BCAT2-mediated BCAA catabolism is critical for development of pancreatic ductal adenocarcinoma
Branched-chain amino acid (BCAA) metabolism is potentially linked with development of pancreatic ductal adenocarcinoma (PDAC) 1 - 4 . BCAA transaminase 2 (BCAT2) was essential for the collateral lethality conferred by deletion of malic enzymes in PDAC and the BCAA–BCAT metabolic pathway contributed...
Saved in:
Published in | Nature cell biology Vol. 22; no. 2; pp. 167 - 174 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.02.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Branched-chain amino acid (BCAA) metabolism is potentially linked with development of pancreatic ductal adenocarcinoma (PDAC)
1
-
4
. BCAA transaminase 2 (BCAT2) was essential for the collateral lethality conferred by deletion of malic enzymes in PDAC and the BCAA–BCAT metabolic pathway contributed to non-small-cell lung carcinomas (NSCLCs) other than PDAC
3
,
4
. However, the underlying mechanism remains undefined. Here we reveal that BCAT2 is elevated in mouse models and in human PDAC. Furthermore, pancreatic tissue-specific knockout of
Bcat2
impedes progression of pancreatic intraepithelial neoplasia (PanIN) in
LSL-Kras
G12D/+
;
Pdx1-Cre
(KC) mice. Functionally, BCAT2 enhances BCAA uptake to sustain BCAA catabolism and mitochondrial respiration. Notably, BCAA enhances growth of pancreatic ductal organoids from KC mice in a dose-dependent manner, whereas addition of branched-chain α-keto acid (BCKA) and nucleobases rescues growth of KC organoids that is suppressed by BCAT2 inhibitor. Moreover, KRAS stabilizes BCAT2, which is mediated by spleen tyrosine kinase (SYK) and E3 ligase tripartite-motif-containing protein 21 (TRIM21). In addition, BCAT2 inhibitor ameliorates PanIN formation in KC mice. Of note, a lower-BCAA diet also impedes PDAC development in mouse models of PDAC. Thus, BCAT2-mediated BCAA catabolism is critical for development of PDAC harbouring
KRAS
mutations. Targeting BCAT2 or lowering dietary BCAA may have translational significance.
Li et al. show that BCAA transaminase 2 enhances uptake and catabolism of branched-chain amino acids, thereby promoting development of pancreatic ductal adenocarcinoma harbouring KRAS mutations. |
---|---|
AbstractList | Branched-chain amino acid (BCAA) metabolism is potentially linked with development of pancreatic ductal adenocarcinoma (PDAC)
1
-
4
. BCAA transaminase 2 (BCAT2) was essential for the collateral lethality conferred by deletion of malic enzymes in PDAC and the BCAA–BCAT metabolic pathway contributed to non-small-cell lung carcinomas (NSCLCs) other than PDAC
3
,
4
. However, the underlying mechanism remains undefined. Here we reveal that BCAT2 is elevated in mouse models and in human PDAC. Furthermore, pancreatic tissue-specific knockout of
Bcat2
impedes progression of pancreatic intraepithelial neoplasia (PanIN) in
LSL-Kras
G12D/+
;
Pdx1-Cre
(KC) mice. Functionally, BCAT2 enhances BCAA uptake to sustain BCAA catabolism and mitochondrial respiration. Notably, BCAA enhances growth of pancreatic ductal organoids from KC mice in a dose-dependent manner, whereas addition of branched-chain α-keto acid (BCKA) and nucleobases rescues growth of KC organoids that is suppressed by BCAT2 inhibitor. Moreover, KRAS stabilizes BCAT2, which is mediated by spleen tyrosine kinase (SYK) and E3 ligase tripartite-motif-containing protein 21 (TRIM21). In addition, BCAT2 inhibitor ameliorates PanIN formation in KC mice. Of note, a lower-BCAA diet also impedes PDAC development in mouse models of PDAC. Thus, BCAT2-mediated BCAA catabolism is critical for development of PDAC harbouring
KRAS
mutations. Targeting BCAT2 or lowering dietary BCAA may have translational significance.
Li et al. show that BCAA transaminase 2 enhances uptake and catabolism of branched-chain amino acids, thereby promoting development of pancreatic ductal adenocarcinoma harbouring KRAS mutations. Branched-chain amino acid (BCAA) metabolism is potentially linked with development of pancreatic ductal adenocarcinoma (PDAC)1-4. BCAA transaminase 2 (BCAT2) was essential for the collateral lethality conferred by deletion of malic enzymes in PDAC and the BCAA–BCAT metabolic pathway contributed to non-small-cell lung carcinomas (NSCLCs) other than PDAC3,4. However, the underlying mechanism remains undefined. Here we reveal that BCAT2 is elevated in mouse models and in human PDAC. Furthermore, pancreatic tissue-specific knockout of Bcat2 impedes progression of pancreatic intraepithelial neoplasia (PanIN) in LSL-KrasG12D/+; Pdx1-Cre (KC) mice. Functionally, BCAT2 enhances BCAA uptake to sustain BCAA catabolism and mitochondrial respiration. Notably, BCAA enhances growth of pancreatic ductal organoids from KC mice in a dose-dependent manner, whereas addition of branched-chain α-keto acid (BCKA) and nucleobases rescues growth of KC organoids that is suppressed by BCAT2 inhibitor. Moreover, KRAS stabilizes BCAT2, which is mediated by spleen tyrosine kinase (SYK) and E3 ligase tripartite-motif-containing protein 21 (TRIM21). In addition, BCAT2 inhibitor ameliorates PanIN formation in KC mice. Of note, a lower-BCAA diet also impedes PDAC development in mouse models of PDAC. Thus, BCAT2-mediated BCAA catabolism is critical for development of PDAC harbouring KRAS mutations. Targeting BCAT2 or lowering dietary BCAA may have translational significance.Li et al. show that BCAA transaminase 2 enhances uptake and catabolism of branched-chain amino acids, thereby promoting development of pancreatic ductal adenocarcinoma harbouring KRAS mutations. Branched-chain amino acid (BCAA) metabolism is potentially linked with development of pancreatic ductal adenocarcinoma (PDAC)1-4. BCAA transaminase 2 (BCAT2) was essential for the collateral lethality conferred by deletion of malic enzymes in PDAC and the BCAA-BCAT metabolic pathway contributed to non-small-cell lung carcinomas (NSCLCs) other than PDAC3,4. However, the underlying mechanism remains undefined. Here we reveal that BCAT2 is elevated in mouse models and in human PDAC. Furthermore, pancreatic tissue-specific knockout of Bcat2 impedes progression of pancreatic intraepithelial neoplasia (PanIN) in LSL-KrasG12D/+; Pdx1-Cre (KC) mice. Functionally, BCAT2 enhances BCAA uptake to sustain BCAA catabolism and mitochondrial respiration. Notably, BCAA enhances growth of pancreatic ductal organoids from KC mice in a dose-dependent manner, whereas addition of branched-chain α-keto acid (BCKA) and nucleobases rescues growth of KC organoids that is suppressed by BCAT2 inhibitor. Moreover, KRAS stabilizes BCAT2, which is mediated by spleen tyrosine kinase (SYK) and E3 ligase tripartite-motif-containing protein 21 (TRIM21). In addition, BCAT2 inhibitor ameliorates PanIN formation in KC mice. Of note, a lower-BCAA diet also impedes PDAC development in mouse models of PDAC. Thus, BCAT2-mediated BCAA catabolism is critical for development of PDAC harbouring KRAS mutations. Targeting BCAT2 or lowering dietary BCAA may have translational significance.Branched-chain amino acid (BCAA) metabolism is potentially linked with development of pancreatic ductal adenocarcinoma (PDAC)1-4. BCAA transaminase 2 (BCAT2) was essential for the collateral lethality conferred by deletion of malic enzymes in PDAC and the BCAA-BCAT metabolic pathway contributed to non-small-cell lung carcinomas (NSCLCs) other than PDAC3,4. However, the underlying mechanism remains undefined. Here we reveal that BCAT2 is elevated in mouse models and in human PDAC. Furthermore, pancreatic tissue-specific knockout of Bcat2 impedes progression of pancreatic intraepithelial neoplasia (PanIN) in LSL-KrasG12D/+; Pdx1-Cre (KC) mice. Functionally, BCAT2 enhances BCAA uptake to sustain BCAA catabolism and mitochondrial respiration. Notably, BCAA enhances growth of pancreatic ductal organoids from KC mice in a dose-dependent manner, whereas addition of branched-chain α-keto acid (BCKA) and nucleobases rescues growth of KC organoids that is suppressed by BCAT2 inhibitor. Moreover, KRAS stabilizes BCAT2, which is mediated by spleen tyrosine kinase (SYK) and E3 ligase tripartite-motif-containing protein 21 (TRIM21). In addition, BCAT2 inhibitor ameliorates PanIN formation in KC mice. Of note, a lower-BCAA diet also impedes PDAC development in mouse models of PDAC. Thus, BCAT2-mediated BCAA catabolism is critical for development of PDAC harbouring KRAS mutations. Targeting BCAT2 or lowering dietary BCAA may have translational significance. Branched-chain amino acid (BCAA) metabolism is potentially linked with development of pancreatic ductal adenocarcinoma (PDAC).sup.1-4. BCAA transaminase 2 (BCAT2) was essential for the collateral lethality conferred by deletion of malic enzymes in PDAC and the BCAA-BCAT metabolic pathway contributed to non-small-cell lung carcinomas (NSCLCs) other than PDAC.sup.3,4. However, the underlying mechanism remains undefined. Here we reveal that BCAT2 is elevated in mouse models and in human PDAC. Furthermore, pancreatic tissue-specific knockout of Bcat2 impedes progression of pancreatic intraepithelial neoplasia (PanIN) in LSL-Kras.sup.G12D/+; Pdx1-Cre (KC) mice. Functionally, BCAT2 enhances BCAA uptake to sustain BCAA catabolism and mitochondrial respiration. Notably, BCAA enhances growth of pancreatic ductal organoids from KC mice in a dose-dependent manner, whereas addition of branched-chain [alpha]-keto acid (BCKA) and nucleobases rescues growth of KC organoids that is suppressed by BCAT2 inhibitor. Moreover, KRAS stabilizes BCAT2, which is mediated by spleen tyrosine kinase (SYK) and E3 ligase tripartite-motif-containing protein 21 (TRIM21). In addition, BCAT2 inhibitor ameliorates PanIN formation in KC mice. Of note, a lower-BCAA diet also impedes PDAC development in mouse models of PDAC. Thus, BCAT2-mediated BCAA catabolism is critical for development of PDAC harbouring KRAS mutations. Targeting BCAT2 or lowering dietary BCAA may have translational significance. Branched-chain amino acid (BCAA) metabolism is potentially linked with development of pancreatic ductal adenocarcinoma (PDAC).sup.1-4. BCAA transaminase 2 (BCAT2) was essential for the collateral lethality conferred by deletion of malic enzymes in PDAC and the BCAA-BCAT metabolic pathway contributed to non-small-cell lung carcinomas (NSCLCs) other than PDAC.sup.3,4. However, the underlying mechanism remains undefined. Here we reveal that BCAT2 is elevated in mouse models and in human PDAC. Furthermore, pancreatic tissue-specific knockout of Bcat2 impedes progression of pancreatic intraepithelial neoplasia (PanIN) in LSL-Kras.sup.G12D/+; Pdx1-Cre (KC) mice. Functionally, BCAT2 enhances BCAA uptake to sustain BCAA catabolism and mitochondrial respiration. Notably, BCAA enhances growth of pancreatic ductal organoids from KC mice in a dose-dependent manner, whereas addition of branched-chain [alpha]-keto acid (BCKA) and nucleobases rescues growth of KC organoids that is suppressed by BCAT2 inhibitor. Moreover, KRAS stabilizes BCAT2, which is mediated by spleen tyrosine kinase (SYK) and E3 ligase tripartite-motif-containing protein 21 (TRIM21). In addition, BCAT2 inhibitor ameliorates PanIN formation in KC mice. Of note, a lower-BCAA diet also impedes PDAC development in mouse models of PDAC. Thus, BCAT2-mediated BCAA catabolism is critical for development of PDAC harbouring KRAS mutations. Targeting BCAT2 or lowering dietary BCAA may have translational significance. Li et al. show that BCAA transaminase 2 enhances uptake and catabolism of branched-chain amino acids, thereby promoting development of pancreatic ductal adenocarcinoma harbouring KRAS mutations. Branched-chain amino acid (BCAA) metabolism is potentially linked with development of pancreatic ductal adenocarcinoma (PDAC) . BCAA transaminase 2 (BCAT2) was essential for the collateral lethality conferred by deletion of malic enzymes in PDAC and the BCAA-BCAT metabolic pathway contributed to non-small-cell lung carcinomas (NSCLCs) other than PDAC . However, the underlying mechanism remains undefined. Here we reveal that BCAT2 is elevated in mouse models and in human PDAC. Furthermore, pancreatic tissue-specific knockout of Bcat2 impedes progression of pancreatic intraepithelial neoplasia (PanIN) in LSL-Kras ; Pdx1-Cre (KC) mice. Functionally, BCAT2 enhances BCAA uptake to sustain BCAA catabolism and mitochondrial respiration. Notably, BCAA enhances growth of pancreatic ductal organoids from KC mice in a dose-dependent manner, whereas addition of branched-chain α-keto acid (BCKA) and nucleobases rescues growth of KC organoids that is suppressed by BCAT2 inhibitor. Moreover, KRAS stabilizes BCAT2, which is mediated by spleen tyrosine kinase (SYK) and E3 ligase tripartite-motif-containing protein 21 (TRIM21). In addition, BCAT2 inhibitor ameliorates PanIN formation in KC mice. Of note, a lower-BCAA diet also impedes PDAC development in mouse models of PDAC. Thus, BCAT2-mediated BCAA catabolism is critical for development of PDAC harbouring KRAS mutations. Targeting BCAT2 or lowering dietary BCAA may have translational significance. |
Audience | Academic |
Author | Wang, Jian Lu, Hao-Jie Lei, Ming-Zhu Zhang, Zhi-Gang Zou, Shao-Wu Wang, Di Yin, Miao Zhang, Lei Hu, Li-Peng Wang, Yi-Ping Wen, Wen-Yu Liu, Ying Zhang, Ye Lei, Qun-Ying Li, Jin-Tao Chen, Zheng-Jun Su, Dan |
Author_xml | – sequence: 1 givenname: Jin-Tao surname: Li fullname: Li, Jin-Tao organization: Fudan University Shanghai Cancer Center and Cancer Metabolism Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Department of Oncology, Shanghai Medical College, Fudan University – sequence: 2 givenname: Miao surname: Yin fullname: Yin, Miao organization: Fudan University Shanghai Cancer Center and Cancer Metabolism Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Department of Oncology, Shanghai Medical College, Fudan University – sequence: 3 givenname: Di surname: Wang fullname: Wang, Di organization: Fudan University Shanghai Cancer Center and Cancer Metabolism Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Department of Oncology, Shanghai Medical College, Fudan University – sequence: 4 givenname: Jian surname: Wang fullname: Wang, Jian organization: Fudan University Shanghai Cancer Center and Cancer Metabolism Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Department of Oncology, Shanghai Medical College, Fudan University – sequence: 5 givenname: Ming-Zhu surname: Lei fullname: Lei, Ming-Zhu organization: Fudan University Shanghai Cancer Center and Cancer Metabolism Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Department of Oncology, Shanghai Medical College, Fudan University – sequence: 6 givenname: Ye surname: Zhang fullname: Zhang, Ye organization: Key Laboratory of Cancer Proteomics of National Health Commission, XiangYa Hospital, Central South University – sequence: 7 givenname: Ying surname: Liu fullname: Liu, Ying organization: Department of Pathology, School of Basic Medical Sciences, Fudan University – sequence: 8 givenname: Lei surname: Zhang fullname: Zhang, Lei organization: Institutes of Biomedical Sciences, Fudan University – sequence: 9 givenname: Shao-Wu surname: Zou fullname: Zou, Shao-Wu organization: Department of Hepatopancreatobiliary Surgery, Shanghai Tenth People’s Hospital, Tong Ji University – sequence: 10 givenname: Li-Peng surname: Hu fullname: Hu, Li-Peng organization: State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University – sequence: 11 givenname: Zhi-Gang orcidid: 0000-0001-8965-223X surname: Zhang fullname: Zhang, Zhi-Gang organization: State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University – sequence: 12 givenname: Yi-Ping orcidid: 0000-0002-3130-0386 surname: Wang fullname: Wang, Yi-Ping organization: Fudan University Shanghai Cancer Center and Cancer Metabolism Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Department of Oncology, Shanghai Medical College, Fudan University – sequence: 13 givenname: Wen-Yu orcidid: 0000-0002-0798-4730 surname: Wen fullname: Wen, Wen-Yu organization: Institutes of Biomedical Sciences, Fudan University – sequence: 14 givenname: Hao-Jie surname: Lu fullname: Lu, Hao-Jie organization: Institutes of Biomedical Sciences, Fudan University – sequence: 15 givenname: Zheng-Jun surname: Chen fullname: Chen, Zheng-Jun organization: State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences – sequence: 16 givenname: Dan surname: Su fullname: Su, Dan organization: Cancer Research Institute, Zhejiang Cancer Hospital and Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province – sequence: 17 givenname: Qun-Ying orcidid: 0000-0002-8547-8518 surname: Lei fullname: Lei, Qun-Ying email: qlei@fudan.edu.cn organization: Fudan University Shanghai Cancer Center and Cancer Metabolism Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Department of Oncology, Shanghai Medical College, Fudan University, State Key Laboratory of Medical Neurobiology, Fudan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32029896$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhS1URB_wA9igSGxgkeL4kcTLYdRCpUpIULZYd-zrkaskHmwHwb_HYVpVUwHywq_vHF3dc0_J0RQmJORlQ88byvt3STRStjVtVE2FlHX7hJw0omtr0XbqaDm3su64YsfkNKVbShshaPeMHHNGmepVe0K-vV-vblg9ovWQ0VbluqoMZNiEwaex8qky0WdvYKhciJXFHziE3YhTroKrdjCZiFD-KzubXCCwOAUD0fgpjPCcPHUwJHxxt5-Rr5cXN-uP9fWnD1fr1XVtJFe5thTBCgat67kzYBgo60BJZWVvBVcgeOMkNR1FuUGFxvQ9cGcNkwacRX5G3ux9dzF8nzFlPfpkcBhgwjAnzbhkLZeyYwV9_Qi9DXOcSnV_KCp4x_sHagsDaj-5kCOYxVSv2oYL2pe-Fur8L1RZFkdvSljOl_cDwdsDQWEy_sxbmFPSV18-H7Kv7gqdNyUfvYt-hPhL34dXgG4PmBhSiui08blkUTwj-EE3VC9jovdjosuY6GVM9KJsHinvzf-nYXtNKuy0xfjQt3-LfgPPY8yO |
CitedBy_id | crossref_primary_10_1038_s42255_022_00680_z crossref_primary_10_1002_bies_202000083 crossref_primary_10_1016_j_canlet_2024_216649 crossref_primary_10_1016_j_celrep_2022_111691 crossref_primary_10_1016_j_cmet_2023_10_002 crossref_primary_10_1016_j_chembiol_2023_05_009 crossref_primary_10_1042_BCJ20200686 crossref_primary_10_1002_cam4_4683 crossref_primary_10_1038_s12276_022_00775_3 crossref_primary_10_3389_fmolb_2023_1304639 crossref_primary_10_3389_fonc_2020_572722 crossref_primary_10_1111_asj_13769 crossref_primary_10_3390_cancers13133230 crossref_primary_10_1016_j_mce_2023_112143 crossref_primary_10_1038_s41392_023_01569_3 crossref_primary_10_1038_s41467_023_36523_y crossref_primary_10_1038_s44318_024_00201_6 crossref_primary_10_3390_ijms24044027 crossref_primary_10_1111_gtc_13027 crossref_primary_10_1128_aem_00557_22 crossref_primary_10_3389_fcvm_2022_965899 crossref_primary_10_1016_j_bbagen_2022_130301 crossref_primary_10_1016_j_molcel_2022_10_027 crossref_primary_10_1111_febs_16803 crossref_primary_10_1186_s12885_024_12193_x crossref_primary_10_1038_s41392_022_01017_8 crossref_primary_10_1111_cpr_13694 crossref_primary_10_3389_fonc_2021_759586 crossref_primary_10_1016_j_cellsig_2025_111614 crossref_primary_10_1186_s12943_024_02218_1 crossref_primary_10_1007_s12672_023_00634_1 crossref_primary_10_3389_fonc_2022_961637 crossref_primary_10_1007_s00018_023_04965_8 crossref_primary_10_3389_fcell_2023_1147676 crossref_primary_10_1016_j_gpb_2021_08_016 crossref_primary_10_1016_j_acthis_2022_151919 crossref_primary_10_3390_molecules30010056 crossref_primary_10_1038_s41523_022_00422_0 crossref_primary_10_1038_s41419_024_06942_w crossref_primary_10_1111_cas_14777 crossref_primary_10_3390_pathogens13100830 crossref_primary_10_1016_j_canlet_2024_217287 crossref_primary_10_3389_fonc_2022_887257 crossref_primary_10_3389_fonc_2024_1331215 crossref_primary_10_1038_s41392_022_01104_w crossref_primary_10_1016_j_plantsci_2021_111130 crossref_primary_10_1038_s41568_022_00543_5 crossref_primary_10_3390_cells9081904 crossref_primary_10_1016_j_omtn_2023_03_023 crossref_primary_10_1093_jmcb_mjac020 crossref_primary_10_18632_aging_202892 crossref_primary_10_46308_kmj_2024_00052 crossref_primary_10_1093_stmcls_sxad017 crossref_primary_10_3389_fmolb_2023_1279157 crossref_primary_10_1080_17474124_2023_2217354 crossref_primary_10_1016_j_metabol_2024_156016 crossref_primary_10_1007_s10555_021_10016_0 crossref_primary_10_1021_acs_analchem_3c05741 crossref_primary_10_3390_cancers14030585 crossref_primary_10_3389_fimmu_2022_968755 crossref_primary_10_1007_s00432_022_04212_w crossref_primary_10_1016_j_bbrc_2024_151154 crossref_primary_10_1186_s12943_022_01543_7 crossref_primary_10_1158_0008_5472_CAN_21_3868 crossref_primary_10_3389_fcell_2022_816249 crossref_primary_10_1038_s41420_021_00602_0 crossref_primary_10_3389_fonc_2022_1005566 crossref_primary_10_1002_1878_0261_13759 crossref_primary_10_1186_s13045_023_01453_1 crossref_primary_10_3390_cancers16234094 crossref_primary_10_1186_s40170_024_00335_5 crossref_primary_10_1002_jcp_31439 crossref_primary_10_1038_s41416_022_02095_9 crossref_primary_10_1097_MPA_0000000000002281 crossref_primary_10_3389_fonc_2021_777273 crossref_primary_10_1016_j_cytogfr_2023_06_006 crossref_primary_10_1016_j_biopha_2022_113923 crossref_primary_10_1038_s41392_023_01376_w crossref_primary_10_3390_cancers14215268 crossref_primary_10_1016_j_jare_2024_10_021 crossref_primary_10_1016_j_celrep_2023_112186 crossref_primary_10_1016_j_bbcan_2023_188893 crossref_primary_10_1093_nsr_nwab212 crossref_primary_10_1007_s11010_024_05163_1 crossref_primary_10_1172_jci_insight_180114 crossref_primary_10_1016_j_molmed_2024_03_008 crossref_primary_10_1186_s13045_022_01338_9 crossref_primary_10_1038_s41556_022_01002_x crossref_primary_10_1038_s12276_025_01415_2 crossref_primary_10_1016_j_tma_2021_05_001 crossref_primary_10_1038_s41598_021_88757_9 crossref_primary_10_1172_JCI169399 crossref_primary_10_1038_s42255_020_0226_5 crossref_primary_10_1155_2022_3691635 crossref_primary_10_3389_fimmu_2022_966158 crossref_primary_10_3390_metabo12100918 crossref_primary_10_1016_j_canlet_2024_217006 crossref_primary_10_1016_j_clnu_2023_10_019 crossref_primary_10_1038_s41419_024_07227_y crossref_primary_10_1038_s43018_024_00820_2 crossref_primary_10_1016_j_semcancer_2025_02_004 crossref_primary_10_3389_fonc_2022_988290 crossref_primary_10_1016_j_freeradbiomed_2021_12_009 crossref_primary_10_1507_endocrj_EJ23_0205 crossref_primary_10_3389_fphys_2021_702826 crossref_primary_10_1016_j_biopha_2022_113390 crossref_primary_10_1038_s41556_020_0467_2 crossref_primary_10_1007_s00253_021_11612_4 crossref_primary_10_1126_sciadv_adj8650 crossref_primary_10_1016_j_bbadis_2023_166941 crossref_primary_10_1038_s42255_020_0239_0 crossref_primary_10_1074_jbc_REV119_007624 crossref_primary_10_1038_s42255_023_00818_7 crossref_primary_10_1038_s41392_024_01848_7 crossref_primary_10_1016_j_mce_2024_112164 crossref_primary_10_1038_s41568_021_00375_9 crossref_primary_10_1038_s41598_024_56737_4 crossref_primary_10_3390_metabo11020112 crossref_primary_10_1080_01635581_2023_2292820 crossref_primary_10_1002_advs_202207155 crossref_primary_10_1021_acs_jproteome_1c00607 crossref_primary_10_1038_s41388_020_01480_z crossref_primary_10_1158_1541_7786_MCR_24_0434 crossref_primary_10_1007_s00795_024_00404_0 crossref_primary_10_1016_j_drudis_2024_104220 crossref_primary_10_3389_fonc_2023_1220638 crossref_primary_10_1038_s41598_024_74441_1 crossref_primary_10_1038_s41556_023_01330_6 crossref_primary_10_1038_s41388_025_03320_4 crossref_primary_10_2478_jtim_2022_0022 crossref_primary_10_3389_fphar_2022_1108776 crossref_primary_10_3389_fonc_2022_808290 crossref_primary_10_3390_cancers12092606 crossref_primary_10_3390_cells10051056 crossref_primary_10_1002_mc_23840 crossref_primary_10_1002_med_21938 crossref_primary_10_1080_08941939_2020_1863527 crossref_primary_10_3389_fimmu_2022_1018334 |
Cites_doi | 10.1038/nature21052 10.1146/annurev-physiol-020518-114455 10.1126/science.aaf5171 10.1016/j.ccr.2012.10.025 10.1038/s42255-019-0059-2 10.1016/j.jid.2018.05.016 10.1038/nm.3686 10.1126/science.aax3769 10.1093/oxfordjournals.jbchem.a128277 10.1021/acsmedchemlett.5b00389 10.1042/BST20160325 10.1172/JCI57131 10.1158/2159-8290.CD-18-0567 10.1093/nar/gku1267 10.1016/j.semradonc.2005.04.001 10.1080/15548627.2016.1268302 10.1159/000446879 10.1038/s41573-019-0047-y 10.1093/jn/134.6.1583S 10.1371/journal.pone.0181551 10.1146/annurev.biochem.67.1.425 10.1016/j.ccell.2015.04.001 10.1093/nar/gkr1122 10.1038/ncomms11960 10.1038/ncomms7973 10.1016/j.ccell.2016.12.006 10.1016/j.cell.2014.12.021 10.1172/JCI61380 10.2174/1574888X13666180723104340 10.1016/j.molcel.2016.09.028 10.1021/pr300790h 10.1128/MCB.01630-05 10.1016/S0021-9258(18)99734-6 10.1053/j.gastro.2018.07.010 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 COPYRIGHT 2020 Nature Publishing Group 2020© The Author(s), under exclusive licence to Springer Nature Limited 2020 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: COPYRIGHT 2020 Nature Publishing Group – notice: 2020© The Author(s), under exclusive licence to Springer Nature Limited 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 |
DOI | 10.1038/s41556-019-0455-6 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale in Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1476-4679 |
EndPage | 174 |
ExternalDocumentID | A613408739 32029896 10_1038_s41556_019_0455_6 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States China |
GeographicLocations_xml | – name: China – name: United States |
GrantInformation_xml | – fundername: Shanghai Municipal Education Commission | E-Institutes of Shanghai Municipal Education Commission grantid: N173606 funderid: https://doi.org/10.13039/501100004894 – fundername: Ministry of Science and Technology of the People’s Republic of China (Chinese Ministry of Science and Technology) grantid: 2015CB910401 funderid: https://doi.org/10.13039/501100002855 – fundername: National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund) grantid: 81872240; 81790253; 81430057 funderid: https://doi.org/10.13039/501100011002 |
GroupedDBID | --- .55 .GJ 0R~ 123 29M 36B 39C 3V. 4.4 53G 5BI 5RE 70F 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABCQX ABDBF ABEFU ABJNI ABLJU ABNNU ABUWG ACBWK ACGFS ACIWK ACNCT ACPRK ACRPL ACUHS ADBBV ADNMO ADQMX AENEX AEUYN AFBBN AFFNX AFKRA AFRAH AFSHS AFWHJ AGAYW AGGDT AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D0L DB5 DU5 EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR ISR ITC J5H L-9 L7B LK8 M0L M1P M7P N9A NNMJJ O9- ODYON P2P PQQKQ PROAC PSQYO Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT SHXYY SIXXV SKT SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP X7M Y6R ZGI ~02 ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM AEIIB PMFND 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 |
ID | FETCH-LOGICAL-c539t-d0ead42a6f83fcac2a9dfa959d58d439a431f50c70e5be9ecc88a3fdc25cafde3 |
IEDL.DBID | 7X7 |
ISSN | 1465-7392 1476-4679 |
IngestDate | Mon Jul 21 10:46:10 EDT 2025 Tue Aug 12 07:26:13 EDT 2025 Tue Jun 17 20:52:38 EDT 2025 Tue Jun 10 20:30:38 EDT 2025 Fri Jun 27 04:47:27 EDT 2025 Wed Feb 19 02:29:44 EST 2025 Thu Apr 24 23:44:05 EDT 2025 Tue Jul 01 00:31:15 EDT 2025 Fri Feb 21 02:40:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c539t-d0ead42a6f83fcac2a9dfa959d58d439a431f50c70e5be9ecc88a3fdc25cafde3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8965-223X 0000-0002-0798-4730 0000-0002-3130-0386 0000-0002-8547-8518 |
PMID | 32029896 |
PQID | 2352043738 |
PQPubID | 45779 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2352635572 proquest_journals_2352043738 gale_infotracmisc_A613408739 gale_infotracacademiconefile_A613408739 gale_incontextgauss_ISR_A613408739 pubmed_primary_32029896 crossref_citationtrail_10_1038_s41556_019_0455_6 crossref_primary_10_1038_s41556_019_0455_6 springer_journals_10_1038_s41556_019_0455_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature cell biology |
PublicationTitleAbbrev | Nat Cell Biol |
PublicationTitleAlternate | Nat Cell Biol |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Sabile (CR20) 2006; 26 Adsay, Basturk, Cheng, Andea (CR9) 2005; 15 Solon-Biet (CR26) 2019; 1 Mayers (CR4) 2016; 353 Ma, McAdoo, Tam (CR24) 2016; 133 Zhang (CR31) 2017; 13 Tang, Zhu (CR25) 2019; 14 Reichert, Rustgi (CR10) 2011; 121 Deng (CR12) 2016; 7 Wallenhammar (CR19) 2017; 12 Ichihara, Koyama (CR5) 1966; 59 Li (CR34) 2015; 27 Yang (CR17) 2018; 138 Neinast, Murashige, Arany (CR8) 2019; 81 Carrer (CR13) 2019; 9 Gao (CR27) 2016; 7 Hornbeck (CR22) 2012; 40 Schapira, Calabrese, Bullock, Crews (CR16) 2019; 18 Esposito, Koliopoulos, Rittinger (CR18) 2017; 45 Wang (CR32) 2016; 64 Mayers (CR2) 2014; 20 CR29 Dey (CR3) 2017; 542 Chen, Kristensen, Foster, Naus (CR21) 2012; 11 Yang (CR33) 2015; 6 Hornbeck (CR23) 2015; 43 Halbrook, Lyssiotis (CR1) 2017; 31 Hershko, Ciechanover (CR14) 1998; 67 Hong (CR30) 2012; 122 Shimomura, Murakami, Nakai, Nagasaki, Harris (CR7) 2004; 134 Kopp (CR11) 2012; 22 Boj (CR28) 2015; 160 Pohl, Dikic (CR15) 2019; 366 Taylor, Jenkins (CR6) 1966; 241 TK Ma (455_CR24) 2016; 133 X Gao (455_CR27) 2016; 7 PV Hornbeck (455_CR23) 2015; 43 D Esposito (455_CR18) 2017; 45 H Deng (455_CR12) 2016; 7 C Tang (455_CR25) 2019; 14 Y Shimomura (455_CR7) 2004; 134 F Li (455_CR34) 2015; 27 M Schapira (455_CR16) 2019; 18 JR Mayers (455_CR2) 2014; 20 J Hong (455_CR30) 2012; 122 M Reichert (455_CR10) 2011; 121 P Dey (455_CR3) 2017; 542 A Carrer (455_CR13) 2019; 9 RT Taylor (455_CR6) 1966; 241 NV Adsay (455_CR9) 2005; 15 HB Yang (455_CR33) 2015; 6 M Neinast (455_CR8) 2019; 81 YP Wang (455_CR32) 2016; 64 JL Kopp (455_CR11) 2012; 22 A Ichihara (455_CR5) 1966; 59 CJ Halbrook (455_CR1) 2017; 31 Y Zhang (455_CR31) 2017; 13 JR Mayers (455_CR4) 2016; 353 A Sabile (455_CR20) 2006; 26 A Hershko (455_CR14) 1998; 67 L Yang (455_CR17) 2018; 138 455_CR29 A Wallenhammar (455_CR19) 2017; 12 SM Solon-Biet (455_CR26) 2019; 1 C Pohl (455_CR15) 2019; 366 PV Hornbeck (455_CR22) 2012; 40 VC Chen (455_CR21) 2012; 11 SF Boj (455_CR28) 2015; 160 32029895 - Nat Cell Biol. 2020 Feb;22(2):139-140 |
References_xml | – volume: 542 start-page: 119 year: 2017 end-page: 123 ident: CR3 article-title: Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer publication-title: Nature doi: 10.1038/nature21052 – volume: 81 start-page: 139 year: 2019 end-page: 164 ident: CR8 article-title: Branched chain amino acids publication-title: Annu Rev Physiol doi: 10.1146/annurev-physiol-020518-114455 – volume: 353 start-page: 1161 year: 2016 end-page: 1165 ident: CR4 article-title: Tissue of origin dictates branched-chain amino acid metabolism in mutant -driven cancers publication-title: Science doi: 10.1126/science.aaf5171 – volume: 22 start-page: 737 year: 2012 end-page: 750 ident: CR11 article-title: Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.10.025 – volume: 1 start-page: 532 year: 2019 end-page: 545 ident: CR26 article-title: Branched chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control publication-title: Nat. Metab doi: 10.1038/s42255-019-0059-2 – volume: 138 start-page: 2568 year: 2018 end-page: 2577 ident: CR17 article-title: E3 ligase Trim21 ubiquitylates and stabilizes keratin 17 to Induce STAT3 activation in psoriasis publication-title: J. Invest. Dermatol. doi: 10.1016/j.jid.2018.05.016 – ident: CR29 – volume: 20 start-page: 1193 year: 2014 end-page: 1198 ident: CR2 article-title: Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development publication-title: Nat. Med. doi: 10.1038/nm.3686 – volume: 366 start-page: 818 year: 2019 end-page: 822 ident: CR15 article-title: Cellular quality control by the ubiquitin-proteasome system and autophagy publication-title: Science doi: 10.1126/science.aax3769 – volume: 59 start-page: 160 year: 1966 end-page: 169 ident: CR5 article-title: Transaminase of branched chain amino acids. I. Branched chain amino acids-α-ketoglutarate transaminase publication-title: J. Biochem. doi: 10.1093/oxfordjournals.jbchem.a128277 – volume: 7 start-page: 379 year: 2016 end-page: 384 ident: CR12 article-title: Discovery and optimization of potent, selective, and in vivo efficacious 2-aryl benzimidazole BCATm inhibitors publication-title: ACS Med. Chem. Lett. doi: 10.1021/acsmedchemlett.5b00389 – volume: 45 start-page: 183 year: 2017 end-page: 191 ident: CR18 article-title: Structural determinants of TRIM protein function publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20160325 – volume: 121 start-page: 4572 year: 2011 end-page: 4578 ident: CR10 article-title: Pancreatic ductal cells in development, regeneration, and neoplasia publication-title: J. Clin. Invest. doi: 10.1172/JCI57131 – volume: 9 start-page: 416 year: 2019 end-page: 435 ident: CR13 article-title: Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-18-0567 – volume: 43 start-page: D512 year: 2015 end-page: D520 ident: CR23 article-title: PhosphoSitePlus, 2014: mutations, PTMs and recalibrations publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1267 – volume: 15 start-page: 254 year: 2005 end-page: 264 ident: CR9 article-title: Ductal neoplasia of the pancreas: nosologic, clinicopathologic, and biologic aspects publication-title: Semin. Radiat. Oncol. doi: 10.1016/j.semradonc.2005.04.001 – volume: 13 start-page: 538 year: 2017 end-page: 553 ident: CR31 article-title: Acetylation targets HSD17B4 for degradation via the CMA pathway in response to estrone publication-title: Autophagy doi: 10.1080/15548627.2016.1268302 – volume: 133 start-page: 261 year: 2016 end-page: 269 ident: CR24 article-title: Spleen tyrosine kinase: a crucial player and potential therapeutic target in renal disease publication-title: Nephron doi: 10.1159/000446879 – volume: 18 start-page: 949 year: 2019 end-page: 963 ident: CR16 article-title: Targeted protein degradation: expanding the toolbox publication-title: Nat. Rev. Drug Discov doi: 10.1038/s41573-019-0047-y – volume: 134 start-page: 1583S year: 2004 end-page: 1587S ident: CR7 article-title: Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise publication-title: J. Nutr. doi: 10.1093/jn/134.6.1583S – volume: 12 start-page: e0181551 year: 2017 ident: CR19 article-title: Solution NMR structure of the TRIM21 B-box2 and identification of residues involved in its interaction with the RING domain publication-title: PLoS ONE doi: 10.1371/journal.pone.0181551 – volume: 67 start-page: 425 year: 1998 end-page: 479 ident: CR14 article-title: The ubiquitin system publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.67.1.425 – volume: 27 start-page: 698 year: 2015 end-page: 711 ident: CR34 article-title: LKB1 inactivation elicits a redox imbalance to modulate non-small cell lung cancer plasticity and therapeutic response publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.04.001 – volume: 40 start-page: D261 year: 2012 end-page: D270 ident: CR22 article-title: PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr1122 – volume: 7 year: 2016 ident: CR27 article-title: Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia publication-title: Nat. Commun. doi: 10.1038/ncomms11960 – volume: 6 year: 2015 ident: CR33 article-title: Acetylation of MAT IIα represses tumour cell growth and is decreased in human hepatocellular cancer publication-title: Nat. Commun. doi: 10.1038/ncomms7973 – volume: 31 start-page: 5 year: 2017 end-page: 19 ident: CR1 article-title: Employing metabolism to improve the diagnosis and treatment of pancreatic cancer publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.12.006 – volume: 160 start-page: 324 year: 2015 end-page: 338 ident: CR28 article-title: Organoid models of human and mouse ductal pancreatic cancer publication-title: Cell doi: 10.1016/j.cell.2014.12.021 – volume: 122 start-page: 2165 year: 2012 end-page: 2175 ident: CR30 article-title: CHK1 targets spleen tyrosine kinase (L) for proteolysis in hepatocellular carcinoma publication-title: J. Clin. Invest. doi: 10.1172/JCI61380 – volume: 14 start-page: 219 year: 2019 end-page: 225 ident: CR25 article-title: Classic and novel signaling pathways involved in cancer: Targeting the NF-κB and Syk signaling pathways publication-title: Curr. Stem. Cell Res. Ther. doi: 10.2174/1574888X13666180723104340 – volume: 241 start-page: 4396 year: 1966 end-page: 4405 ident: CR6 article-title: Leucine aminotransferase. II. Purification and characterization. publication-title: J. Biol. Chem – volume: 64 start-page: 673 year: 2016 end-page: 687 ident: CR32 article-title: Arginine Methylation of MDH1 by CARM1 inhibits glutamine metabolism and suppresses pancreatic cancer publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.09.028 – volume: 11 start-page: 6134 year: 2012 end-page: 6146 ident: CR21 article-title: Association of connexin43 with E3 ubiquitin ligase TRIM21 reveals a mechanism for gap junction phosphodegron control publication-title: J. Proteome Res. doi: 10.1021/pr300790h – volume: 26 start-page: 5994 year: 2006 end-page: 6004 ident: CR20 article-title: Regulation of p27 degradation and S-phase progression by Ro52 RING finger protein publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01630-05 – volume: 11 start-page: 6134 year: 2012 ident: 455_CR21 publication-title: J. Proteome Res. doi: 10.1021/pr300790h – volume: 13 start-page: 538 year: 2017 ident: 455_CR31 publication-title: Autophagy doi: 10.1080/15548627.2016.1268302 – volume: 542 start-page: 119 year: 2017 ident: 455_CR3 publication-title: Nature doi: 10.1038/nature21052 – volume: 67 start-page: 425 year: 1998 ident: 455_CR14 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.67.1.425 – volume: 22 start-page: 737 year: 2012 ident: 455_CR11 publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.10.025 – volume: 18 start-page: 949 year: 2019 ident: 455_CR16 publication-title: Nat. Rev. Drug Discov doi: 10.1038/s41573-019-0047-y – volume: 121 start-page: 4572 year: 2011 ident: 455_CR10 publication-title: J. Clin. Invest. doi: 10.1172/JCI57131 – volume: 26 start-page: 5994 year: 2006 ident: 455_CR20 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01630-05 – volume: 43 start-page: D512 year: 2015 ident: 455_CR23 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1267 – volume: 64 start-page: 673 year: 2016 ident: 455_CR32 publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.09.028 – volume: 31 start-page: 5 year: 2017 ident: 455_CR1 publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.12.006 – volume: 160 start-page: 324 year: 2015 ident: 455_CR28 publication-title: Cell doi: 10.1016/j.cell.2014.12.021 – volume: 81 start-page: 139 year: 2019 ident: 455_CR8 publication-title: Annu Rev Physiol doi: 10.1146/annurev-physiol-020518-114455 – volume: 241 start-page: 4396 year: 1966 ident: 455_CR6 publication-title: J. Biol. Chem doi: 10.1016/S0021-9258(18)99734-6 – volume: 122 start-page: 2165 year: 2012 ident: 455_CR30 publication-title: J. Clin. Invest. doi: 10.1172/JCI61380 – volume: 12 start-page: e0181551 year: 2017 ident: 455_CR19 publication-title: PLoS ONE doi: 10.1371/journal.pone.0181551 – volume: 14 start-page: 219 year: 2019 ident: 455_CR25 publication-title: Curr. Stem. Cell Res. Ther. doi: 10.2174/1574888X13666180723104340 – volume: 133 start-page: 261 year: 2016 ident: 455_CR24 publication-title: Nephron doi: 10.1159/000446879 – volume: 15 start-page: 254 year: 2005 ident: 455_CR9 publication-title: Semin. Radiat. Oncol. doi: 10.1016/j.semradonc.2005.04.001 – volume: 6 year: 2015 ident: 455_CR33 publication-title: Nat. Commun. doi: 10.1038/ncomms7973 – volume: 59 start-page: 160 year: 1966 ident: 455_CR5 publication-title: J. Biochem. doi: 10.1093/oxfordjournals.jbchem.a128277 – volume: 7 year: 2016 ident: 455_CR27 publication-title: Nat. Commun. doi: 10.1038/ncomms11960 – volume: 353 start-page: 1161 year: 2016 ident: 455_CR4 publication-title: Science doi: 10.1126/science.aaf5171 – volume: 9 start-page: 416 year: 2019 ident: 455_CR13 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-18-0567 – volume: 138 start-page: 2568 year: 2018 ident: 455_CR17 publication-title: J. Invest. Dermatol. doi: 10.1016/j.jid.2018.05.016 – volume: 20 start-page: 1193 year: 2014 ident: 455_CR2 publication-title: Nat. Med. doi: 10.1038/nm.3686 – volume: 134 start-page: 1583S year: 2004 ident: 455_CR7 publication-title: J. Nutr. doi: 10.1093/jn/134.6.1583S – volume: 7 start-page: 379 year: 2016 ident: 455_CR12 publication-title: ACS Med. Chem. Lett. doi: 10.1021/acsmedchemlett.5b00389 – volume: 40 start-page: D261 year: 2012 ident: 455_CR22 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr1122 – volume: 366 start-page: 818 year: 2019 ident: 455_CR15 publication-title: Science doi: 10.1126/science.aax3769 – volume: 1 start-page: 532 year: 2019 ident: 455_CR26 publication-title: Nat. Metab doi: 10.1038/s42255-019-0059-2 – volume: 27 start-page: 698 year: 2015 ident: 455_CR34 publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.04.001 – volume: 45 start-page: 183 year: 2017 ident: 455_CR18 publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20160325 – ident: 455_CR29 doi: 10.1053/j.gastro.2018.07.010 – reference: 32029895 - Nat Cell Biol. 2020 Feb;22(2):139-140 |
SSID | ssj0014407 |
Score | 2.6470451 |
Snippet | Branched-chain amino acid (BCAA) metabolism is potentially linked with development of pancreatic ductal adenocarcinoma (PDAC)
1
-
4
. BCAA transaminase 2... Branched-chain amino acid (BCAA) metabolism is potentially linked with development of pancreatic ductal adenocarcinoma (PDAC) . BCAA transaminase 2 (BCAT2) was... Branched-chain amino acid (BCAA) metabolism is potentially linked with development of pancreatic ductal adenocarcinoma (PDAC).sup.1-4. BCAA transaminase 2... Branched-chain amino acid (BCAA) metabolism is potentially linked with development of pancreatic ductal adenocarcinoma (PDAC)1-4. BCAA transaminase 2 (BCAT2)... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 167 |
SubjectTerms | 13/1 13/109 13/51 13/89 631/67 631/67/1504/1713 64/110 64/60 692/699/67/2327 Adenocarcinoma Adenocarcinoma - genetics Adenocarcinoma - metabolism Adenocarcinoma - pathology Adult Amino acids Amino Acids, Branched-Chain - metabolism Amino Acids, Branched-Chain - pharmacology Analysis Animal models Animals Bases (nucleic acids) Biomedical and Life Sciences Branched chain amino acids Cancer Research Carcinogenesis - genetics Carcinogenesis - metabolism Carcinogenesis - pathology Carcinoma, Pancreatic Ductal - genetics Carcinoma, Pancreatic Ductal - metabolism Carcinoma, Pancreatic Ductal - pathology Catabolism Cell Biology Cell Line, Tumor Chain branching Chains Clonal deletion Development and progression Developmental Biology Disease Progression Female Gene Expression Regulation, Neoplastic Heterografts Humans Inhibitors Isoenzymes - genetics Isoenzymes - metabolism K-Ras protein Keto Acids - metabolism Keto Acids - pharmacology Kinases Lethality Letter Life Sciences Lung cancer Lung cancer, Non-small cell Lung carcinoma Male Metabolic pathways Mice Mice, Transgenic Middle Aged Minor Histocompatibility Antigens - genetics Minor Histocompatibility Antigens - metabolism Mitochondria Mutation Organoids Organoids - drug effects Organoids - metabolism Organoids - pathology Pancreas Pancreatic cancer Pancreatic Ducts - drug effects Pancreatic Ducts - metabolism Pancreatic Ducts - pathology Pancreatic Neoplasms - genetics Pancreatic Neoplasms - metabolism Pancreatic Neoplasms - pathology Pregnancy Proteins - genetics Pregnancy Proteins - metabolism Protein-tyrosine kinase Proto-Oncogene Proteins p21(ras) - genetics Proto-Oncogene Proteins p21(ras) - metabolism Resveratrol Ribonucleoproteins - genetics Ribonucleoproteins - metabolism Scientific equipment and supplies industry Signal Transduction Spleen Stem Cells Syk Kinase - genetics Syk Kinase - metabolism Syk protein Transaminase Transaminases - genetics Transaminases - metabolism Tyrosine Ubiquitin-protein ligase |
Title | BCAT2-mediated BCAA catabolism is critical for development of pancreatic ductal adenocarcinoma |
URI | https://link.springer.com/article/10.1038/s41556-019-0455-6 https://www.ncbi.nlm.nih.gov/pubmed/32029896 https://www.proquest.com/docview/2352043738 https://www.proquest.com/docview/2352635572 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96h-CL-G31PKIIghKuJE2aPsmu3HIKLnJ6sE-GNE2Ohbv2vO4--N8706S77oH3tJROu52PTH6ZSWYIeSeUr6vKOoY5JYb1y5kNGLeSToFLVrUejkd_m6uTs-LrQi5SwK1P2ypHnzg46qZzGCM_4oAUYh2eT1e_GXaNwuxqaqFxl-xj6TK06nKxWXBh3rKMp4skKwEIjFlNoY96nEhxLY2pASmZ2pmXbnrnf6anG_nSYRqaPSQPEn6kk6jwR-SObx-Te7Gj5J8n5BceO-NsOA8CWJLC5YRiiKbuLpb9JV321KXmBhTgKm22e4ZoFyi4hogiHcU6sEBkwS_BdHftlm13aZ-Ss9nxz88nLLVQYE6KasWaHCyl4FYFLYKzjtuqCRYk1UjdABaxgB-CzF2Ze1n7CvSptRWhcVw6GxovnpG9tmv9C0KF584pXSvPQyGctrIKktvcw5rL-8JmJB8FaFyqL45tLi7MkOcW2kSZG5C5QZkblZEPm0euYnGN24jfolYMFq1ocVfMuV33vfny49RMAJMUuQYVZ-R9Igod_DlwHA8ZAAtY52qH8mCHEkaV2709Kt-kUd2brQ1m5M3mNj6JO9Va360jDYK4kmfkeTSaDW_Yq77SFbDycbSi7cv_y_jL2z_lFbnPMQYw7CQ_IHur67V_DUBpVR8Oo-GQ7E9m0-kcfqfH8--nfwFCvA-x |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKEFwQbwIFDAIhgaxGdpxNDgitgGqXPg7QSnvCdRy7WqlN2mZXqD_FNzITJ7tsJXrrMcrkMePxPDwvgLcydUWeG8sppsSpfzk3ns6tlE1RJKdF1pZH7-6lo4Pk-0RN1uBPXwtDaZW9TGwFdVlbOiPfFGgphD48n0_POE2NouhqP0IjsMW2u_iNLlvzafwV1_edEFvf9r-MeDdVgFsl8xkvYyReIkzqM-mtscLkpTe5ykuVlaieDapUr2I7iJ0qXI4oZpmRvrRCWeNLJ_G9N-AmQsXk7A0mCweP4qSDUM2k-AANjz6KKrPNhhQ3-e4UilCKpyt68LI2-EcdXorPtmpv6x7c7exVNgwMdh_WXPUAboUJlhcP4ReVuQne1p-g7crwcsjoSKioj6fNCZs2zHbDFBiax6xc5iix2jMURcFqtYz6ziKQQTmI6vXcTqv6xDyCg2sh7mNYr-rKPQUmnbA2zYrUCZ9ImxmVeyVM7NDHcy4xEcQ9AbXt-pnTWI1j3cbVZaYDzTXSXBPNdRrBh8Ujp6GZx1XAb2hVNDXJqCgL58jMm0aPf_7QQ7SBkjjDJY7gfQfka_w4YhyKGhAF6qu1ArmxAom72K7e7hdfd1Kk0Uuej-D14jY9SZlxlavnAYaMxoGI4ElgmgVuUrQN9hGVjz0XLV_-X8SfXf0rr-D2aH93R--M97afwx1B5w9tFvsGrM_O5-4FGmmz4mW7MxgcXvdW_As4ok0O |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1da9RAcKhXFF_Eb6NVV1EEZWnYZHPJQymn7dGzepRqoU9dN5tdOWiT2twh_Wv9dZ3JJndewb71MWTyMbPztTtfAO-ixOZZpg2nmBKn_uVcOzq3kiZBlZzkaVMe_X2c7BzEXw_l4QpcdLUwlFbZ6cRGUReVoTPydYGegu_Ds-7atIi9reHm6R9OE6Qo0tqN0_AssmvP_-L2rd4YbeFavxdiuP3zyw5vJwxwI6NsyosQCRkLnbg0ckYbobPC6UxmhUwLNNUazauToemHVuY2Q3TTVEeuMEIa7Qob4XtvwWqfdkU9WP28Pd7bn8cw4rgp1kZVJHkf3ZAupooY1GTGaSdPgQkpebJkFa_ahn-M45VobWMEh_fhXuu9soFntwewYsuHcNvPszx_BEdU9CZ4U42CnizDywGjA6K8Op7UJ2xSM9OOVmDoLLNikbHEKsdQMXkf1jDqQotAGrUiGtszMymrE_0YDm6EvE-gV1alfQYsssKYJM0TK1wcmVTLzEmhQ4s7PmtjHUDYEVCZtrs5Ddk4Vk2UPUqVp7lCmiuiuUoC-Dh_5NS39rgO-C2tiqKWGSUx3289q2s1-rGvBugRxWGKSxzAhxbIVfhxxNiXOCAK1GVrCXJtCRJl2izf7hZftTqlVgsJCODN_DY9SXlypa1mHoZcyL4I4KlnmjlukWja7SMqnzouWrz8v4g_v_5XXsMdFEP1bTTefQF3BR1GNCnta9Cbns3sS_TYpvmrVjQY_LppabwEg-xSqQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BCAT2-mediated+BCAA+catabolism+is+critical+for+development+of+pancreatic+ductal+adenocarcinoma&rft.jtitle=Nature+cell+biology&rft.au=Li%2C+Jin-Tao&rft.au=Yin%2C+Miao&rft.au=Wang%2C+Di&rft.au=Wang%2C+Jian&rft.date=2020-02-01&rft.issn=1465-7392&rft.eissn=1476-4679&rft.volume=22&rft.issue=2&rft.spage=167&rft.epage=174&rft_id=info:doi/10.1038%2Fs41556-019-0455-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41556_019_0455_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-7392&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-7392&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-7392&client=summon |