Mesolimbic Dopamine Super-Sensitivity in Melanin-Concentrating Hormone-1 Receptor-Deficient Mice
Melanin-concentrating hormone (MCH) neurons and MCH-1 receptors (MCH1r) densely populate mesolimbic dopaminergic brain regions such as the nucleus accumbens (NAc). The regulation of dopamine by MCH1r was suggested to be an important mechanism underlying the hyperactive phenotype of MCH1r knock-out (...
Saved in:
Published in | The Journal of neuroscience Vol. 25; no. 4; pp. 914 - 922 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Soc Neuroscience
26.01.2005
Society for Neuroscience |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Melanin-concentrating hormone (MCH) neurons and MCH-1 receptors (MCH1r) densely populate mesolimbic dopaminergic brain regions such as the nucleus accumbens (NAc). The regulation of dopamine by MCH1r was suggested to be an important mechanism underlying the hyperactive phenotype of MCH1r knock-out (ko) mice. However, MCH1r modulation of monoamine neurotransmission has yet to be examined. We tested whether dopamine, norepinephrine, and serotonin function is dysregulated in MCH1r ko and wild-type (wt) mice. MCH1r ko mice exhibited robust hyperactivity in a novel or familiar environment and were super-sensitive to the locomotor activating effects of
d
-amphetamine and the D
1
agonist 2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benazepine HCl. The D
2
agonist, quinpirole, decreased locomotion similarly in both ko and wt mice. Tissue contents of dopamine within the NAc and caudate-putamen were not significantly different in ko compared with wt mice. Basal and amphetamine-evoked NAc dopamine, norepinephrine, and serotonin efflux, as measured using
in vivo
microdialysis, were not significantly different between genotypes. In contrast, D
1
-like and D
2
-like receptor binding were significantly higher within the olfactory tubercle, ventral tegmental area, and NAc core and shell of ko mice. Norepinephrine transporter (NET) binding was significantly elevated within the NAc shell and globus pallidus of ko mice, whereas serotonin transporter binding was decreased in the NAc shell. Thus, deletion of MCH1r results in an upregulation of mesolimbic dopamine receptors and NET, indicating that MCH1r may negatively modulate mesolimbic monoamine function. MCH1r may be an important therapeutic target for neuropsychiatric disorders involving dysregulation of limbic monoamine systems. |
---|---|
AbstractList | Melanin-concentrating hormone (MCH) neurons and MCH-1 receptors (MCH1r) densely populate mesolimbic dopaminergic brain regions such as the nucleus accumbens (NAc). The regulation of dopamine by MCH1r was suggested to be an important mechanism underlying the hyperactive phenotype of MCH1r knock-out (ko) mice. However, MCH1r modulation of monoamine neurotransmission has yet to be examined. We tested whether dopamine, norepinephrine, and serotonin function is dysregulated in MCH1r ko and wild-type (wt) mice. MCH1r ko mice exhibited robust hyperactivity in a novel or familiar environment and were super-sensitive to the locomotor activating effects of
d
-amphetamine and the D
1
agonist 2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benazepine HCl. The D
2
agonist, quinpirole, decreased locomotion similarly in both ko and wt mice. Tissue contents of dopamine within the NAc and caudate-putamen were not significantly different in ko compared with wt mice. Basal and amphetamine-evoked NAc dopamine, norepinephrine, and serotonin efflux, as measured using
in vivo
microdialysis, were not significantly different between genotypes. In contrast, D
1
-like and D
2
-like receptor binding were significantly higher within the olfactory tubercle, ventral tegmental area, and NAc core and shell of ko mice. Norepinephrine transporter (NET) binding was significantly elevated within the NAc shell and globus pallidus of ko mice, whereas serotonin transporter binding was decreased in the NAc shell. Thus, deletion of MCH1r results in an upregulation of mesolimbic dopamine receptors and NET, indicating that MCH1r may negatively modulate mesolimbic monoamine function. MCH1r may be an important therapeutic target for neuropsychiatric disorders involving dysregulation of limbic monoamine systems. Melanin-concentrating hormone (MCH) neurons and MCH-1 receptors (MCH1r) densely populate mesolimbic dopaminergic brain regions such as the nucleus accumbens (NAc). The regulation of dopamine by MCH1r was suggested to be an important mechanism underlying the hyperactive phenotype of MCH1r knock-out (ko) mice. However, MCH1r modulation of monoamine neurotransmission has yet to be examined. We tested whether dopamine, norepinephrine, and serotonin function is dysregulated in MCH1r ko and wild-type (wt) mice. MCH1r ko mice exhibited robust hyperactivity in a novel or familiar environment and were super-sensitive to the locomotor activating effects of D-amphetamine and the D sub(1) agonist 2,3,4,5- tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benazepine HCl. The D sub(2) agonist, quinpirole, decreased locomotion similarly in both ko and wt mice. Tissue contents of dopamine within the NAc and caudate-putamen were not significantly different in ko compared with wt mice. Basal and amphetamine-evoked NAc dopamine, norepinephrine, and serotonin efflux, as measured using in vivo microdialysis, were not significantly different between genotypes. In contrast, D sub(1)-like and D sub(2)-like receptor binding were significantly higher within the olfactory tubercle, ventral tegmental area, and NAc core and shell of ko mice. Norepinephrine transporter (NET) binding was significantly elevated within the NAc shell and globus pallidus of ko mice, whereas serotonin transporter binding was decreased in the NAc shell. Thus, deletion of MCH1r results in an upregulation of mesolimbic dopamine receptors and NET, indicating that MCH1r may negatively modulate mesolimbic monoamine function. MCH1r may be an important therapeutic target for neuropsychiatric disorders involving dysregulation of limbic monoamine systems. Melanin-concentrating hormone (MCH) neurons and MCH-1 receptors (MCH1r) densely populate mesolimbic dopaminergic brain regions such as the nucleus accumbens (NAc). The regulation of dopamine by MCH1r was suggested to be an important mechanism underlying the hyperactive phenotype of MCH1r knock-out (ko) mice. However, MCH1r modulation of monoamine neurotransmission has yet to be examined. We tested whether dopamine, norepinephrine, and serotonin function is dysregulated in MCH1r ko and wild-type (wt) mice. MCH1r ko mice exhibited robust hyperactivity in a novel or familiar environment and were super-sensitive to the locomotor activating effects of d-amphetamine and the D1 agonist 2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benazepine HCl. The D2 agonist, quinpirole, decreased locomotion similarly in both ko and wt mice. Tissue contents of dopamine within the NAc and caudate-putamen were not significantly different in ko compared with wt mice. Basal and amphetamine-evoked NAc dopamine, norepinephrine, and serotonin efflux, as measured using in vivo microdialysis, were not significantly different between genotypes. In contrast, D1-like and D2-like receptor binding were significantly higher within the olfactory tubercle, ventral tegmental area, and NAc core and shell of ko mice. Norepinephrine transporter (NET) binding was significantly elevated within the NAc shell and globus pallidus of ko mice, whereas serotonin transporter binding was decreased in the NAc shell. Thus, deletion of MCH1r results in an upregulation of mesolimbic dopamine receptors and NET, indicating that MCH1r may negatively modulate mesolimbic monoamine function. MCH1r may be an important therapeutic target for neuropsychiatric disorders involving dysregulation of limbic monoamine systems.Melanin-concentrating hormone (MCH) neurons and MCH-1 receptors (MCH1r) densely populate mesolimbic dopaminergic brain regions such as the nucleus accumbens (NAc). The regulation of dopamine by MCH1r was suggested to be an important mechanism underlying the hyperactive phenotype of MCH1r knock-out (ko) mice. However, MCH1r modulation of monoamine neurotransmission has yet to be examined. We tested whether dopamine, norepinephrine, and serotonin function is dysregulated in MCH1r ko and wild-type (wt) mice. MCH1r ko mice exhibited robust hyperactivity in a novel or familiar environment and were super-sensitive to the locomotor activating effects of d-amphetamine and the D1 agonist 2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benazepine HCl. The D2 agonist, quinpirole, decreased locomotion similarly in both ko and wt mice. Tissue contents of dopamine within the NAc and caudate-putamen were not significantly different in ko compared with wt mice. Basal and amphetamine-evoked NAc dopamine, norepinephrine, and serotonin efflux, as measured using in vivo microdialysis, were not significantly different between genotypes. In contrast, D1-like and D2-like receptor binding were significantly higher within the olfactory tubercle, ventral tegmental area, and NAc core and shell of ko mice. Norepinephrine transporter (NET) binding was significantly elevated within the NAc shell and globus pallidus of ko mice, whereas serotonin transporter binding was decreased in the NAc shell. Thus, deletion of MCH1r results in an upregulation of mesolimbic dopamine receptors and NET, indicating that MCH1r may negatively modulate mesolimbic monoamine function. MCH1r may be an important therapeutic target for neuropsychiatric disorders involving dysregulation of limbic monoamine systems. Melanin-concentrating hormone (MCH) neurons and MCH-1 receptors (MCH1r) densely populate mesolimbic dopaminergic brain regions such as the nucleus accumbens (NAc). The regulation of dopamine by MCH1r was suggested to be an important mechanism underlying the hyperactive phenotype of MCH1r knock-out (ko) mice. However, MCH1r modulation of monoamine neurotransmission has yet to be examined. We tested whether dopamine, norepinephrine, and serotonin function is dysregulated in MCH1r ko and wild-type (wt) mice. MCH1r ko mice exhibited robust hyperactivity in a novel or familiar environment and were super-sensitive to the locomotor activating effects of d-amphetamine and the D1 agonist 2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benazepine HCl. The D2 agonist, quinpirole, decreased locomotion similarly in both ko and wt mice. Tissue contents of dopamine within the NAc and caudate-putamen were not significantly different in ko compared with wt mice. Basal and amphetamine-evoked NAc dopamine, norepinephrine, and serotonin efflux, as measured using in vivo microdialysis, were not significantly different between genotypes. In contrast, D1-like and D2-like receptor binding were significantly higher within the olfactory tubercle, ventral tegmental area, and NAc core and shell of ko mice. Norepinephrine transporter (NET) binding was significantly elevated within the NAc shell and globus pallidus of ko mice, whereas serotonin transporter binding was decreased in the NAc shell. Thus, deletion of MCH1r results in an upregulation of mesolimbic dopamine receptors and NET, indicating that MCH1r may negatively modulate mesolimbic monoamine function. MCH1r may be an important therapeutic target for neuropsychiatric disorders involving dysregulation of limbic monoamine systems. |
Author | Smith, Daniel G Shaw, Janice Davis, Richard Luecke, Susan Wade, Mark Salhoff, Craig Gehlert, Donald R Nomikos, George G Tzavara, Eleni T |
Author_xml | – sequence: 1 fullname: Smith, Daniel G – sequence: 2 fullname: Tzavara, Eleni T – sequence: 3 fullname: Shaw, Janice – sequence: 4 fullname: Luecke, Susan – sequence: 5 fullname: Wade, Mark – sequence: 6 fullname: Davis, Richard – sequence: 7 fullname: Salhoff, Craig – sequence: 8 fullname: Nomikos, George G – sequence: 9 fullname: Gehlert, Donald R |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15673672$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEUhS1URNPCK1SzgZ1T2-OfjISQUFpoUUOlhq6Nx3MnMZqxB3vSqG-Po7QRsOnGXtzvXB-fc4KOfPCA0BklUypYef7t--X93e1yfj3lRFWY8CkjRLxCkzytMOOEHqEJYYpgyRU_Ricp_SKEKELVG3RMhVSlVGyCfi4ghc71tbPFRRhM7zwUy80AES_BJze6Bzc-Fs4XC-iMdx7Pg7fgx2hG51fFVYh9doZpcQcWhjFEfAGtsy4jxcJZeItet6ZL8O7pPkX3Xy5_zK_wze3X6_nnG2xFWY24aQyw2ggFSpW2IbaSjWBglCG2FUzOGi4tty01bV0R3pgZo01rZyXUvJrRujxFn_Z7h03dQ7O32Okhut7ERx2M0_9OvFvrVXjQOQYhS5kXfHhaEMPvDaRR9y5Z6PKvIWxS5kpFeT5fAqkSkjAuMnj2t6WDl-f0M_BxD9gYUorQauvGnGvYOXSdpkTvytaHsvWubE243pWd5fI_-eGFl4Tv98K1W623LoJOvem6bJPq7XbLhOa6orz8A2L9vwU |
CitedBy_id | crossref_primary_10_1016_j_bbr_2013_12_052 crossref_primary_10_1016_j_ejphar_2008_10_051 crossref_primary_10_1016_j_yfrne_2024_101155 crossref_primary_10_1111_j_1471_4159_2005_03557_x crossref_primary_10_1016_j_pnpbp_2021_110394 crossref_primary_10_1007_s00213_010_1891_y crossref_primary_10_1016_j_ejphar_2007_10_017 crossref_primary_10_1016_j_neubiorev_2018_02_001 crossref_primary_10_1016_j_bbrc_2009_08_099 crossref_primary_10_1111_j_1527_3458_2005_tb00052_x crossref_primary_10_1517_14728222_10_2_211 crossref_primary_10_1016_j_peptides_2009_06_024 crossref_primary_10_1016_j_jchemneu_2007_10_002 crossref_primary_10_1007_s12031_009_9207_6 crossref_primary_10_1007_s00213_016_4285_y crossref_primary_10_1111_acer_13181 crossref_primary_10_1210_er_2006_0021 crossref_primary_10_1371_journal_pone_0015471 crossref_primary_10_1016_j_pbb_2006_11_004 crossref_primary_10_1002_cne_23273 crossref_primary_10_1016_j_bbr_2010_11_019 crossref_primary_10_1016_j_ejphar_2008_02_084 crossref_primary_10_1017_S1461145713000072 crossref_primary_10_1016_j_bbr_2008_06_033 crossref_primary_10_1016_j_neuropharm_2017_09_008 crossref_primary_10_1038_s41574_021_00559_1 crossref_primary_10_1002_jez_a_311 crossref_primary_10_1002_ddr_20029 crossref_primary_10_1038_sj_bjp_0707292 crossref_primary_10_1016_j_peptides_2020_170476 crossref_primary_10_1523_JNEUROSCI_3921_12_2013 crossref_primary_10_1016_j_brainres_2005_09_005 crossref_primary_10_1002_ddr_20030 crossref_primary_10_1016_j_neuroscience_2008_05_035 crossref_primary_10_2337_db06_1432 crossref_primary_10_1016_j_bbr_2008_08_026 crossref_primary_10_1016_j_biopsych_2007_12_011 crossref_primary_10_1016_j_neuroscience_2014_12_046 crossref_primary_10_1523_ENEURO_0069_14_2015 crossref_primary_10_1007_s00213_007_1021_7 crossref_primary_10_1016_j_pbb_2015_05_018 crossref_primary_10_1016_j_peptides_2009_05_002 crossref_primary_10_1177_0269881119895521 crossref_primary_10_1016_j_physbeh_2010_01_026 crossref_primary_10_1371_journal_pone_0099961 crossref_primary_10_1074_jbc_M109_079590 crossref_primary_10_1097_PSY_0000000000000146 crossref_primary_10_1111_j_1460_9568_2008_06129_x crossref_primary_10_1016_j_pharmthera_2005_11_006 crossref_primary_10_1002_syn_20303 crossref_primary_10_1016_j_pbb_2025_173999 crossref_primary_10_1111_acer_12313 crossref_primary_10_3390_ijms21218048 crossref_primary_10_1038_sj_npp_1300805 crossref_primary_10_1159_000501234 crossref_primary_10_1111_j_1530_0277_2007_00427_x crossref_primary_10_1016_j_peptides_2009_05_006 crossref_primary_10_1016_j_neubiorev_2007_10_008 crossref_primary_10_1016_j_physbeh_2007_01_001 crossref_primary_10_1016_j_tem_2008_08_007 crossref_primary_10_1073_pnas_0811331106 crossref_primary_10_7554_eLife_01462 crossref_primary_10_1016_j_peptides_2009_07_022 crossref_primary_10_3389_fnsys_2017_00032 crossref_primary_10_1038_s41598_018_21046_0 crossref_primary_10_2337_diabetes_55_03_06_db05_1302 crossref_primary_10_1016_j_molmet_2019_08_018 crossref_primary_10_1523_JNEUROSCI_5310_08_2009 crossref_primary_10_1523_JNEUROSCI_1766_08_2008 crossref_primary_10_1002_ajmg_b_30335 crossref_primary_10_1038_sj_npp_1300913 crossref_primary_10_1371_journal_pone_0019600 crossref_primary_10_1016_j_ejphar_2008_09_027 crossref_primary_10_1016_j_pbb_2012_06_010 crossref_primary_10_1210_en_2013_1738 crossref_primary_10_1124_jpet_108_143362 crossref_primary_10_1002_syn_20473 crossref_primary_10_1371_journal_pone_0019286 |
Cites_doi | 10.1016/0006-8993(91)90935-O 10.1016/S0024-3205(03)00408-9 10.1038/380243a0 10.1016/S0006-8993(99)02258-1 10.1016/S0896-6273(02)00969-8 10.1038/22313 10.1073/pnas.052706899 10.1046/j.1460-9568.2000.00008.x 10.1016/0006-8993(89)90831-7 10.1073/pnas.261583798 10.1038/25341 10.1016/0092-8674(94)90557-6 10.1007/s002130051138 10.1111/j.1749-6632.1988.tb42108.x 10.1002/1520-6394(2000)12:1+<2::AID-DA2>3.0.CO;2-4 10.1007/BF01285563 10.1523/JNEUROSCI.18-06-01979.1998 10.1016/S0896-6273(01)00319-1 10.1016/0304-3940(90)90263-9 10.1016/S0896-6273(00)80419-5 10.1016/0361-9230(93)90206-Q 10.1073/pnas.131200698 10.1016/S0014-2999(02)01314-6 10.1111/j.1749-6632.1989.tb53242.x 10.1146/annurev.ne.16.030193.000445 10.1016/S0028-3908(98)00155-5 10.1016/S0014-2999(03)01273-1 10.1523/JNEUROSCI.23-01-00007.2003 10.1038/22321 10.1007/BF02246295 10.1073/pnas.87.17.6912 10.1210/en.138.1.351 10.1016/0165-0270(92)90111-P 10.1016/0092-8674(94)90026-4 10.1046/j.1471-4159.1998.71010274.x 10.1523/JNEUROSCI.06-08-02470.1986 10.1002/cne.903190204 10.1016/0197-0186(92)90091-5 10.1016/0006-8993(80)90695-2 10.1210/en.143.7.2469 10.1016/0166-4328(81)90004-8 10.1046/j.1460-9568.2003.02912.x 10.1073/pnas.121170598 10.1016/0361-9230(83)90166-1 10.1016/0006-3223(94)90593-2 10.1097/00008877-199711000-00010 10.1038/nm741 10.1046/j.1471-4159.2000.0750258.x 10.1172/JCI10660 10.1006/geno.2002.6771 10.1016/S0028-3908(00)00052-6 10.1016/0006-8993(94)90081-7 10.1046/j.1471-4159.1995.64062792.x 10.1523/JNEUROSCI.22-09-03306.2002 10.1016/0306-4522(90)90218-S 10.1007/s002130050327 10.1038/379606a0 10.1002/cne.1191 10.1002/syn.10271 10.1523/JNEUROSCI.06-08-02352.1986 10.1111/j.1601-183x.2004.00064.x 10.1016/S0091-3057(99)00249-X 10.1126/science.2903550 |
ContentType | Journal Article |
Copyright | Copyright © 2005 Society for Neuroscience 0270-6474/05/25914-09.00/0 2005 |
Copyright_xml | – notice: Copyright © 2005 Society for Neuroscience 0270-6474/05/25914-09.00/0 2005 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1523/JNEUROSCI.4079-04.2005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 922 |
ExternalDocumentID | PMC6725636 15673672 10_1523_JNEUROSCI_4079_04_2005 www25_4_914 |
Genre | Journal Article |
GroupedDBID | - 08R 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS ABFLS ABIVO ABPTK ABUFD ACNCT ADACO ADBBV ADCOW AENEX AETEA AFFNX AFMIJ AIZTS AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FA8 FH7 GJ GX1 H13 HYE H~9 KQ8 L7B MVM O0- OK1 P0W P2P QZG R.V RHF RHI RIG RPM TFN UQL WH7 WOQ X X7M XJT ZA5 --- -DZ -~X .55 .GJ 18M AAFWJ AAJMC AAYXX ABBAR ACGUR ADHGD ADXHL AFCFT AFOSN AFSQR AHWXS AOIJS BTFSW CITATION TR2 W8F YBU YHG YKV YNH YSK AFHIN CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c539t-ddae2ba57e773cd0c96d52ea7a0cf5268d46c4cf1afb904da821dfc83eb4981b3 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 18:11:36 EDT 2025 Thu Jul 10 23:12:51 EDT 2025 Fri Jul 11 08:54:18 EDT 2025 Wed Feb 19 02:34:03 EST 2025 Thu Apr 24 23:03:31 EDT 2025 Tue Jul 01 00:49:24 EDT 2025 Tue Nov 10 19:18:25 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c539t-ddae2ba57e773cd0c96d52ea7a0cf5268d46c4cf1afb904da821dfc83eb4981b3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/25/4/914.full.pdf |
PMID | 15673672 |
PQID | 17560245 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6725636 proquest_miscellaneous_67371467 proquest_miscellaneous_17560245 pubmed_primary_15673672 crossref_citationtrail_10_1523_JNEUROSCI_4079_04_2005 crossref_primary_10_1523_JNEUROSCI_4079_04_2005 highwire_smallpub1_www25_4_914 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-01-26 |
PublicationDateYYYYMMDD | 2005-01-26 |
PublicationDate_xml | – month: 01 year: 2005 text: 2005-01-26 day: 26 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2005 |
Publisher | Soc Neuroscience Society for Neuroscience |
Publisher_xml | – name: Soc Neuroscience – name: Society for Neuroscience |
References | 2023041303104555000_25.4.914.38 2023041303104555000_25.4.914.37 2023041303104555000_25.4.914.36 2023041303104555000_25.4.914.35 2023041303104555000_25.4.914.34 (2023041303104555000_25.4.914.27) 2002; 22 (2023041303104555000_25.4.914.62) 1993; 32 (2023041303104555000_25.4.914.24) 1989; 575 2023041303104555000_25.4.914.43 (2023041303104555000_25.4.914.31) 1988; 537 2023041303104555000_25.4.914.41 2023041303104555000_25.4.914.40 (2023041303104555000_25.4.914.4) 2002; 8 2023041303104555000_25.4.914.49 (2023041303104555000_25.4.914.67) 1986; 6 2023041303104555000_25.4.914.48 2023041303104555000_25.4.914.47 2023041303104555000_25.4.914.46 2023041303104555000_25.4.914.45 (2023041303104555000_25.4.914.22) 1977; 201 2023041303104555000_25.4.914.54 2023041303104555000_25.4.914.52 2023041303104555000_25.4.914.51 2023041303104555000_25.4.914.50 2023041303104555000_25.4.914.18 2023041303104555000_25.4.914.9 (2023041303104555000_25.4.914.10) 1986; 6 2023041303104555000_25.4.914.8 2023041303104555000_25.4.914.15 2023041303104555000_25.4.914.14 2023041303104555000_25.4.914.58 2023041303104555000_25.4.914.13 2023041303104555000_25.4.914.57 2023041303104555000_25.4.914.12 2023041303104555000_25.4.914.56 2023041303104555000_25.4.914.11 2023041303104555000_25.4.914.55 2023041303104555000_25.4.914.3 2023041303104555000_25.4.914.2 2023041303104555000_25.4.914.1 (2023041303104555000_25.4.914.17) 1992; 21 (2023041303104555000_25.4.914.33) 2003; 23 2023041303104555000_25.4.914.7 2023041303104555000_25.4.914.6 2023041303104555000_25.4.914.5 2023041303104555000_25.4.914.19 (2023041303104555000_25.4.914.42) 2000; 65 (2023041303104555000_25.4.914.53) 1999; 147 (2023041303104555000_25.4.914.26) 1998; 18 (2023041303104555000_25.4.914.59) 1995; 47 2023041303104555000_25.4.914.21 2023041303104555000_25.4.914.65 2023041303104555000_25.4.914.20 2023041303104555000_25.4.914.64 (2023041303104555000_25.4.914.44) 2000; 12 2023041303104555000_25.4.914.63 2023041303104555000_25.4.914.60 2023041303104555000_25.4.914.29 2023041303104555000_25.4.914.28 (2023041303104555000_25.4.914.16) 1995; 119 2023041303104555000_25.4.914.68 2023041303104555000_25.4.914.23 2023041303104555000_25.4.914.66 (2023041303104555000_25.4.914.25) 1990; 118 (2023041303104555000_25.4.914.39) 1994; 8 2023041303104555000_25.4.914.32 2023041303104555000_25.4.914.30 (2023041303104555000_25.4.914.61) 1985; 3 |
References_xml | – ident: 2023041303104555000_25.4.914.38 doi: 10.1016/0006-8993(91)90935-O – volume: 47 start-page: 544 year: 1995 ident: 2023041303104555000_25.4.914.59 publication-title: Mol Pharmacol – ident: 2023041303104555000_25.4.914.11 doi: 10.1016/S0024-3205(03)00408-9 – ident: 2023041303104555000_25.4.914.43 doi: 10.1038/380243a0 – ident: 2023041303104555000_25.4.914.65 doi: 10.1016/S0006-8993(99)02258-1 – ident: 2023041303104555000_25.4.914.51 doi: 10.1016/S0896-6273(02)00969-8 – ident: 2023041303104555000_25.4.914.6 doi: 10.1038/22313 – ident: 2023041303104555000_25.4.914.36 doi: 10.1073/pnas.052706899 – ident: 2023041303104555000_25.4.914.23 doi: 10.1046/j.1460-9568.2000.00008.x – ident: 2023041303104555000_25.4.914.12 doi: 10.1016/0006-8993(89)90831-7 – ident: 2023041303104555000_25.4.914.19 doi: 10.1073/pnas.261583798 – ident: 2023041303104555000_25.4.914.52 doi: 10.1038/25341 – ident: 2023041303104555000_25.4.914.64 doi: 10.1016/0092-8674(94)90557-6 – volume: 147 start-page: 33 year: 1999 ident: 2023041303104555000_25.4.914.53 publication-title: Psychopharmacology (Berl) doi: 10.1007/s002130051138 – volume: 537 start-page: 216 year: 1988 ident: 2023041303104555000_25.4.914.31 publication-title: Ann NY Acad Sci doi: 10.1111/j.1749-6632.1988.tb42108.x – volume: 12 start-page: 2 year: 2000 ident: 2023041303104555000_25.4.914.44 publication-title: Depress Anxiety doi: 10.1002/1520-6394(2000)12:1+<2::AID-DA2>3.0.CO;2-4 – ident: 2023041303104555000_25.4.914.40 doi: 10.1007/BF01285563 – volume: 18 start-page: 1979 year: 1998 ident: 2023041303104555000_25.4.914.26 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.18-06-01979.1998 – ident: 2023041303104555000_25.4.914.56 doi: 10.1016/S0896-6273(01)00319-1 – volume: 118 start-page: 120 year: 1990 ident: 2023041303104555000_25.4.914.25 publication-title: Neurosci Lett doi: 10.1016/0304-3940(90)90263-9 – ident: 2023041303104555000_25.4.914.60 doi: 10.1016/S0896-6273(00)80419-5 – volume: 32 start-page: 395 year: 1993 ident: 2023041303104555000_25.4.914.62 publication-title: Brain Res Bull doi: 10.1016/0361-9230(93)90206-Q – ident: 2023041303104555000_25.4.914.2 doi: 10.1073/pnas.131200698 – ident: 2023041303104555000_25.4.914.57 doi: 10.1016/S0014-2999(02)01314-6 – volume: 575 start-page: 171 year: 1989 ident: 2023041303104555000_25.4.914.24 publication-title: Ann NY Acad Sci doi: 10.1111/j.1749-6632.1989.tb53242.x – volume: 201 start-page: 386 year: 1977 ident: 2023041303104555000_25.4.914.22 publication-title: J Pharmacol Exp Ther – ident: 2023041303104555000_25.4.914.1 doi: 10.1146/annurev.ne.16.030193.000445 – ident: 2023041303104555000_25.4.914.41 doi: 10.1016/S0028-3908(98)00155-5 – ident: 2023041303104555000_25.4.914.13 doi: 10.1016/S0014-2999(03)01273-1 – volume: 23 start-page: 7 year: 2003 ident: 2023041303104555000_25.4.914.33 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-01-00007.2003 – ident: 2023041303104555000_25.4.914.48 doi: 10.1038/22321 – volume: 119 start-page: 299 year: 1995 ident: 2023041303104555000_25.4.914.16 publication-title: Psychopharmacology (Berl) doi: 10.1007/BF02246295 – ident: 2023041303104555000_25.4.914.21 doi: 10.1073/pnas.87.17.6912 – ident: 2023041303104555000_25.4.914.15 – ident: 2023041303104555000_25.4.914.45 doi: 10.1210/en.138.1.351 – ident: 2023041303104555000_25.4.914.55 doi: 10.1016/0165-0270(92)90111-P – ident: 2023041303104555000_25.4.914.63 doi: 10.1016/0092-8674(94)90026-4 – ident: 2023041303104555000_25.4.914.66 doi: 10.1046/j.1471-4159.1998.71010274.x – volume: 6 start-page: 2470 year: 1986 ident: 2023041303104555000_25.4.914.67 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.06-08-02470.1986 – ident: 2023041303104555000_25.4.914.3 doi: 10.1002/cne.903190204 – volume: 21 start-page: 581 year: 1992 ident: 2023041303104555000_25.4.914.17 publication-title: Neurochem Int doi: 10.1016/0197-0186(92)90091-5 – ident: 2023041303104555000_25.4.914.14 doi: 10.1016/0006-8993(80)90695-2 – volume: 8 start-page: 221 year: 1994 ident: 2023041303104555000_25.4.914.39 publication-title: Crit Rev Neurobiol – ident: 2023041303104555000_25.4.914.8 doi: 10.1210/en.143.7.2469 – ident: 2023041303104555000_25.4.914.32 doi: 10.1016/0166-4328(81)90004-8 – ident: 2023041303104555000_25.4.914.7 doi: 10.1046/j.1460-9568.2003.02912.x – ident: 2023041303104555000_25.4.914.47 doi: 10.1073/pnas.121170598 – ident: 2023041303104555000_25.4.914.37 doi: 10.1016/0361-9230(83)90166-1 – volume: 3 start-page: 445 year: 1985 ident: 2023041303104555000_25.4.914.61 publication-title: Psychiatr Med – ident: 2023041303104555000_25.4.914.28 doi: 10.1016/0006-3223(94)90593-2 – ident: 2023041303104555000_25.4.914.34 doi: 10.1097/00008877-199711000-00010 – volume: 8 start-page: 825 year: 2002 ident: 2023041303104555000_25.4.914.4 publication-title: Nat Med doi: 10.1038/nm741 – ident: 2023041303104555000_25.4.914.54 doi: 10.1046/j.1471-4159.2000.0750258.x – ident: 2023041303104555000_25.4.914.35 doi: 10.1172/JCI10660 – ident: 2023041303104555000_25.4.914.58 doi: 10.1006/geno.2002.6771 – ident: 2023041303104555000_25.4.914.46 doi: 10.1016/S0028-3908(00)00052-6 – ident: 2023041303104555000_25.4.914.29 doi: 10.1016/0006-8993(94)90081-7 – ident: 2023041303104555000_25.4.914.18 doi: 10.1046/j.1471-4159.1995.64062792.x – volume: 22 start-page: 3306 year: 2002 ident: 2023041303104555000_25.4.914.27 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-09-03306.2002 – ident: 2023041303104555000_25.4.914.50 doi: 10.1016/0306-4522(90)90218-S – ident: 2023041303104555000_25.4.914.9 doi: 10.1007/s002130050327 – ident: 2023041303104555000_25.4.914.20 doi: 10.1038/379606a0 – ident: 2023041303104555000_25.4.914.49 doi: 10.1002/cne.1191 – ident: 2023041303104555000_25.4.914.68 doi: 10.1002/syn.10271 – volume: 6 start-page: 2352 year: 1986 ident: 2023041303104555000_25.4.914.10 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.06-08-02352.1986 – ident: 2023041303104555000_25.4.914.5 doi: 10.1111/j.1601-183x.2004.00064.x – volume: 65 start-page: 433 year: 2000 ident: 2023041303104555000_25.4.914.42 publication-title: Pharmacol Biochem Behav doi: 10.1016/S0091-3057(99)00249-X – ident: 2023041303104555000_25.4.914.30 doi: 10.1126/science.2903550 |
SSID | ssj0007017 |
Score | 2.1498547 |
Snippet | Melanin-concentrating hormone (MCH) neurons and MCH-1 receptors (MCH1r) densely populate mesolimbic dopaminergic brain regions such as the nucleus accumbens... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 914 |
SubjectTerms | 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine - pharmacology Animals Behavioral/Systems/Cognitive Dextroamphetamine - pharmacology Dopamine - metabolism Dopamine - physiology Dopamine Agonists - pharmacology Limbic System - physiology Male Membrane Transport Proteins - metabolism Mesencephalon - physiology Mice Mice, Knockout Motor Activity - drug effects Motor Activity - physiology Neural Pathways - physiology Norepinephrine - metabolism Nucleus Accumbens - metabolism Quinpirole - pharmacology Receptors, Dopamine - metabolism Receptors, Somatostatin - genetics Receptors, Somatostatin - physiology Serotonin - metabolism |
Title | Mesolimbic Dopamine Super-Sensitivity in Melanin-Concentrating Hormone-1 Receptor-Deficient Mice |
URI | http://www.jneurosci.org/cgi/content/abstract/25/4/914 https://www.ncbi.nlm.nih.gov/pubmed/15673672 https://www.proquest.com/docview/17560245 https://www.proquest.com/docview/67371467 https://pubmed.ncbi.nlm.nih.gov/PMC6725636 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF5F5YUXBJQjHGUfEC-RUx9rO36sQiEUUgkllfq2rNdrsJRsojYmoj-HX8rM-szBUV6syMfYzoxnZ3a_-YaQ13EspIoCSHLiRCGptm_FbiqsQDLEfEdMKSxwHp8Howt2dulfdjo_W6ilfBX35c3eupL_0SrsA71ilewtNFsLhR3wG_QLW9AwbP9Jx2MF8rN5nEkIhJdijhHjJF-qK2uCuPSyMUSGyzEzoTNtDbFIURumXP21N4J4daGV5WDwqJaQfVtvFTJKID5gXILiqsi1qSEz0WuLB7M2jXqWpqhb773v1_MCN-K7MB2NeqcwzGW9aX0Ie7cXcF2dNaI-5Upuw4aquQmEAVpFAXzpwtwQklNW9OHpq9LFumZNx2n74KL4ubQ11nKokcNaY3NU1DDvuH3f0E-cnSP6cTL80IcsFZd8zJRZM9BVi_tb41-NSsR8CCTxWg5HOdxmvKDJveNCKoK-9OPnhpE-tE1X5_pNyyp0kHO8_3k2A6CKlHpfgrON020FPtP75F6pc3pSmN8D0lH6ITk80WK1mP-gb6jBEJvFmUPypbFIWlkk3bFImmm61yJpbZF01yIpWuQjcvHudDocWWUPD0v6XrSykkQoNxZ-qMLQk4ktoyDxXSVCYcsUqYYShm4hdUQaRzZLxMB1klQOPBWzCFIq7zE50HDjp4SKmMGZyolEMGAD5gmZYFU35AgQJQd22iV-9cdyWRLcY5-VGf-zYrvkuL5uWVC8_PWKo0pv_HouZjNQk8PX67Xrc8bBZLvkVaVNDu4a1-CEVov8mkO0HiDa4fdnYOMoDF-65Emh_eahfARhhm6XhBt2UZ-AVPGbR3T2zVDGw1V-4AXPbv2qz8nd5sN-QQ5WV7l6CWH4Kj4y38EvMlXdig |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mesolimbic+Dopamine+Super-Sensitivity+in+Melanin-Concentrating+Hormone-1+Receptor-Deficient+Mice&rft.jtitle=The+Journal+of+neuroscience&rft.au=Smith%2C+Daniel+G.&rft.au=Tzavara%2C+Eleni+T.&rft.au=Shaw%2C+Janice&rft.au=Luecke%2C+Susan&rft.date=2005-01-26&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=25&rft.issue=4&rft.spage=914&rft.epage=922&rft_id=info:doi/10.1523%2FJNEUROSCI.4079-04.2005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_4079_04_2005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |