Selective Enhancement of Tonic GABAergic Inhibition in Murine Hippocampal Neurons by Low Concentrations of the Volatile Anesthetic Isoflurane
Volatile (inhaled) anesthetics cause amnesia at concentrations well below those that cause loss of consciousness and immobility; however, the underlying neuronal mechanisms are unknown. Although many anesthetics increase inhibitory GABAergic synaptic transmission, this effect occurs only at high con...
Saved in:
Published in | The Journal of neuroscience Vol. 24; no. 39; pp. 8454 - 8458 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Soc Neuroscience
29.09.2004
Society for Neuroscience |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Volatile (inhaled) anesthetics cause amnesia at concentrations well below those that cause loss of consciousness and immobility; however, the underlying neuronal mechanisms are unknown. Although many anesthetics increase inhibitory GABAergic synaptic transmission, this effect occurs only at high concentrations (>100 μ
m
). Molecular targets for low concentrations of inhaled anesthetics have not been identified. Here, we report that a tonic inhibitory conductance in hippocampal pyramidal neurons generated by α5 subunit-containing GABA
A
receptors is highly sensitive to low concentrations of the volatile anesthetic isoflurane (ISO) (25 and 83.3 μ
m
). The α5 subunit is necessary for enhancement of the tonic current by these low concentrations of isoflurane because potentiation is absent in neurons from α5
-/-
mice. Furthermore, ISO (25 μ
m
) potentiated recombinant human α5β3γ2L GABA
A
receptors, whereas this effect was not seen with α1β3γ2L GABA
A
receptors. These studies suggest that an increased tonic inhibition in the hippocampus may contribute to amnestic properties of volatile anesthetics. |
---|---|
AbstractList | Volatile (inhaled) anesthetics cause amnesia at concentrations well below those that cause loss of consciousness and immobility; however, the underlying neuronal mechanisms are unknown. Although many anesthetics increase inhibitory GABAergic synaptic transmission, this effect occurs only at high concentrations (>100 mu M). Molecular targets for low concentrations of inhaled anesthetics have not been identified. Here, we report that a tonic inhibitory conductance in hippocampal pyramidal neurons generated by alpha5 subunit-containing GABA sub(A) receptors is highly sensitive to low concentrations of the volatile anesthetic isoflurane (ISO) (25 and 83.3 mu M). The alpha5 subunit is necessary for enhancement of the tonic current by these low concentrations of isoflurane because potentiation is absent in neurons from alpha5 super(-/-) mice. Furthermore, ISO (25 mu M) potentiated recombinant human alpha5beta3gamma2L GABA sub(A) receptors, whereas this effect was not seen with alpha1beta3gamma2L GABA sub(A) receptors. These studies suggest that an increased tonic inhibition in the hippocampus may contribute to amnestic properties of volatile anesthetics. Volatile (inhaled) anesthetics cause amnesia at concentrations well below those that cause loss of consciousness and immobility; however, the underlying neuronal mechanisms are unknown. Although many anesthetics increase inhibitory GABAergic synaptic transmission, this effect occurs only at high concentrations (>100 microm). Molecular targets for low concentrations of inhaled anesthetics have not been identified. Here, we report that a tonic inhibitory conductance in hippocampal pyramidal neurons generated by alpha5 subunit-containing GABA(A) receptors is highly sensitive to low concentrations of the volatile anesthetic isoflurane (ISO) (25 and 83.3 microm). The alpha5 subunit is necessary for enhancement of the tonic current by these low concentrations of isoflurane because potentiation is absent in neurons from alpha5-/- mice. Furthermore, ISO (25 microm) potentiated recombinant human alpha5beta3gamma2L GABA(A) receptors, whereas this effect was not seen with alpha1beta3gamma2L GABA(A) receptors. These studies suggest that an increased tonic inhibition in the hippocampus may contribute to amnestic properties of volatile anesthetics.Volatile (inhaled) anesthetics cause amnesia at concentrations well below those that cause loss of consciousness and immobility; however, the underlying neuronal mechanisms are unknown. Although many anesthetics increase inhibitory GABAergic synaptic transmission, this effect occurs only at high concentrations (>100 microm). Molecular targets for low concentrations of inhaled anesthetics have not been identified. Here, we report that a tonic inhibitory conductance in hippocampal pyramidal neurons generated by alpha5 subunit-containing GABA(A) receptors is highly sensitive to low concentrations of the volatile anesthetic isoflurane (ISO) (25 and 83.3 microm). The alpha5 subunit is necessary for enhancement of the tonic current by these low concentrations of isoflurane because potentiation is absent in neurons from alpha5-/- mice. Furthermore, ISO (25 microm) potentiated recombinant human alpha5beta3gamma2L GABA(A) receptors, whereas this effect was not seen with alpha1beta3gamma2L GABA(A) receptors. These studies suggest that an increased tonic inhibition in the hippocampus may contribute to amnestic properties of volatile anesthetics. Volatile (inhaled) anesthetics cause amnesia at concentrations well below those that cause loss of consciousness and immobility; however, the underlying neuronal mechanisms are unknown. Although many anesthetics increase inhibitory GABAergic synaptic transmission, this effect occurs only at high concentrations (>100 microm). Molecular targets for low concentrations of inhaled anesthetics have not been identified. Here, we report that a tonic inhibitory conductance in hippocampal pyramidal neurons generated by alpha5 subunit-containing GABA(A) receptors is highly sensitive to low concentrations of the volatile anesthetic isoflurane (ISO) (25 and 83.3 microm). The alpha5 subunit is necessary for enhancement of the tonic current by these low concentrations of isoflurane because potentiation is absent in neurons from alpha5-/- mice. Furthermore, ISO (25 microm) potentiated recombinant human alpha5beta3gamma2L GABA(A) receptors, whereas this effect was not seen with alpha1beta3gamma2L GABA(A) receptors. These studies suggest that an increased tonic inhibition in the hippocampus may contribute to amnestic properties of volatile anesthetics. Volatile (inhaled) anesthetics cause amnesia at concentrations well below those that cause loss of consciousness and immobility; however, the underlying neuronal mechanisms are unknown. Although many anesthetics increase inhibitory GABAergic synaptic transmission, this effect occurs only at high concentrations (>100 μ m ). Molecular targets for low concentrations of inhaled anesthetics have not been identified. Here, we report that a tonic inhibitory conductance in hippocampal pyramidal neurons generated by α5 subunit-containing GABA A receptors is highly sensitive to low concentrations of the volatile anesthetic isoflurane (ISO) (25 and 83.3 μ m ). The α5 subunit is necessary for enhancement of the tonic current by these low concentrations of isoflurane because potentiation is absent in neurons from α5 -/- mice. Furthermore, ISO (25 μ m ) potentiated recombinant human α5β3γ2L GABA A receptors, whereas this effect was not seen with α1β3γ2L GABA A receptors. These studies suggest that an increased tonic inhibition in the hippocampus may contribute to amnestic properties of volatile anesthetics. |
Author | Orser, Beverley A Elliott, Erin M Wafford, Keith A You-Ten, Kong E Rosahl, Thomas W Newell, J. Glen MacDonald, John F Caraiscos, Valerie B |
Author_xml | – sequence: 1 fullname: Caraiscos, Valerie B – sequence: 2 fullname: Newell, J. Glen – sequence: 3 fullname: You-Ten, Kong E – sequence: 4 fullname: Elliott, Erin M – sequence: 5 fullname: Rosahl, Thomas W – sequence: 6 fullname: Wafford, Keith A – sequence: 7 fullname: MacDonald, John F – sequence: 8 fullname: Orser, Beverley A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15456818$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1vEzEUtFARTQt_ofIJTlv8tfZaQkghCm1QaCXacrWcjTdr5LVTe7dRfwT_GS8pEXDp6VnvzYzn2XMCjnzwBoAzjM5xSej7L1fzu2_XN7PFOUGcFojlitgLMMlTWRCG8BGYICJQwZlgx-AkpR8IIYGweAWOcclKXuFqAn7eGGfq3j4YOPet9rXpjO9haOBt8LaGF9NPUxM3-bTwrV3Z3gYPrYdfh2i9gZd2uw217rbawSszxOATXD3CZdjBWchivo96pKRRsW8N_B5cbjgDp96k3OhH5RQaN0TtzWvwstEumTdP9RTcfZ7fzi6L5fXFYjZdFnVJZV-smS6FJEJgzdla8IrUFaeaywZr0jC50rLSnNKGEomNQHVD-IqxNTeClrhZ01Pwca-7HVadWe99OrWNttPxUQVt1b8Tb1u1CQ-KCyIlolng7ZNADPdD3kR1NtXGubxEGJLiXFJCMHsWiIWQlFKZgWd_Wzp4-fNVGfBhD6hjSCmaRtW2__242aF1CiM1JkMdkqHGZCjE1JiMTOf_0Q83PEd8tye2dtPubDQqddq5bBOr3W5HmKJSVaxk9BdbLM4R |
CitedBy_id | crossref_primary_10_1042_BST0371334 crossref_primary_10_1097_ALN_0000000000004949 crossref_primary_10_1056_NEJMe0800998 crossref_primary_10_1007_s12630_012_9749_x crossref_primary_10_1523_JNEUROSCI_0344_13_2013 crossref_primary_10_1016_j_eplepsyres_2005_12_001 crossref_primary_10_1038_npp_2009_57 crossref_primary_10_1074_jbc_M110_149229 crossref_primary_10_1007_s12630_010_9414_1 crossref_primary_10_1016_j_neuropharm_2008_08_010 crossref_primary_10_1097_ALN_0000000000002881 crossref_primary_10_1016_j_pbb_2007_12_011 crossref_primary_10_1371_journal_pone_0072976 crossref_primary_10_1093_bja_aet038 crossref_primary_10_2174_1570159X19666210215120755 crossref_primary_10_1097_ALN_0000000000000943 crossref_primary_10_1111_j_1471_4159_2006_04055_x crossref_primary_10_1124_jpet_106_106260 crossref_primary_10_1016_j_ics_2005_06_085 crossref_primary_10_1016_j_neulet_2009_08_041 crossref_primary_10_1038_nrn1625 crossref_primary_10_1073_pnas_0604304103 crossref_primary_10_1523_JNEUROSCI_5024_05_2006 crossref_primary_10_1016_j_ejphar_2013_09_018 crossref_primary_10_1016_j_neuropharm_2010_11_016 crossref_primary_10_1093_bja_aex199 crossref_primary_10_4097_kjae_2010_59_1_3 crossref_primary_10_1007_s12035_023_03574_7 crossref_primary_10_1016_j_neuropharm_2014_08_003 crossref_primary_10_1016_j_neuropharm_2007_11_001 crossref_primary_10_1016_j_ejphar_2024_176561 crossref_primary_10_1016_j_nbd_2017_01_009 crossref_primary_10_3389_fnsys_2017_00058 crossref_primary_10_1021_jm2001597 crossref_primary_10_1210_en_2010_1191 crossref_primary_10_1016_j_ics_2005_07_077 crossref_primary_10_2174_1570159X19666210803105232 crossref_primary_10_1016_j_brainresbull_2015_09_001 crossref_primary_10_1007_s12035_013_8548_x crossref_primary_10_1016_j_tips_2005_08_006 crossref_primary_10_1016_j_neuropharm_2023_109587 crossref_primary_10_1152_jn_01199_2005 crossref_primary_10_1002_jnr_21991 crossref_primary_10_1016_j_neuropharm_2017_07_027 crossref_primary_10_1016_j_neuroscience_2010_09_034 crossref_primary_10_1016_j_ics_2005_07_070 crossref_primary_10_1093_cercor_bhj055 crossref_primary_10_1093_cercor_bhq169 crossref_primary_10_4097_kjae_2009_56_6_675 crossref_primary_10_1016_j_pharmthera_2005_05_009 crossref_primary_10_1152_jn_00482_2007 crossref_primary_10_1213_ANE_0000000000001403 crossref_primary_10_1213_ane_0b013e3181904571 crossref_primary_10_1213_ANE_0b013e3181bf6ae6 crossref_primary_10_1016_j_ebiom_2021_103272 crossref_primary_10_1038_s41467_024_48489_6 crossref_primary_10_1016_j_brainres_2009_06_058 crossref_primary_10_1111_j_1476_5381_2011_01604_x crossref_primary_10_1097_ALN_0000000000001861 crossref_primary_10_1186_1471_2202_5_52 crossref_primary_10_1523_JNEUROSCI_4702_05_2006 crossref_primary_10_1021_pr060311u crossref_primary_10_1016_j_phrs_2017_12_031 crossref_primary_10_1097_ALN_0b013e31828e180e crossref_primary_10_1111_j_1476_5381_2011_01690_x crossref_primary_10_1016_j_bja_2020_07_054 crossref_primary_10_3390_ph3113461 crossref_primary_10_1016_j_neuropharm_2017_04_002 crossref_primary_10_1038_nrn2372 crossref_primary_10_1093_bja_aen036 crossref_primary_10_4103_1673_5374_250621 crossref_primary_10_1097_01_aco_0000174961_90135_dc crossref_primary_10_1097_ALN_0000000000002380 crossref_primary_10_1124_jpet_107_134569 crossref_primary_10_1016_j_pharmthera_2007_03_004 crossref_primary_10_1007_s10877_006_9044_x crossref_primary_10_1093_bja_aet177 crossref_primary_10_3389_fnagi_2021_802582 crossref_primary_10_1016_j_pharmthera_2005_12_005 crossref_primary_10_1097_ALN_0000000000003798 crossref_primary_10_1016_j_brainresbull_2012_08_001 crossref_primary_10_1111_cns_14716 crossref_primary_10_1016_j_neuropharm_2008_11_002 crossref_primary_10_1213_ANE_0b013e3182291782 crossref_primary_10_2174_1568026619666191114101425 crossref_primary_10_1152_jn_90484_2008 crossref_primary_10_1097_ACO_0000000000000358 crossref_primary_10_1172_JCI63375 crossref_primary_10_1152_jn_00405_2005 crossref_primary_10_1213_ane_0b013e31818d8b79 crossref_primary_10_1111_j_1472_8206_2008_00657_x crossref_primary_10_1523_JNEUROSCI_3340_09_2009 crossref_primary_10_1016_j_neulet_2013_05_040 crossref_primary_10_1097_01_ASM_0001077436_47894_20 crossref_primary_10_2174_1570159X18666200227125854 |
Cites_doi | 10.1097/00000542-200103000-00020 10.1016/S0028-3908(01)00189-7 10.1016/S0166-2236(96)80023-3 10.1016/S0165-6147(99)01405-4 10.1093/bja/71.1.65 10.1038/38738 10.1073/pnas.0307231101 10.1124/mol.59.4.814 10.1097/00000539-199602000-00019 10.1097/00000542-199211000-00009 10.1002/cne.903590111 10.1124/mol.53.3.530 10.1152/jn.00856.2002 10.1111/j.1460-9568.1997.tb01630.x 10.1097/00000542-200103000-00024 10.1002/cne.10102 10.1097/00000542-196511000-00010 10.1097/00000542-200208000-00023 10.1124/mol.63.1.2 10.1016/j.tins.2004.03.005 10.1097/00000542-200110000-00018 10.1097/00000542-199901000-00018 10.1056/NEJMra021261 10.1152/jn.1993.70.4.1339 10.1016/0278-5846(89)90135-8 10.1016/S0378-4274(98)00158-1 10.1523/JNEUROSCI.22-13-05572.2002 10.1016/0006-8993(86)91230-8 10.1073/pnas.142288699 10.1152/jn.00223.2004 10.1096/fasebj.9.14.7589987 10.1016/S0301-0082(02)00013-8 |
ContentType | Journal Article |
Copyright | Copyright © 2004 Society for Neuroscience 0270-6474/04/248454-05.00/0 2004 |
Copyright_xml | – notice: Copyright © 2004 Society for Neuroscience 0270-6474/04/248454-05.00/0 2004 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1523/JNEUROSCI.2063-04.2004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 8458 |
ExternalDocumentID | PMC6729903 15456818 10_1523_JNEUROSCI_2063_04_2004 www24_39_8454 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 08R 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS ABFLS ABIVO ABPTK ABUFD ACNCT ADACO ADBBV ADCOW AENEX AETEA AFFNX AFMIJ AIZTS AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FA8 FH7 GJ GX1 H13 HYE H~9 KQ8 L7B MVM O0- OK1 P0W P2P QZG R.V RHF RHI RIG RPM TFN UQL VH1 WH7 WOQ X X7M XJT ZA5 ZGI ZXP --- -DZ -~X .55 .GJ 18M AAFWJ AAJMC AAYXX ABBAR ACGUR ADHGD ADXHL AFCFT AFOSN AFSQR AHWXS AI. AOIJS BTFSW CITATION TR2 W8F YBU YHG YKV YNH YSK AFHIN CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c539t-d4a5792771a64d7682c863a69f1a2f49ba98a633f3291e70cf26b44d6e7351fd3 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 18:27:22 EDT 2025 Fri Jul 11 10:17:41 EDT 2025 Fri Jul 11 09:48:40 EDT 2025 Wed Feb 19 02:34:34 EST 2025 Tue Jul 01 00:49:03 EDT 2025 Thu Apr 24 22:55:01 EDT 2025 Tue Nov 10 19:18:23 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c539t-d4a5792771a64d7682c863a69f1a2f49ba98a633f3291e70cf26b44d6e7351fd3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/24/39/8454.full.pdf |
PMID | 15456818 |
PQID | 17793339 |
PQPubID | 23462 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6729903 proquest_miscellaneous_66932214 proquest_miscellaneous_17793339 pubmed_primary_15456818 crossref_citationtrail_10_1523_JNEUROSCI_2063_04_2004 crossref_primary_10_1523_JNEUROSCI_2063_04_2004 highwire_smallpub1_www24_39_8454 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20040929 2004-09-29 2004-Sep-29 |
PublicationDateYYYYMMDD | 2004-09-29 |
PublicationDate_xml | – month: 09 year: 2004 text: 20040929 day: 29 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2004 |
Publisher | Soc Neuroscience Society for Neuroscience |
Publisher_xml | – name: Soc Neuroscience – name: Society for Neuroscience |
References | (2023041303085055000_24.39.8454.28) 1994; 46 (2023041303085055000_24.39.8454.20) 1993; 70 2023041303085055000_24.39.8454.4 2023041303085055000_24.39.8454.3 2023041303085055000_24.39.8454.2 2023041303085055000_24.39.8454.1 2023041303085055000_24.39.8454.7 2023041303085055000_24.39.8454.6 2023041303085055000_24.39.8454.5 2023041303085055000_24.39.8454.29 2023041303085055000_24.39.8454.27 2023041303085055000_24.39.8454.26 2023041303085055000_24.39.8454.25 2023041303085055000_24.39.8454.13 2023041303085055000_24.39.8454.35 2023041303085055000_24.39.8454.12 2023041303085055000_24.39.8454.34 2023041303085055000_24.39.8454.11 2023041303085055000_24.39.8454.33 2023041303085055000_24.39.8454.10 (2023041303085055000_24.39.8454.31) 2002; 97 2023041303085055000_24.39.8454.32 2023041303085055000_24.39.8454.30 (2023041303085055000_24.39.8454.15) 1998; 100-101 (2023041303085055000_24.39.8454.8) 2002; 22 (2023041303085055000_24.39.8454.18) 1995; 9 (2023041303085055000_24.39.8454.19) 2001; 21 (2023041303085055000_24.39.8454.9) 1978; 57 2023041303085055000_24.39.8454.16 2023041303085055000_24.39.8454.14 2023041303085055000_24.39.8454.36 2023041303085055000_24.39.8454.24 (2023041303085055000_24.39.8454.17) 1943; 22 2023041303085055000_24.39.8454.23 2023041303085055000_24.39.8454.22 (2023041303085055000_24.39.8454.21) 2001; 94 |
References_xml | – volume: 94 start-page: 478 year: 2001 ident: 2023041303085055000_24.39.8454.21 publication-title: Anesthesiology doi: 10.1097/00000542-200103000-00020 – ident: 2023041303085055000_24.39.8454.30 doi: 10.1016/S0028-3908(01)00189-7 – ident: 2023041303085055000_24.39.8454.27 doi: 10.1016/S0166-2236(96)80023-3 – ident: 2023041303085055000_24.39.8454.3 doi: 10.1016/S0165-6147(99)01405-4 – ident: 2023041303085055000_24.39.8454.14 doi: 10.1093/bja/71.1.65 – ident: 2023041303085055000_24.39.8454.29 doi: 10.1038/38738 – ident: 2023041303085055000_24.39.8454.7 doi: 10.1073/pnas.0307231101 – ident: 2023041303085055000_24.39.8454.1 doi: 10.1124/mol.59.4.814 – ident: 2023041303085055000_24.39.8454.22 doi: 10.1097/00000539-199602000-00019 – ident: 2023041303085055000_24.39.8454.12 doi: 10.1097/00000542-199211000-00009 – ident: 2023041303085055000_24.39.8454.16 doi: 10.1002/cne.903590111 – ident: 2023041303085055000_24.39.8454.24 doi: 10.1124/mol.53.3.530 – ident: 2023041303085055000_24.39.8454.35 doi: 10.1152/jn.00856.2002 – volume: 21 start-page: 1 year: 2001 ident: 2023041303085055000_24.39.8454.19 publication-title: J Neurosci – ident: 2023041303085055000_24.39.8454.34 doi: 10.1111/j.1460-9568.1997.tb01630.x – ident: 2023041303085055000_24.39.8454.11 doi: 10.1097/00000542-200103000-00024 – ident: 2023041303085055000_24.39.8454.5 doi: 10.1002/cne.10102 – ident: 2023041303085055000_24.39.8454.13 doi: 10.1097/00000542-196511000-00010 – volume: 97 start-page: 447 year: 2002 ident: 2023041303085055000_24.39.8454.31 publication-title: Anesthesiology doi: 10.1097/00000542-200208000-00023 – ident: 2023041303085055000_24.39.8454.36 doi: 10.1124/mol.63.1.2 – volume: 46 start-page: 851 year: 1994 ident: 2023041303085055000_24.39.8454.28 publication-title: Mol Pharmacol – ident: 2023041303085055000_24.39.8454.32 doi: 10.1016/j.tins.2004.03.005 – ident: 2023041303085055000_24.39.8454.33 doi: 10.1097/00000542-200110000-00018 – volume: 57 start-page: 434 year: 1978 ident: 2023041303085055000_24.39.8454.9 publication-title: Anesth Analg – ident: 2023041303085055000_24.39.8454.2 doi: 10.1097/00000542-199901000-00018 – ident: 2023041303085055000_24.39.8454.6 doi: 10.1056/NEJMra021261 – volume: 70 start-page: 1339 year: 1993 ident: 2023041303085055000_24.39.8454.20 publication-title: J Neurophysiol doi: 10.1152/jn.1993.70.4.1339 – ident: 2023041303085055000_24.39.8454.26 doi: 10.1016/0278-5846(89)90135-8 – volume: 100-101 start-page: 1 year: 1998 ident: 2023041303085055000_24.39.8454.15 publication-title: Toxicol Lett doi: 10.1016/S0378-4274(98)00158-1 – volume: 22 start-page: 5572 year: 2002 ident: 2023041303085055000_24.39.8454.8 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-13-05572.2002 – ident: 2023041303085055000_24.39.8454.25 doi: 10.1016/0006-8993(86)91230-8 – volume: 22 start-page: 275 year: 1943 ident: 2023041303085055000_24.39.8454.17 publication-title: Anesth Analg – ident: 2023041303085055000_24.39.8454.10 doi: 10.1073/pnas.142288699 – ident: 2023041303085055000_24.39.8454.4 doi: 10.1152/jn.00223.2004 – volume: 9 start-page: 1454 year: 1995 ident: 2023041303085055000_24.39.8454.18 publication-title: FASEB J doi: 10.1096/fasebj.9.14.7589987 – ident: 2023041303085055000_24.39.8454.23 doi: 10.1016/S0301-0082(02)00013-8 |
SSID | ssj0007017 |
Score | 2.1827965 |
Snippet | Volatile (inhaled) anesthetics cause amnesia at concentrations well below those that cause loss of consciousness and immobility; however, the underlying... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8454 |
SubjectTerms | Anesthetics, Inhalation - pharmacology Animals Brief Communications Cells, Cultured Cerebral Cortex - cytology Dose-Response Relationship, Drug Evoked Potentials - drug effects Excitatory Postsynaptic Potentials - drug effects Hippocampus - cytology Hippocampus - drug effects Hippocampus - physiology Isoflurane - pharmacology Mice Mice, Knockout Neural Inhibition - drug effects Pyramidal Cells - drug effects Pyramidal Cells - physiology Receptors, GABA-A - drug effects Receptors, GABA-A - genetics Receptors, GABA-A - physiology Recombinant Proteins Synaptic Transmission - drug effects |
Title | Selective Enhancement of Tonic GABAergic Inhibition in Murine Hippocampal Neurons by Low Concentrations of the Volatile Anesthetic Isoflurane |
URI | http://www.jneurosci.org/cgi/content/abstract/24/39/8454 https://www.ncbi.nlm.nih.gov/pubmed/15456818 https://www.proquest.com/docview/17793339 https://www.proquest.com/docview/66932214 https://pubmed.ncbi.nlm.nih.gov/PMC6729903 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLbKcAUBw1JWHxCXKjNZnKQ5ljL7UA7Tot6sOInVSGlSdVE1_Ad-A3-V9-xshaIBLlHkZmu-L2-x30LIezuWURJKYcRu5BrMDS1DgFUMgIBvYMq-0N0bPo-88wm7nLrTTudHK2ppsxZH0be9eSX_gyqMAa6YJfsPyNYXhQHYB3xhCwjD9q8wvlFNbDD2J8lnCF-1sr9WfW3OBh8HyRJEWy_NZ6lIq7jGOc6wY6nhxQI0GciDrKfKWuYrNEazYoux6Dpqs46TQ_sUJBkMZLjgALpkhumPvXRVyGwDCm8npKhJOFOmbqtoZs2jYbgM01Wko_y-gpoCn71pAQ2ytwq_6Z1lTboaCCdjrCXlFXZJqvMoWrEnINrzcpK3ms5gGHtRznmUEthWSz6acMmesVJs69Trkp66IFIphPtM16X-TTu4qkrF5QiDJG-GF0e2iYvYamaNNfqwigEYfeGnk-trPj6Zju-R-zb4Idgi49PFVa3qfVO1dK6fr0xBh_sc77_LrvVTVaTe5938GqTbsnrGj8jDEkM60Nx7TDpJ_oQcDvJwXcxv6QeqAojVyswh-V7TkbboSAtJFR1pTUfa0BF2qaYjbdGRlnSk4pYCHekuHdUVZwmt6EgbOtKGjk_J5PRkPDw3ym4fRuQ6wdqIWej6AbxlK_RYDF6wHfU9J_QCaYW2ZIEIg37oOY507MBKfDOSticYi73Ed1xLxs4zcpAXefKCUBZYjhACRA2TzDWl8PoCdJcZB7GwXMm6xK1Q4FFZCh87smQcXWJAj9focUSPmwzbtcJ5x_V5C10M5s4zaAUyX83DLANMLb7dbm3GnYAjU7vkXQU-B9GO63XwkorNils-KE_HCf58hOeB-2VbcI3nmizNY6FnBMZ4l_g7NKoPwLLyu7_k6UyVl_d8NFGdl3fe9RV5gP9Rf8U4KfmaHKyXm-QNmOlr8VZ9Kj8B7RHuGA |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+enhancement+of+tonic+GABAergic+inhibition+in+murine+hippocampal+neurons+by+low+concentrations+of+the+volatile+anesthetic+isoflurane&rft.jtitle=The+Journal+of+neuroscience&rft.au=Caraiscos%2C+Valerie+B&rft.au=Newell%2C+J+Glen&rft.au=You-Ten%2C+Kong+E&rft.au=Elliott%2C+Erin+M&rft.date=2004-09-29&rft.issn=1529-2401&rft.eissn=1529-2401&rft.volume=24&rft.issue=39&rft.spage=8454&rft_id=info:doi/10.1523%2FJNEUROSCI.2063-04.2004&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |