104555000_25.4.914.41
  doi: 10.1016/S0028-3908(98)00155-5
– ident: 2023041303104555000_25.4.914.13
  doi: 10.1016/S0014-2999(03)01273-1
– volume: 23
  start-page: 7
  year: 2003
  ident: 2023041303104555000_25.4.914.33
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-01-00007.2003
– ident: 2023041303104555000_25.4.914.48
  doi: 10.1038/22321
– volume: 119
  start-page: 299
  year: 1995
  ident: 2023041303104555000_25.4.914.16
  publication-title: Psychopharmacology (Berl)
  doi: 10.1007/BF02246295
– ident: 2023041303104555000_25.4.914.21
  doi: 10.1073/pnas.87.17.6912
– ident: 2023041303104555000_25.4.914.15
– ident: 2023041303104555000_25.4.914.45
  doi: 10.1210/en.138.1.351
– ident: 2023041303104555000_25.4.914.55
  doi: 10.1016/0165-0270(92)90111-P
– ident: 2023041303104555000_25.4.914.63
  doi: 10.1016/0092-8674(94)90026-4
– ident: 2023041303104555000_25.4.914.66
  doi: 10.1046/j.1471-4159.1998.71010274.x
– volume: 6
  start-page: 2470
  year: 1986
  ident: 2023041303104555000_25.4.914.67
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.06-08-02470.1986
– ident: 2023041303104555000_25.4.914.3
  doi: 10.1002/cne.903190204
– volume: 21
  start-page: 581
  year: 1992
  ident: 2023041303104555000_25.4.914.17
  publication-title: Neurochem Int
  doi: 10.1016/0197-0186(92)90091-5
– ident: 2023041303104555000_25.4.914.14
  doi: 10.1016/0006-8993(80)90695-2
– volume: 8
  start-page: 221
  year: 1994
  ident: 2023041303104555000_25.4.914.39
  publication-title: Crit Rev Neurobiol
– ident: 2023041303104555000_25.4.914.8
  doi: 10.1210/en.143.7.2469
– ident: 2023041303104555000_25.4.914.32
  doi: 10.1016/0166-4328(81)90004-8
– ident: 2023041303104555000_25.4.914.7
  doi: 10.1046/j.1460-9568.2003.02912.x
– ident: 2023041303104555000_25.4.914.47
  doi: 10.1073/pnas.121170598
– ident: 2023041303104555000_25.4.914.37
  doi: 10.1016/0361-9230(83)90166-1
– volume: 3
  start-page: 445
  year: 1985
  ident: 2023041303104555000_25.4.914.61
  publication-title: Psychiatr Med
– ident: 2023041303104555000_25.4.914.28
  doi: 10.1016/0006-3223(94)90593-2
– ident: 2023041303104555000_25.4.914.34
  doi: 10.1097/00008877-199711000-00010
– volume: 8
  start-page: 825
  year: 2002
  ident: 2023041303104555000_25.4.914.4
  publication-title: Nat Med
  doi: 10.1038/nm741
– ident: 2023041303104555000_25.4.914.54
  doi: 10.1046/j.1471-4159.2000.0750258.x
– ident: 2023041303104555000_25.4.914.35
  doi: 10.1172/JCI10660
– ident: 2023041303104555000_25.4.914.58
  doi: 10.1006/geno.2002.6771
– ident: 2023041303104555000_25.4.914.46
  doi: 10.1016/S0028-3908(00)00052-6
– ident: 2023041303104555000_25.4.914.29
  doi: 10.1016/0006-8993(94)90081-7
– ident: 2023041303104555000_25.4.914.18
  doi: 10.1046/j.1471-4159.1995.64062792.x
– volume: 22
  start-page: 3306
  year: 2002
  ident: 2023041303104555000_25.4.914.27
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-09-03306.2002
– ident: 2023041303104555000_25.4.914.50
  doi: 10.1016/0306-4522(90)90218-S
– ident: 2023041303104555000_25.4.914.9
  doi: 10.1007/s002130050327
– ident: 2023041303104555000_25.4.914.20
  doi: 10.1038/379606a0
– ident: 2023041303104555000_25.4.914.49
  doi: 10.1002/cne.1191
– ident: 2023041303104555000_25.4.914.68
  doi: 10.1002/syn.10271
– volume: 6
  start-page: 2352
  year: 1986
  ident: 2023041303104555000_25.4.914.10
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.06-08-02352.1986
– ident: 2023041303104555000_25.4.914.5
  doi: 10.1111/j.1601-183x.2004.00064.x
– volume: 65
  start-page: 433
  year: 2000
  ident: 2023041303104555000_25.4.914.42
  publication-title: Pharmacol Biochem Behav
  doi: 10.1016/S0091-3057(99)00249-X
– ident: 2023041303104555000_25.4.914.30
  doi: 10.1126/science.2903550
SSID ssj0007017
Score 2.1498547
Snippet Melanin-concentrating hormone (MCH) neurons and MCH-1 receptors (MCH1r) densely populate mesolimbic dopaminergic brain regions such as the nucleus accumbens...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 914
SubjectTerms 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine - pharmacology
Animals
Behavioral/Systems/Cognitive
Dextroamphetamine - pharmacology
Dopamine - metabolism
Dopamine - physiology
Dopamine Agonists - pharmacology
Limbic System - physiology
Male
Membrane Transport Proteins - metabolism
Mesencephalon - physiology
Mice
Mice, Knockout
Motor Activity - drug effects
Motor Activity - physiology
Neural Pathways - physiology
Norepinephrine - metabolism
Nucleus Accumbens - metabolism
Quinpirole - pharmacology
Receptors, Dopamine - metabolism
Receptors, Somatostatin - genetics
Receptors, Somatostatin - physiology
Serotonin - metabolism
Title Mesolimbic Dopamine Super-Sensitivity in Melanin-Concentrating Hormone-1 Receptor-Deficient Mice
URI http://www.jneurosci.org/cgi/content/abstract/25/4/914
https://www.ncbi.nlm.nih.gov/pubmed/15673672
https://www.proquest.com/docview/17560245
https://www.proquest.com/docview/67371467
https://pubmed.ncbi.nlm.nih.gov/PMC6725636
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF5F5YUXBJQjHGUfEC-RUx9rO36sQiEUUgkllfq2rNdrsJRsojYmoj-HX8rM-szBUV6syMfYzoxnZ3a_-YaQ13EspIoCSHLiRCGptm_FbiqsQDLEfEdMKSxwHp8Howt2dulfdjo_W6ilfBX35c3eupL_0SrsA71ilewtNFsLhR3wG_QLW9AwbP9Jx2MF8rN5nEkIhJdijhHjJF-qK2uCuPSyMUSGyzEzoTNtDbFIURumXP21N4J4daGV5WDwqJaQfVtvFTJKID5gXILiqsi1qSEz0WuLB7M2jXqWpqhb773v1_MCN-K7MB2NeqcwzGW9aX0Ie7cXcF2dNaI-5Upuw4aquQmEAVpFAXzpwtwQklNW9OHpq9LFumZNx2n74KL4ubQ11nKokcNaY3NU1DDvuH3f0E-cnSP6cTL80IcsFZd8zJRZM9BVi_tb41-NSsR8CCTxWg5HOdxmvKDJveNCKoK-9OPnhpE-tE1X5_pNyyp0kHO8_3k2A6CKlHpfgrON020FPtP75F6pc3pSmN8D0lH6ITk80WK1mP-gb6jBEJvFmUPypbFIWlkk3bFImmm61yJpbZF01yIpWuQjcvHudDocWWUPD0v6XrSykkQoNxZ-qMLQk4ktoyDxXSVCYcsUqYYShm4hdUQaRzZLxMB1klQOPBWzCFIq7zE50HDjp4SKmMGZyolEMGAD5gmZYFU35AgQJQd22iV-9cdyWRLcY5-VGf-zYrvkuL5uWVC8_PWKo0pv_HouZjNQk8PX67Xrc8bBZLvkVaVNDu4a1-CEVov8mkO0HiDa4fdnYOMoDF-65Emh_eahfARhhm6XhBt2UZ-AVPGbR3T2zVDGw1V-4AXPbv2qz8nd5sN-QQ5WV7l6CWH4Kj4y38EvMlXdig
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mesolimbic+Dopamine+Super-Sensitivity+in+Melanin-Concentrating+Hormone-1+Receptor-Deficient+Mice&rft.jtitle=The+Journal+of+neuroscience&rft.au=Smith%2C+Daniel+G.&rft.au=Tzavara%2C+Eleni+T.&rft.au=Shaw%2C+Janice&rft.au=Luecke%2C+Susan&rft.date=2005-01-26&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=25&rft.issue=4&rft.spage=914&rft.epage=922&rft_id=info:doi/10.1523%2FJNEUROSCI.4079-04.2005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_4079_04_2005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon