The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency
A gene that is present in phosphate-deficiency-tolerant rice but absent from modern rice varieties is characterized and named phosphorus-starvation tolerance 1 ( PSTOL1 ); overexpression of PSTOL1 in rice species that naturally lack this gene confers tolerance to low phosphorus conditions, a finding...
Saved in:
Published in | Nature (London) Vol. 488; no. 7412; pp. 535 - 539 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.08.2012
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A gene that is present in phosphate-deficiency-tolerant rice but absent from modern rice varieties is characterized and named phosphorus-starvation tolerance 1 (
PSTOL1
); overexpression of
PSTOL1
in rice species that naturally lack this gene confers tolerance to low phosphorus conditions, a finding that may have implications for agricultural productivity in rice-growing countries.
Rice tolerant to low-phosphate soils
Rice is a staple crop for much of Asia. Rice yields in the region are low, however, with limited availability of phosphorous fertilizers and the susceptibility of rain-fed cultivation systems to climate variation among the problems. In this study, Sigrid Heuer and colleagues report the characterization of a gene called phosphorus-starvation tolerance 1 (
PSTOL1
), which confers tolerance to phosphorus deficiency. The gene is present in the traditional rice variety Kasalath but absent from the rice reference genome and other phosphorus-starvation-intolerant modern varieties. PSTOL1 is shown to act as an enhancer of early root growth, thereby enabling plants to acquire more phosphorus and other nutrients. Introduction of this gene into locally adapted rice varieties should enhance productivity under low-phosphorus conditions.
As an essential macroelement for all living cells, phosphorus is indispensable in agricultural production systems. Natural phosphorus reserves are limited
1
, and it is therefore important to develop phosphorus-efficient crops. A major quantitative trait locus for phosphorus-deficiency tolerance,
Pup1
, was identified in the traditional
aus
-type rice variety Kasalath about a decade ago
2
,
3
. However, its functional mechanism remained elusive
4
,
5
until the locus was sequenced, showing the presence of a
Pup1
-specific protein kinase gene
6
, which we have named phosphorus-starvation tolerance 1 (
PSTOL1
). This gene is absent from the rice reference genome and other phosphorus-starvation-intolerant modern varieties
7
,
8
. Here we show that overexpression of
PSTOL1
in such varieties significantly enhances grain yield in phosphorus-deficient soil. Further analyses show that
PSTOL1
acts as an enhancer of early root growth, thereby enabling plants to acquire more phosphorus and other nutrients. The absence of
PSTOL1
and other genes—for example, the submergence-tolerance gene
SUB1A
—from modern rice varieties underlines the importance of conserving and exploring traditional germplasm. Introgression of this quantitative trait locus into locally adapted rice varieties in Asia and Africa is expected to considerably enhance productivity under low phosphorus conditions. |
---|---|
AbstractList | As an essential macroelement for all living cells, phosphorus is indispensable in agricultural production systems. Natural phosphorus reserves are limited, and it is therefore important to develop phosphorus-efficient crops. A major quantitative trait locus for phosphorus-deficiency tolerance, Pup1, was identified in the traditional aus-type rice variety Kasalath about a decade ago. However, its functional mechanism remained elusive until the locus was sequenced, showing the presence of a Pup1-specific protein kinase gene, which we have named phosphorus-starvation tolerance 1 (PSTOL1). This gene is absent from the rice reference genome and other phosphorus-starvation-intolerant modern varieties. Here we show that overexpression of PSTOL1 in such varieties significantly enhances grain yield in phosphorus-deficient soil. Further analyses show that PSTOL1 acts as an enhancer of early root growth, thereby enabling plants to acquire more phosphorus and other nutrients. The absence of PSTOL1 and other genes-for example, the submergence-tolerance gene SUB1A-from modern rice varieties underlines the importance of conserving and exploring traditional germplasm. Introgression of this quantitative trait locus into locally adapted rice varieties in Asia and Africa is expected to considerably enhance productivity under low phosphorus conditions. [PUBLICATION ABSTRACT] As an essential macroelement for all living cells, phosphorus is indispensable in agricultural production systems. Natural phosphorus reserves are limited, and it is therefore important to develop phosphorus-efficient crops. A major quantitative trait locus for phosphorus-deficiency tolerance, Pup1, was identified in the traditional aus-type rice variety Kasalath about a decade ago. However, its functional mechanism remained elusive until the locus was sequenced, showing the presence of a Pup1-specific protein kinase gene, which we have named phosphorus-starvation tolerance 1 (PSTOL1). This gene is absent from the rice reference genome and other phosphorus-starvation-intolerant modern varieties. Here we show that overexpression of PSTOL1 in such varieties significantly enhances grain yield in phosphorus-deficient soil. Further analyses show that PSTOL1 acts as an enhancer of early root growth, thereby enabling plants to acquire more phosphorus and other nutrients. The absence of PSTOL1 and other genes-for example, the submergence-tolerance gene SUB1A-from modern rice varieties underlines the importance of conserving and exploring traditional germplasm. Introgression of this quantitative trait locus into locally adapted rice varieties in Asia and Africa is expected to considerably enhance productivity under low phosphorus conditions.As an essential macroelement for all living cells, phosphorus is indispensable in agricultural production systems. Natural phosphorus reserves are limited, and it is therefore important to develop phosphorus-efficient crops. A major quantitative trait locus for phosphorus-deficiency tolerance, Pup1, was identified in the traditional aus-type rice variety Kasalath about a decade ago. However, its functional mechanism remained elusive until the locus was sequenced, showing the presence of a Pup1-specific protein kinase gene, which we have named phosphorus-starvation tolerance 1 (PSTOL1). This gene is absent from the rice reference genome and other phosphorus-starvation-intolerant modern varieties. Here we show that overexpression of PSTOL1 in such varieties significantly enhances grain yield in phosphorus-deficient soil. Further analyses show that PSTOL1 acts as an enhancer of early root growth, thereby enabling plants to acquire more phosphorus and other nutrients. The absence of PSTOL1 and other genes-for example, the submergence-tolerance gene SUB1A-from modern rice varieties underlines the importance of conserving and exploring traditional germplasm. Introgression of this quantitative trait locus into locally adapted rice varieties in Asia and Africa is expected to considerably enhance productivity under low phosphorus conditions. A gene that is present in phosphate-deficiency-tolerant rice but absent from modern rice varieties is characterized and named phosphorus-starvation tolerance 1 (PSTOL1); overexpression of PSTOL1 in rice species that naturally lack this gene confers tolerance to low phosphorus conditions, a finding that may have implications for agricultural productivity in rice-growing countries. As an essential macroelement for all living cells, phosphorus is indispensable in agricultural production systems. Natural phosphorus reserves are limited, and it is therefore important to develop phosphorus-efficient crops. A major quantitative trait locus for phosphorus-deficiency tolerance, Pup1, was identified in the traditional aus-type rice variety Kasalath about a decade ago. However, its functional mechanism remained elusive until the locus was sequenced, showing the presence of a Pup1-specific protein kinase gene, which we have named phosphorus-starvation tolerance 1 (PSTOL1). This gene is absent from the rice reference genome and other phosphorus-starvation-intolerant modern varieties. Here we show that overexpression of PSTOL1 in such varieties significantly enhances grain yield in phosphorus-deficient soil. Further analyses show that PSTOL1 acts as an enhancer of early root growth, thereby enabling plants to acquire more phosphorus and other nutrients. The absence of PSTOL1 and other genes-for example, the submergence-tolerance gene SUB1A-from modern rice varieties underlines the importance of conserving and exploring traditional germplasm. Introgression of this quantitative trait locus into locally adapted rice varieties in Asia and Africa is expected to considerably enhance productivity under low phosphorus conditions. A gene that is present in phosphate-deficiency-tolerant rice but absent from modern rice varieties is characterized and named phosphorus-starvation tolerance 1 ( PSTOL1 ); overexpression of PSTOL1 in rice species that naturally lack this gene confers tolerance to low phosphorus conditions, a finding that may have implications for agricultural productivity in rice-growing countries. Rice tolerant to low-phosphate soils Rice is a staple crop for much of Asia. Rice yields in the region are low, however, with limited availability of phosphorous fertilizers and the susceptibility of rain-fed cultivation systems to climate variation among the problems. In this study, Sigrid Heuer and colleagues report the characterization of a gene called phosphorus-starvation tolerance 1 ( PSTOL1 ), which confers tolerance to phosphorus deficiency. The gene is present in the traditional rice variety Kasalath but absent from the rice reference genome and other phosphorus-starvation-intolerant modern varieties. PSTOL1 is shown to act as an enhancer of early root growth, thereby enabling plants to acquire more phosphorus and other nutrients. Introduction of this gene into locally adapted rice varieties should enhance productivity under low-phosphorus conditions. As an essential macroelement for all living cells, phosphorus is indispensable in agricultural production systems. Natural phosphorus reserves are limited 1 , and it is therefore important to develop phosphorus-efficient crops. A major quantitative trait locus for phosphorus-deficiency tolerance, Pup1 , was identified in the traditional aus -type rice variety Kasalath about a decade ago 2 , 3 . However, its functional mechanism remained elusive 4 , 5 until the locus was sequenced, showing the presence of a Pup1 -specific protein kinase gene 6 , which we have named phosphorus-starvation tolerance 1 ( PSTOL1 ). This gene is absent from the rice reference genome and other phosphorus-starvation-intolerant modern varieties 7 , 8 . Here we show that overexpression of PSTOL1 in such varieties significantly enhances grain yield in phosphorus-deficient soil. Further analyses show that PSTOL1 acts as an enhancer of early root growth, thereby enabling plants to acquire more phosphorus and other nutrients. The absence of PSTOL1 and other genes—for example, the submergence-tolerance gene SUB1A —from modern rice varieties underlines the importance of conserving and exploring traditional germplasm. Introgression of this quantitative trait locus into locally adapted rice varieties in Asia and Africa is expected to considerably enhance productivity under low phosphorus conditions. |
Audience | Academic |
Author | Tecson-Mendoza, Evelyn Mae Wissuwa, Matthias Chin, Joong Hyoun Slamet-Loedin, Inez Gamuyao, Rico Pesaresi, Paolo Catausan, Sheryl Heuer, Sigrid Pariasca-Tanaka, Juan Dalid, Cheryl |
Author_xml | – sequence: 1 givenname: Rico surname: Gamuyao fullname: Gamuyao, Rico organization: International Rice Research Institute (IRRI), DAPO Box 7777 Metro, Manila 1301, Philippines – sequence: 2 givenname: Joong Hyoun surname: Chin fullname: Chin, Joong Hyoun organization: International Rice Research Institute (IRRI), DAPO Box 7777 Metro, Manila 1301, Philippines – sequence: 3 givenname: Juan surname: Pariasca-Tanaka fullname: Pariasca-Tanaka, Juan organization: Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba 305-8686, Japan – sequence: 4 givenname: Paolo surname: Pesaresi fullname: Pesaresi, Paolo organization: Dipartimento di Bioscienze, Università degli studi di Milano – sequence: 5 givenname: Sheryl surname: Catausan fullname: Catausan, Sheryl organization: International Rice Research Institute (IRRI), DAPO Box 7777 Metro, Manila 1301, Philippines – sequence: 6 givenname: Cheryl surname: Dalid fullname: Dalid, Cheryl organization: International Rice Research Institute (IRRI), DAPO Box 7777 Metro, Manila 1301, Philippines – sequence: 7 givenname: Inez surname: Slamet-Loedin fullname: Slamet-Loedin, Inez organization: International Rice Research Institute (IRRI), DAPO Box 7777 Metro, Manila 1301, Philippines – sequence: 8 givenname: Evelyn Mae surname: Tecson-Mendoza fullname: Tecson-Mendoza, Evelyn Mae organization: University of the Philippines – sequence: 9 givenname: Matthias surname: Wissuwa fullname: Wissuwa, Matthias organization: Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba 305-8686, Japan – sequence: 10 givenname: Sigrid surname: Heuer fullname: Heuer, Sigrid email: s.heuer@cgiar.org organization: International Rice Research Institute (IRRI), DAPO Box 7777 Metro, Manila 1301, Philippines |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26256111$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22914168$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0s9rFDEUB_AgFbtdPXmXoAgVHc2PmSRzLKVqoaBovXgJMfuyTZ1NtkkG7H9vxt3qtvYQAuHzHnnf5ADthRgAoaeUvKWEq3fBlDEBpbwVD9CMtlI0rVByD80IYaohiot9dJDzJSGko7J9hPYZ62lLhZqh7-cXgNcpFvAB__TBZMCfc4kDxS7FFS7JLHzxMZgBJ28B2xgcpIwrgWRCPYkOry9iriuNGS_Aeesh2OvH6KEzQ4Yn232Ovr0_OT_-2Jx9-nB6fHTW2I73pbG9bBVRzBgmWdsKypgV0HVSQs8ll66ljlrbL6gllHFFVWeNsowIKkEuOJ-jw03fOsbVCLnolc8WhsEEiGPWNaRuCor2lb64Qy_jmOpsf5TsJZN1_6uWZgDtg4s1BTs11UeCE0Y62XdVPb9H2bW_0rvo1S1U0yvwqyzNmLM-_frldsNn28uNP1aw0OvkVyZd65vHquDlFphszeCm-H3-5wTrBK3_YI7oxtkUc07gtPXFTI9Yb-iHOuo0rdI7H6fWvL5Tc9P2fv1mo3NVYQlpN8f_-W_cIs7x |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1186_s12284_015_0068_z crossref_primary_10_1038_s41598_021_93325_2 crossref_primary_10_3390_plants4020334 crossref_primary_10_3389_fpls_2016_00428 crossref_primary_10_1038_s41588_018_0041_z crossref_primary_10_1007_s11032_019_1059_3 crossref_primary_10_1104_pp_114_238626 crossref_primary_10_1007_s10681_024_03409_z crossref_primary_10_1007_s10725_017_0326_8 crossref_primary_10_1016_j_molp_2021_12_005 crossref_primary_10_1016_j_cpb_2024_100332 crossref_primary_10_1016_j_copbio_2014_11_015 crossref_primary_10_1093_jxb_erab406 crossref_primary_10_1016_j_molp_2021_12_001 crossref_primary_10_1021_jf305531j crossref_primary_10_3389_fpls_2016_00550 crossref_primary_10_1186_s11658_016_0008_y crossref_primary_10_1371_journal_pone_0223217 crossref_primary_10_3390_ijms22116058 crossref_primary_10_1016_j_tplants_2023_01_008 crossref_primary_10_1007_s10681_017_1907_3 crossref_primary_10_1038_srep33113 crossref_primary_10_1071_FP20351 crossref_primary_10_1104_pp_113_214262 crossref_primary_10_1111_jipb_13090 crossref_primary_10_1016_j_tplants_2013_04_010 crossref_primary_10_1007_s10142_024_01478_w crossref_primary_10_1007_s13562_020_00586_5 crossref_primary_10_1016_j_tibtech_2014_09_008 crossref_primary_10_1007_s10681_015_1572_3 crossref_primary_10_3390_ijms22073579 crossref_primary_10_1093_pcp_pcy141 crossref_primary_10_1016_j_copbio_2014_11_027 crossref_primary_10_1071_CP14191 crossref_primary_10_1186_s12284_015_0067_0 crossref_primary_10_1007_s10681_022_02987_0 crossref_primary_10_1002_fes3_294 crossref_primary_10_3390_ijms19051460 crossref_primary_10_1071_CP18324 crossref_primary_10_1093_jxb_eraa211 crossref_primary_10_1038_s41598_022_13709_w crossref_primary_10_1002_fes3_29 crossref_primary_10_1007_s11032_019_1058_4 crossref_primary_10_1038_srep19147 crossref_primary_10_1093_jxb_erv515 crossref_primary_10_1016_j_copbio_2024_103198 crossref_primary_10_1093_gbe_evx135 crossref_primary_10_1016_j_plaphy_2018_06_017 crossref_primary_10_1007_s10681_014_1110_8 crossref_primary_10_1371_journal_pone_0155425 crossref_primary_10_1007_s11104_016_3129_1 crossref_primary_10_1038_s41598_017_15450_1 crossref_primary_10_1093_dnares_dsx013 crossref_primary_10_3390_ijms23031137 crossref_primary_10_1093_plphys_kiae453 crossref_primary_10_1186_s12870_019_1689_y crossref_primary_10_1111_pbi_13454 crossref_primary_10_1038_s41467_023_40189_x crossref_primary_10_1080_07388551_2016_1268089 crossref_primary_10_1093_jxb_erv403 crossref_primary_10_1111_tpj_15669 crossref_primary_10_1007_s40502_021_00627_8 crossref_primary_10_1111_1365_2745_13592 crossref_primary_10_1038_s41598_019_55757_9 crossref_primary_10_3390_agronomy5030374 crossref_primary_10_1007_s11032_024_01443_2 crossref_primary_10_1186_s13059_014_0506_z crossref_primary_10_1155_2014_210328 crossref_primary_10_1146_annurev_arplant_050213_035949 crossref_primary_10_1007_s13258_018_0741_x crossref_primary_10_3389_fpls_2022_1017419 crossref_primary_10_1093_jxb_erv210 crossref_primary_10_1371_journal_pone_0054559 crossref_primary_10_1186_s12870_016_0747_y crossref_primary_10_1186_s12284_016_0102_9 crossref_primary_10_1016_j_pbi_2015_04_007 crossref_primary_10_1111_pce_12451 crossref_primary_10_1038_s41598_019_52884_1 crossref_primary_10_1038_s41598_021_92580_7 crossref_primary_10_1007_s10681_017_1884_6 crossref_primary_10_34133_plantphenomics_0097 crossref_primary_10_1016_j_tplants_2020_04_013 crossref_primary_10_1038_s41467_022_28362_0 crossref_primary_10_1186_s12284_018_0208_3 crossref_primary_10_1021_acs_jafc_9b03124 crossref_primary_10_1186_s12864_020_07240_3 crossref_primary_10_1016_j_cj_2021_04_003 crossref_primary_10_1016_j_rsci_2023_04_007 crossref_primary_10_1007_s00425_018_2892_z crossref_primary_10_1007_s10705_020_10090_w crossref_primary_10_1007_s44279_024_00086_3 crossref_primary_10_3390_ijms19072145 crossref_primary_10_1016_j_envexpbot_2024_105875 crossref_primary_10_1016_j_envexpbot_2013_09_008 crossref_primary_10_1093_jxb_eraa229 crossref_primary_10_1111_jipb_12198 crossref_primary_10_1093_jxb_eru461 crossref_primary_10_15302_J_FASE_2019278 crossref_primary_10_15302_J_FASE_2019275 crossref_primary_10_3390_plants12132520 crossref_primary_10_1007_s11032_014_0059_6 crossref_primary_10_1038_ncomms2296 crossref_primary_10_3389_fpls_2024_1408356 crossref_primary_10_1080_07352689_2019_1645402 crossref_primary_10_1111_nph_16020 crossref_primary_10_1007_s00299_024_03278_9 crossref_primary_10_1007_s42976_024_00521_7 crossref_primary_10_1093_plphys_kiae495 crossref_primary_10_1371_journal_pone_0105068 crossref_primary_10_1007_s11816_014_0320_9 crossref_primary_10_1016_j_jplph_2020_153340 crossref_primary_10_1002_fes3_369 crossref_primary_10_3389_fpls_2023_1157507 crossref_primary_10_1007_s11104_015_2437_1 crossref_primary_10_1080_23802359_2017_1407710 crossref_primary_10_17221_254_2023_PSE crossref_primary_10_6090_jarq_55_295 crossref_primary_10_1007_s11104_015_2657_4 crossref_primary_10_3390_ijms22179311 crossref_primary_10_1038_nrg3901 crossref_primary_10_3390_ijms19102964 crossref_primary_10_5897_AJB2022_17521 crossref_primary_10_1155_2016_2405954 crossref_primary_10_3389_fpls_2023_1098175 crossref_primary_10_1186_s12870_018_1331_4 crossref_primary_10_1038_ncomms15324 crossref_primary_10_1016_j_rser_2023_113474 crossref_primary_10_1186_s12870_019_1657_6 crossref_primary_10_1371_journal_pone_0192116 crossref_primary_10_3390_ijms23094781 crossref_primary_10_7868_S0002188117070122 crossref_primary_10_1093_jxb_erw228 crossref_primary_10_1016_j_genrep_2024_102077 crossref_primary_10_3389_fpls_2018_01420 crossref_primary_10_1016_j_tplants_2015_10_012 crossref_primary_10_1111_jipb_12163 crossref_primary_10_3390_agriculture10100453 crossref_primary_10_1007_s00122_020_03692_z crossref_primary_10_1038_nplants_2015_109 crossref_primary_10_1111_jipb_12168 crossref_primary_10_1590_1984_70332018v18n4a56 crossref_primary_10_3389_fpls_2024_1274610 crossref_primary_10_1016_j_biotechadv_2015_03_011 crossref_primary_10_3390_plants12223807 crossref_primary_10_56739_jor_v33i1_139059 crossref_primary_10_1021_acsomega_1c00206 crossref_primary_10_1007_s11104_024_06529_6 crossref_primary_10_1016_j_cub_2022_03_073 crossref_primary_10_3390_genes10100773 crossref_primary_10_3390_d9040051 crossref_primary_10_3389_fpls_2017_01466 crossref_primary_10_1111_tpj_13423 crossref_primary_10_1093_aob_mcy215 crossref_primary_10_3389_fpls_2017_01461 crossref_primary_10_1016_j_envexpbot_2018_03_018 crossref_primary_10_1080_00380768_2014_893537 crossref_primary_10_1080_1343943X_2020_1808026 crossref_primary_10_1093_jxb_erw362 crossref_primary_10_1890_EHS15_0010_1 crossref_primary_10_3390_ijms241310708 crossref_primary_10_1101_cshperspect_a034603 crossref_primary_10_5010_JPB_2024_51_014_129 crossref_primary_10_1007_s40502_018_0415_3 crossref_primary_10_1002_pmic_201200266 crossref_primary_10_1186_s12284_014_0029_y crossref_primary_10_1007_s00425_024_04577_x crossref_primary_10_1093_aob_mcw044 crossref_primary_10_4236_ajps_2021_127077 crossref_primary_10_1038_s41598_017_10274_5 crossref_primary_10_1186_s12284_018_0262_x crossref_primary_10_3389_fpls_2020_537766 crossref_primary_10_3389_fpls_2016_01584 crossref_primary_10_3389_fpls_2022_1062952 crossref_primary_10_3389_fpls_2016_00372 crossref_primary_10_3732_ajb_1200474 crossref_primary_10_1038_nature11909 crossref_primary_10_1016_j_psrb_2016_09_002 crossref_primary_10_1016_j_tplants_2019_01_003 crossref_primary_10_1016_S2095_3119_17_61709_X crossref_primary_10_1080_00380768_2020_1843370 crossref_primary_10_12688_f1000research_14561_1 crossref_primary_10_1111_tpj_12317 crossref_primary_10_1007_s11104_018_3706_6 crossref_primary_10_1111_pce_12882 crossref_primary_10_1007_s00122_014_2306_y crossref_primary_10_3389_fpls_2015_01184 crossref_primary_10_1007_s00122_019_03527_6 crossref_primary_10_1016_j_ecoinf_2023_102194 crossref_primary_10_1186_s12870_016_0853_x crossref_primary_10_1080_1343943X_2019_1617638 crossref_primary_10_3390_plants10081523 crossref_primary_10_3390_plants12183336 crossref_primary_10_1088_1755_1315_305_1_012076 crossref_primary_10_1111_pce_12969 crossref_primary_10_3389_fpls_2018_01223 crossref_primary_10_1093_aob_mcx157 crossref_primary_10_1007_s00122_018_3233_0 crossref_primary_10_1111_pbr_13049 crossref_primary_10_3389_fpls_2022_1006806 crossref_primary_10_1007_s12298_020_00858_3 crossref_primary_10_1111_tpj_12522 crossref_primary_10_1016_j_gene_2020_145301 crossref_primary_10_1186_s13007_019_0550_5 crossref_primary_10_1016_j_geoderma_2014_07_019 crossref_primary_10_1080_00380768_2018_1436941 crossref_primary_10_3389_fpls_2019_01668 crossref_primary_10_1186_s12863_017_0562_y crossref_primary_10_1016_j_jenvman_2023_119763 crossref_primary_10_34133_2021_9859254 crossref_primary_10_1007_s11738_021_03280_8 crossref_primary_10_1038_s41598_021_87182_2 crossref_primary_10_1038_s41467_020_18683_3 crossref_primary_10_3390_agronomy8050071 crossref_primary_10_1007_s11104_019_04316_2 crossref_primary_10_1007_s00709_016_0986_7 crossref_primary_10_1016_j_pbi_2017_06_008 crossref_primary_10_1111_pce_12853 crossref_primary_10_1111_pce_12733 crossref_primary_10_3389_fpls_2020_00070 crossref_primary_10_1111_jipb_13560 crossref_primary_10_3389_fpls_2016_01151 crossref_primary_10_1111_jipb_12470 crossref_primary_10_3389_fpls_2021_649147 crossref_primary_10_1016_j_ncrops_2024_100064 crossref_primary_10_1111_tpj_12894 crossref_primary_10_1016_j_molp_2015_12_012 crossref_primary_10_1093_jxb_erw282 crossref_primary_10_1111_pbr_13054 crossref_primary_10_3389_fpls_2022_972164 crossref_primary_10_1111_pbr_13173 crossref_primary_10_3390_agriculture12122056 crossref_primary_10_1093_aob_mcw073 crossref_primary_10_31742_ISGPB_84_3_6 crossref_primary_10_1016_j_tplants_2017_06_011 crossref_primary_10_1007_s00122_019_03392_3 crossref_primary_10_3390_ijms232012383 crossref_primary_10_1007_s11033_020_05337_2 crossref_primary_10_1186_s12870_024_05183_5 crossref_primary_10_1038_s41598_018_27633_5 crossref_primary_10_3389_fpls_2016_01389 crossref_primary_10_1038_s41467_019_14197_9 crossref_primary_10_3389_fpls_2019_00237 crossref_primary_10_1016_j_cj_2020_05_005 crossref_primary_10_1016_j_plaphy_2025_109577 crossref_primary_10_3390_genes15060663 crossref_primary_10_1016_j_jplph_2024_154317 crossref_primary_10_1002_jpln_202000471 crossref_primary_10_1016_j_plaphy_2017_12_018 crossref_primary_10_1038_s41576_018_0024_z crossref_primary_10_1007_s00122_016_2729_8 crossref_primary_10_1016_j_molp_2018_01_007 crossref_primary_10_1007_s10722_015_0252_4 crossref_primary_10_1093_jxb_erac059 crossref_primary_10_1016_j_gfs_2013_10_002 crossref_primary_10_1111_plb_13111 crossref_primary_10_1271_kagakutoseibutsu_60_420 crossref_primary_10_7732_kjpr_2016_29_6_658 crossref_primary_10_1371_journal_pone_0254526 crossref_primary_10_1016_j_pbi_2013_03_002 crossref_primary_10_1038_s41598_018_24946_3 crossref_primary_10_1073_pnas_1304354110 crossref_primary_10_3390_life11060502 crossref_primary_10_3390_ijms24065107 crossref_primary_10_1111_pce_15088 crossref_primary_10_1007_s00122_022_04095_y crossref_primary_10_1016_j_copbio_2015_01_001 crossref_primary_10_1016_j_rhisph_2018_08_003 crossref_primary_10_1371_journal_pone_0090287 crossref_primary_10_1360_SSV_2023_0259 crossref_primary_10_1146_annurev_arplant_042817_040540 crossref_primary_10_1080_03650340_2017_1373764 crossref_primary_10_1111_jipb_12559 crossref_primary_10_1007_s00468_014_0984_3 crossref_primary_10_3389_fpls_2023_1153967 crossref_primary_10_1007_s10705_015_9726_1 crossref_primary_10_1371_journal_pone_0159264 crossref_primary_10_3390_agronomy6040052 crossref_primary_10_3389_fpls_2018_01367 crossref_primary_10_1111_jipb_12435 crossref_primary_10_1016_j_plaphy_2019_12_037 crossref_primary_10_1111_jipb_12434 crossref_primary_10_1038_s41598_020_78186_5 crossref_primary_10_3390_genes14071412 crossref_primary_10_1371_journal_pone_0183261 crossref_primary_10_3390_ijms20040900 crossref_primary_10_1016_j_scitotenv_2022_153558 crossref_primary_10_1007_s11032_020_01156_2 crossref_primary_10_29141_2500_1922_2023_8_2_13 crossref_primary_10_1093_jxb_erac192 crossref_primary_10_1007_s10705_015_9716_3 crossref_primary_10_1007_s10681_019_2443_0 crossref_primary_10_1016_j_plaphy_2021_08_007 crossref_primary_10_1016_j_tplants_2014_02_002 crossref_primary_10_1111_pbr_12052 crossref_primary_10_1016_j_jenvman_2024_123461 crossref_primary_10_1371_journal_pone_0078037 crossref_primary_10_3390_ijms24076233 crossref_primary_10_1016_j_plaphy_2024_108386 crossref_primary_10_3390_ijms21041513 crossref_primary_10_1093_jxb_erad035 crossref_primary_10_1186_s40854_017_0063_z crossref_primary_10_3389_fpls_2017_00509 crossref_primary_10_2135_cropsci2014_08_0546 crossref_primary_10_1007_s00122_023_04376_0 crossref_primary_10_1093_jxb_erad390 crossref_primary_10_3390_agronomy14092031 crossref_primary_10_1007_s00438_024_02204_8 crossref_primary_10_1007_s10681_019_2445_y crossref_primary_10_1038_s41598_018_33812_1 crossref_primary_10_1371_journal_pone_0204144 crossref_primary_10_1111_nph_12786 crossref_primary_10_3117_plantroot_16_21 crossref_primary_10_1002_pld3_469 crossref_primary_10_1007_s13562_020_00559_8 crossref_primary_10_3835_plantgenome2019_06_0039 crossref_primary_10_1038_s41598_022_07781_5 crossref_primary_10_1093_aob_mcz041 crossref_primary_10_1093_jxb_erw061 crossref_primary_10_1007_s10142_025_01542_z crossref_primary_10_1016_j_scitotenv_2024_172331 crossref_primary_10_3390_ijms20215259 crossref_primary_10_1038_s41598_022_25378_w crossref_primary_10_1111_nph_12491 crossref_primary_10_3389_fpls_2017_00436 crossref_primary_10_1111_nph_12499 crossref_primary_10_1007_s10265_024_01545_0 crossref_primary_10_1007_s11032_024_01494_5 crossref_primary_10_1093_jxb_ery176 crossref_primary_10_1111_nph_13469 crossref_primary_10_1080_15592324_2015_1049791 crossref_primary_10_1360_SSV_2023_0048 crossref_primary_10_1093_jxb_erad179 crossref_primary_10_1080_02648725_2017_1370888 crossref_primary_10_1080_01904167_2024_2325937 crossref_primary_10_1146_annurev_arplant_050718_100320 crossref_primary_10_12688_f1000research_6538_1 crossref_primary_10_1007_s12298_020_00902_2 crossref_primary_10_1007_s40502_021_00623_y crossref_primary_10_1186_s12870_016_0783_7 crossref_primary_10_1038_s41598_021_88419_w crossref_primary_10_3390_cimb44100301 crossref_primary_10_1002_csc2_20344 crossref_primary_10_1007_s11033_022_07679_5 crossref_primary_10_1016_j_tplants_2014_08_005 crossref_primary_10_1093_dnares_dsu006 crossref_primary_10_1002_csc2_20585 crossref_primary_10_1111_mpp_12340 crossref_primary_10_1270_jsbbs_17083 crossref_primary_10_1007_s12041_023_01440_y crossref_primary_10_1038_s41477_022_01274_z crossref_primary_10_1104_pp_15_01360 crossref_primary_10_1007_s40502_020_00503_x crossref_primary_10_1007_s00425_021_03739_5 crossref_primary_10_1111_tpj_16028 crossref_primary_10_1038_s41598_023_41987_5 crossref_primary_10_1270_jsbbs_18059 crossref_primary_10_1186_s12870_015_0561_y crossref_primary_10_1371_journal_pone_0255840 crossref_primary_10_1002_pld3_393 crossref_primary_10_1186_s13007_019_0517_6 crossref_primary_10_1021_es501670j crossref_primary_10_3389_fpls_2019_00633 crossref_primary_10_1016_j_ygeno_2022_110436 crossref_primary_10_1016_j_molp_2022_11_007 crossref_primary_10_5897_AJAR2018_12974 crossref_primary_10_1126_sciadv_1400218 crossref_primary_10_1126_science_aba0196 crossref_primary_10_1007_s12298_020_00903_1 crossref_primary_10_1007_s40003_020_00532_w crossref_primary_10_1186_s12284_017_0189_7 crossref_primary_10_1007_s11103_022_01254_z crossref_primary_10_1093_aob_mcs217 crossref_primary_10_1021_acs_jafc_4c09230 crossref_primary_10_1038_s41598_018_34053_y crossref_primary_10_1017_S0014479714000362 crossref_primary_10_3390_agronomy3010086 crossref_primary_10_1007_s11104_013_1669_1 crossref_primary_10_1093_jxb_ery163 crossref_primary_10_3389_fpls_2019_00400 crossref_primary_10_1007_s00425_015_2331_3 crossref_primary_10_1007_s10265_024_01533_4 crossref_primary_10_1111_ppl_12299 crossref_primary_10_1071_CP13135 crossref_primary_10_1186_s13059_015_0757_3 crossref_primary_10_1186_s12870_014_0371_7 crossref_primary_10_3389_fpls_2023_1094157 crossref_primary_10_1007_s11103_013_0106_4 crossref_primary_10_1080_00380768_2017_1412238 crossref_primary_10_1016_j_tplants_2024_05_008 crossref_primary_10_3390_ijms21218148 crossref_primary_10_1007_s10460_019_09909_2 crossref_primary_10_6090_jarq_56_7 crossref_primary_10_1038_s41588_023_01340_y crossref_primary_10_1016_j_jgg_2024_09_018 crossref_primary_10_1016_j_tifs_2015_11_006 crossref_primary_10_1111_pce_14272 crossref_primary_10_1017_S1479262115000544 crossref_primary_10_1016_j_cj_2020_01_002 crossref_primary_10_1016_S2095_3119_17_61713_1 crossref_primary_10_1186_s12284_018_0202_9 crossref_primary_10_1371_journal_pone_0241842 crossref_primary_10_1104_pp_114_243949 crossref_primary_10_1038_s41467_022_31555_2 crossref_primary_10_1007_s00122_014_2353_4 crossref_primary_10_1111_nph_15791 crossref_primary_10_3390_agronomy14092094 crossref_primary_10_1007_s00344_020_10161_w crossref_primary_10_1016_j_cj_2024_08_004 crossref_primary_10_1093_aob_mcs231 crossref_primary_10_1126_science_aag1698 crossref_primary_10_1016_j_cell_2025_01_035 crossref_primary_10_1016_j_xplc_2024_101137 crossref_primary_10_1111_pce_14285 crossref_primary_10_15302_J_FASE_2019283 crossref_primary_10_3390_agriculture12060880 crossref_primary_10_1093_plphys_kiaa036 crossref_primary_10_15302_J_FASE_2019280 crossref_primary_10_1007_s11032_018_0903_1 crossref_primary_10_1111_pce_13191 crossref_primary_10_1002_csc2_21234 crossref_primary_10_1111_pce_13190 crossref_primary_10_1093_jxb_erz074 crossref_primary_10_1111_tpj_14160 crossref_primary_10_1186_s12870_018_1486_z crossref_primary_10_1007_s11104_015_2565_7 crossref_primary_10_1093_jxb_eraa179 crossref_primary_10_1186_s12870_021_03015_4 crossref_primary_10_1016_j_foodres_2015_09_033 crossref_primary_10_1017_wsc_2018_58 crossref_primary_10_1038_s41467_024_55324_5 crossref_primary_10_1007_s13353_020_00601_4 crossref_primary_10_1093_aob_mcs245 crossref_primary_10_3390_agronomy9020081 crossref_primary_10_1093_gigascience_giz028 crossref_primary_10_3389_fpls_2021_658787 crossref_primary_10_1007_s00425_020_03551_7 crossref_primary_10_1371_journal_pone_0124215 crossref_primary_10_3390_genes10010030 crossref_primary_10_1111_pce_14256 crossref_primary_10_1002_fes3_329 crossref_primary_10_1111_pce_14496 crossref_primary_10_1016_j_semcdb_2019_03_010 crossref_primary_10_1093_hr_uhac011 crossref_primary_10_1146_annurev_arplant_042916_041124 crossref_primary_10_1016_j_plaphy_2024_108657 crossref_primary_10_2135_cropsci2013_11_0755 crossref_primary_10_1016_j_envexpbot_2024_105726 crossref_primary_10_1007_s10681_019_2512_4 crossref_primary_10_1016_j_pbi_2013_02_003 crossref_primary_10_1111_nph_15895 crossref_primary_10_1111_tpj_16598 crossref_primary_10_1007_s00425_023_04158_4 crossref_primary_10_1080_07388551_2020_1825321 crossref_primary_10_3389_fpls_2023_1260005 crossref_primary_10_1007_s13562_020_00589_2 crossref_primary_10_1016_j_pbi_2014_06_009 crossref_primary_10_1002_pld3_192 crossref_primary_10_3390_genes13010108 crossref_primary_10_1007_s12041_014_0424_6 crossref_primary_10_3390_plants10071267 crossref_primary_10_1080_01904167_2023_2191638 crossref_primary_10_1016_j_envexpbot_2023_105431 crossref_primary_10_1007_s00122_015_2578_x crossref_primary_10_1186_s12284_018_0258_6 crossref_primary_10_1093_jxb_erae431 crossref_primary_10_1016_j_jgg_2016_11_002 crossref_primary_10_1007_s12041_014_0411_y crossref_primary_10_1073_pnas_2404199121 crossref_primary_10_1007_s00122_020_03697_8 crossref_primary_10_1186_s12284_014_0030_5 crossref_primary_10_1007_s00709_024_01983_6 crossref_primary_10_1016_j_envexpbot_2023_105641 crossref_primary_10_1080_00380768_2019_1647081 crossref_primary_10_1093_plphys_kiac250 crossref_primary_10_1093_jxb_ers354 crossref_primary_10_36899_JAPS_2023_1_0600 crossref_primary_10_1270_jsbbs_16185 crossref_primary_10_1038_488466a crossref_primary_10_1038_srep13090 crossref_primary_10_1016_j_jplph_2017_10_003 crossref_primary_10_1080_1343943X_2022_2085588 crossref_primary_10_3389_fpls_2020_565339 crossref_primary_10_1007_s00122_017_2931_3 crossref_primary_10_1007_s00122_018_3109_3 crossref_primary_10_1007_s00299_017_2127_y crossref_primary_10_1002_ejic_201400115 crossref_primary_10_1017_S1479262121000381 crossref_primary_10_1093_aob_mct123 crossref_primary_10_1104_pp_114_248112 crossref_primary_10_1371_journal_pone_0134419 crossref_primary_10_1080_03650340_2013_821197 crossref_primary_10_1111_ppl_14183 crossref_primary_10_1017_S0021859615001252 crossref_primary_10_1186_s12870_019_1949_x crossref_primary_10_1007_s42994_023_00112_w crossref_primary_10_1093_plcell_koad326 crossref_primary_10_1111_nph_16554 crossref_primary_10_1186_s12864_016_3129_9 crossref_primary_10_3389_fpls_2022_804058 crossref_primary_10_1007_s13593_020_00661_0 crossref_primary_10_1186_s12870_021_03249_2 crossref_primary_10_1111_pbr_12537 crossref_primary_10_1111_pce_14457 crossref_primary_10_1128_msystems_01124_23 crossref_primary_10_3390_agronomy10030342 crossref_primary_10_1093_plphys_kiad212 crossref_primary_10_3390_genes13030487 crossref_primary_10_1002_fes3_79 crossref_primary_10_1016_j_plaphy_2022_09_018 crossref_primary_10_3109_07388551_2013_783549 crossref_primary_10_1093_plcell_koab275 crossref_primary_10_1371_journal_pbio_1001883 crossref_primary_10_31083_j_fbl2708248 crossref_primary_10_3389_fpls_2023_1226297 crossref_primary_10_1016_j_fcr_2014_04_013 crossref_primary_10_1016_j_jplph_2022_153784 crossref_primary_10_1111_pce_14588 crossref_primary_10_1371_journal_pgen_1004061 crossref_primary_10_3390_genes10020139 crossref_primary_10_1093_aobpla_pls028 crossref_primary_10_1007_s00122_018_3108_4 crossref_primary_10_1016_j_molp_2018_12_016 crossref_primary_10_3390_agronomy13102629 |
Cites_doi | 10.1007/s11032-011-9663-x 10.1371/journal.pbio.1000288 10.2135/cropsci2006.07.0495 10.1073/pnas.93.6.2598 10.1111/j.1467-7652.2009.00415.x 10.1104/pp.103.035527 10.1073/pnas.0603152103 10.1046/j.1365-313X.1999.00419.x 10.1093/genetics/155.2.945 10.1016/j.agsy.2010.12.005 10.1093/pcp/pci153 10.1007/s12284-009-9032-0 10.1038/nature04016 10.1104/pp.110.158501 10.1105/tpc.105.030981 10.1002/j.1460-2075.1987.tb02730.x 10.1007/s11240-006-9157-4 10.1093/genetics/164.4.1567 10.1093/pcp/pch048 10.1104/pp.106.082941 10.1104/pp.010907 10.1007/s00122-009-1235-7 10.1007/s00122-002-1051-9 10.1104/pp.106.087270 10.1038/nature04920 10.3844/ajbbsp.2006.161.169 10.1093/aob/mcq015 10.1104/pp.111.175471 10.1093/bioinformatics/btm308 10.1016/j.plantsci.2010.06.013 10.1007/s12284-009-9028-9 10.1071/FP12015 10.1104/pp.103.027979 10.1105/tpc.108.061655 10.1007/s001220050955 10.1046/j.1439-0523.2001.00561.x 10.1016/j.gloenvcha.2008.10.009 10.1007/s001220051030 10.1007/s11104-004-2026-1 10.1093/mp/ssn047 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2012 2015 INIST-CNRS COPYRIGHT 2012 Nature Publishing Group Copyright Nature Publishing Group Aug 23, 2012 |
Copyright_xml | – notice: Springer Nature Limited 2012 – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2012 Nature Publishing Group – notice: Copyright Nature Publishing Group Aug 23, 2012 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
DOI | 10.1038/nature11346 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection eLibrary ProQuest Central Technology Collection ProQuest Natural Science Collection (Hollins) Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 539 |
ExternalDocumentID | 2752632911 A630205795 22914168 26256111 10_1038_nature11346 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Asia Africa Japan |
GeographicLocations_xml | – name: Japan |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .HR .XZ 00M 07C 08P 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 4.4 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYZH AAZLF ABAWZ ABDBF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABNNU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACRPL ACUHS ACWUS ADBBV ADFRT ADNMO ADUKH ADYSU ADZCM AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGGDT AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCR BCU BDKGC BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L-9 L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OHT OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PEA PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~G0 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADGHP ADXHL AETEA AEZWR AFANA AGQPQ AIXLP ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ 1CY 1VW 354 3EH 3O- 41~ 42X 4R4 663 79B 9M8 AAJYS AAVBQ ABDPE ABEFU ACBNA ACBTR ACTDY ADRHT AFBBN AFFDN AFHIU AFHKK AGCDD AHWEU AJUXI BES BKOMP DB5 FA8 FAC HG6 IQODW J5H LGEZI LOTEE MVM N4W NADUK NFIDA NXXTH ODYON PJZUB PPXIY PQGLB PV9 QS- R4F RHI SKT TUD UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZGI ZHY ZY4 CGR CUY CVF ECM EIF NPM AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c539t-c9748082aa272446122c6e5577e93737f41f1cc9d1c01238185ca8c20617e7d33 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Fri Jul 11 03:39:41 EDT 2025 Sat Aug 23 13:35:21 EDT 2025 Tue Jun 17 21:47:01 EDT 2025 Tue Jun 10 15:32:22 EDT 2025 Fri Jun 27 04:59:35 EDT 2025 Wed Feb 19 01:49:06 EST 2025 Mon Jul 21 09:18:00 EDT 2025 Tue Jul 01 02:56:53 EDT 2025 Thu Apr 24 23:11:38 EDT 2025 Fri Feb 21 02:37:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7412 |
Keywords | Macronutrient(mineral) Monocotyledones Grains Enzyme Landrace(plant) Transferases Deficiency Non-specific serine/threonine protein kinase Gene overexpression Tolerance Phosphorus Cereal crop Quantitative trait loci Oryza Gene Gramineae Agricultural production Angiospermae Spermatophyta Yield Genome Cultivar |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c539t-c9748082aa272446122c6e5577e93737f41f1cc9d1c01238185ca8c20617e7d33 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 22914168 |
PQID | 1037972710 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1035103819 proquest_journals_1037972710 gale_infotracmisc_A630205795 gale_infotraccpiq_630205795 gale_incontextgauss_ISR_A630205795 pubmed_primary_22914168 pascalfrancis_primary_26256111 crossref_citationtrail_10_1038_nature11346 crossref_primary_10_1038_nature11346 springer_journals_10_1038_nature11346 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-08-23 |
PublicationDateYYYYMMDD | 2012-08-23 |
PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2012 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | DaweDPandeySNelsonAPandeySRice in the Global Economy. Strategic Research and Policy Issues for Food Security2010535 KongZLiMYangWXuWXueYA novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in ricePlant Physiol.2006141137613881:CAS:528:DC%2BD28XosVKit78%3D16778011153391510.1104/pp.106.082941 ChinJHDevelopment and application of gene-based markers for the major rice QTL Phosphorus uptake 1Theor. Appl. Genet.2010120107310861:CAS:528:DC%2BC3cXjtlansrw%3D2003531510.1007/s00122-009-1235-7 ChinJHDeveloping rice with high yield under phosphorus deficiency: Pup1 sequence to applicationPlant Physiol.2011156120212162011ait..book.....C1:CAS:528:DC%2BC3MXptFWksr8%3D21602323313592610.1104/pp.111.175471 ThomsonMJHigh-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platformMol. Breed.20112987588610.1007/s11032-011-9663-x1:CAS:528:DC%2BC38XkvFylsb8%3D ZhaoYHuYDaiMHuangLZhouD-XThe WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in ricePlant Cell2009217367481:CAS:528:DC%2BD1MXlsFyltbo%3D19258439267169610.1105/tpc.108.061655 WissuwaMCombining a modeling with a genetic approach in establishing associations between genetic and physiological effects in relation to phosphorus uptakePlant Soil200526957681:CAS:528:DC%2BD2MXks1Oisrg%3D10.1007/s11104-004-2026-1 NiJJWuPSenadhiraDHuangNMapping QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.)Theor. Appl. Genet.199897136113691:CAS:528:DyaK1MXltF2msA%3D%3D10.1007/s001220051030 JeffersonRAKavanaghTABevanMWGUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plantsEMBO J.19876390139071:CAS:528:DyaL1cXovV2itQ%3D%3D332768655386710.1002/j.1460-2075.1987.tb02730.x GowdaVRPWater uptake dynamics under progressive drought stress in diverse accessions of the OryzaSNP panel of rice (Oryza sativa)Func. Plant Bio.20123940241110.1071/FP12015 CurtisMDGrossniklausUA Gateway cloning vector set for high throughput functional analysis of genes in plantaPlant Physiol.20031334624691:CAS:528:DC%2BD3sXosVaqtrw%3D1455577452387210.1104/pp.103.027979 YoshidaSFornoDACockJHGomezKALaboratory Manual for Physiological Studies of Rice1972 OuyangJIdentification and analysis of eight peptide transporter homologs in ricePlant Sci.20101793743821:CAS:528:DC%2BC3cXpvFKrsro%3D10.1016/j.plantsci.2010.06.013 YangXJFinneganPMRegulation of phosphate starvation responses in higher plantsAnn. Bot. (Lond.)20101055135261:CAS:528:DC%2BC3cXks1Gqtro%3D10.1093/aob/mcq015 LancerasJCPantuwanGJongdeeBToojindaTQuantitative trait loci associated with drought tolerance at reproductive stage in ricePlant Physiol.20041353843991:CAS:528:DC%2BD2cXkt12nu7k%3D1512202942939210.1104/pp.103.035527 FalushDStephensMPritchardJKInference of population structure using multilocus genotype data: linked loci and correlated allele frequenciesGenetics2003164156715871:CAS:528:DC%2BD3sXnvF2ntrk%3D12930761146264810.1093/genetics/164.4.1567 CourtoisBRice root architecture: meta-analysis from a drought QTL databaseRice2009211512810.1007/s12284-009-9028-9 MikiDShimamotoKSimple RNAi vectors for stable and transient suppression of gene function in ricePlant Cell Physiol.2004454904951:CAS:528:DC%2BD2cXjsFKhtbs%3D1511172410.1093/pcp/pch048 PritchardJKStephensMDonnellyPInference of population structure using multilocus genotype dataGenetics20001559459591:STN:280:DC%2BD3cvislKrtA%3D%3D1083541210.1093/genetics/155.2.945 HaldrupANaverHSchellerHVThe interaction between plastocyanin and photosystem I is inefficient in transgenic Arabidopsis plants lacking the PSI-N subunit of photosystem IPlant J.1999176896981:CAS:528:DyaK1MXivVSqsrk%3D1023006510.1046/j.1365-313X.1999.00419.x ScarpellaESimonsEJMeijerAJMultiple regulatory elements contribute to the vascular-specific expression of the rice HD-Zip gene Oshox1 in ArabidopsisPlant Cell Physiol.200546140014101:CAS:528:DC%2BD2MXps1Oms74%3D1596490510.1093/pcp/pci153 HaefeleSMHijmansRJSoil quality in rainfed lowland riceRice Today200983031 HeuerSComparative sequence analyses of the major quantitative trait locus Phosphorus uptake 1 (Pup1) reveal a complex genetic structurePlant Biotechnol. J.200974564711:CAS:528:DC%2BD1MXmvFejtL4%3D1942260310.1111/j.1467-7652.2009.00415.x ManzanillaDOSubmergence risks and farmers’ preferences: implications for breeding Sub1 rice in Southeast AsiaAgric. Syst.201110433534710.1016/j.agsy.2010.12.005 GregoryPDBarbariSHörzWTranscriptional control of phosphate-regulated genesFood Technol. Biotechnol.2000382953031:CAS:528:DC%2BD3MXltFGqtw%3D%3D PribilMPesaresiPHertleABarbatoRLeisterDRole of plastid protein phosphatase TAP38 in LHCII dephosphorylation and thylakoid electron flowPLoS Biol.20108e100028820126264281115810.1371/journal.pbio.10002881:CAS:528:DC%2BC3cXhtlGksLk%3D BernierJKumarARamaiahVSpanerDAtlinGA large-effect QTL for grain yield under reproductive-stage drought stress in upland riceCrop Sci.20074750751810.2135/cropsci2006.07.0495 BradburyPJTASSEL: software for association mapping of complex traits in diverse samplesBioinformatics200723263326351:CAS:528:DC%2BD2sXht1ejtr7F1758682910.1093/bioinformatics/btm308 DardickCChenJRichterTOuyangSRonaldPThe rice kinase database. A phylogenomic database for the rice kinomePlant Physiol.20071435795861:CAS:528:DC%2BD2sXhvFWnsL8%3D17172291180375310.1104/pp.106.087270 BiDChengYTLiXZhangYActivation of plant immune responses by a gain-of-function mutation in an atypical receptor-like kinasePlant Physiol.2010153177117791:CAS:528:DC%2BC3cXhtVCrsrzI20508139292389710.1104/pp.110.158501 CordellDDrangertJOWhiteSThe story of phosphorus: global food security and food for thoughtGlob. Environ. Change20091929230510.1016/j.gloenvcha.2008.10.009 LondoJPChiangYCHungKHChiangTYSchaalBAPhylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativaProc. Natl Acad. Sci. USA2006103957895832006PNAS..103.9578L1:CAS:528:DC%2BD28XmsVOnsLw%3D1676665810.1073/pnas.06031521031480449 Van KauwenberghSJWorld Phosphate Rock Reserves and Resources2010 WissuwaMWegnerJAeNYanoMSubstitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soilTheor. Appl. Genet.20021058908971:CAS:528:DC%2BD38XosVCntLs%3D1258291410.1007/s00122-002-1051-9 WissuwaMAeNGenotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvementPlant Breed.200112043481:CAS:528:DC%2BD3MXitleqsbs%3D10.1046/j.1439-0523.2001.00561.x LohrmannJHarterKPlant two-component signaling systems and the role of response regulatorsPlant Physiol.20021283633691:CAS:528:DC%2BD38XhsVSrur8%3D11842140154020910.1104/pp.010907 Pariasca-TanakaJSatohKRoseTMauleonRWissuwaMStress response versus stress tolerance: a transcriptome analysis of two rice lines contrasting in tolerance to phosphorus deficiencyRice2009216718510.1007/s12284-009-9032-0 HieiYIshidaYKasaokaKKomariTImproved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciensPlant Cell Tiss. Org.20068723324310.1007/s11240-006-9157-4 BimpongIKDetermination of genetic variability for physiological traits related to drought tolerance in African rice (Oryza glaberrima)J. Plant Breed. Crop. Sci.201136067 WissuwaMYanoMAeNMapping of QTLs for phosphorus-deficiency tolerance in rice (Oryza sativa L.)Theor. Appl. Genet.1998977777831:CAS:528:DyaK1cXotVahtrY%3D10.1007/s001220050955 XuKSub1A is an ethylene-responsive-factor-like gene that confers submergence tolerance to riceNature20064427057082006Natur.442..705X1:CAS:528:DC%2BD28XnvVynsrs%3D1690020010.1038/nature04920 InukaiYCrown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signalingPlant Cell200517138713961:CAS:528:DC%2BD2MXksVKksrY%3D15829602109176210.1105/tpc.105.030981 GomezMSMapping QTLs linked to physio-morphological and plant production traits under drought stress in rice (Oryza sativa L.) in the target environmentAm. J. Biochem. Biotechnol.2006216116910.3844/ajbbsp.2006.161.169 VijSGiriJDansanaPKKapoorSTyagiAKThe receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: organization, phylogenetic relationship, and expression during development and stressMol. Plant200817327501:CAS:528:DC%2BD1cXhtlWiu7fE1982557710.1093/mp/ssn047 HaefeleSMHijmansRJAggarwalPKLadhaJKSinghRKDevakumarCHardyBScience, Technology, and Trade for Peace and Prosperity: Proceedings of the 26th International Rice Research Conference, New Delhi, India.2007297308 WangXZafianPChoudharyMLawtonMThe PR5K receptor protein kinase from Arabidopsis thaliana is structurally related to a family of plant defense proteinsProc. Natl Acad. Sci. USA199693259826021996PNAS...93.2598W1:CAS:528:DyaK28XhvVSku70%3D863792010.1073/pnas.93.6.259839843 BonardiVPhotosystem II core phosphorylation and photosynthetic acclimation require two different protein kinasesNature2005437117911822005Natur.437.1179B1:CAS:528:DC%2BD2MXhtFahtL%2FN1623744610.1038/nature04016 IK Bimpong (BFnature11346_CR38) 2011; 3 M Wissuwa (BFnature11346_CR3) 2001; 120 D Cordell (BFnature11346_CR12) 2009; 19 PJ Bradbury (BFnature11346_CR46) 2007; 23 SM Haefele (BFnature11346_CR9) 2007 C Dardick (BFnature11346_CR20) 2007; 143 Y Hiei (BFnature11346_CR34) 2006; 87 M Wissuwa (BFnature11346_CR2) 1998; 97 M Wissuwa (BFnature11346_CR17) 2002; 105 VRP Gowda (BFnature11346_CR16) 2012; 39 JC Lanceras (BFnature11346_CR41) 2004; 135 JJ Ni (BFnature11346_CR42) 1998; 97 E Scarpella (BFnature11346_CR28) 2005; 46 Y Zhao (BFnature11346_CR26) 2009; 21 D Dawe (BFnature11346_CR11) 2010 Y Inukai (BFnature11346_CR25) 2005; 17 DO Manzanilla (BFnature11346_CR15) 2011; 104 Z Kong (BFnature11346_CR29) 2006; 141 J Lohrmann (BFnature11346_CR27) 2002; 128 JP Londo (BFnature11346_CR13) 2006; 103 SM Haefele (BFnature11346_CR10) 2009; 8 MS Gomez (BFnature11346_CR40) 2006; 2 J Ouyang (BFnature11346_CR30) 2010; 179 MJ Thomson (BFnature11346_CR43) 2011; 29 JK Pritchard (BFnature11346_CR44) 2000; 155 SJ Van Kauwenbergh (BFnature11346_CR1) 2010 S Yoshida (BFnature11346_CR35) 1972 M Wissuwa (BFnature11346_CR4) 2005; 269 K Xu (BFnature11346_CR14) 2006; 442 RA Jefferson (BFnature11346_CR36) 1987; 6 JH Chin (BFnature11346_CR7) 2010; 120 S Heuer (BFnature11346_CR6) 2009; 7 X Wang (BFnature11346_CR22) 1996; 93 A Haldrup (BFnature11346_CR31) 1999; 17 XJ Yang (BFnature11346_CR19) 2010; 105 J Pariasca-Tanaka (BFnature11346_CR5) 2009; 2 JH Chin (BFnature11346_CR8) 2011; 156 V Bonardi (BFnature11346_CR24) 2005; 437 J Bernier (BFnature11346_CR37) 2007; 47 B Courtois (BFnature11346_CR39) 2009; 2 MD Curtis (BFnature11346_CR33) 2003; 133 S Vij (BFnature11346_CR21) 2008; 1 D Bi (BFnature11346_CR23) 2010; 153 D Miki (BFnature11346_CR47) 2004; 45 D Falush (BFnature11346_CR45) 2003; 164 PD Gregory (BFnature11346_CR18) 2000; 38 M Pribil (BFnature11346_CR32) 2010; 8 12582914 - Theor Appl Genet. 2002 Nov;105(6-7):890-897 15964905 - Plant Cell Physiol. 2005 Aug;46(8):1400-10 16900200 - Nature. 2006 Aug 10;442(7103):705-8 8637920 - Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2598-602 12930761 - Genetics. 2003 Aug;164(4):1567-87 14555774 - Plant Physiol. 2003 Oct;133(2):462-9 20126264 - PLoS Biol. 2010 Jan 26;8(1):e1000288 21602323 - Plant Physiol. 2011 Jul;156(3):1202-16 3327686 - EMBO J. 1987 Dec 20;6(13):3901-7 17172291 - Plant Physiol. 2007 Feb;143(2):579-86 20181569 - Ann Bot. 2010 Apr;105(4):513-26 10835412 - Genetics. 2000 Jun;155(2):945-59 16237446 - Nature. 2005 Oct 20;437(7062):1179-82 19825577 - Mol Plant. 2008 Sep;1(5):732-50 16766658 - Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9578-83 17586829 - Bioinformatics. 2007 Oct 1;23(19):2633-5 20508139 - Plant Physiol. 2010 Aug;153(4):1771-9 19258439 - Plant Cell. 2009 Mar;21(3):736-48 15111724 - Plant Cell Physiol. 2004 Apr;45(4):490-5 15829602 - Plant Cell. 2005 May;17(5):1387-96 11842140 - Plant Physiol. 2002 Feb;128(2):363-9 22914160 - Nature. 2012 Aug 23;488(7412):466-7 19422603 - Plant Biotechnol J. 2009 Jun;7(5):456-7 10230065 - Plant J. 1999 Mar;17(6):689-98 20035315 - Theor Appl Genet. 2010 Apr;120(6):1073-86 15122029 - Plant Physiol. 2004 May;135(1):384-99 16778011 - Plant Physiol. 2006 Aug;141(4):1376-88 |
References_xml | – reference: WissuwaMWegnerJAeNYanoMSubstitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soilTheor. Appl. Genet.20021058908971:CAS:528:DC%2BD38XosVCntLs%3D1258291410.1007/s00122-002-1051-9 – reference: DaweDPandeySNelsonAPandeySRice in the Global Economy. Strategic Research and Policy Issues for Food Security2010535 – reference: ZhaoYHuYDaiMHuangLZhouD-XThe WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in ricePlant Cell2009217367481:CAS:528:DC%2BD1MXlsFyltbo%3D19258439267169610.1105/tpc.108.061655 – reference: FalushDStephensMPritchardJKInference of population structure using multilocus genotype data: linked loci and correlated allele frequenciesGenetics2003164156715871:CAS:528:DC%2BD3sXnvF2ntrk%3D12930761146264810.1093/genetics/164.4.1567 – reference: InukaiYCrown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signalingPlant Cell200517138713961:CAS:528:DC%2BD2MXksVKksrY%3D15829602109176210.1105/tpc.105.030981 – reference: ThomsonMJHigh-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platformMol. Breed.20112987588610.1007/s11032-011-9663-x1:CAS:528:DC%2BC38XkvFylsb8%3D – reference: GowdaVRPWater uptake dynamics under progressive drought stress in diverse accessions of the OryzaSNP panel of rice (Oryza sativa)Func. Plant Bio.20123940241110.1071/FP12015 – reference: ScarpellaESimonsEJMeijerAJMultiple regulatory elements contribute to the vascular-specific expression of the rice HD-Zip gene Oshox1 in ArabidopsisPlant Cell Physiol.200546140014101:CAS:528:DC%2BD2MXps1Oms74%3D1596490510.1093/pcp/pci153 – reference: VijSGiriJDansanaPKKapoorSTyagiAKThe receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: organization, phylogenetic relationship, and expression during development and stressMol. Plant200817327501:CAS:528:DC%2BD1cXhtlWiu7fE1982557710.1093/mp/ssn047 – reference: MikiDShimamotoKSimple RNAi vectors for stable and transient suppression of gene function in ricePlant Cell Physiol.2004454904951:CAS:528:DC%2BD2cXjsFKhtbs%3D1511172410.1093/pcp/pch048 – reference: GregoryPDBarbariSHörzWTranscriptional control of phosphate-regulated genesFood Technol. Biotechnol.2000382953031:CAS:528:DC%2BD3MXltFGqtw%3D%3D – reference: HieiYIshidaYKasaokaKKomariTImproved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciensPlant Cell Tiss. Org.20068723324310.1007/s11240-006-9157-4 – reference: HaefeleSMHijmansRJSoil quality in rainfed lowland riceRice Today200983031 – reference: GomezMSMapping QTLs linked to physio-morphological and plant production traits under drought stress in rice (Oryza sativa L.) in the target environmentAm. J. Biochem. Biotechnol.2006216116910.3844/ajbbsp.2006.161.169 – reference: LohrmannJHarterKPlant two-component signaling systems and the role of response regulatorsPlant Physiol.20021283633691:CAS:528:DC%2BD38XhsVSrur8%3D11842140154020910.1104/pp.010907 – reference: CurtisMDGrossniklausUA Gateway cloning vector set for high throughput functional analysis of genes in plantaPlant Physiol.20031334624691:CAS:528:DC%2BD3sXosVaqtrw%3D1455577452387210.1104/pp.103.027979 – reference: BimpongIKDetermination of genetic variability for physiological traits related to drought tolerance in African rice (Oryza glaberrima)J. Plant Breed. Crop. Sci.201136067 – reference: WissuwaMAeNGenotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvementPlant Breed.200112043481:CAS:528:DC%2BD3MXitleqsbs%3D10.1046/j.1439-0523.2001.00561.x – reference: WissuwaMCombining a modeling with a genetic approach in establishing associations between genetic and physiological effects in relation to phosphorus uptakePlant Soil200526957681:CAS:528:DC%2BD2MXks1Oisrg%3D10.1007/s11104-004-2026-1 – reference: PribilMPesaresiPHertleABarbatoRLeisterDRole of plastid protein phosphatase TAP38 in LHCII dephosphorylation and thylakoid electron flowPLoS Biol.20108e100028820126264281115810.1371/journal.pbio.10002881:CAS:528:DC%2BC3cXhtlGksLk%3D – reference: ChinJHDeveloping rice with high yield under phosphorus deficiency: Pup1 sequence to applicationPlant Physiol.2011156120212162011ait..book.....C1:CAS:528:DC%2BC3MXptFWksr8%3D21602323313592610.1104/pp.111.175471 – reference: NiJJWuPSenadhiraDHuangNMapping QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.)Theor. Appl. Genet.199897136113691:CAS:528:DyaK1MXltF2msA%3D%3D10.1007/s001220051030 – reference: HeuerSComparative sequence analyses of the major quantitative trait locus Phosphorus uptake 1 (Pup1) reveal a complex genetic structurePlant Biotechnol. J.200974564711:CAS:528:DC%2BD1MXmvFejtL4%3D1942260310.1111/j.1467-7652.2009.00415.x – reference: DardickCChenJRichterTOuyangSRonaldPThe rice kinase database. A phylogenomic database for the rice kinomePlant Physiol.20071435795861:CAS:528:DC%2BD2sXhvFWnsL8%3D17172291180375310.1104/pp.106.087270 – reference: Van KauwenberghSJWorld Phosphate Rock Reserves and Resources2010 – reference: ManzanillaDOSubmergence risks and farmers’ preferences: implications for breeding Sub1 rice in Southeast AsiaAgric. Syst.201110433534710.1016/j.agsy.2010.12.005 – reference: YangXJFinneganPMRegulation of phosphate starvation responses in higher plantsAnn. Bot. (Lond.)20101055135261:CAS:528:DC%2BC3cXks1Gqtro%3D10.1093/aob/mcq015 – reference: LancerasJCPantuwanGJongdeeBToojindaTQuantitative trait loci associated with drought tolerance at reproductive stage in ricePlant Physiol.20041353843991:CAS:528:DC%2BD2cXkt12nu7k%3D1512202942939210.1104/pp.103.035527 – reference: XuKSub1A is an ethylene-responsive-factor-like gene that confers submergence tolerance to riceNature20064427057082006Natur.442..705X1:CAS:528:DC%2BD28XnvVynsrs%3D1690020010.1038/nature04920 – reference: ChinJHDevelopment and application of gene-based markers for the major rice QTL Phosphorus uptake 1Theor. Appl. Genet.2010120107310861:CAS:528:DC%2BC3cXjtlansrw%3D2003531510.1007/s00122-009-1235-7 – reference: BiDChengYTLiXZhangYActivation of plant immune responses by a gain-of-function mutation in an atypical receptor-like kinasePlant Physiol.2010153177117791:CAS:528:DC%2BC3cXhtVCrsrzI20508139292389710.1104/pp.110.158501 – reference: CourtoisBRice root architecture: meta-analysis from a drought QTL databaseRice2009211512810.1007/s12284-009-9028-9 – reference: OuyangJIdentification and analysis of eight peptide transporter homologs in ricePlant Sci.20101793743821:CAS:528:DC%2BC3cXpvFKrsro%3D10.1016/j.plantsci.2010.06.013 – reference: JeffersonRAKavanaghTABevanMWGUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plantsEMBO J.19876390139071:CAS:528:DyaL1cXovV2itQ%3D%3D332768655386710.1002/j.1460-2075.1987.tb02730.x – reference: PritchardJKStephensMDonnellyPInference of population structure using multilocus genotype dataGenetics20001559459591:STN:280:DC%2BD3cvislKrtA%3D%3D1083541210.1093/genetics/155.2.945 – reference: HaefeleSMHijmansRJAggarwalPKLadhaJKSinghRKDevakumarCHardyBScience, Technology, and Trade for Peace and Prosperity: Proceedings of the 26th International Rice Research Conference, New Delhi, India.2007297308 – reference: BonardiVPhotosystem II core phosphorylation and photosynthetic acclimation require two different protein kinasesNature2005437117911822005Natur.437.1179B1:CAS:528:DC%2BD2MXhtFahtL%2FN1623744610.1038/nature04016 – reference: WangXZafianPChoudharyMLawtonMThe PR5K receptor protein kinase from Arabidopsis thaliana is structurally related to a family of plant defense proteinsProc. Natl Acad. Sci. USA199693259826021996PNAS...93.2598W1:CAS:528:DyaK28XhvVSku70%3D863792010.1073/pnas.93.6.259839843 – reference: YoshidaSFornoDACockJHGomezKALaboratory Manual for Physiological Studies of Rice1972 – reference: HaldrupANaverHSchellerHVThe interaction between plastocyanin and photosystem I is inefficient in transgenic Arabidopsis plants lacking the PSI-N subunit of photosystem IPlant J.1999176896981:CAS:528:DyaK1MXivVSqsrk%3D1023006510.1046/j.1365-313X.1999.00419.x – reference: KongZLiMYangWXuWXueYA novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in ricePlant Physiol.2006141137613881:CAS:528:DC%2BD28XosVKit78%3D16778011153391510.1104/pp.106.082941 – reference: WissuwaMYanoMAeNMapping of QTLs for phosphorus-deficiency tolerance in rice (Oryza sativa L.)Theor. Appl. Genet.1998977777831:CAS:528:DyaK1cXotVahtrY%3D10.1007/s001220050955 – reference: LondoJPChiangYCHungKHChiangTYSchaalBAPhylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativaProc. Natl Acad. Sci. USA2006103957895832006PNAS..103.9578L1:CAS:528:DC%2BD28XmsVOnsLw%3D1676665810.1073/pnas.06031521031480449 – reference: BradburyPJTASSEL: software for association mapping of complex traits in diverse samplesBioinformatics200723263326351:CAS:528:DC%2BD2sXht1ejtr7F1758682910.1093/bioinformatics/btm308 – reference: BernierJKumarARamaiahVSpanerDAtlinGA large-effect QTL for grain yield under reproductive-stage drought stress in upland riceCrop Sci.20074750751810.2135/cropsci2006.07.0495 – reference: Pariasca-TanakaJSatohKRoseTMauleonRWissuwaMStress response versus stress tolerance: a transcriptome analysis of two rice lines contrasting in tolerance to phosphorus deficiencyRice2009216718510.1007/s12284-009-9032-0 – reference: CordellDDrangertJOWhiteSThe story of phosphorus: global food security and food for thoughtGlob. Environ. Change20091929230510.1016/j.gloenvcha.2008.10.009 – volume: 29 start-page: 875 year: 2011 ident: BFnature11346_CR43 publication-title: Mol. Breed. doi: 10.1007/s11032-011-9663-x – volume: 8 start-page: e1000288 year: 2010 ident: BFnature11346_CR32 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000288 – volume: 47 start-page: 507 year: 2007 ident: BFnature11346_CR37 publication-title: Crop Sci. doi: 10.2135/cropsci2006.07.0495 – volume: 93 start-page: 2598 year: 1996 ident: BFnature11346_CR22 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.93.6.2598 – volume: 7 start-page: 456 year: 2009 ident: BFnature11346_CR6 publication-title: Plant Biotechnol. J. doi: 10.1111/j.1467-7652.2009.00415.x – volume: 135 start-page: 384 year: 2004 ident: BFnature11346_CR41 publication-title: Plant Physiol. doi: 10.1104/pp.103.035527 – volume: 103 start-page: 9578 year: 2006 ident: BFnature11346_CR13 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0603152103 – volume: 17 start-page: 689 year: 1999 ident: BFnature11346_CR31 publication-title: Plant J. doi: 10.1046/j.1365-313X.1999.00419.x – start-page: 5 volume-title: Rice in the Global Economy. Strategic Research and Policy Issues for Food Security year: 2010 ident: BFnature11346_CR11 – volume: 155 start-page: 945 year: 2000 ident: BFnature11346_CR44 publication-title: Genetics doi: 10.1093/genetics/155.2.945 – volume: 104 start-page: 335 year: 2011 ident: BFnature11346_CR15 publication-title: Agric. Syst. doi: 10.1016/j.agsy.2010.12.005 – volume: 46 start-page: 1400 year: 2005 ident: BFnature11346_CR28 publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pci153 – volume: 2 start-page: 167 year: 2009 ident: BFnature11346_CR5 publication-title: Rice doi: 10.1007/s12284-009-9032-0 – volume: 437 start-page: 1179 year: 2005 ident: BFnature11346_CR24 publication-title: Nature doi: 10.1038/nature04016 – volume: 153 start-page: 1771 year: 2010 ident: BFnature11346_CR23 publication-title: Plant Physiol. doi: 10.1104/pp.110.158501 – volume: 17 start-page: 1387 year: 2005 ident: BFnature11346_CR25 publication-title: Plant Cell doi: 10.1105/tpc.105.030981 – volume: 6 start-page: 3901 year: 1987 ident: BFnature11346_CR36 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1987.tb02730.x – volume: 87 start-page: 233 year: 2006 ident: BFnature11346_CR34 publication-title: Plant Cell Tiss. Org. doi: 10.1007/s11240-006-9157-4 – volume: 164 start-page: 1567 year: 2003 ident: BFnature11346_CR45 publication-title: Genetics doi: 10.1093/genetics/164.4.1567 – volume: 45 start-page: 490 year: 2004 ident: BFnature11346_CR47 publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pch048 – volume: 8 start-page: 30 year: 2009 ident: BFnature11346_CR10 publication-title: Rice Today – volume-title: Laboratory Manual for Physiological Studies of Rice year: 1972 ident: BFnature11346_CR35 – volume: 141 start-page: 1376 year: 2006 ident: BFnature11346_CR29 publication-title: Plant Physiol. doi: 10.1104/pp.106.082941 – start-page: 297 volume-title: Science, Technology, and Trade for Peace and Prosperity: Proceedings of the 26th International Rice Research Conference, New Delhi, India. year: 2007 ident: BFnature11346_CR9 – volume: 128 start-page: 363 year: 2002 ident: BFnature11346_CR27 publication-title: Plant Physiol. doi: 10.1104/pp.010907 – volume: 120 start-page: 1073 year: 2010 ident: BFnature11346_CR7 publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-009-1235-7 – volume: 105 start-page: 890 year: 2002 ident: BFnature11346_CR17 publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-002-1051-9 – volume: 143 start-page: 579 year: 2007 ident: BFnature11346_CR20 publication-title: Plant Physiol. doi: 10.1104/pp.106.087270 – volume: 442 start-page: 705 year: 2006 ident: BFnature11346_CR14 publication-title: Nature doi: 10.1038/nature04920 – volume: 2 start-page: 161 year: 2006 ident: BFnature11346_CR40 publication-title: Am. J. Biochem. Biotechnol. doi: 10.3844/ajbbsp.2006.161.169 – volume-title: World Phosphate Rock Reserves and Resources year: 2010 ident: BFnature11346_CR1 – volume: 105 start-page: 513 year: 2010 ident: BFnature11346_CR19 publication-title: Ann. Bot. (Lond.) doi: 10.1093/aob/mcq015 – volume: 156 start-page: 1202 year: 2011 ident: BFnature11346_CR8 publication-title: Plant Physiol. doi: 10.1104/pp.111.175471 – volume: 23 start-page: 2633 year: 2007 ident: BFnature11346_CR46 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm308 – volume: 179 start-page: 374 year: 2010 ident: BFnature11346_CR30 publication-title: Plant Sci. doi: 10.1016/j.plantsci.2010.06.013 – volume: 2 start-page: 115 year: 2009 ident: BFnature11346_CR39 publication-title: Rice doi: 10.1007/s12284-009-9028-9 – volume: 39 start-page: 402 year: 2012 ident: BFnature11346_CR16 publication-title: Func. Plant Bio. doi: 10.1071/FP12015 – volume: 133 start-page: 462 year: 2003 ident: BFnature11346_CR33 publication-title: Plant Physiol. doi: 10.1104/pp.103.027979 – volume: 21 start-page: 736 year: 2009 ident: BFnature11346_CR26 publication-title: Plant Cell doi: 10.1105/tpc.108.061655 – volume: 97 start-page: 777 year: 1998 ident: BFnature11346_CR2 publication-title: Theor. Appl. Genet. doi: 10.1007/s001220050955 – volume: 120 start-page: 43 year: 2001 ident: BFnature11346_CR3 publication-title: Plant Breed. doi: 10.1046/j.1439-0523.2001.00561.x – volume: 19 start-page: 292 year: 2009 ident: BFnature11346_CR12 publication-title: Glob. Environ. Change doi: 10.1016/j.gloenvcha.2008.10.009 – volume: 3 start-page: 60 year: 2011 ident: BFnature11346_CR38 publication-title: J. Plant Breed. Crop. Sci. – volume: 97 start-page: 1361 year: 1998 ident: BFnature11346_CR42 publication-title: Theor. Appl. Genet. doi: 10.1007/s001220051030 – volume: 38 start-page: 295 year: 2000 ident: BFnature11346_CR18 publication-title: Food Technol. Biotechnol. – volume: 269 start-page: 57 year: 2005 ident: BFnature11346_CR4 publication-title: Plant Soil doi: 10.1007/s11104-004-2026-1 – volume: 1 start-page: 732 year: 2008 ident: BFnature11346_CR21 publication-title: Mol. Plant doi: 10.1093/mp/ssn047 – reference: 17172291 - Plant Physiol. 2007 Feb;143(2):579-86 – reference: 19422603 - Plant Biotechnol J. 2009 Jun;7(5):456-7 – reference: 16778011 - Plant Physiol. 2006 Aug;141(4):1376-88 – reference: 19258439 - Plant Cell. 2009 Mar;21(3):736-48 – reference: 16237446 - Nature. 2005 Oct 20;437(7062):1179-82 – reference: 16900200 - Nature. 2006 Aug 10;442(7103):705-8 – reference: 11842140 - Plant Physiol. 2002 Feb;128(2):363-9 – reference: 20035315 - Theor Appl Genet. 2010 Apr;120(6):1073-86 – reference: 15122029 - Plant Physiol. 2004 May;135(1):384-99 – reference: 3327686 - EMBO J. 1987 Dec 20;6(13):3901-7 – reference: 22914160 - Nature. 2012 Aug 23;488(7412):466-7 – reference: 12582914 - Theor Appl Genet. 2002 Nov;105(6-7):890-897 – reference: 8637920 - Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2598-602 – reference: 14555774 - Plant Physiol. 2003 Oct;133(2):462-9 – reference: 19825577 - Mol Plant. 2008 Sep;1(5):732-50 – reference: 16766658 - Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9578-83 – reference: 20181569 - Ann Bot. 2010 Apr;105(4):513-26 – reference: 17586829 - Bioinformatics. 2007 Oct 1;23(19):2633-5 – reference: 15111724 - Plant Cell Physiol. 2004 Apr;45(4):490-5 – reference: 10835412 - Genetics. 2000 Jun;155(2):945-59 – reference: 20508139 - Plant Physiol. 2010 Aug;153(4):1771-9 – reference: 15829602 - Plant Cell. 2005 May;17(5):1387-96 – reference: 21602323 - Plant Physiol. 2011 Jul;156(3):1202-16 – reference: 12930761 - Genetics. 2003 Aug;164(4):1567-87 – reference: 20126264 - PLoS Biol. 2010 Jan 26;8(1):e1000288 – reference: 10230065 - Plant J. 1999 Mar;17(6):689-98 – reference: 15964905 - Plant Cell Physiol. 2005 Aug;46(8):1400-10 |
SSID | ssj0005174 |
Score | 2.5881803 |
Snippet | A gene that is present in phosphate-deficiency-tolerant rice but absent from modern rice varieties is characterized and named phosphorus-starvation tolerance 1... As an essential macroelement for all living cells, phosphorus is indispensable in agricultural production systems. Natural phosphorus reserves are limited, and... |
SourceID | proquest gale pubmed pascalfrancis crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 535 |
SubjectTerms | 631/208/729/743 631/61/447/2311 704/172 Adaptation, Physiological - genetics Agricultural production Agronomy. Soil science and plant productions Biological and medical sciences Breeding Cloning Droughts Fertilizers Fundamental and applied biological sciences. Psychology Gene expression Gene mapping Generalities. Genetics. Plant material Genes, Plant - genetics Genetic resources, diversity Genetics Genetics and breeding of economic plants Genome, Plant - genetics Genomes Humanities and Social Sciences Interspecific and intergeneric hybridization, introgressions Kinases letter Molecular Sequence Data multidisciplinary Oryza - classification Oryza - enzymology Oryza - genetics Oryza - physiology Phosphorus Phosphorus (Nutrient) Phosphorus - deficiency Phosphorylation Physiological aspects Plant breeding: fundamental aspects and methodology Plant growth Plant material Plant Proteins - genetics Plant Proteins - metabolism Plant Roots - enzymology Plant Roots - genetics Plant Roots - growth & development Plants, Genetically Modified Protein kinases Protein Kinases - genetics Protein Kinases - metabolism Proteins Quantitative Trait Loci - genetics Rice Science Submergence |
Title | The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency |
URI | https://link.springer.com/article/10.1038/nature11346 https://www.ncbi.nlm.nih.gov/pubmed/22914168 https://www.proquest.com/docview/1037972710 https://www.proquest.com/docview/1035103819 |
Volume | 488 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB-0RRBEbNW6th5RKqiw9JJs9uNJaulZBUupFg5flmw2q4dld3u5-_-d2c192eLD7ktmsyGZZH5JZn4DcFgImalM6FApE4WI_4sw1ZEMowLhcFnxtCd7_nYen11FX8dq7A_cnHerXKyJ3UJdNobOyI8oni1DY8uHH9ubkLJG0e2qT6FxH7aJuoxcupJxsnLx-IeF2cfnDWV61NNmci4J-a5ZJL8uP2q1wz6q-uQWd6HPWzennUEaPYHHHkmy437od-CerXfhQefRadwu7PhZ69g7Ty39_in8RK1gHTXDpGZ_JjWaMHaB8O-aM4ozYbOpLif96SAjtiFmuoBAx1DEUistayrW_m4cPtO5Y6UlBgoK33wGV6PTHydnoc-uEBols1locCeRIgDQWiRo4xHpCBNbpZLEImSRSRXxihuTldwQ7iLDbnRqBGEem5RSPoetuqntC2Bcq2GsK6t1UUSSdiCZTmgxKIdCxzIK4MOih3PjqccpA8Z13l2ByzRfG44ADpfCbc-4cbfYGxqqnDgsanKS-aXnzuVfvl_mx7FEEKySTAWw74WqBn9oTDu5yddKDzZKcWKZjY8HG1qwbI3APWOMNgK_X6hF7me-y1d6GsDrZTFVTd5stW3mnQwRGSIYC2CvV6dV5SLjCJLTAN4u9Gu98lv98PL_jdiHhwjxBJ2CC3kAW7Pp3L5CGDUrBt1cwXd6wuk9-jyA7U-n5xeXfwEXNBt5 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFD6UiiiI2HobW2uUFlQYOpNM5vIgUtSyay-ItrD4MmYymXaxzGw3u4h_yt_oOXPZiy2-9WGfksmG5OR8X5JzvgBsZ1wkMuHKlVIHLvL_zI1VINwgQzqcF37ciD0fHYe90-DzQA5W4E-XC0NhlZ1PrB11Xmk6I9-lfLYEwdb33o8uXXo1im5Xuyc0GrM4ML9_4ZbNvut_xPnd4Xz_08mHntu-KuBqKZKJq5FBxwh8SvEIsQ0RnuvQSBlFBqFaREXgF77WSe5r4hsEaFrFmhPWmyinA1B0-bcQeD1aUdEgmoeU_KP63OYDeiLebWQ6fV8Q015AwBYH7o2UxTkpmsc0rmO7V25qawDcfwD3W-bK9hpTW4MVU67D7TqCVNt1WGu9hGWvWynrNw_hO1ohq6UghiX7OSwRMtkXpJsXPqO8FjYZq3zYnEYyUjdiuk5AtAyrGOqlYVXBRueVxd94alluSPGC0kUfwemNjPtjWC2r0jwF5ivphaowSmVZIGjHk6iInE_ucRWKwIG33QinupU6pxc3LtL6yl3E6cJ0OLA9qzxqFD6ur_aKpiolzYySgnLO1NTatP_ta7oXCiTdMkqkAxttpaLCP9R6NLxMF0o3l0pxIeulj7eWrGDWG4571BAxCb_vzCJtPY1N5-vCgZezYmqaoudKU03rOiSciOTPgSeNOc0b54mPpDx2YKezr8XGr4zDs_934gXc6Z0cHaaH_eODDbiL9JLTCTwXm7A6GU_Nc6Rwk2yrXjcMftz0Qv0LE2tSOw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFD6UiiKI2HobW2uUFlQYdpNM5vIgUqxL12opamHpy5jJZHSxzEx3dhH_mr_Oc-ayF1t868M-JZMNyTnn-3I5XwB2EyEjFQntKmU8F_l_4obak66XIB1OMx42Ys-fjv3DU-_DSI3W4E-XC0PXKruYWAfqtDC0R96jfLYIwZb3e1l7LeLkYPC2vHDpBSk6ae2e02hM5Mj-_oXLt-rN8ADnek-Iwfuv7w7d9oUB1ygZTV2DbDpEENRaBIhziPbC-FapILAI2zLIPJ5xY6KUG-IeBG5Gh0YQ7tsgpc1QDP83Aqk4-VgwChbXS_5RgG5zA_sy7DWSnZxLYt1LaNhiwp1SVzg_WfOwxlXM99KpbQ2Gg3twt2WxbL8xuw1Ys_km3Kxvk5pqEzbaiFGxl62s9av7cIYWyWpZiHHOfo5zhE92gtTznDPKcWHTiU7Hzc4kI6UjZupkxIphFUu9tKzIWPmjqPA3mVUstaR-QamjD-D0Wsb9IaznRW4fA-Na9X2dWa2TxJO0-ol0QIEo7QvtS8-B190Ix6aVPafXN87j-vhdhvHSdDiwO69cNmofV1d7QVMVk35GTpb4Xc-qKh5--Rzv-xIJuAoi5cBWWykr8A-NKccX8VLp9kopOrVZ-XhnxQrmvRG4XvURn_D7ziziNupU8cJHHHg-L6am6SZdbotZXYdEFJEIOvCoMadF4yLiSNBDB_Y6-1pu_NI4PPl_J57BLXTR-OPw-GgLbiPTFLQZL-Q2rE8nM_sU2dw02andhsG36_bTvyLdVnE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+protein+kinase+Pstol1+from+traditional+rice+confers+tolerance+of+phosphorus+deficiency&rft.jtitle=Nature+%28London%29&rft.au=Gamuyao%2C+Rico&rft.au=Chin%2C+Joong+Hyoun&rft.au=Pariasca-Tanaka%2C+Juan&rft.au=Pesaresi%2C+Paolo&rft.date=2012-08-23&rft.issn=1476-4687&rft.eissn=1476-4687&rft.volume=488&rft.issue=7412&rft.spage=535&rft_id=info:doi/10.1038%2Fnature11346&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |