The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency

A gene that is present in phosphate-deficiency-tolerant rice but absent from modern rice varieties is characterized and named phosphorus-starvation tolerance 1 ( PSTOL1 ); overexpression of PSTOL1 in rice species that naturally lack this gene confers tolerance to low phosphorus conditions, a finding...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 488; no. 7412; pp. 535 - 539
Main Authors Gamuyao, Rico, Chin, Joong Hyoun, Pariasca-Tanaka, Juan, Pesaresi, Paolo, Catausan, Sheryl, Dalid, Cheryl, Slamet-Loedin, Inez, Tecson-Mendoza, Evelyn Mae, Wissuwa, Matthias, Heuer, Sigrid
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.08.2012
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A gene that is present in phosphate-deficiency-tolerant rice but absent from modern rice varieties is characterized and named phosphorus-starvation tolerance 1 ( PSTOL1 ); overexpression of PSTOL1 in rice species that naturally lack this gene confers tolerance to low phosphorus conditions, a finding that may have implications for agricultural productivity in rice-growing countries. Rice tolerant to low-phosphate soils Rice is a staple crop for much of Asia. Rice yields in the region are low, however, with limited availability of phosphorous fertilizers and the susceptibility of rain-fed cultivation systems to climate variation among the problems. In this study, Sigrid Heuer and colleagues report the characterization of a gene called phosphorus-starvation tolerance 1 ( PSTOL1 ), which confers tolerance to phosphorus deficiency. The gene is present in the traditional rice variety Kasalath but absent from the rice reference genome and other phosphorus-starvation-intolerant modern varieties. PSTOL1 is shown to act as an enhancer of early root growth, thereby enabling plants to acquire more phosphorus and other nutrients. Introduction of this gene into locally adapted rice varieties should enhance productivity under low-phosphorus conditions. As an essential macroelement for all living cells, phosphorus is indispensable in agricultural production systems. Natural phosphorus reserves are limited 1 , and it is therefore important to develop phosphorus-efficient crops. A major quantitative trait locus for phosphorus-deficiency tolerance, Pup1 , was identified in the traditional aus -type rice variety Kasalath about a decade ago 2 , 3 . However, its functional mechanism remained elusive 4 , 5 until the locus was sequenced, showing the presence of a Pup1 -specific protein kinase gene 6 , which we have named phosphorus-starvation tolerance 1 ( PSTOL1 ). This gene is absent from the rice reference genome and other phosphorus-starvation-intolerant modern varieties 7 , 8 . Here we show that overexpression of PSTOL1 in such varieties significantly enhances grain yield in phosphorus-deficient soil. Further analyses show that PSTOL1 acts as an enhancer of early root growth, thereby enabling plants to acquire more phosphorus and other nutrients. The absence of PSTOL1 and other genes—for example, the submergence-tolerance gene SUB1A —from modern rice varieties underlines the importance of conserving and exploring traditional germplasm. Introgression of this quantitative trait locus into locally adapted rice varieties in Asia and Africa is expected to considerably enhance productivity under low phosphorus conditions.
AbstractList As an essential macroelement for all living cells, phosphorus is indispensable in agricultural production systems. Natural phosphorus reserves are limited, and it is therefore important to develop phosphorus-efficient crops. A major quantitative trait locus for phosphorus-deficiency tolerance, Pup1, was identified in the traditional aus-type rice variety Kasalath about a decade ago. However, its functional mechanism remained elusive until the locus was sequenced, showing the presence of a Pup1-specific protein kinase gene, which we have named phosphorus-starvation tolerance 1 (PSTOL1). This gene is absent from the rice reference genome and other phosphorus-starvation-intolerant modern varieties. Here we show that overexpression of PSTOL1 in such varieties significantly enhances grain yield in phosphorus-deficient soil. Further analyses show that PSTOL1 acts as an enhancer of early root growth, thereby enabling plants to acquire more phosphorus and other nutrients. The absence of PSTOL1 and other genes-for example, the submergence-tolerance gene SUB1A-from modern rice varieties underlines the importance of conserving and exploring traditional germplasm. Introgression of this quantitative trait locus into locally adapted rice varieties in Asia and Africa is expected to considerably enhance productivity under low phosphorus conditions. [PUBLICATION ABSTRACT]
As an essential macroelement for all living cells, phosphorus is indispensable in agricultural production systems. Natural phosphorus reserves are limited, and it is therefore important to develop phosphorus-efficient crops. A major quantitative trait locus for phosphorus-deficiency tolerance, Pup1, was identified in the traditional aus-type rice variety Kasalath about a decade ago. However, its functional mechanism remained elusive until the locus was sequenced, showing the presence of a Pup1-specific protein kinase gene, which we have named phosphorus-starvation tolerance 1 (PSTOL1). This gene is absent from the rice reference genome and other phosphorus-starvation-intolerant modern varieties. Here we show that overexpression of PSTOL1 in such varieties significantly enhances grain yield in phosphorus-deficient soil. Further analyses show that PSTOL1 acts as an enhancer of early root growth, thereby enabling plants to acquire more phosphorus and other nutrients. The absence of PSTOL1 and other genes-for example, the submergence-tolerance gene SUB1A-from modern rice varieties underlines the importance of conserving and exploring traditional germplasm. Introgression of this quantitative trait locus into locally adapted rice varieties in Asia and Africa is expected to considerably enhance productivity under low phosphorus conditions.As an essential macroelement for all living cells, phosphorus is indispensable in agricultural production systems. Natural phosphorus reserves are limited, and it is therefore important to develop phosphorus-efficient crops. A major quantitative trait locus for phosphorus-deficiency tolerance, Pup1, was identified in the traditional aus-type rice variety Kasalath about a decade ago. However, its functional mechanism remained elusive until the locus was sequenced, showing the presence of a Pup1-specific protein kinase gene, which we have named phosphorus-starvation tolerance 1 (PSTOL1). This gene is absent from the rice reference genome and other phosphorus-starvation-intolerant modern varieties. Here we show that overexpression of PSTOL1 in such varieties significantly enhances grain yield in phosphorus-deficient soil. Further analyses show that PSTOL1 acts as an enhancer of early root growth, thereby enabling plants to acquire more phosphorus and other nutrients. The absence of PSTOL1 and other genes-for example, the submergence-tolerance gene SUB1A-from modern rice varieties underlines the importance of conserving and exploring traditional germplasm. Introgression of this quantitative trait locus into locally adapted rice varieties in Asia and Africa is expected to considerably enhance productivity under low phosphorus conditions.
A gene that is present in phosphate-deficiency-tolerant rice but absent from modern rice varieties is characterized and named phosphorus-starvation tolerance 1 (PSTOL1); overexpression of PSTOL1 in rice species that naturally lack this gene confers tolerance to low phosphorus conditions, a finding that may have implications for agricultural productivity in rice-growing countries.
As an essential macroelement for all living cells, phosphorus is indispensable in agricultural production systems. Natural phosphorus reserves are limited, and it is therefore important to develop phosphorus-efficient crops. A major quantitative trait locus for phosphorus-deficiency tolerance, Pup1, was identified in the traditional aus-type rice variety Kasalath about a decade ago. However, its functional mechanism remained elusive until the locus was sequenced, showing the presence of a Pup1-specific protein kinase gene, which we have named phosphorus-starvation tolerance 1 (PSTOL1). This gene is absent from the rice reference genome and other phosphorus-starvation-intolerant modern varieties. Here we show that overexpression of PSTOL1 in such varieties significantly enhances grain yield in phosphorus-deficient soil. Further analyses show that PSTOL1 acts as an enhancer of early root growth, thereby enabling plants to acquire more phosphorus and other nutrients. The absence of PSTOL1 and other genes-for example, the submergence-tolerance gene SUB1A-from modern rice varieties underlines the importance of conserving and exploring traditional germplasm. Introgression of this quantitative trait locus into locally adapted rice varieties in Asia and Africa is expected to considerably enhance productivity under low phosphorus conditions.
A gene that is present in phosphate-deficiency-tolerant rice but absent from modern rice varieties is characterized and named phosphorus-starvation tolerance 1 ( PSTOL1 ); overexpression of PSTOL1 in rice species that naturally lack this gene confers tolerance to low phosphorus conditions, a finding that may have implications for agricultural productivity in rice-growing countries. Rice tolerant to low-phosphate soils Rice is a staple crop for much of Asia. Rice yields in the region are low, however, with limited availability of phosphorous fertilizers and the susceptibility of rain-fed cultivation systems to climate variation among the problems. In this study, Sigrid Heuer and colleagues report the characterization of a gene called phosphorus-starvation tolerance 1 ( PSTOL1 ), which confers tolerance to phosphorus deficiency. The gene is present in the traditional rice variety Kasalath but absent from the rice reference genome and other phosphorus-starvation-intolerant modern varieties. PSTOL1 is shown to act as an enhancer of early root growth, thereby enabling plants to acquire more phosphorus and other nutrients. Introduction of this gene into locally adapted rice varieties should enhance productivity under low-phosphorus conditions. As an essential macroelement for all living cells, phosphorus is indispensable in agricultural production systems. Natural phosphorus reserves are limited 1 , and it is therefore important to develop phosphorus-efficient crops. A major quantitative trait locus for phosphorus-deficiency tolerance, Pup1 , was identified in the traditional aus -type rice variety Kasalath about a decade ago 2 , 3 . However, its functional mechanism remained elusive 4 , 5 until the locus was sequenced, showing the presence of a Pup1 -specific protein kinase gene 6 , which we have named phosphorus-starvation tolerance 1 ( PSTOL1 ). This gene is absent from the rice reference genome and other phosphorus-starvation-intolerant modern varieties 7 , 8 . Here we show that overexpression of PSTOL1 in such varieties significantly enhances grain yield in phosphorus-deficient soil. Further analyses show that PSTOL1 acts as an enhancer of early root growth, thereby enabling plants to acquire more phosphorus and other nutrients. The absence of PSTOL1 and other genes—for example, the submergence-tolerance gene SUB1A —from modern rice varieties underlines the importance of conserving and exploring traditional germplasm. Introgression of this quantitative trait locus into locally adapted rice varieties in Asia and Africa is expected to considerably enhance productivity under low phosphorus conditions.
Audience Academic
Author Tecson-Mendoza, Evelyn Mae
Wissuwa, Matthias
Chin, Joong Hyoun
Slamet-Loedin, Inez
Gamuyao, Rico
Pesaresi, Paolo
Catausan, Sheryl
Heuer, Sigrid
Pariasca-Tanaka, Juan
Dalid, Cheryl
Author_xml – sequence: 1
  givenname: Rico
  surname: Gamuyao
  fullname: Gamuyao, Rico
  organization: International Rice Research Institute (IRRI), DAPO Box 7777 Metro, Manila 1301, Philippines
– sequence: 2
  givenname: Joong Hyoun
  surname: Chin
  fullname: Chin, Joong Hyoun
  organization: International Rice Research Institute (IRRI), DAPO Box 7777 Metro, Manila 1301, Philippines
– sequence: 3
  givenname: Juan
  surname: Pariasca-Tanaka
  fullname: Pariasca-Tanaka, Juan
  organization: Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba 305-8686, Japan
– sequence: 4
  givenname: Paolo
  surname: Pesaresi
  fullname: Pesaresi, Paolo
  organization: Dipartimento di Bioscienze, Università degli studi di Milano
– sequence: 5
  givenname: Sheryl
  surname: Catausan
  fullname: Catausan, Sheryl
  organization: International Rice Research Institute (IRRI), DAPO Box 7777 Metro, Manila 1301, Philippines
– sequence: 6
  givenname: Cheryl
  surname: Dalid
  fullname: Dalid, Cheryl
  organization: International Rice Research Institute (IRRI), DAPO Box 7777 Metro, Manila 1301, Philippines
– sequence: 7
  givenname: Inez
  surname: Slamet-Loedin
  fullname: Slamet-Loedin, Inez
  organization: International Rice Research Institute (IRRI), DAPO Box 7777 Metro, Manila 1301, Philippines
– sequence: 8
  givenname: Evelyn Mae
  surname: Tecson-Mendoza
  fullname: Tecson-Mendoza, Evelyn Mae
  organization: University of the Philippines
– sequence: 9
  givenname: Matthias
  surname: Wissuwa
  fullname: Wissuwa, Matthias
  organization: Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba 305-8686, Japan
– sequence: 10
  givenname: Sigrid
  surname: Heuer
  fullname: Heuer, Sigrid
  email: s.heuer@cgiar.org
  organization: International Rice Research Institute (IRRI), DAPO Box 7777 Metro, Manila 1301, Philippines
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26256111$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22914168$$D View this record in MEDLINE/PubMed
BookMark eNpt0s9rFDEUB_AgFbtdPXmXoAgVHc2PmSRzLKVqoaBovXgJMfuyTZ1NtkkG7H9vxt3qtvYQAuHzHnnf5ADthRgAoaeUvKWEq3fBlDEBpbwVD9CMtlI0rVByD80IYaohiot9dJDzJSGko7J9hPYZ62lLhZqh7-cXgNcpFvAB__TBZMCfc4kDxS7FFS7JLHzxMZgBJ28B2xgcpIwrgWRCPYkOry9iriuNGS_Aeesh2OvH6KEzQ4Yn232Ovr0_OT_-2Jx9-nB6fHTW2I73pbG9bBVRzBgmWdsKypgV0HVSQs8ll66ljlrbL6gllHFFVWeNsowIKkEuOJ-jw03fOsbVCLnolc8WhsEEiGPWNaRuCor2lb64Qy_jmOpsf5TsJZN1_6uWZgDtg4s1BTs11UeCE0Y62XdVPb9H2bW_0rvo1S1U0yvwqyzNmLM-_frldsNn28uNP1aw0OvkVyZd65vHquDlFphszeCm-H3-5wTrBK3_YI7oxtkUc07gtPXFTI9Yb-iHOuo0rdI7H6fWvL5Tc9P2fv1mo3NVYQlpN8f_-W_cIs7x
CODEN NATUAS
CitedBy_id crossref_primary_10_1186_s12284_015_0068_z
crossref_primary_10_1038_s41598_021_93325_2
crossref_primary_10_3390_plants4020334
crossref_primary_10_3389_fpls_2016_00428
crossref_primary_10_1038_s41588_018_0041_z
crossref_primary_10_1007_s11032_019_1059_3
crossref_primary_10_1104_pp_114_238626
crossref_primary_10_1007_s10681_024_03409_z
crossref_primary_10_1007_s10725_017_0326_8
crossref_primary_10_1016_j_molp_2021_12_005
crossref_primary_10_1016_j_cpb_2024_100332
crossref_primary_10_1016_j_copbio_2014_11_015
crossref_primary_10_1093_jxb_erab406
crossref_primary_10_1016_j_molp_2021_12_001
crossref_primary_10_1021_jf305531j
crossref_primary_10_3389_fpls_2016_00550
crossref_primary_10_1186_s11658_016_0008_y
crossref_primary_10_1371_journal_pone_0223217
crossref_primary_10_3390_ijms22116058
crossref_primary_10_1016_j_tplants_2023_01_008
crossref_primary_10_1007_s10681_017_1907_3
crossref_primary_10_1038_srep33113
crossref_primary_10_1071_FP20351
crossref_primary_10_1104_pp_113_214262
crossref_primary_10_1111_jipb_13090
crossref_primary_10_1016_j_tplants_2013_04_010
crossref_primary_10_1007_s10142_024_01478_w
crossref_primary_10_1007_s13562_020_00586_5
crossref_primary_10_1016_j_tibtech_2014_09_008
crossref_primary_10_1007_s10681_015_1572_3
crossref_primary_10_3390_ijms22073579
crossref_primary_10_1093_pcp_pcy141
crossref_primary_10_1016_j_copbio_2014_11_027
crossref_primary_10_1071_CP14191
crossref_primary_10_1186_s12284_015_0067_0
crossref_primary_10_1007_s10681_022_02987_0
crossref_primary_10_1002_fes3_294
crossref_primary_10_3390_ijms19051460
crossref_primary_10_1071_CP18324
crossref_primary_10_1093_jxb_eraa211
crossref_primary_10_1038_s41598_022_13709_w
crossref_primary_10_1002_fes3_29
crossref_primary_10_1007_s11032_019_1058_4
crossref_primary_10_1038_srep19147
crossref_primary_10_1093_jxb_erv515
crossref_primary_10_1016_j_copbio_2024_103198
crossref_primary_10_1093_gbe_evx135
crossref_primary_10_1016_j_plaphy_2018_06_017
crossref_primary_10_1007_s10681_014_1110_8
crossref_primary_10_1371_journal_pone_0155425
crossref_primary_10_1007_s11104_016_3129_1
crossref_primary_10_1038_s41598_017_15450_1
crossref_primary_10_1093_dnares_dsx013
crossref_primary_10_3390_ijms23031137
crossref_primary_10_1093_plphys_kiae453
crossref_primary_10_1186_s12870_019_1689_y
crossref_primary_10_1111_pbi_13454
crossref_primary_10_1038_s41467_023_40189_x
crossref_primary_10_1080_07388551_2016_1268089
crossref_primary_10_1093_jxb_erv403
crossref_primary_10_1111_tpj_15669
crossref_primary_10_1007_s40502_021_00627_8
crossref_primary_10_1111_1365_2745_13592
crossref_primary_10_1038_s41598_019_55757_9
crossref_primary_10_3390_agronomy5030374
crossref_primary_10_1007_s11032_024_01443_2
crossref_primary_10_1186_s13059_014_0506_z
crossref_primary_10_1155_2014_210328
crossref_primary_10_1146_annurev_arplant_050213_035949
crossref_primary_10_1007_s13258_018_0741_x
crossref_primary_10_3389_fpls_2022_1017419
crossref_primary_10_1093_jxb_erv210
crossref_primary_10_1371_journal_pone_0054559
crossref_primary_10_1186_s12870_016_0747_y
crossref_primary_10_1186_s12284_016_0102_9
crossref_primary_10_1016_j_pbi_2015_04_007
crossref_primary_10_1111_pce_12451
crossref_primary_10_1038_s41598_019_52884_1
crossref_primary_10_1038_s41598_021_92580_7
crossref_primary_10_1007_s10681_017_1884_6
crossref_primary_10_34133_plantphenomics_0097
crossref_primary_10_1016_j_tplants_2020_04_013
crossref_primary_10_1038_s41467_022_28362_0
crossref_primary_10_1186_s12284_018_0208_3
crossref_primary_10_1021_acs_jafc_9b03124
crossref_primary_10_1186_s12864_020_07240_3
crossref_primary_10_1016_j_cj_2021_04_003
crossref_primary_10_1016_j_rsci_2023_04_007
crossref_primary_10_1007_s00425_018_2892_z
crossref_primary_10_1007_s10705_020_10090_w
crossref_primary_10_1007_s44279_024_00086_3
crossref_primary_10_3390_ijms19072145
crossref_primary_10_1016_j_envexpbot_2024_105875
crossref_primary_10_1016_j_envexpbot_2013_09_008
crossref_primary_10_1093_jxb_eraa229
crossref_primary_10_1111_jipb_12198
crossref_primary_10_1093_jxb_eru461
crossref_primary_10_15302_J_FASE_2019278
crossref_primary_10_15302_J_FASE_2019275
crossref_primary_10_3390_plants12132520
crossref_primary_10_1007_s11032_014_0059_6
crossref_primary_10_1038_ncomms2296
crossref_primary_10_3389_fpls_2024_1408356
crossref_primary_10_1080_07352689_2019_1645402
crossref_primary_10_1111_nph_16020
crossref_primary_10_1007_s00299_024_03278_9
crossref_primary_10_1007_s42976_024_00521_7
crossref_primary_10_1093_plphys_kiae495
crossref_primary_10_1371_journal_pone_0105068
crossref_primary_10_1007_s11816_014_0320_9
crossref_primary_10_1016_j_jplph_2020_153340
crossref_primary_10_1002_fes3_369
crossref_primary_10_3389_fpls_2023_1157507
crossref_primary_10_1007_s11104_015_2437_1
crossref_primary_10_1080_23802359_2017_1407710
crossref_primary_10_17221_254_2023_PSE
crossref_primary_10_6090_jarq_55_295
crossref_primary_10_1007_s11104_015_2657_4
crossref_primary_10_3390_ijms22179311
crossref_primary_10_1038_nrg3901
crossref_primary_10_3390_ijms19102964
crossref_primary_10_5897_AJB2022_17521
crossref_primary_10_1155_2016_2405954
crossref_primary_10_3389_fpls_2023_1098175
crossref_primary_10_1186_s12870_018_1331_4
crossref_primary_10_1038_ncomms15324
crossref_primary_10_1016_j_rser_2023_113474
crossref_primary_10_1186_s12870_019_1657_6
crossref_primary_10_1371_journal_pone_0192116
crossref_primary_10_3390_ijms23094781
crossref_primary_10_7868_S0002188117070122
crossref_primary_10_1093_jxb_erw228
crossref_primary_10_1016_j_genrep_2024_102077
crossref_primary_10_3389_fpls_2018_01420
crossref_primary_10_1016_j_tplants_2015_10_012
crossref_primary_10_1111_jipb_12163
crossref_primary_10_3390_agriculture10100453
crossref_primary_10_1007_s00122_020_03692_z
crossref_primary_10_1038_nplants_2015_109
crossref_primary_10_1111_jipb_12168
crossref_primary_10_1590_1984_70332018v18n4a56
crossref_primary_10_3389_fpls_2024_1274610
crossref_primary_10_1016_j_biotechadv_2015_03_011
crossref_primary_10_3390_plants12223807
crossref_primary_10_56739_jor_v33i1_139059
crossref_primary_10_1021_acsomega_1c00206
crossref_primary_10_1007_s11104_024_06529_6
crossref_primary_10_1016_j_cub_2022_03_073
crossref_primary_10_3390_genes10100773
crossref_primary_10_3390_d9040051
crossref_primary_10_3389_fpls_2017_01466
crossref_primary_10_1111_tpj_13423
crossref_primary_10_1093_aob_mcy215
crossref_primary_10_3389_fpls_2017_01461
crossref_primary_10_1016_j_envexpbot_2018_03_018
crossref_primary_10_1080_00380768_2014_893537
crossref_primary_10_1080_1343943X_2020_1808026
crossref_primary_10_1093_jxb_erw362
crossref_primary_10_1890_EHS15_0010_1
crossref_primary_10_3390_ijms241310708
crossref_primary_10_1101_cshperspect_a034603
crossref_primary_10_5010_JPB_2024_51_014_129
crossref_primary_10_1007_s40502_018_0415_3
crossref_primary_10_1002_pmic_201200266
crossref_primary_10_1186_s12284_014_0029_y
crossref_primary_10_1007_s00425_024_04577_x
crossref_primary_10_1093_aob_mcw044
crossref_primary_10_4236_ajps_2021_127077
crossref_primary_10_1038_s41598_017_10274_5
crossref_primary_10_1186_s12284_018_0262_x
crossref_primary_10_3389_fpls_2020_537766
crossref_primary_10_3389_fpls_2016_01584
crossref_primary_10_3389_fpls_2022_1062952
crossref_primary_10_3389_fpls_2016_00372
crossref_primary_10_3732_ajb_1200474
crossref_primary_10_1038_nature11909
crossref_primary_10_1016_j_psrb_2016_09_002
crossref_primary_10_1016_j_tplants_2019_01_003
crossref_primary_10_1016_S2095_3119_17_61709_X
crossref_primary_10_1080_00380768_2020_1843370
crossref_primary_10_12688_f1000research_14561_1
crossref_primary_10_1111_tpj_12317
crossref_primary_10_1007_s11104_018_3706_6
crossref_primary_10_1111_pce_12882
crossref_primary_10_1007_s00122_014_2306_y
crossref_primary_10_3389_fpls_2015_01184
crossref_primary_10_1007_s00122_019_03527_6
crossref_primary_10_1016_j_ecoinf_2023_102194
crossref_primary_10_1186_s12870_016_0853_x
crossref_primary_10_1080_1343943X_2019_1617638
crossref_primary_10_3390_plants10081523
crossref_primary_10_3390_plants12183336
crossref_primary_10_1088_1755_1315_305_1_012076
crossref_primary_10_1111_pce_12969
crossref_primary_10_3389_fpls_2018_01223
crossref_primary_10_1093_aob_mcx157
crossref_primary_10_1007_s00122_018_3233_0
crossref_primary_10_1111_pbr_13049
crossref_primary_10_3389_fpls_2022_1006806
crossref_primary_10_1007_s12298_020_00858_3
crossref_primary_10_1111_tpj_12522
crossref_primary_10_1016_j_gene_2020_145301
crossref_primary_10_1186_s13007_019_0550_5
crossref_primary_10_1016_j_geoderma_2014_07_019
crossref_primary_10_1080_00380768_2018_1436941
crossref_primary_10_3389_fpls_2019_01668
crossref_primary_10_1186_s12863_017_0562_y
crossref_primary_10_1016_j_jenvman_2023_119763
crossref_primary_10_34133_2021_9859254
crossref_primary_10_1007_s11738_021_03280_8
crossref_primary_10_1038_s41598_021_87182_2
crossref_primary_10_1038_s41467_020_18683_3
crossref_primary_10_3390_agronomy8050071
crossref_primary_10_1007_s11104_019_04316_2
crossref_primary_10_1007_s00709_016_0986_7
crossref_primary_10_1016_j_pbi_2017_06_008
crossref_primary_10_1111_pce_12853
crossref_primary_10_1111_pce_12733
crossref_primary_10_3389_fpls_2020_00070
crossref_primary_10_1111_jipb_13560
crossref_primary_10_3389_fpls_2016_01151
crossref_primary_10_1111_jipb_12470
crossref_primary_10_3389_fpls_2021_649147
crossref_primary_10_1016_j_ncrops_2024_100064
crossref_primary_10_1111_tpj_12894
crossref_primary_10_1016_j_molp_2015_12_012
crossref_primary_10_1093_jxb_erw282
crossref_primary_10_1111_pbr_13054
crossref_primary_10_3389_fpls_2022_972164
crossref_primary_10_1111_pbr_13173
crossref_primary_10_3390_agriculture12122056
crossref_primary_10_1093_aob_mcw073
crossref_primary_10_31742_ISGPB_84_3_6
crossref_primary_10_1016_j_tplants_2017_06_011
crossref_primary_10_1007_s00122_019_03392_3
crossref_primary_10_3390_ijms232012383
crossref_primary_10_1007_s11033_020_05337_2
crossref_primary_10_1186_s12870_024_05183_5
crossref_primary_10_1038_s41598_018_27633_5
crossref_primary_10_3389_fpls_2016_01389
crossref_primary_10_1038_s41467_019_14197_9
crossref_primary_10_3389_fpls_2019_00237
crossref_primary_10_1016_j_cj_2020_05_005
crossref_primary_10_1016_j_plaphy_2025_109577
crossref_primary_10_3390_genes15060663
crossref_primary_10_1016_j_jplph_2024_154317
crossref_primary_10_1002_jpln_202000471
crossref_primary_10_1016_j_plaphy_2017_12_018
crossref_primary_10_1038_s41576_018_0024_z
crossref_primary_10_1007_s00122_016_2729_8
crossref_primary_10_1016_j_molp_2018_01_007
crossref_primary_10_1007_s10722_015_0252_4
crossref_primary_10_1093_jxb_erac059
crossref_primary_10_1016_j_gfs_2013_10_002
crossref_primary_10_1111_plb_13111
crossref_primary_10_1271_kagakutoseibutsu_60_420
crossref_primary_10_7732_kjpr_2016_29_6_658
crossref_primary_10_1371_journal_pone_0254526
crossref_primary_10_1016_j_pbi_2013_03_002
crossref_primary_10_1038_s41598_018_24946_3
crossref_primary_10_1073_pnas_1304354110
crossref_primary_10_3390_life11060502
crossref_primary_10_3390_ijms24065107
crossref_primary_10_1111_pce_15088
crossref_primary_10_1007_s00122_022_04095_y
crossref_primary_10_1016_j_copbio_2015_01_001
crossref_primary_10_1016_j_rhisph_2018_08_003
crossref_primary_10_1371_journal_pone_0090287
crossref_primary_10_1360_SSV_2023_0259
crossref_primary_10_1146_annurev_arplant_042817_040540
crossref_primary_10_1080_03650340_2017_1373764
crossref_primary_10_1111_jipb_12559
crossref_primary_10_1007_s00468_014_0984_3
crossref_primary_10_3389_fpls_2023_1153967
crossref_primary_10_1007_s10705_015_9726_1
crossref_primary_10_1371_journal_pone_0159264
crossref_primary_10_3390_agronomy6040052
crossref_primary_10_3389_fpls_2018_01367
crossref_primary_10_1111_jipb_12435
crossref_primary_10_1016_j_plaphy_2019_12_037
crossref_primary_10_1111_jipb_12434
crossref_primary_10_1038_s41598_020_78186_5
crossref_primary_10_3390_genes14071412
crossref_primary_10_1371_journal_pone_0183261
crossref_primary_10_3390_ijms20040900
crossref_primary_10_1016_j_scitotenv_2022_153558
crossref_primary_10_1007_s11032_020_01156_2
crossref_primary_10_29141_2500_1922_2023_8_2_13
crossref_primary_10_1093_jxb_erac192
crossref_primary_10_1007_s10705_015_9716_3
crossref_primary_10_1007_s10681_019_2443_0
crossref_primary_10_1016_j_plaphy_2021_08_007
crossref_primary_10_1016_j_tplants_2014_02_002
crossref_primary_10_1111_pbr_12052
crossref_primary_10_1016_j_jenvman_2024_123461
crossref_primary_10_1371_journal_pone_0078037
crossref_primary_10_3390_ijms24076233
crossref_primary_10_1016_j_plaphy_2024_108386
crossref_primary_10_3390_ijms21041513
crossref_primary_10_1093_jxb_erad035
crossref_primary_10_1186_s40854_017_0063_z
crossref_primary_10_3389_fpls_2017_00509
crossref_primary_10_2135_cropsci2014_08_0546
crossref_primary_10_1007_s00122_023_04376_0
crossref_primary_10_1093_jxb_erad390
crossref_primary_10_3390_agronomy14092031
crossref_primary_10_1007_s00438_024_02204_8
crossref_primary_10_1007_s10681_019_2445_y
crossref_primary_10_1038_s41598_018_33812_1
crossref_primary_10_1371_journal_pone_0204144
crossref_primary_10_1111_nph_12786
crossref_primary_10_3117_plantroot_16_21
crossref_primary_10_1002_pld3_469
crossref_primary_10_1007_s13562_020_00559_8
crossref_primary_10_3835_plantgenome2019_06_0039
crossref_primary_10_1038_s41598_022_07781_5
crossref_primary_10_1093_aob_mcz041
crossref_primary_10_1093_jxb_erw061
crossref_primary_10_1007_s10142_025_01542_z
crossref_primary_10_1016_j_scitotenv_2024_172331
crossref_primary_10_3390_ijms20215259
crossref_primary_10_1038_s41598_022_25378_w
crossref_primary_10_1111_nph_12491
crossref_primary_10_3389_fpls_2017_00436
crossref_primary_10_1111_nph_12499
crossref_primary_10_1007_s10265_024_01545_0
crossref_primary_10_1007_s11032_024_01494_5
crossref_primary_10_1093_jxb_ery176
crossref_primary_10_1111_nph_13469
crossref_primary_10_1080_15592324_2015_1049791
crossref_primary_10_1360_SSV_2023_0048
crossref_primary_10_1093_jxb_erad179
crossref_primary_10_1080_02648725_2017_1370888
crossref_primary_10_1080_01904167_2024_2325937
crossref_primary_10_1146_annurev_arplant_050718_100320
crossref_primary_10_12688_f1000research_6538_1
crossref_primary_10_1007_s12298_020_00902_2
crossref_primary_10_1007_s40502_021_00623_y
crossref_primary_10_1186_s12870_016_0783_7
crossref_primary_10_1038_s41598_021_88419_w
crossref_primary_10_3390_cimb44100301
crossref_primary_10_1002_csc2_20344
crossref_primary_10_1007_s11033_022_07679_5
crossref_primary_10_1016_j_tplants_2014_08_005
crossref_primary_10_1093_dnares_dsu006
crossref_primary_10_1002_csc2_20585
crossref_primary_10_1111_mpp_12340
crossref_primary_10_1270_jsbbs_17083
crossref_primary_10_1007_s12041_023_01440_y
crossref_primary_10_1038_s41477_022_01274_z
crossref_primary_10_1104_pp_15_01360
crossref_primary_10_1007_s40502_020_00503_x
crossref_primary_10_1007_s00425_021_03739_5
crossref_primary_10_1111_tpj_16028
crossref_primary_10_1038_s41598_023_41987_5
crossref_primary_10_1270_jsbbs_18059
crossref_primary_10_1186_s12870_015_0561_y
crossref_primary_10_1371_journal_pone_0255840
crossref_primary_10_1002_pld3_393
crossref_primary_10_1186_s13007_019_0517_6
crossref_primary_10_1021_es501670j
crossref_primary_10_3389_fpls_2019_00633
crossref_primary_10_1016_j_ygeno_2022_110436
crossref_primary_10_1016_j_molp_2022_11_007
crossref_primary_10_5897_AJAR2018_12974
crossref_primary_10_1126_sciadv_1400218
crossref_primary_10_1126_science_aba0196
crossref_primary_10_1007_s12298_020_00903_1
crossref_primary_10_1007_s40003_020_00532_w
crossref_primary_10_1186_s12284_017_0189_7
crossref_primary_10_1007_s11103_022_01254_z
crossref_primary_10_1093_aob_mcs217
crossref_primary_10_1021_acs_jafc_4c09230
crossref_primary_10_1038_s41598_018_34053_y
crossref_primary_10_1017_S0014479714000362
crossref_primary_10_3390_agronomy3010086
crossref_primary_10_1007_s11104_013_1669_1
crossref_primary_10_1093_jxb_ery163
crossref_primary_10_3389_fpls_2019_00400
crossref_primary_10_1007_s00425_015_2331_3
crossref_primary_10_1007_s10265_024_01533_4
crossref_primary_10_1111_ppl_12299
crossref_primary_10_1071_CP13135
crossref_primary_10_1186_s13059_015_0757_3
crossref_primary_10_1186_s12870_014_0371_7
crossref_primary_10_3389_fpls_2023_1094157
crossref_primary_10_1007_s11103_013_0106_4
crossref_primary_10_1080_00380768_2017_1412238
crossref_primary_10_1016_j_tplants_2024_05_008
crossref_primary_10_3390_ijms21218148
crossref_primary_10_1007_s10460_019_09909_2
crossref_primary_10_6090_jarq_56_7
crossref_primary_10_1038_s41588_023_01340_y
crossref_primary_10_1016_j_jgg_2024_09_018
crossref_primary_10_1016_j_tifs_2015_11_006
crossref_primary_10_1111_pce_14272
crossref_primary_10_1017_S1479262115000544
crossref_primary_10_1016_j_cj_2020_01_002
crossref_primary_10_1016_S2095_3119_17_61713_1
crossref_primary_10_1186_s12284_018_0202_9
crossref_primary_10_1371_journal_pone_0241842
crossref_primary_10_1104_pp_114_243949
crossref_primary_10_1038_s41467_022_31555_2
crossref_primary_10_1007_s00122_014_2353_4
crossref_primary_10_1111_nph_15791
crossref_primary_10_3390_agronomy14092094
crossref_primary_10_1007_s00344_020_10161_w
crossref_primary_10_1016_j_cj_2024_08_004
crossref_primary_10_1093_aob_mcs231
crossref_primary_10_1126_science_aag1698
crossref_primary_10_1016_j_cell_2025_01_035
crossref_primary_10_1016_j_xplc_2024_101137
crossref_primary_10_1111_pce_14285
crossref_primary_10_15302_J_FASE_2019283
crossref_primary_10_3390_agriculture12060880
crossref_primary_10_1093_plphys_kiaa036
crossref_primary_10_15302_J_FASE_2019280
crossref_primary_10_1007_s11032_018_0903_1
crossref_primary_10_1111_pce_13191
crossref_primary_10_1002_csc2_21234
crossref_primary_10_1111_pce_13190
crossref_primary_10_1093_jxb_erz074
crossref_primary_10_1111_tpj_14160
crossref_primary_10_1186_s12870_018_1486_z
crossref_primary_10_1007_s11104_015_2565_7
crossref_primary_10_1093_jxb_eraa179
crossref_primary_10_1186_s12870_021_03015_4
crossref_primary_10_1016_j_foodres_2015_09_033
crossref_primary_10_1017_wsc_2018_58
crossref_primary_10_1038_s41467_024_55324_5
crossref_primary_10_1007_s13353_020_00601_4
crossref_primary_10_1093_aob_mcs245
crossref_primary_10_3390_agronomy9020081
crossref_primary_10_1093_gigascience_giz028
crossref_primary_10_3389_fpls_2021_658787
crossref_primary_10_1007_s00425_020_03551_7
crossref_primary_10_1371_journal_pone_0124215
crossref_primary_10_3390_genes10010030
crossref_primary_10_1111_pce_14256
crossref_primary_10_1002_fes3_329
crossref_primary_10_1111_pce_14496
crossref_primary_10_1016_j_semcdb_2019_03_010
crossref_primary_10_1093_hr_uhac011
crossref_primary_10_1146_annurev_arplant_042916_041124
crossref_primary_10_1016_j_plaphy_2024_108657
crossref_primary_10_2135_cropsci2013_11_0755
crossref_primary_10_1016_j_envexpbot_2024_105726
crossref_primary_10_1007_s10681_019_2512_4
crossref_primary_10_1016_j_pbi_2013_02_003
crossref_primary_10_1111_nph_15895
crossref_primary_10_1111_tpj_16598
crossref_primary_10_1007_s00425_023_04158_4
crossref_primary_10_1080_07388551_2020_1825321
crossref_primary_10_3389_fpls_2023_1260005
crossref_primary_10_1007_s13562_020_00589_2
crossref_primary_10_1016_j_pbi_2014_06_009
crossref_primary_10_1002_pld3_192
crossref_primary_10_3390_genes13010108
crossref_primary_10_1007_s12041_014_0424_6
crossref_primary_10_3390_plants10071267
crossref_primary_10_1080_01904167_2023_2191638
crossref_primary_10_1016_j_envexpbot_2023_105431
crossref_primary_10_1007_s00122_015_2578_x
crossref_primary_10_1186_s12284_018_0258_6
crossref_primary_10_1093_jxb_erae431
crossref_primary_10_1016_j_jgg_2016_11_002
crossref_primary_10_1007_s12041_014_0411_y
crossref_primary_10_1073_pnas_2404199121
crossref_primary_10_1007_s00122_020_03697_8
crossref_primary_10_1186_s12284_014_0030_5
crossref_primary_10_1007_s00709_024_01983_6
crossref_primary_10_1016_j_envexpbot_2023_105641
crossref_primary_10_1080_00380768_2019_1647081
crossref_primary_10_1093_plphys_kiac250
crossref_primary_10_1093_jxb_ers354
crossref_primary_10_36899_JAPS_2023_1_0600
crossref_primary_10_1270_jsbbs_16185
crossref_primary_10_1038_488466a
crossref_primary_10_1038_srep13090
crossref_primary_10_1016_j_jplph_2017_10_003
crossref_primary_10_1080_1343943X_2022_2085588
crossref_primary_10_3389_fpls_2020_565339
crossref_primary_10_1007_s00122_017_2931_3
crossref_primary_10_1007_s00122_018_3109_3
crossref_primary_10_1007_s00299_017_2127_y
crossref_primary_10_1002_ejic_201400115
crossref_primary_10_1017_S1479262121000381
crossref_primary_10_1093_aob_mct123
crossref_primary_10_1104_pp_114_248112
crossref_primary_10_1371_journal_pone_0134419
crossref_primary_10_1080_03650340_2013_821197
crossref_primary_10_1111_ppl_14183
crossref_primary_10_1017_S0021859615001252
crossref_primary_10_1186_s12870_019_1949_x
crossref_primary_10_1007_s42994_023_00112_w
crossref_primary_10_1093_plcell_koad326
crossref_primary_10_1111_nph_16554
crossref_primary_10_1186_s12864_016_3129_9
crossref_primary_10_3389_fpls_2022_804058
crossref_primary_10_1007_s13593_020_00661_0
crossref_primary_10_1186_s12870_021_03249_2
crossref_primary_10_1111_pbr_12537
crossref_primary_10_1111_pce_14457
crossref_primary_10_1128_msystems_01124_23
crossref_primary_10_3390_agronomy10030342
crossref_primary_10_1093_plphys_kiad212
crossref_primary_10_3390_genes13030487
crossref_primary_10_1002_fes3_79
crossref_primary_10_1016_j_plaphy_2022_09_018
crossref_primary_10_3109_07388551_2013_783549
crossref_primary_10_1093_plcell_koab275
crossref_primary_10_1371_journal_pbio_1001883
crossref_primary_10_31083_j_fbl2708248
crossref_primary_10_3389_fpls_2023_1226297
crossref_primary_10_1016_j_fcr_2014_04_013
crossref_primary_10_1016_j_jplph_2022_153784
crossref_primary_10_1111_pce_14588
crossref_primary_10_1371_journal_pgen_1004061
crossref_primary_10_3390_genes10020139
crossref_primary_10_1093_aobpla_pls028
crossref_primary_10_1007_s00122_018_3108_4
crossref_primary_10_1016_j_molp_2018_12_016
crossref_primary_10_3390_agronomy13102629
Cites_doi 10.1007/s11032-011-9663-x
10.1371/journal.pbio.1000288
10.2135/cropsci2006.07.0495
10.1073/pnas.93.6.2598
10.1111/j.1467-7652.2009.00415.x
10.1104/pp.103.035527
10.1073/pnas.0603152103
10.1046/j.1365-313X.1999.00419.x
10.1093/genetics/155.2.945
10.1016/j.agsy.2010.12.005
10.1093/pcp/pci153
10.1007/s12284-009-9032-0
10.1038/nature04016
10.1104/pp.110.158501
10.1105/tpc.105.030981
10.1002/j.1460-2075.1987.tb02730.x
10.1007/s11240-006-9157-4
10.1093/genetics/164.4.1567
10.1093/pcp/pch048
10.1104/pp.106.082941
10.1104/pp.010907
10.1007/s00122-009-1235-7
10.1007/s00122-002-1051-9
10.1104/pp.106.087270
10.1038/nature04920
10.3844/ajbbsp.2006.161.169
10.1093/aob/mcq015
10.1104/pp.111.175471
10.1093/bioinformatics/btm308
10.1016/j.plantsci.2010.06.013
10.1007/s12284-009-9028-9
10.1071/FP12015
10.1104/pp.103.027979
10.1105/tpc.108.061655
10.1007/s001220050955
10.1046/j.1439-0523.2001.00561.x
10.1016/j.gloenvcha.2008.10.009
10.1007/s001220051030
10.1007/s11104-004-2026-1
10.1093/mp/ssn047
ContentType Journal Article
Copyright Springer Nature Limited 2012
2015 INIST-CNRS
COPYRIGHT 2012 Nature Publishing Group
Copyright Nature Publishing Group Aug 23, 2012
Copyright_xml – notice: Springer Nature Limited 2012
– notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2012 Nature Publishing Group
– notice: Copyright Nature Publishing Group Aug 23, 2012
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/nature11346
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
ProQuest Natural Science Collection (Hollins)
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database
MEDLINE - Academic

MEDLINE



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 539
ExternalDocumentID 2752632911
A630205795
22914168
26256111
10_1038_nature11346
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Asia
Africa
Japan
GeographicLocations_xml – name: Japan
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.HR
.XZ
00M
07C
08P
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
4.4
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABAWZ
ABDBF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABNNU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACRPL
ACUHS
ACWUS
ADBBV
ADFRT
ADNMO
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGGDT
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L-9
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OHT
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PEA
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
ZKB
~02
~7V
~88
~8M
~G0
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADGHP
ADXHL
AETEA
AEZWR
AFANA
AGQPQ
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
1CY
1VW
354
3EH
3O-
41~
42X
4R4
663
79B
9M8
AAJYS
AAVBQ
ABDPE
ABEFU
ACBNA
ACBTR
ACTDY
ADRHT
AFBBN
AFFDN
AFHIU
AFHKK
AGCDD
AHWEU
AJUXI
BES
BKOMP
DB5
FA8
FAC
HG6
IQODW
J5H
LGEZI
LOTEE
MVM
N4W
NADUK
NFIDA
NXXTH
ODYON
PJZUB
PPXIY
PQGLB
PV9
QS-
R4F
RHI
SKT
TUD
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZGI
ZHY
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
ID FETCH-LOGICAL-c539t-c9748082aa272446122c6e5577e93737f41f1cc9d1c01238185ca8c20617e7d33
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Fri Jul 11 03:39:41 EDT 2025
Sat Aug 23 13:35:21 EDT 2025
Tue Jun 17 21:47:01 EDT 2025
Tue Jun 10 15:32:22 EDT 2025
Fri Jun 27 04:59:35 EDT 2025
Wed Feb 19 01:49:06 EST 2025
Mon Jul 21 09:18:00 EDT 2025
Tue Jul 01 02:56:53 EDT 2025
Thu Apr 24 23:11:38 EDT 2025
Fri Feb 21 02:37:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7412
Keywords Macronutrient(mineral)
Monocotyledones
Grains
Enzyme
Landrace(plant)
Transferases
Deficiency
Non-specific serine/threonine protein kinase
Gene overexpression
Tolerance
Phosphorus
Cereal crop
Quantitative trait loci
Oryza
Gene
Gramineae
Agricultural production
Angiospermae
Spermatophyta
Yield
Genome
Cultivar
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c539t-c9748082aa272446122c6e5577e93737f41f1cc9d1c01238185ca8c20617e7d33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 22914168
PQID 1037972710
PQPubID 40569
PageCount 5
ParticipantIDs proquest_miscellaneous_1035103819
proquest_journals_1037972710
gale_infotracmisc_A630205795
gale_infotraccpiq_630205795
gale_incontextgauss_ISR_A630205795
pubmed_primary_22914168
pascalfrancis_primary_26256111
crossref_citationtrail_10_1038_nature11346
crossref_primary_10_1038_nature11346
springer_journals_10_1038_nature11346
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-08-23
PublicationDateYYYYMMDD 2012-08-23
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-23
  day: 23
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2012
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References DaweDPandeySNelsonAPandeySRice in the Global Economy. Strategic Research and Policy Issues for Food Security2010535
KongZLiMYangWXuWXueYA novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in ricePlant Physiol.2006141137613881:CAS:528:DC%2BD28XosVKit78%3D16778011153391510.1104/pp.106.082941
ChinJHDevelopment and application of gene-based markers for the major rice QTL Phosphorus uptake 1Theor. Appl. Genet.2010120107310861:CAS:528:DC%2BC3cXjtlansrw%3D2003531510.1007/s00122-009-1235-7
ChinJHDeveloping rice with high yield under phosphorus deficiency: Pup1 sequence to applicationPlant Physiol.2011156120212162011ait..book.....C1:CAS:528:DC%2BC3MXptFWksr8%3D21602323313592610.1104/pp.111.175471
ThomsonMJHigh-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platformMol. Breed.20112987588610.1007/s11032-011-9663-x1:CAS:528:DC%2BC38XkvFylsb8%3D
ZhaoYHuYDaiMHuangLZhouD-XThe WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in ricePlant Cell2009217367481:CAS:528:DC%2BD1MXlsFyltbo%3D19258439267169610.1105/tpc.108.061655
WissuwaMCombining a modeling with a genetic approach in establishing associations between genetic and physiological effects in relation to phosphorus uptakePlant Soil200526957681:CAS:528:DC%2BD2MXks1Oisrg%3D10.1007/s11104-004-2026-1
NiJJWuPSenadhiraDHuangNMapping QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.)Theor. Appl. Genet.199897136113691:CAS:528:DyaK1MXltF2msA%3D%3D10.1007/s001220051030
JeffersonRAKavanaghTABevanMWGUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plantsEMBO J.19876390139071:CAS:528:DyaL1cXovV2itQ%3D%3D332768655386710.1002/j.1460-2075.1987.tb02730.x
GowdaVRPWater uptake dynamics under progressive drought stress in diverse accessions of the OryzaSNP panel of rice (Oryza sativa)Func. Plant Bio.20123940241110.1071/FP12015
CurtisMDGrossniklausUA Gateway cloning vector set for high throughput functional analysis of genes in plantaPlant Physiol.20031334624691:CAS:528:DC%2BD3sXosVaqtrw%3D1455577452387210.1104/pp.103.027979
YoshidaSFornoDACockJHGomezKALaboratory Manual for Physiological Studies of Rice1972
OuyangJIdentification and analysis of eight peptide transporter homologs in ricePlant Sci.20101793743821:CAS:528:DC%2BC3cXpvFKrsro%3D10.1016/j.plantsci.2010.06.013
YangXJFinneganPMRegulation of phosphate starvation responses in higher plantsAnn. Bot. (Lond.)20101055135261:CAS:528:DC%2BC3cXks1Gqtro%3D10.1093/aob/mcq015
LancerasJCPantuwanGJongdeeBToojindaTQuantitative trait loci associated with drought tolerance at reproductive stage in ricePlant Physiol.20041353843991:CAS:528:DC%2BD2cXkt12nu7k%3D1512202942939210.1104/pp.103.035527
FalushDStephensMPritchardJKInference of population structure using multilocus genotype data: linked loci and correlated allele frequenciesGenetics2003164156715871:CAS:528:DC%2BD3sXnvF2ntrk%3D12930761146264810.1093/genetics/164.4.1567
CourtoisBRice root architecture: meta-analysis from a drought QTL databaseRice2009211512810.1007/s12284-009-9028-9
MikiDShimamotoKSimple RNAi vectors for stable and transient suppression of gene function in ricePlant Cell Physiol.2004454904951:CAS:528:DC%2BD2cXjsFKhtbs%3D1511172410.1093/pcp/pch048
PritchardJKStephensMDonnellyPInference of population structure using multilocus genotype dataGenetics20001559459591:STN:280:DC%2BD3cvislKrtA%3D%3D1083541210.1093/genetics/155.2.945
HaldrupANaverHSchellerHVThe interaction between plastocyanin and photosystem I is inefficient in transgenic Arabidopsis plants lacking the PSI-N subunit of photosystem IPlant J.1999176896981:CAS:528:DyaK1MXivVSqsrk%3D1023006510.1046/j.1365-313X.1999.00419.x
ScarpellaESimonsEJMeijerAJMultiple regulatory elements contribute to the vascular-specific expression of the rice HD-Zip gene Oshox1 in ArabidopsisPlant Cell Physiol.200546140014101:CAS:528:DC%2BD2MXps1Oms74%3D1596490510.1093/pcp/pci153
HaefeleSMHijmansRJSoil quality in rainfed lowland riceRice Today200983031
HeuerSComparative sequence analyses of the major quantitative trait locus Phosphorus uptake 1 (Pup1) reveal a complex genetic structurePlant Biotechnol. J.200974564711:CAS:528:DC%2BD1MXmvFejtL4%3D1942260310.1111/j.1467-7652.2009.00415.x
ManzanillaDOSubmergence risks and farmers’ preferences: implications for breeding Sub1 rice in Southeast AsiaAgric. Syst.201110433534710.1016/j.agsy.2010.12.005
GregoryPDBarbariSHörzWTranscriptional control of phosphate-regulated genesFood Technol. Biotechnol.2000382953031:CAS:528:DC%2BD3MXltFGqtw%3D%3D
PribilMPesaresiPHertleABarbatoRLeisterDRole of plastid protein phosphatase TAP38 in LHCII dephosphorylation and thylakoid electron flowPLoS Biol.20108e100028820126264281115810.1371/journal.pbio.10002881:CAS:528:DC%2BC3cXhtlGksLk%3D
BernierJKumarARamaiahVSpanerDAtlinGA large-effect QTL for grain yield under reproductive-stage drought stress in upland riceCrop Sci.20074750751810.2135/cropsci2006.07.0495
BradburyPJTASSEL: software for association mapping of complex traits in diverse samplesBioinformatics200723263326351:CAS:528:DC%2BD2sXht1ejtr7F1758682910.1093/bioinformatics/btm308
DardickCChenJRichterTOuyangSRonaldPThe rice kinase database. A phylogenomic database for the rice kinomePlant Physiol.20071435795861:CAS:528:DC%2BD2sXhvFWnsL8%3D17172291180375310.1104/pp.106.087270
BiDChengYTLiXZhangYActivation of plant immune responses by a gain-of-function mutation in an atypical receptor-like kinasePlant Physiol.2010153177117791:CAS:528:DC%2BC3cXhtVCrsrzI20508139292389710.1104/pp.110.158501
CordellDDrangertJOWhiteSThe story of phosphorus: global food security and food for thoughtGlob. Environ. Change20091929230510.1016/j.gloenvcha.2008.10.009
LondoJPChiangYCHungKHChiangTYSchaalBAPhylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativaProc. Natl Acad. Sci. USA2006103957895832006PNAS..103.9578L1:CAS:528:DC%2BD28XmsVOnsLw%3D1676665810.1073/pnas.06031521031480449
Van KauwenberghSJWorld Phosphate Rock Reserves and Resources2010
WissuwaMWegnerJAeNYanoMSubstitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soilTheor. Appl. Genet.20021058908971:CAS:528:DC%2BD38XosVCntLs%3D1258291410.1007/s00122-002-1051-9
WissuwaMAeNGenotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvementPlant Breed.200112043481:CAS:528:DC%2BD3MXitleqsbs%3D10.1046/j.1439-0523.2001.00561.x
LohrmannJHarterKPlant two-component signaling systems and the role of response regulatorsPlant Physiol.20021283633691:CAS:528:DC%2BD38XhsVSrur8%3D11842140154020910.1104/pp.010907
Pariasca-TanakaJSatohKRoseTMauleonRWissuwaMStress response versus stress tolerance: a transcriptome analysis of two rice lines contrasting in tolerance to phosphorus deficiencyRice2009216718510.1007/s12284-009-9032-0
HieiYIshidaYKasaokaKKomariTImproved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciensPlant Cell Tiss. Org.20068723324310.1007/s11240-006-9157-4
BimpongIKDetermination of genetic variability for physiological traits related to drought tolerance in African rice (Oryza glaberrima)J. Plant Breed. Crop. Sci.201136067
WissuwaMYanoMAeNMapping of QTLs for phosphorus-deficiency tolerance in rice (Oryza sativa L.)Theor. Appl. Genet.1998977777831:CAS:528:DyaK1cXotVahtrY%3D10.1007/s001220050955
XuKSub1A is an ethylene-responsive-factor-like gene that confers submergence tolerance to riceNature20064427057082006Natur.442..705X1:CAS:528:DC%2BD28XnvVynsrs%3D1690020010.1038/nature04920
InukaiYCrown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signalingPlant Cell200517138713961:CAS:528:DC%2BD2MXksVKksrY%3D15829602109176210.1105/tpc.105.030981
GomezMSMapping QTLs linked to physio-morphological and plant production traits under drought stress in rice (Oryza sativa L.) in the target environmentAm. J. Biochem. Biotechnol.2006216116910.3844/ajbbsp.2006.161.169
VijSGiriJDansanaPKKapoorSTyagiAKThe receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: organization, phylogenetic relationship, and expression during development and stressMol. Plant200817327501:CAS:528:DC%2BD1cXhtlWiu7fE1982557710.1093/mp/ssn047
HaefeleSMHijmansRJAggarwalPKLadhaJKSinghRKDevakumarCHardyBScience, Technology, and Trade for Peace and Prosperity: Proceedings of the 26th International Rice Research Conference, New Delhi, India.2007297308
WangXZafianPChoudharyMLawtonMThe PR5K receptor protein kinase from Arabidopsis thaliana is structurally related to a family of plant defense proteinsProc. Natl Acad. Sci. USA199693259826021996PNAS...93.2598W1:CAS:528:DyaK28XhvVSku70%3D863792010.1073/pnas.93.6.259839843
BonardiVPhotosystem II core phosphorylation and photosynthetic acclimation require two different protein kinasesNature2005437117911822005Natur.437.1179B1:CAS:528:DC%2BD2MXhtFahtL%2FN1623744610.1038/nature04016
IK Bimpong (BFnature11346_CR38) 2011; 3
M Wissuwa (BFnature11346_CR3) 2001; 120
D Cordell (BFnature11346_CR12) 2009; 19
PJ Bradbury (BFnature11346_CR46) 2007; 23
SM Haefele (BFnature11346_CR9) 2007
C Dardick (BFnature11346_CR20) 2007; 143
Y Hiei (BFnature11346_CR34) 2006; 87
M Wissuwa (BFnature11346_CR2) 1998; 97
M Wissuwa (BFnature11346_CR17) 2002; 105
VRP Gowda (BFnature11346_CR16) 2012; 39
JC Lanceras (BFnature11346_CR41) 2004; 135
JJ Ni (BFnature11346_CR42) 1998; 97
E Scarpella (BFnature11346_CR28) 2005; 46
Y Zhao (BFnature11346_CR26) 2009; 21
D Dawe (BFnature11346_CR11) 2010
Y Inukai (BFnature11346_CR25) 2005; 17
DO Manzanilla (BFnature11346_CR15) 2011; 104
Z Kong (BFnature11346_CR29) 2006; 141
J Lohrmann (BFnature11346_CR27) 2002; 128
JP Londo (BFnature11346_CR13) 2006; 103
SM Haefele (BFnature11346_CR10) 2009; 8
MS Gomez (BFnature11346_CR40) 2006; 2
J Ouyang (BFnature11346_CR30) 2010; 179
MJ Thomson (BFnature11346_CR43) 2011; 29
JK Pritchard (BFnature11346_CR44) 2000; 155
SJ Van Kauwenbergh (BFnature11346_CR1) 2010
S Yoshida (BFnature11346_CR35) 1972
M Wissuwa (BFnature11346_CR4) 2005; 269
K Xu (BFnature11346_CR14) 2006; 442
RA Jefferson (BFnature11346_CR36) 1987; 6
JH Chin (BFnature11346_CR7) 2010; 120
S Heuer (BFnature11346_CR6) 2009; 7
X Wang (BFnature11346_CR22) 1996; 93
A Haldrup (BFnature11346_CR31) 1999; 17
XJ Yang (BFnature11346_CR19) 2010; 105
J Pariasca-Tanaka (BFnature11346_CR5) 2009; 2
JH Chin (BFnature11346_CR8) 2011; 156
V Bonardi (BFnature11346_CR24) 2005; 437
J Bernier (BFnature11346_CR37) 2007; 47
B Courtois (BFnature11346_CR39) 2009; 2
MD Curtis (BFnature11346_CR33) 2003; 133
S Vij (BFnature11346_CR21) 2008; 1
D Bi (BFnature11346_CR23) 2010; 153
D Miki (BFnature11346_CR47) 2004; 45
D Falush (BFnature11346_CR45) 2003; 164
PD Gregory (BFnature11346_CR18) 2000; 38
M Pribil (BFnature11346_CR32) 2010; 8
12582914 - Theor Appl Genet. 2002 Nov;105(6-7):890-897
15964905 - Plant Cell Physiol. 2005 Aug;46(8):1400-10
16900200 - Nature. 2006 Aug 10;442(7103):705-8
8637920 - Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2598-602
12930761 - Genetics. 2003 Aug;164(4):1567-87
14555774 - Plant Physiol. 2003 Oct;133(2):462-9
20126264 - PLoS Biol. 2010 Jan 26;8(1):e1000288
21602323 - Plant Physiol. 2011 Jul;156(3):1202-16
3327686 - EMBO J. 1987 Dec 20;6(13):3901-7
17172291 - Plant Physiol. 2007 Feb;143(2):579-86
20181569 - Ann Bot. 2010 Apr;105(4):513-26
10835412 - Genetics. 2000 Jun;155(2):945-59
16237446 - Nature. 2005 Oct 20;437(7062):1179-82
19825577 - Mol Plant. 2008 Sep;1(5):732-50
16766658 - Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9578-83
17586829 - Bioinformatics. 2007 Oct 1;23(19):2633-5
20508139 - Plant Physiol. 2010 Aug;153(4):1771-9
19258439 - Plant Cell. 2009 Mar;21(3):736-48
15111724 - Plant Cell Physiol. 2004 Apr;45(4):490-5
15829602 - Plant Cell. 2005 May;17(5):1387-96
11842140 - Plant Physiol. 2002 Feb;128(2):363-9
22914160 - Nature. 2012 Aug 23;488(7412):466-7
19422603 - Plant Biotechnol J. 2009 Jun;7(5):456-7
10230065 - Plant J. 1999 Mar;17(6):689-98
20035315 - Theor Appl Genet. 2010 Apr;120(6):1073-86
15122029 - Plant Physiol. 2004 May;135(1):384-99
16778011 - Plant Physiol. 2006 Aug;141(4):1376-88
References_xml – reference: WissuwaMWegnerJAeNYanoMSubstitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soilTheor. Appl. Genet.20021058908971:CAS:528:DC%2BD38XosVCntLs%3D1258291410.1007/s00122-002-1051-9
– reference: DaweDPandeySNelsonAPandeySRice in the Global Economy. Strategic Research and Policy Issues for Food Security2010535
– reference: ZhaoYHuYDaiMHuangLZhouD-XThe WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in ricePlant Cell2009217367481:CAS:528:DC%2BD1MXlsFyltbo%3D19258439267169610.1105/tpc.108.061655
– reference: FalushDStephensMPritchardJKInference of population structure using multilocus genotype data: linked loci and correlated allele frequenciesGenetics2003164156715871:CAS:528:DC%2BD3sXnvF2ntrk%3D12930761146264810.1093/genetics/164.4.1567
– reference: InukaiYCrown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signalingPlant Cell200517138713961:CAS:528:DC%2BD2MXksVKksrY%3D15829602109176210.1105/tpc.105.030981
– reference: ThomsonMJHigh-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platformMol. Breed.20112987588610.1007/s11032-011-9663-x1:CAS:528:DC%2BC38XkvFylsb8%3D
– reference: GowdaVRPWater uptake dynamics under progressive drought stress in diverse accessions of the OryzaSNP panel of rice (Oryza sativa)Func. Plant Bio.20123940241110.1071/FP12015
– reference: ScarpellaESimonsEJMeijerAJMultiple regulatory elements contribute to the vascular-specific expression of the rice HD-Zip gene Oshox1 in ArabidopsisPlant Cell Physiol.200546140014101:CAS:528:DC%2BD2MXps1Oms74%3D1596490510.1093/pcp/pci153
– reference: VijSGiriJDansanaPKKapoorSTyagiAKThe receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: organization, phylogenetic relationship, and expression during development and stressMol. Plant200817327501:CAS:528:DC%2BD1cXhtlWiu7fE1982557710.1093/mp/ssn047
– reference: MikiDShimamotoKSimple RNAi vectors for stable and transient suppression of gene function in ricePlant Cell Physiol.2004454904951:CAS:528:DC%2BD2cXjsFKhtbs%3D1511172410.1093/pcp/pch048
– reference: GregoryPDBarbariSHörzWTranscriptional control of phosphate-regulated genesFood Technol. Biotechnol.2000382953031:CAS:528:DC%2BD3MXltFGqtw%3D%3D
– reference: HieiYIshidaYKasaokaKKomariTImproved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciensPlant Cell Tiss. Org.20068723324310.1007/s11240-006-9157-4
– reference: HaefeleSMHijmansRJSoil quality in rainfed lowland riceRice Today200983031
– reference: GomezMSMapping QTLs linked to physio-morphological and plant production traits under drought stress in rice (Oryza sativa L.) in the target environmentAm. J. Biochem. Biotechnol.2006216116910.3844/ajbbsp.2006.161.169
– reference: LohrmannJHarterKPlant two-component signaling systems and the role of response regulatorsPlant Physiol.20021283633691:CAS:528:DC%2BD38XhsVSrur8%3D11842140154020910.1104/pp.010907
– reference: CurtisMDGrossniklausUA Gateway cloning vector set for high throughput functional analysis of genes in plantaPlant Physiol.20031334624691:CAS:528:DC%2BD3sXosVaqtrw%3D1455577452387210.1104/pp.103.027979
– reference: BimpongIKDetermination of genetic variability for physiological traits related to drought tolerance in African rice (Oryza glaberrima)J. Plant Breed. Crop. Sci.201136067
– reference: WissuwaMAeNGenotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvementPlant Breed.200112043481:CAS:528:DC%2BD3MXitleqsbs%3D10.1046/j.1439-0523.2001.00561.x
– reference: WissuwaMCombining a modeling with a genetic approach in establishing associations between genetic and physiological effects in relation to phosphorus uptakePlant Soil200526957681:CAS:528:DC%2BD2MXks1Oisrg%3D10.1007/s11104-004-2026-1
– reference: PribilMPesaresiPHertleABarbatoRLeisterDRole of plastid protein phosphatase TAP38 in LHCII dephosphorylation and thylakoid electron flowPLoS Biol.20108e100028820126264281115810.1371/journal.pbio.10002881:CAS:528:DC%2BC3cXhtlGksLk%3D
– reference: ChinJHDeveloping rice with high yield under phosphorus deficiency: Pup1 sequence to applicationPlant Physiol.2011156120212162011ait..book.....C1:CAS:528:DC%2BC3MXptFWksr8%3D21602323313592610.1104/pp.111.175471
– reference: NiJJWuPSenadhiraDHuangNMapping QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.)Theor. Appl. Genet.199897136113691:CAS:528:DyaK1MXltF2msA%3D%3D10.1007/s001220051030
– reference: HeuerSComparative sequence analyses of the major quantitative trait locus Phosphorus uptake 1 (Pup1) reveal a complex genetic structurePlant Biotechnol. J.200974564711:CAS:528:DC%2BD1MXmvFejtL4%3D1942260310.1111/j.1467-7652.2009.00415.x
– reference: DardickCChenJRichterTOuyangSRonaldPThe rice kinase database. A phylogenomic database for the rice kinomePlant Physiol.20071435795861:CAS:528:DC%2BD2sXhvFWnsL8%3D17172291180375310.1104/pp.106.087270
– reference: Van KauwenberghSJWorld Phosphate Rock Reserves and Resources2010
– reference: ManzanillaDOSubmergence risks and farmers’ preferences: implications for breeding Sub1 rice in Southeast AsiaAgric. Syst.201110433534710.1016/j.agsy.2010.12.005
– reference: YangXJFinneganPMRegulation of phosphate starvation responses in higher plantsAnn. Bot. (Lond.)20101055135261:CAS:528:DC%2BC3cXks1Gqtro%3D10.1093/aob/mcq015
– reference: LancerasJCPantuwanGJongdeeBToojindaTQuantitative trait loci associated with drought tolerance at reproductive stage in ricePlant Physiol.20041353843991:CAS:528:DC%2BD2cXkt12nu7k%3D1512202942939210.1104/pp.103.035527
– reference: XuKSub1A is an ethylene-responsive-factor-like gene that confers submergence tolerance to riceNature20064427057082006Natur.442..705X1:CAS:528:DC%2BD28XnvVynsrs%3D1690020010.1038/nature04920
– reference: ChinJHDevelopment and application of gene-based markers for the major rice QTL Phosphorus uptake 1Theor. Appl. Genet.2010120107310861:CAS:528:DC%2BC3cXjtlansrw%3D2003531510.1007/s00122-009-1235-7
– reference: BiDChengYTLiXZhangYActivation of plant immune responses by a gain-of-function mutation in an atypical receptor-like kinasePlant Physiol.2010153177117791:CAS:528:DC%2BC3cXhtVCrsrzI20508139292389710.1104/pp.110.158501
– reference: CourtoisBRice root architecture: meta-analysis from a drought QTL databaseRice2009211512810.1007/s12284-009-9028-9
– reference: OuyangJIdentification and analysis of eight peptide transporter homologs in ricePlant Sci.20101793743821:CAS:528:DC%2BC3cXpvFKrsro%3D10.1016/j.plantsci.2010.06.013
– reference: JeffersonRAKavanaghTABevanMWGUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plantsEMBO J.19876390139071:CAS:528:DyaL1cXovV2itQ%3D%3D332768655386710.1002/j.1460-2075.1987.tb02730.x
– reference: PritchardJKStephensMDonnellyPInference of population structure using multilocus genotype dataGenetics20001559459591:STN:280:DC%2BD3cvislKrtA%3D%3D1083541210.1093/genetics/155.2.945
– reference: HaefeleSMHijmansRJAggarwalPKLadhaJKSinghRKDevakumarCHardyBScience, Technology, and Trade for Peace and Prosperity: Proceedings of the 26th International Rice Research Conference, New Delhi, India.2007297308
– reference: BonardiVPhotosystem II core phosphorylation and photosynthetic acclimation require two different protein kinasesNature2005437117911822005Natur.437.1179B1:CAS:528:DC%2BD2MXhtFahtL%2FN1623744610.1038/nature04016
– reference: WangXZafianPChoudharyMLawtonMThe PR5K receptor protein kinase from Arabidopsis thaliana is structurally related to a family of plant defense proteinsProc. Natl Acad. Sci. USA199693259826021996PNAS...93.2598W1:CAS:528:DyaK28XhvVSku70%3D863792010.1073/pnas.93.6.259839843
– reference: YoshidaSFornoDACockJHGomezKALaboratory Manual for Physiological Studies of Rice1972
– reference: HaldrupANaverHSchellerHVThe interaction between plastocyanin and photosystem I is inefficient in transgenic Arabidopsis plants lacking the PSI-N subunit of photosystem IPlant J.1999176896981:CAS:528:DyaK1MXivVSqsrk%3D1023006510.1046/j.1365-313X.1999.00419.x
– reference: KongZLiMYangWXuWXueYA novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in ricePlant Physiol.2006141137613881:CAS:528:DC%2BD28XosVKit78%3D16778011153391510.1104/pp.106.082941
– reference: WissuwaMYanoMAeNMapping of QTLs for phosphorus-deficiency tolerance in rice (Oryza sativa L.)Theor. Appl. Genet.1998977777831:CAS:528:DyaK1cXotVahtrY%3D10.1007/s001220050955
– reference: LondoJPChiangYCHungKHChiangTYSchaalBAPhylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativaProc. Natl Acad. Sci. USA2006103957895832006PNAS..103.9578L1:CAS:528:DC%2BD28XmsVOnsLw%3D1676665810.1073/pnas.06031521031480449
– reference: BradburyPJTASSEL: software for association mapping of complex traits in diverse samplesBioinformatics200723263326351:CAS:528:DC%2BD2sXht1ejtr7F1758682910.1093/bioinformatics/btm308
– reference: BernierJKumarARamaiahVSpanerDAtlinGA large-effect QTL for grain yield under reproductive-stage drought stress in upland riceCrop Sci.20074750751810.2135/cropsci2006.07.0495
– reference: Pariasca-TanakaJSatohKRoseTMauleonRWissuwaMStress response versus stress tolerance: a transcriptome analysis of two rice lines contrasting in tolerance to phosphorus deficiencyRice2009216718510.1007/s12284-009-9032-0
– reference: CordellDDrangertJOWhiteSThe story of phosphorus: global food security and food for thoughtGlob. Environ. Change20091929230510.1016/j.gloenvcha.2008.10.009
– volume: 29
  start-page: 875
  year: 2011
  ident: BFnature11346_CR43
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-011-9663-x
– volume: 8
  start-page: e1000288
  year: 2010
  ident: BFnature11346_CR32
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000288
– volume: 47
  start-page: 507
  year: 2007
  ident: BFnature11346_CR37
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2006.07.0495
– volume: 93
  start-page: 2598
  year: 1996
  ident: BFnature11346_CR22
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.93.6.2598
– volume: 7
  start-page: 456
  year: 2009
  ident: BFnature11346_CR6
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2009.00415.x
– volume: 135
  start-page: 384
  year: 2004
  ident: BFnature11346_CR41
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.035527
– volume: 103
  start-page: 9578
  year: 2006
  ident: BFnature11346_CR13
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0603152103
– volume: 17
  start-page: 689
  year: 1999
  ident: BFnature11346_CR31
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1999.00419.x
– start-page: 5
  volume-title: Rice in the Global Economy. Strategic Research and Policy Issues for Food Security
  year: 2010
  ident: BFnature11346_CR11
– volume: 155
  start-page: 945
  year: 2000
  ident: BFnature11346_CR44
  publication-title: Genetics
  doi: 10.1093/genetics/155.2.945
– volume: 104
  start-page: 335
  year: 2011
  ident: BFnature11346_CR15
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2010.12.005
– volume: 46
  start-page: 1400
  year: 2005
  ident: BFnature11346_CR28
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pci153
– volume: 2
  start-page: 167
  year: 2009
  ident: BFnature11346_CR5
  publication-title: Rice
  doi: 10.1007/s12284-009-9032-0
– volume: 437
  start-page: 1179
  year: 2005
  ident: BFnature11346_CR24
  publication-title: Nature
  doi: 10.1038/nature04016
– volume: 153
  start-page: 1771
  year: 2010
  ident: BFnature11346_CR23
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.158501
– volume: 17
  start-page: 1387
  year: 2005
  ident: BFnature11346_CR25
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.030981
– volume: 6
  start-page: 3901
  year: 1987
  ident: BFnature11346_CR36
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1987.tb02730.x
– volume: 87
  start-page: 233
  year: 2006
  ident: BFnature11346_CR34
  publication-title: Plant Cell Tiss. Org.
  doi: 10.1007/s11240-006-9157-4
– volume: 164
  start-page: 1567
  year: 2003
  ident: BFnature11346_CR45
  publication-title: Genetics
  doi: 10.1093/genetics/164.4.1567
– volume: 45
  start-page: 490
  year: 2004
  ident: BFnature11346_CR47
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pch048
– volume: 8
  start-page: 30
  year: 2009
  ident: BFnature11346_CR10
  publication-title: Rice Today
– volume-title: Laboratory Manual for Physiological Studies of Rice
  year: 1972
  ident: BFnature11346_CR35
– volume: 141
  start-page: 1376
  year: 2006
  ident: BFnature11346_CR29
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.082941
– start-page: 297
  volume-title: Science, Technology, and Trade for Peace and Prosperity: Proceedings of the 26th International Rice Research Conference, New Delhi, India.
  year: 2007
  ident: BFnature11346_CR9
– volume: 128
  start-page: 363
  year: 2002
  ident: BFnature11346_CR27
  publication-title: Plant Physiol.
  doi: 10.1104/pp.010907
– volume: 120
  start-page: 1073
  year: 2010
  ident: BFnature11346_CR7
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-009-1235-7
– volume: 105
  start-page: 890
  year: 2002
  ident: BFnature11346_CR17
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-002-1051-9
– volume: 143
  start-page: 579
  year: 2007
  ident: BFnature11346_CR20
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.087270
– volume: 442
  start-page: 705
  year: 2006
  ident: BFnature11346_CR14
  publication-title: Nature
  doi: 10.1038/nature04920
– volume: 2
  start-page: 161
  year: 2006
  ident: BFnature11346_CR40
  publication-title: Am. J. Biochem. Biotechnol.
  doi: 10.3844/ajbbsp.2006.161.169
– volume-title: World Phosphate Rock Reserves and Resources
  year: 2010
  ident: BFnature11346_CR1
– volume: 105
  start-page: 513
  year: 2010
  ident: BFnature11346_CR19
  publication-title: Ann. Bot. (Lond.)
  doi: 10.1093/aob/mcq015
– volume: 156
  start-page: 1202
  year: 2011
  ident: BFnature11346_CR8
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.175471
– volume: 23
  start-page: 2633
  year: 2007
  ident: BFnature11346_CR46
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm308
– volume: 179
  start-page: 374
  year: 2010
  ident: BFnature11346_CR30
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2010.06.013
– volume: 2
  start-page: 115
  year: 2009
  ident: BFnature11346_CR39
  publication-title: Rice
  doi: 10.1007/s12284-009-9028-9
– volume: 39
  start-page: 402
  year: 2012
  ident: BFnature11346_CR16
  publication-title: Func. Plant Bio.
  doi: 10.1071/FP12015
– volume: 133
  start-page: 462
  year: 2003
  ident: BFnature11346_CR33
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.027979
– volume: 21
  start-page: 736
  year: 2009
  ident: BFnature11346_CR26
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.061655
– volume: 97
  start-page: 777
  year: 1998
  ident: BFnature11346_CR2
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s001220050955
– volume: 120
  start-page: 43
  year: 2001
  ident: BFnature11346_CR3
  publication-title: Plant Breed.
  doi: 10.1046/j.1439-0523.2001.00561.x
– volume: 19
  start-page: 292
  year: 2009
  ident: BFnature11346_CR12
  publication-title: Glob. Environ. Change
  doi: 10.1016/j.gloenvcha.2008.10.009
– volume: 3
  start-page: 60
  year: 2011
  ident: BFnature11346_CR38
  publication-title: J. Plant Breed. Crop. Sci.
– volume: 97
  start-page: 1361
  year: 1998
  ident: BFnature11346_CR42
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s001220051030
– volume: 38
  start-page: 295
  year: 2000
  ident: BFnature11346_CR18
  publication-title: Food Technol. Biotechnol.
– volume: 269
  start-page: 57
  year: 2005
  ident: BFnature11346_CR4
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-2026-1
– volume: 1
  start-page: 732
  year: 2008
  ident: BFnature11346_CR21
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssn047
– reference: 17172291 - Plant Physiol. 2007 Feb;143(2):579-86
– reference: 19422603 - Plant Biotechnol J. 2009 Jun;7(5):456-7
– reference: 16778011 - Plant Physiol. 2006 Aug;141(4):1376-88
– reference: 19258439 - Plant Cell. 2009 Mar;21(3):736-48
– reference: 16237446 - Nature. 2005 Oct 20;437(7062):1179-82
– reference: 16900200 - Nature. 2006 Aug 10;442(7103):705-8
– reference: 11842140 - Plant Physiol. 2002 Feb;128(2):363-9
– reference: 20035315 - Theor Appl Genet. 2010 Apr;120(6):1073-86
– reference: 15122029 - Plant Physiol. 2004 May;135(1):384-99
– reference: 3327686 - EMBO J. 1987 Dec 20;6(13):3901-7
– reference: 22914160 - Nature. 2012 Aug 23;488(7412):466-7
– reference: 12582914 - Theor Appl Genet. 2002 Nov;105(6-7):890-897
– reference: 8637920 - Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2598-602
– reference: 14555774 - Plant Physiol. 2003 Oct;133(2):462-9
– reference: 19825577 - Mol Plant. 2008 Sep;1(5):732-50
– reference: 16766658 - Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9578-83
– reference: 20181569 - Ann Bot. 2010 Apr;105(4):513-26
– reference: 17586829 - Bioinformatics. 2007 Oct 1;23(19):2633-5
– reference: 15111724 - Plant Cell Physiol. 2004 Apr;45(4):490-5
– reference: 10835412 - Genetics. 2000 Jun;155(2):945-59
– reference: 20508139 - Plant Physiol. 2010 Aug;153(4):1771-9
– reference: 15829602 - Plant Cell. 2005 May;17(5):1387-96
– reference: 21602323 - Plant Physiol. 2011 Jul;156(3):1202-16
– reference: 12930761 - Genetics. 2003 Aug;164(4):1567-87
– reference: 20126264 - PLoS Biol. 2010 Jan 26;8(1):e1000288
– reference: 10230065 - Plant J. 1999 Mar;17(6):689-98
– reference: 15964905 - Plant Cell Physiol. 2005 Aug;46(8):1400-10
SSID ssj0005174
Score 2.5881803
Snippet A gene that is present in phosphate-deficiency-tolerant rice but absent from modern rice varieties is characterized and named phosphorus-starvation tolerance 1...
As an essential macroelement for all living cells, phosphorus is indispensable in agricultural production systems. Natural phosphorus reserves are limited, and...
SourceID proquest
gale
pubmed
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 535
SubjectTerms 631/208/729/743
631/61/447/2311
704/172
Adaptation, Physiological - genetics
Agricultural production
Agronomy. Soil science and plant productions
Biological and medical sciences
Breeding
Cloning
Droughts
Fertilizers
Fundamental and applied biological sciences. Psychology
Gene expression
Gene mapping
Generalities. Genetics. Plant material
Genes, Plant - genetics
Genetic resources, diversity
Genetics
Genetics and breeding of economic plants
Genome, Plant - genetics
Genomes
Humanities and Social Sciences
Interspecific and intergeneric hybridization, introgressions
Kinases
letter
Molecular Sequence Data
multidisciplinary
Oryza - classification
Oryza - enzymology
Oryza - genetics
Oryza - physiology
Phosphorus
Phosphorus (Nutrient)
Phosphorus - deficiency
Phosphorylation
Physiological aspects
Plant breeding: fundamental aspects and methodology
Plant growth
Plant material
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Roots - enzymology
Plant Roots - genetics
Plant Roots - growth & development
Plants, Genetically Modified
Protein kinases
Protein Kinases - genetics
Protein Kinases - metabolism
Proteins
Quantitative Trait Loci - genetics
Rice
Science
Submergence
Title The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency
URI https://link.springer.com/article/10.1038/nature11346
https://www.ncbi.nlm.nih.gov/pubmed/22914168
https://www.proquest.com/docview/1037972710
https://www.proquest.com/docview/1035103819
Volume 488
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB-0RRBEbNW6th5RKqiw9JJs9uNJaulZBUupFg5flmw2q4dld3u5-_-d2c192eLD7ktmsyGZZH5JZn4DcFgImalM6FApE4WI_4sw1ZEMowLhcFnxtCd7_nYen11FX8dq7A_cnHerXKyJ3UJdNobOyI8oni1DY8uHH9ubkLJG0e2qT6FxH7aJuoxcupJxsnLx-IeF2cfnDWV61NNmci4J-a5ZJL8uP2q1wz6q-uQWd6HPWzennUEaPYHHHkmy437od-CerXfhQefRadwu7PhZ69g7Ty39_in8RK1gHTXDpGZ_JjWaMHaB8O-aM4ozYbOpLif96SAjtiFmuoBAx1DEUistayrW_m4cPtO5Y6UlBgoK33wGV6PTHydnoc-uEBols1locCeRIgDQWiRo4xHpCBNbpZLEImSRSRXxihuTldwQ7iLDbnRqBGEem5RSPoetuqntC2Bcq2GsK6t1UUSSdiCZTmgxKIdCxzIK4MOih3PjqccpA8Z13l2ByzRfG44ADpfCbc-4cbfYGxqqnDgsanKS-aXnzuVfvl_mx7FEEKySTAWw74WqBn9oTDu5yddKDzZKcWKZjY8HG1qwbI3APWOMNgK_X6hF7me-y1d6GsDrZTFVTd5stW3mnQwRGSIYC2CvV6dV5SLjCJLTAN4u9Gu98lv98PL_jdiHhwjxBJ2CC3kAW7Pp3L5CGDUrBt1cwXd6wuk9-jyA7U-n5xeXfwEXNBt5
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFD6UiiiI2HobW2uUFlQYOpNM5vIgUtSyay-ItrD4MmYymXaxzGw3u4h_yt_oOXPZiy2-9WGfksmG5OR8X5JzvgBsZ1wkMuHKlVIHLvL_zI1VINwgQzqcF37ciD0fHYe90-DzQA5W4E-XC0NhlZ1PrB11Xmk6I9-lfLYEwdb33o8uXXo1im5Xuyc0GrM4ML9_4ZbNvut_xPnd4Xz_08mHntu-KuBqKZKJq5FBxwh8SvEIsQ0RnuvQSBlFBqFaREXgF77WSe5r4hsEaFrFmhPWmyinA1B0-bcQeD1aUdEgmoeU_KP63OYDeiLebWQ6fV8Q015AwBYH7o2UxTkpmsc0rmO7V25qawDcfwD3W-bK9hpTW4MVU67D7TqCVNt1WGu9hGWvWynrNw_hO1ohq6UghiX7OSwRMtkXpJsXPqO8FjYZq3zYnEYyUjdiuk5AtAyrGOqlYVXBRueVxd94alluSPGC0kUfwemNjPtjWC2r0jwF5ivphaowSmVZIGjHk6iInE_ucRWKwIG33QinupU6pxc3LtL6yl3E6cJ0OLA9qzxqFD6ur_aKpiolzYySgnLO1NTatP_ta7oXCiTdMkqkAxttpaLCP9R6NLxMF0o3l0pxIeulj7eWrGDWG4571BAxCb_vzCJtPY1N5-vCgZezYmqaoudKU03rOiSciOTPgSeNOc0b54mPpDx2YKezr8XGr4zDs_934gXc6Z0cHaaH_eODDbiL9JLTCTwXm7A6GU_Nc6Rwk2yrXjcMftz0Qv0LE2tSOw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFD6UiiKI2HobW2uUFlQYdpNM5vIgUqxL12opamHpy5jJZHSxzEx3dhH_mr_Oc-ayF1t868M-JZMNyTnn-3I5XwB2EyEjFQntKmU8F_l_4obak66XIB1OMx42Ys-fjv3DU-_DSI3W4E-XC0PXKruYWAfqtDC0R96jfLYIwZb3e1l7LeLkYPC2vHDpBSk6ae2e02hM5Mj-_oXLt-rN8ADnek-Iwfuv7w7d9oUB1ygZTV2DbDpEENRaBIhziPbC-FapILAI2zLIPJ5xY6KUG-IeBG5Gh0YQ7tsgpc1QDP83Aqk4-VgwChbXS_5RgG5zA_sy7DWSnZxLYt1LaNhiwp1SVzg_WfOwxlXM99KpbQ2Gg3twt2WxbL8xuw1Ys_km3Kxvk5pqEzbaiFGxl62s9av7cIYWyWpZiHHOfo5zhE92gtTznDPKcWHTiU7Hzc4kI6UjZupkxIphFUu9tKzIWPmjqPA3mVUstaR-QamjD-D0Wsb9IaznRW4fA-Na9X2dWa2TxJO0-ol0QIEo7QvtS8-B190Ix6aVPafXN87j-vhdhvHSdDiwO69cNmofV1d7QVMVk35GTpb4Xc-qKh5--Rzv-xIJuAoi5cBWWykr8A-NKccX8VLp9kopOrVZ-XhnxQrmvRG4XvURn_D7ziziNupU8cJHHHg-L6am6SZdbotZXYdEFJEIOvCoMadF4yLiSNBDB_Y6-1pu_NI4PPl_J57BLXTR-OPw-GgLbiPTFLQZL-Q2rE8nM_sU2dw02andhsG36_bTvyLdVnE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+protein+kinase+Pstol1+from+traditional+rice+confers+tolerance+of+phosphorus+deficiency&rft.jtitle=Nature+%28London%29&rft.au=Gamuyao%2C+Rico&rft.au=Chin%2C+Joong+Hyoun&rft.au=Pariasca-Tanaka%2C+Juan&rft.au=Pesaresi%2C+Paolo&rft.date=2012-08-23&rft.issn=1476-4687&rft.eissn=1476-4687&rft.volume=488&rft.issue=7412&rft.spage=535&rft_id=info:doi/10.1038%2Fnature11346&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon