Urinary specific gravity measures in the U.S. population: Implications for the adjustment of non-persistent chemical urinary biomarker data

•Urinary biomarkers are subject to measurement error due to urine dilution.•Urine creatinine or specific gravity are often used to correct for dilution.•Urine creatinine and specific gravity vary systematically by several factors.•Methods to correct for dilution should account for these factors to m...

Full description

Saved in:
Bibliographic Details
Published inEnvironment international Vol. 156; p. 106656
Main Authors Kuiper, Jordan R., O'Brien, Katie M., Ferguson, Kelly K., Buckley, Jessie P.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2021
Elsevier
Subjects
Online AccessGet full text
ISSN0160-4120
1873-6750
1873-6750
DOI10.1016/j.envint.2021.106656

Cover

Abstract •Urinary biomarkers are subject to measurement error due to urine dilution.•Urine creatinine or specific gravity are often used to correct for dilution.•Urine creatinine and specific gravity vary systematically by several factors.•Methods to correct for dilution should account for these factors to minimize bias. Urinary biomarkers are often corrected for sample dilution using creatinine, which is influenced by sociodemographic factors and certain health conditions. It is unknown whether these factors similarly influence specific gravity. To identify predictors of specific gravity and creatinine and compare methods for correcting estimated chemical concentrations for sample dilution using these measures. We assessed predictors of urinary specific gravity and creatinine among NHANES 2007–2008 participants (n = 7257). We corrected concentrations of mono-n-butyl phthalate (MnBP) for dilution using two methods, each applied to both specific gravity and creatinine: correction using a sample mean of the dilution indicator (i.e., specific gravity or creatinine) and covariate-adjusted standardization. We compared distributions and assessed the agreement of uncorrected or corrected concentrations visually using Bland-Altman plots and statistically by Kendall’s τa. We stratified all analyses by age category (i.e., 6–19 or 20+ years of age). Gender, race/ethnicity, body mass index, and height were associated with urinary specific gravity and creatinine. Distributions of corrected MnBP concentrations were comparable for both methods and dilution indicators, but agreement between methods was greater for specific gravity. Additionally, specific gravity- and creatinine-corrected MnBP concentrations had slightly greater agreement with each other when corrected using a covariate-adjusted standardization method. Specific gravity, like creatinine, is associated with sociodemographic and body composition variables. Accounting for these factors as part of the dilution correction method may be important to minimize bias.
AbstractList Urinary biomarkers are often corrected for sample dilution using creatinine, which is influenced by sociodemographic factors and certain health conditions. It is unknown whether these factors similarly influence specific gravity. To identify predictors of specific gravity and creatinine and compare methods for correcting estimated chemical concentrations for sample dilution using these measures. We assessed predictors of urinary specific gravity and creatinine among NHANES 2007–2008 participants (n = 7257). We corrected concentrations of mono-n-butyl phthalate (MnBP) for dilution using two methods, each applied to both specific gravity and creatinine: correction using a sample mean of the dilution indicator (i.e., specific gravity or creatinine) and covariate-adjusted standardization. We compared distributions and assessed the agreement of uncorrected or corrected concentrations visually using Bland-Altman plots and statistically by Kendall’s τa. We stratified all analyses by age category (i.e., 6–19 or 20+ years of age). Gender, race/ethnicity, body mass index, and height were associated with urinary specific gravity and creatinine. Distributions of corrected MnBP concentrations were comparable for both methods and dilution indicators, but agreement between methods was greater for specific gravity. Additionally, specific gravity- and creatinine-corrected MnBP concentrations had slightly greater agreement with each other when corrected using a covariate-adjusted standardization method. Specific gravity, like creatinine, is associated with sociodemographic and body composition variables. Accounting for these factors as part of the dilution correction method may be important to minimize bias.
Urinary biomarkers are often corrected for sample dilution using creatinine, which is influenced by sociodemographic factors and certain health conditions. It is unknown whether these factors similarly influence specific gravity.BACKGROUNDUrinary biomarkers are often corrected for sample dilution using creatinine, which is influenced by sociodemographic factors and certain health conditions. It is unknown whether these factors similarly influence specific gravity.To identify predictors of specific gravity and creatinine and compare methods for correcting estimated chemical concentrations for sample dilution using these measures.OBJECTIVESTo identify predictors of specific gravity and creatinine and compare methods for correcting estimated chemical concentrations for sample dilution using these measures.We assessed predictors of urinary specific gravity and creatinine among NHANES 2007-2008 participants (n = 7257). We corrected concentrations of mono-n-butyl phthalate (MnBP) for dilution using two methods, each applied to both specific gravity and creatinine: correction using a sample mean of the dilution indicator (i.e., specific gravity or creatinine) and covariate-adjusted standardization. We compared distributions and assessed the agreement of uncorrected or corrected concentrations visually using Bland-Altman plots and statistically by Kendall's τa. We stratified all analyses by age category (i.e., 6-19 or 20+ years of age).METHODSWe assessed predictors of urinary specific gravity and creatinine among NHANES 2007-2008 participants (n = 7257). We corrected concentrations of mono-n-butyl phthalate (MnBP) for dilution using two methods, each applied to both specific gravity and creatinine: correction using a sample mean of the dilution indicator (i.e., specific gravity or creatinine) and covariate-adjusted standardization. We compared distributions and assessed the agreement of uncorrected or corrected concentrations visually using Bland-Altman plots and statistically by Kendall's τa. We stratified all analyses by age category (i.e., 6-19 or 20+ years of age).Gender, race/ethnicity, body mass index, and height were associated with urinary specific gravity and creatinine. Distributions of corrected MnBP concentrations were comparable for both methods and dilution indicators, but agreement between methods was greater for specific gravity. Additionally, specific gravity- and creatinine-corrected MnBP concentrations had slightly greater agreement with each other when corrected using a covariate-adjusted standardization method.RESULTSGender, race/ethnicity, body mass index, and height were associated with urinary specific gravity and creatinine. Distributions of corrected MnBP concentrations were comparable for both methods and dilution indicators, but agreement between methods was greater for specific gravity. Additionally, specific gravity- and creatinine-corrected MnBP concentrations had slightly greater agreement with each other when corrected using a covariate-adjusted standardization method.Specific gravity, like creatinine, is associated with sociodemographic and body composition variables. Accounting for these factors as part of the dilution correction method may be important to minimize bias.DISCUSSIONSpecific gravity, like creatinine, is associated with sociodemographic and body composition variables. Accounting for these factors as part of the dilution correction method may be important to minimize bias.
Background: Urinary biomarkers are often corrected for sample dilution using creatinine, which is influenced by sociodemographic factors and certain health conditions. It is unknown whether these factors similarly influence specific gravity. Objectives: To identify predictors of specific gravity and creatinine and compare methods for correcting estimated chemical concentrations for sample dilution using these measures. Methods: We assessed predictors of urinary specific gravity and creatinine among NHANES 2007–2008 participants (n = 7257). We corrected concentrations of mono-n-butyl phthalate (MnBP) for dilution using two methods, each applied to both specific gravity and creatinine: correction using a sample mean of the dilution indicator (i.e., specific gravity or creatinine) and covariate-adjusted standardization. We compared distributions and assessed the agreement of uncorrected or corrected concentrations visually using Bland-Altman plots and statistically by Kendall’s τa. We stratified all analyses by age category (i.e., 6–19 or 20+ years of age). Results: Gender, race/ethnicity, body mass index, and height were associated with urinary specific gravity and creatinine. Distributions of corrected MnBP concentrations were comparable for both methods and dilution indicators, but agreement between methods was greater for specific gravity. Additionally, specific gravity- and creatinine-corrected MnBP concentrations had slightly greater agreement with each other when corrected using a covariate-adjusted standardization method. Discussion: Specific gravity, like creatinine, is associated with sociodemographic and body composition variables. Accounting for these factors as part of the dilution correction method may be important to minimize bias.
•Urinary biomarkers are subject to measurement error due to urine dilution.•Urine creatinine or specific gravity are often used to correct for dilution.•Urine creatinine and specific gravity vary systematically by several factors.•Methods to correct for dilution should account for these factors to minimize bias. Urinary biomarkers are often corrected for sample dilution using creatinine, which is influenced by sociodemographic factors and certain health conditions. It is unknown whether these factors similarly influence specific gravity. To identify predictors of specific gravity and creatinine and compare methods for correcting estimated chemical concentrations for sample dilution using these measures. We assessed predictors of urinary specific gravity and creatinine among NHANES 2007–2008 participants (n = 7257). We corrected concentrations of mono-n-butyl phthalate (MnBP) for dilution using two methods, each applied to both specific gravity and creatinine: correction using a sample mean of the dilution indicator (i.e., specific gravity or creatinine) and covariate-adjusted standardization. We compared distributions and assessed the agreement of uncorrected or corrected concentrations visually using Bland-Altman plots and statistically by Kendall’s τa. We stratified all analyses by age category (i.e., 6–19 or 20+ years of age). Gender, race/ethnicity, body mass index, and height were associated with urinary specific gravity and creatinine. Distributions of corrected MnBP concentrations were comparable for both methods and dilution indicators, but agreement between methods was greater for specific gravity. Additionally, specific gravity- and creatinine-corrected MnBP concentrations had slightly greater agreement with each other when corrected using a covariate-adjusted standardization method. Specific gravity, like creatinine, is associated with sociodemographic and body composition variables. Accounting for these factors as part of the dilution correction method may be important to minimize bias.
ArticleNumber 106656
Author Ferguson, Kelly K.
Kuiper, Jordan R.
O'Brien, Katie M.
Buckley, Jessie P.
AuthorAffiliation c Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
a Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
b Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
AuthorAffiliation_xml – name: c Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
– name: a Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
– name: b Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
Author_xml – sequence: 1
  givenname: Jordan R.
  surname: Kuiper
  fullname: Kuiper, Jordan R.
  email: jkuiper1@jhmi.edu
  organization: Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
– sequence: 2
  givenname: Katie M.
  surname: O'Brien
  fullname: O'Brien, Katie M.
  organization: Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
– sequence: 3
  givenname: Kelly K.
  surname: Ferguson
  fullname: Ferguson, Kelly K.
  organization: Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
– sequence: 4
  givenname: Jessie P.
  surname: Buckley
  fullname: Buckley, Jessie P.
  organization: Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
BookMark eNqFUsuO0zAUjdAg5gF_wMJLNi1-JLYzCyQ04lFpJBbQtXXj3LQuSRxsp1K_gZ_GfbAYFszK9vU5577ObXE1-hGL4i2jS0aZfL9b4rh3Y1pyylkOSVnJF8UN00ospKroVXGTYXRRMk6vi9sYd5RSXurqVXEtSiq5qKub4vc6uBHCgcQJreucJZsAe5cOZECIc8BI3EjSFsl6-X1JJj_NPSTnx3uyGqbe2dMjks6HEwra3RzTgGMiviO55MWEIbqYjhG7xSEzejJfkjbODxB-YiAtJHhdvOygj_jmct4V68-ffjx8XTx--7J6-Pi4sJWo06JRjCoBrW45lR02jHb5ThEApQWlO4CGW25FicoCSEorVlpsNaOcNrUSd8XqrNt62JkpuFzDwXhw5hTwYWMgJGd7NA2ChVa1pZJ12SqheaNLVivFG6hrYbPWh7PWNDcDtja3GaB_Ivr0Z3Rbs_F7o4WmshZZ4N1FIPhfM8ZkBhct9j2M6OdoeFWxmmuVsz0PFbKUWgueofdnqA0-xoCdsS6dVpWLcL1h1BxNZHbmbCJzNJE5myiTy3_If9t5hnYZBebd7R0GE63DMU_eBbQpD9f9X-APjC_oLg
CitedBy_id crossref_primary_10_1039_D3AY01605F
crossref_primary_10_1016_j_envres_2022_114793
crossref_primary_10_1016_j_ecoenv_2023_115741
crossref_primary_10_1016_j_envres_2022_113342
crossref_primary_10_1016_j_envres_2024_118633
crossref_primary_10_1016_j_envres_2024_119205
crossref_primary_10_1016_j_envint_2023_107922
crossref_primary_10_1016_j_envres_2025_120950
crossref_primary_10_1016_j_scitotenv_2022_155596
crossref_primary_10_1007_s00467_025_06681_w
crossref_primary_10_1016_j_scitotenv_2023_168119
crossref_primary_10_1097_EDE_0000000000001496
crossref_primary_10_1016_j_envint_2024_109227
crossref_primary_10_1016_j_ijheh_2023_114115
crossref_primary_10_1016_j_eti_2025_104111
crossref_primary_10_1001_jamapediatrics_2022_2252
crossref_primary_10_1021_acs_est_1c04926
crossref_primary_10_1038_s41370_023_00627_w
crossref_primary_10_1016_j_ecoenv_2024_116400
crossref_primary_10_3390_children11091045
crossref_primary_10_1016_j_envres_2024_119910
crossref_primary_10_1016_j_ntt_2023_107152
crossref_primary_10_1016_j_envint_2024_108726
crossref_primary_10_1016_j_envpol_2023_121896
crossref_primary_10_1016_j_envint_2023_107898
crossref_primary_10_1016_j_ijheh_2023_114142
crossref_primary_10_1016_j_chemosphere_2022_135599
crossref_primary_10_1038_s41366_024_01548_w
crossref_primary_10_1016_j_ijheh_2022_113993
crossref_primary_10_1289_EHP11760
crossref_primary_10_1186_s12940_022_00920_5
crossref_primary_10_1007_s12403_024_00626_8
crossref_primary_10_1016_j_jhazmat_2022_130653
crossref_primary_10_1289_EHP13182
crossref_primary_10_2139_ssrn_4098346
crossref_primary_10_1016_j_envres_2022_113897
crossref_primary_10_3390_toxics10110692
crossref_primary_10_1016_j_scitotenv_2022_159935
crossref_primary_10_1016_j_heliyon_2024_e37722
crossref_primary_10_52420_umj_23_3_46
crossref_primary_10_1001_jamapsychiatry_2023_3542
crossref_primary_10_3390_molecules28062505
crossref_primary_10_1021_acs_est_1c08942
crossref_primary_10_1016_j_ecoenv_2024_116414
crossref_primary_10_1016_j_jtemb_2024_127461
crossref_primary_10_1021_acs_langmuir_4c00374
crossref_primary_10_1016_j_envint_2024_108912
crossref_primary_10_2139_ssrn_4195941
crossref_primary_10_1016_j_envint_2024_108678
crossref_primary_10_1289_EHP13937
crossref_primary_10_1016_j_scitotenv_2023_168729
crossref_primary_10_1007_s40572_022_00366_4
crossref_primary_10_1016_j_scitotenv_2023_163327
crossref_primary_10_1021_acs_est_3c04043
crossref_primary_10_1016_j_envint_2023_107816
crossref_primary_10_1016_j_ijheh_2024_114377
crossref_primary_10_1289_EHP11798
crossref_primary_10_1016_j_envint_2023_108194
crossref_primary_10_1016_j_therwi_2023_100063
crossref_primary_10_1016_j_chemosphere_2023_139167
crossref_primary_10_1093_humrep_deae152
crossref_primary_10_3389_frph_2023_1304725
crossref_primary_10_1016_j_chemosphere_2024_141330
crossref_primary_10_1016_j_scitotenv_2024_172368
crossref_primary_10_1186_s12940_024_01065_3
crossref_primary_10_1016_j_envpol_2023_123131
crossref_primary_10_1016_j_reprotox_2023_108350
crossref_primary_10_1038_s41370_022_00457_2
crossref_primary_10_1021_acs_est_3c03401
crossref_primary_10_1038_s41370_023_00535_z
crossref_primary_10_3389_fgene_2022_793278
crossref_primary_10_1007_s00769_024_01595_w
crossref_primary_10_1038_s41370_023_00555_9
crossref_primary_10_1016_j_envint_2024_108866
crossref_primary_10_1038_s41598_023_36166_5
crossref_primary_10_1155_tsm2_8827027
crossref_primary_10_1210_clinem_dgad584
crossref_primary_10_3390_toxics10060311
crossref_primary_10_1289_EHP12831
crossref_primary_10_1016_j_jhazmat_2021_126683
crossref_primary_10_1002_ajhb_24139
crossref_primary_10_1016_j_envint_2024_109071
crossref_primary_10_1021_acs_est_4c13266
Cites_doi 10.1681/ASN.2008030287
10.1016/j.envres.2007.08.005
10.1080/1047322X.1990.10389587
10.1289/ehp.1510041
10.1093/biomet/30.1-2.81
10.1080/15298669391355134
10.1039/b921073c
10.1038/ki.2010.462
10.1007/s00420-011-0658-z
10.1007/s40572-017-0122-7
10.1186/s12940-017-0247-z
10.1289/ehp.7337
10.1080/0002889748507072
10.1289/ehp.1509693
10.1037/1082-989X.6.4.352
10.1038/s41370-018-0043-z
10.1186/1476-069X-13-43
10.1007/s004670000551
10.1038/jes.2008.48
10.1186/s12940-016-0152-x
10.1002/jcla.21693
10.1016/j.envres.2014.09.009
10.1007/s004200000190
10.7326/0003-4819-150-9-200905050-00006
10.1186/s12940-020-00610-0
10.1186/1476-069X-8-8
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2021 The Author(s)
– notice: Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.envint.2021.106656
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Public Health
Environmental Sciences
EISSN 1873-6750
EndPage 106656
ExternalDocumentID oai_doaj_org_article_beacad7d47694d7382b8419772ba993c
PMC8380693
10_1016_j_envint_2021_106656
S0160412021002816
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEGFY
AEIPS
AEKER
AENEX
AFJKZ
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMC
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEN
SES
SEW
SSH
SSJ
SSZ
T5K
TN5
WUQ
XPP
~02
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7X8
EFKBS
7S9
L.6
5PM
ID FETCH-LOGICAL-c539t-b71073ad8d206feb10fd8d0eaae6ca78faab2c2c34e7caa600514ced81020b973
IEDL.DBID DOA
ISSN 0160-4120
1873-6750
IngestDate Wed Aug 27 01:07:51 EDT 2025
Thu Aug 21 18:38:40 EDT 2025
Thu Sep 04 23:52:35 EDT 2025
Thu Sep 04 21:47:27 EDT 2025
Tue Jul 01 02:38:11 EDT 2025
Thu Apr 24 23:01:25 EDT 2025
Sun Apr 06 06:53:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords CDC
E
Bias
L
Cr
SD
SG
Urinary dilution
mg
kg
CKD-EPI
BMI
Hg
Creatinine
eGFR
LOD
mm
Specific gravity
CI
g
dL
cm
MnBP
IU
m
Non-persistent chemicals
ng
NHANES
mL
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c539t-b71073ad8d206feb10fd8d0eaae6ca78faab2c2c34e7caa600514ced81020b973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author Statement
All authors: Conceptualization and Methodology. Jordan R. Kuiper: Formal analysis and Writing-Original draft preparation. All authors: Writing-Reviewing and Editing.
OpenAccessLink https://doaj.org/article/beacad7d47694d7382b8419772ba993c
PMID 34062395
PQID 2536468832
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_beacad7d47694d7382b8419772ba993c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8380693
proquest_miscellaneous_2551928799
proquest_miscellaneous_2536468832
crossref_citationtrail_10_1016_j_envint_2021_106656
crossref_primary_10_1016_j_envint_2021_106656
elsevier_sciencedirect_doi_10_1016_j_envint_2021_106656
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Environment international
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Elkins, Pagnotto, Smith (b0060) 1974; 35
Centers for Disease Control and Prevention (CDC), 2009a. National Health and Nutrition Examination Survey (NHANES). U.S. Department of Health and Human Services. Hyattsville, MD: National Center for Health Statistics (NHCS).
Stevens, Claybon, Schmid, Chen, Horio, Imai, Nelson, Van Deventer, Wang, Zuo, Zhang, Levey (b0150) 2011; 79
Akerstrom, Lundh, Barregard, Sallsten (b0005) 2012; 85
Centers for Disease Control and Prevention (CDC), 2009b. National Health and Nutrition Examination Survey (NHANES): Laboratory Protocol. U.S. Department of Health and Human Services. Hyattsville, MD: National Center for Health Statistics (NCHS). Retrieved from
Kendall (b0080) 1938; 30
World Health Organization, 1996. Biological Monitoring of Chemical Exposure in the Workplace: Guidelines. World Health Organization.
Boeniger, Lowry, Rosenberg (b0020) 1993; 54
MacPherson, Arbuckle, Fisher (b0100) 2018; 28
Kuiper, Stapleton, Wills-Karp, Wang, Burd, Buckley (b0085) 2020; 19
O'Brien, Upson, Cook, Weinberg (b0120) 2016; 124
Centers for Disease Control and Prevention (CDC), 2010. National Health and Nutrition Examination Survey (NHANES): Laboratory Protocol: Phthalate Metabolites. U.S. Department of Health and Human Services. Hyattsvile, MD: National Center for Health Statistics (NCHS). 2010. Retrieved from
Barr, Wilder, Caudill, Gonzalez, Needham, Pirkle (b0015) 2005; 113
Serrano, Braun, Trasande, Dills, Sathyanarayana (b0140) 2014; 13
Romano, Hawley, Eliot, Calafat, Jayatilaka, Kelsey, McGarvey, Phipps, Savitz, Werner, Braun (b0130) 2017; 16
Nermell, Lindberg, Rahman, Berglund, Persson, El Arifeen, Vahter (b0110) 2008; 106
Yeh, Lin, Kuo, Weidemann, Weaver, Fadrowski, Neu, Navas-Acien (b0165) 2015; 136
Calafat, Longnecker, Koch, Swan, Hauser, Goldman, Lanphear, Rudel, Engel, Teitelbaum, Whyatt, Wolff (b0025) 2015; 123
Pearson, Lu, Schmotzer, Waller, Riederer (b0125) 2009; 19
Enders (b0065) 2001; 6
Levey, Stevens, Schmid, Zhang, Castro, Feldman, Kusek, Eggers, Van Lente, Greene, Coresh (b0090) 2009; 150
Schwartz, Muñoz, Schneider, Mak, Kaskel, Warady, Furth (b0135) 2009; 20
Xia, Wong, Bunker, Bernert (b0160) 2014; 28
.
Chadha, Garg, Alon (b0055) 2001; 16
Levine (b0095) 1945; 27
Centers for Disease Control and Prevention (CDC), 2007. National Health and Nutrition Examination Survey (NHANES): Laboratory Procedures Manual. U.S. Department of Health and Human Services. Hyattsville, MD: National Center for Health Statistics (NHCS). Retrieved from
Gaines, Fent, Flack, Thomasen, Ball, Zhou, Whittaker, Nylander-French (b0070) 2010; 12
Hornung, Reed (b0075) 1990; 5
Middleton, Watts, Lark, Milne, Polya (b0105) 2016; 15
Smolders, Schramm, Nickmilder, Schoeters (b0145) 2009; 8
Altman, Bland (b0010) 1983; 32
O'Brien, Upson, Buckley (b0115) 2017; 4
Carrieri, Trevisan, Bartolucci (b0030) 2001; 74
Gaines (10.1016/j.envint.2021.106656_b0070) 2010; 12
MacPherson (10.1016/j.envint.2021.106656_b0100) 2018; 28
Smolders (10.1016/j.envint.2021.106656_b0145) 2009; 8
10.1016/j.envint.2021.106656_b0045
Middleton (10.1016/j.envint.2021.106656_b0105) 2016; 15
Xia (10.1016/j.envint.2021.106656_b0160) 2014; 28
Akerstrom (10.1016/j.envint.2021.106656_b0005) 2012; 85
Calafat (10.1016/j.envint.2021.106656_b0025) 2015; 123
10.1016/j.envint.2021.106656_b0040
Schwartz (10.1016/j.envint.2021.106656_b0135) 2009; 20
Serrano (10.1016/j.envint.2021.106656_b0140) 2014; 13
Chadha (10.1016/j.envint.2021.106656_b0055) 2001; 16
Yeh (10.1016/j.envint.2021.106656_b0165) 2015; 136
Carrieri (10.1016/j.envint.2021.106656_b0030) 2001; 74
Enders (10.1016/j.envint.2021.106656_b0065) 2001; 6
O'Brien (10.1016/j.envint.2021.106656_b0120) 2016; 124
Nermell (10.1016/j.envint.2021.106656_b0110) 2008; 106
10.1016/j.envint.2021.106656_b0035
Elkins (10.1016/j.envint.2021.106656_b0060) 1974; 35
Kendall (10.1016/j.envint.2021.106656_b0080) 1938; 30
Kuiper (10.1016/j.envint.2021.106656_b0085) 2020; 19
10.1016/j.envint.2021.106656_b0155
10.1016/j.envint.2021.106656_b0050
Altman (10.1016/j.envint.2021.106656_b0010) 1983; 32
Levey (10.1016/j.envint.2021.106656_b0090) 2009; 150
Stevens (10.1016/j.envint.2021.106656_b0150) 2011; 79
Pearson (10.1016/j.envint.2021.106656_b0125) 2009; 19
Boeniger (10.1016/j.envint.2021.106656_b0020) 1993; 54
Levine (10.1016/j.envint.2021.106656_b0095) 1945; 27
O'Brien (10.1016/j.envint.2021.106656_b0115) 2017; 4
Barr (10.1016/j.envint.2021.106656_b0015) 2005; 113
Hornung (10.1016/j.envint.2021.106656_b0075) 1990; 5
Romano (10.1016/j.envint.2021.106656_b0130) 2017; 16
References_xml – volume: 28
  start-page: 481
  year: 2018
  end-page: 493
  ident: b0100
  article-title: Adjusting urinary chemical biomarkers for hydration status during pregnancy
  publication-title: J. Expo. Sci. Environ. Epidemiol.
– volume: 85
  start-page: 189
  year: 2012
  end-page: 196
  ident: b0005
  article-title: Sampling of urinary cadmium: differences between 24-h urine and overnight spot urine sampling, and impact of adjustment for dilution
  publication-title: Int. Arch. Occup. Environ. Health
– volume: 6
  start-page: 352
  year: 2001
  end-page: 370
  ident: b0065
  article-title: The impact of nonnormality on full information maximum-likelihood estimation for structural equation models with missing data
  publication-title: Psychol. Methods
– volume: 16
  start-page: 374
  year: 2001
  end-page: 382
  ident: b0055
  article-title: Measurement of urinary concentration: a critical appraisal of methodologies
  publication-title: Pediatr. Nephrol.
– reference: Centers for Disease Control and Prevention (CDC), 2010. National Health and Nutrition Examination Survey (NHANES): Laboratory Protocol: Phthalate Metabolites. U.S. Department of Health and Human Services. Hyattsvile, MD: National Center for Health Statistics (NCHS). 2010. Retrieved from:
– reference: Centers for Disease Control and Prevention (CDC), 2009a. National Health and Nutrition Examination Survey (NHANES). U.S. Department of Health and Human Services. Hyattsville, MD: National Center for Health Statistics (NHCS).
– volume: 32
  start-page: 307
  year: 1983
  end-page: 317
  ident: b0010
  article-title: Measurement in medicine: the analysis of method comparison studies
  publication-title: J R Stat Soc B
– volume: 113
  start-page: 192
  year: 2005
  end-page: 200
  ident: b0015
  article-title: Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements
  publication-title: Environ. Health Perspect.
– volume: 19
  start-page: 336
  year: 2009
  end-page: 342
  ident: b0125
  article-title: Evaluation of physiological measures for correcting variation in urinary output: Implications for assessing environmental chemical exposure in children
  publication-title: J. Expo. Sci. Environ. Epidemiol.
– volume: 79
  start-page: 555
  year: 2011
  end-page: 562
  ident: b0150
  article-title: Evaluation of the Chronic Kidney Disease Epidemiology Collaboration equation for estimating the glomerular filtration rate in multiple ethnicities
  publication-title: Kidney Int.
– volume: 35
  start-page: 559
  year: 1974
  end-page: 565
  ident: b0060
  article-title: Concentration adjustments in urinalysis
  publication-title: Am. Ind. Hyg. Assoc. J.
– volume: 4
  start-page: 44
  year: 2017
  end-page: 50
  ident: b0115
  article-title: Lipid and Creatinine Adjustment to Evaluate Health Effects of Environmental Exposures
  publication-title: Curr. Environ. Health Rep.
– volume: 30
  start-page: 81
  year: 1938
  end-page: 93
  ident: b0080
  article-title: A New Measure of Rank Correlation
  publication-title: Biometrika
– volume: 28
  start-page: 353
  year: 2014
  end-page: 363
  ident: b0160
  article-title: Comparison of creatinine and specific gravity for hydration corrections on measurement of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in urine
  publication-title: J. Clin. Lab. Anal.
– reference: Centers for Disease Control and Prevention (CDC), 2007. National Health and Nutrition Examination Survey (NHANES): Laboratory Procedures Manual. U.S. Department of Health and Human Services. Hyattsville, MD: National Center for Health Statistics (NHCS). Retrieved from:
– volume: 16
  start-page: 40
  year: 2017
  ident: b0130
  article-title: Variability and predictors of urinary concentrations of organophosphate flame retardant metabolites among pregnant women in Rhode Island
  publication-title: Environ. Health
– volume: 20
  start-page: 629
  year: 2009
  end-page: 637
  ident: b0135
  article-title: New equations to estimate GFR in children with CKD
  publication-title: J. Am. Soc. Nephrol.
– volume: 13
  year: 2014
  ident: b0140
  article-title: Phthalates and diet: a review of the food monitoring and epidemiology data
  publication-title: Environ. Health: Global Access Sci. Source
– volume: 12
  start-page: 591
  year: 2010
  end-page: 599
  ident: b0070
  article-title: Effect of creatinine and specific gravity normalization on urinary biomarker 1,6-hexamethylene diamine
  publication-title: J. Environ. Monit.
– volume: 5
  start-page: 46
  year: 1990
  end-page: 51
  ident: b0075
  article-title: Estimation of Average Concentration in the Presence of Nondetectable Values
  publication-title: Appl. Occup. Environ. Hyg.
– volume: 106
  start-page: 212
  year: 2008
  end-page: 218
  ident: b0110
  article-title: Urinary arsenic concentration adjustment factors and malnutrition
  publication-title: Environ. Res.
– volume: 124
  start-page: 220
  year: 2016
  end-page: 227
  ident: b0120
  article-title: Environmental Chemicals in Urine and Blood: Improving Methods for Creatinine and Lipid Adjustment
  publication-title: Environ. Health Perspect.
– volume: 74
  start-page: 63
  year: 2001
  end-page: 67
  ident: b0030
  article-title: Adjustment to concentration-dilution of spot urine samples: correlation between specific gravity and creatinine
  publication-title: Int. Arch. Occup. Environ. Health
– volume: 27
  start-page: 217
  year: 1945
  end-page: 223
  ident: b0095
  article-title: Evaluation of urinary lead determinations. I. The significance of the specific gravity
  publication-title: J. Ind. Hyg. Toxicol.
– volume: 123
  start-page: A166
  year: 2015
  end-page: A168
  ident: b0025
  article-title: Optimal Exposure Biomarkers for Nonpersistent Chemicals in Environmental Epidemiology
  publication-title: Environ. Health Perspect.
– reference: Centers for Disease Control and Prevention (CDC), 2009b. National Health and Nutrition Examination Survey (NHANES): Laboratory Protocol. U.S. Department of Health and Human Services. Hyattsville, MD: National Center for Health Statistics (NCHS). Retrieved from:
– reference: .
– volume: 8
  start-page: 8
  year: 2009
  ident: b0145
  article-title: Applicability of non-invasively collected matrices for human biomonitoring
  publication-title: Environ. Health
– volume: 15
  start-page: 68
  year: 2016
  ident: b0105
  article-title: Assessing urinary flow rate, creatinine, osmolality and other hydration adjustment methods for urinary biomonitoring using NHANES arsenic, iodine, lead and cadmium data
  publication-title: Environ. Health
– volume: 136
  start-page: 482
  year: 2015
  end-page: 490
  ident: b0165
  article-title: Urine osmolality in the US population: implications for environmental biomonitoring
  publication-title: Environ. Res.
– volume: 54
  start-page: 615
  year: 1993
  end-page: 627
  ident: b0020
  article-title: Interpretation of urine results used to assess chemical exposure with emphasis on creatinine adjustments: a review
  publication-title: Am. Ind. Hyg. Assoc. J.
– volume: 150
  start-page: 604
  year: 2009
  end-page: 612
  ident: b0090
  article-title: A new equation to estimate glomerular filtration rate
  publication-title: Ann. Intern. Med.
– reference: World Health Organization, 1996. Biological Monitoring of Chemical Exposure in the Workplace: Guidelines. World Health Organization.
– volume: 19
  start-page: 55
  year: 2020
  ident: b0085
  article-title: Predictors and reproducibility of urinary organophosphate ester metabolite concentrations during pregnancy and associations with birth outcomes in an urban population
  publication-title: Environ Health
– volume: 20
  start-page: 629
  year: 2009
  ident: 10.1016/j.envint.2021.106656_b0135
  article-title: New equations to estimate GFR in children with CKD
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2008030287
– volume: 106
  start-page: 212
  year: 2008
  ident: 10.1016/j.envint.2021.106656_b0110
  article-title: Urinary arsenic concentration adjustment factors and malnutrition
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2007.08.005
– volume: 5
  start-page: 46
  year: 1990
  ident: 10.1016/j.envint.2021.106656_b0075
  article-title: Estimation of Average Concentration in the Presence of Nondetectable Values
  publication-title: Appl. Occup. Environ. Hyg.
  doi: 10.1080/1047322X.1990.10389587
– volume: 123
  start-page: A166
  year: 2015
  ident: 10.1016/j.envint.2021.106656_b0025
  article-title: Optimal Exposure Biomarkers for Nonpersistent Chemicals in Environmental Epidemiology
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1510041
– ident: 10.1016/j.envint.2021.106656_b0045
– volume: 30
  start-page: 81
  year: 1938
  ident: 10.1016/j.envint.2021.106656_b0080
  article-title: A New Measure of Rank Correlation
  publication-title: Biometrika
  doi: 10.1093/biomet/30.1-2.81
– volume: 54
  start-page: 615
  year: 1993
  ident: 10.1016/j.envint.2021.106656_b0020
  article-title: Interpretation of urine results used to assess chemical exposure with emphasis on creatinine adjustments: a review
  publication-title: Am. Ind. Hyg. Assoc. J.
  doi: 10.1080/15298669391355134
– volume: 12
  start-page: 591
  year: 2010
  ident: 10.1016/j.envint.2021.106656_b0070
  article-title: Effect of creatinine and specific gravity normalization on urinary biomarker 1,6-hexamethylene diamine
  publication-title: J. Environ. Monit.
  doi: 10.1039/b921073c
– volume: 79
  start-page: 555
  year: 2011
  ident: 10.1016/j.envint.2021.106656_b0150
  article-title: Evaluation of the Chronic Kidney Disease Epidemiology Collaboration equation for estimating the glomerular filtration rate in multiple ethnicities
  publication-title: Kidney Int.
  doi: 10.1038/ki.2010.462
– volume: 85
  start-page: 189
  year: 2012
  ident: 10.1016/j.envint.2021.106656_b0005
  article-title: Sampling of urinary cadmium: differences between 24-h urine and overnight spot urine sampling, and impact of adjustment for dilution
  publication-title: Int. Arch. Occup. Environ. Health
  doi: 10.1007/s00420-011-0658-z
– volume: 4
  start-page: 44
  year: 2017
  ident: 10.1016/j.envint.2021.106656_b0115
  article-title: Lipid and Creatinine Adjustment to Evaluate Health Effects of Environmental Exposures
  publication-title: Curr. Environ. Health Rep.
  doi: 10.1007/s40572-017-0122-7
– volume: 16
  start-page: 40
  year: 2017
  ident: 10.1016/j.envint.2021.106656_b0130
  article-title: Variability and predictors of urinary concentrations of organophosphate flame retardant metabolites among pregnant women in Rhode Island
  publication-title: Environ. Health
  doi: 10.1186/s12940-017-0247-z
– volume: 113
  start-page: 192
  year: 2005
  ident: 10.1016/j.envint.2021.106656_b0015
  article-title: Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.7337
– volume: 35
  start-page: 559
  year: 1974
  ident: 10.1016/j.envint.2021.106656_b0060
  article-title: Concentration adjustments in urinalysis
  publication-title: Am. Ind. Hyg. Assoc. J.
  doi: 10.1080/0002889748507072
– volume: 124
  start-page: 220
  year: 2016
  ident: 10.1016/j.envint.2021.106656_b0120
  article-title: Environmental Chemicals in Urine and Blood: Improving Methods for Creatinine and Lipid Adjustment
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1509693
– volume: 6
  start-page: 352
  year: 2001
  ident: 10.1016/j.envint.2021.106656_b0065
  article-title: The impact of nonnormality on full information maximum-likelihood estimation for structural equation models with missing data
  publication-title: Psychol. Methods
  doi: 10.1037/1082-989X.6.4.352
– volume: 28
  start-page: 481
  year: 2018
  ident: 10.1016/j.envint.2021.106656_b0100
  article-title: Adjusting urinary chemical biomarkers for hydration status during pregnancy
  publication-title: J. Expo. Sci. Environ. Epidemiol.
  doi: 10.1038/s41370-018-0043-z
– volume: 13
  year: 2014
  ident: 10.1016/j.envint.2021.106656_b0140
  article-title: Phthalates and diet: a review of the food monitoring and epidemiology data
  publication-title: Environ. Health: Global Access Sci. Source
  doi: 10.1186/1476-069X-13-43
– volume: 16
  start-page: 374
  year: 2001
  ident: 10.1016/j.envint.2021.106656_b0055
  article-title: Measurement of urinary concentration: a critical appraisal of methodologies
  publication-title: Pediatr. Nephrol.
  doi: 10.1007/s004670000551
– volume: 19
  start-page: 336
  year: 2009
  ident: 10.1016/j.envint.2021.106656_b0125
  article-title: Evaluation of physiological measures for correcting variation in urinary output: Implications for assessing environmental chemical exposure in children
  publication-title: J. Expo. Sci. Environ. Epidemiol.
  doi: 10.1038/jes.2008.48
– volume: 15
  start-page: 68
  year: 2016
  ident: 10.1016/j.envint.2021.106656_b0105
  article-title: Assessing urinary flow rate, creatinine, osmolality and other hydration adjustment methods for urinary biomonitoring using NHANES arsenic, iodine, lead and cadmium data
  publication-title: Environ. Health
  doi: 10.1186/s12940-016-0152-x
– ident: 10.1016/j.envint.2021.106656_b0040
– volume: 27
  start-page: 217
  year: 1945
  ident: 10.1016/j.envint.2021.106656_b0095
  article-title: Evaluation of urinary lead determinations. I. The significance of the specific gravity
  publication-title: J. Ind. Hyg. Toxicol.
– ident: 10.1016/j.envint.2021.106656_b0155
– volume: 28
  start-page: 353
  year: 2014
  ident: 10.1016/j.envint.2021.106656_b0160
  article-title: Comparison of creatinine and specific gravity for hydration corrections on measurement of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in urine
  publication-title: J. Clin. Lab. Anal.
  doi: 10.1002/jcla.21693
– volume: 136
  start-page: 482
  year: 2015
  ident: 10.1016/j.envint.2021.106656_b0165
  article-title: Urine osmolality in the US population: implications for environmental biomonitoring
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2014.09.009
– ident: 10.1016/j.envint.2021.106656_b0035
– volume: 74
  start-page: 63
  year: 2001
  ident: 10.1016/j.envint.2021.106656_b0030
  article-title: Adjustment to concentration-dilution of spot urine samples: correlation between specific gravity and creatinine
  publication-title: Int. Arch. Occup. Environ. Health
  doi: 10.1007/s004200000190
– volume: 150
  start-page: 604
  year: 2009
  ident: 10.1016/j.envint.2021.106656_b0090
  article-title: A new equation to estimate glomerular filtration rate
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-150-9-200905050-00006
– volume: 19
  start-page: 55
  year: 2020
  ident: 10.1016/j.envint.2021.106656_b0085
  article-title: Predictors and reproducibility of urinary organophosphate ester metabolite concentrations during pregnancy and associations with birth outcomes in an urban population
  publication-title: Environ Health
  doi: 10.1186/s12940-020-00610-0
– volume: 8
  start-page: 8
  year: 2009
  ident: 10.1016/j.envint.2021.106656_b0145
  article-title: Applicability of non-invasively collected matrices for human biomonitoring
  publication-title: Environ. Health
  doi: 10.1186/1476-069X-8-8
– volume: 32
  start-page: 307
  year: 1983
  ident: 10.1016/j.envint.2021.106656_b0010
  article-title: Measurement in medicine: the analysis of method comparison studies
  publication-title: J R Stat Soc B
– ident: 10.1016/j.envint.2021.106656_b0050
SSID ssj0002485
Score 2.6039526
Snippet •Urinary biomarkers are subject to measurement error due to urine dilution.•Urine creatinine or specific gravity are often used to correct for dilution.•Urine...
Urinary biomarkers are often corrected for sample dilution using creatinine, which is influenced by sociodemographic factors and certain health conditions. It...
Background: Urinary biomarkers are often corrected for sample dilution using creatinine, which is influenced by sociodemographic factors and certain health...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106656
SubjectTerms Bias
biomarkers
body composition
body mass index
Creatinine
environment
gravity
National Health and Nutrition Examination Survey
nationalities and ethnic groups
Non-persistent chemicals
phthalates
Specific gravity
Urinary dilution
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaW7gWEEBRWlJeMxDXbxHb94LasdtUFsZel0t4s20mgK0irPn4Ff5qZ2CnJhZW4Ne64cTJjz2d35htCPkjveVCwyWF1zTIhQ5F55kxmhCg9F0Gblqz667WcL8Tn29ntETnvcmEwrDKt_XFNb1fr1DJNb3O6Xi6nN8iNJgqGmxZwkoV8QI4ZN3I2IsdnV1_m14cFGVm7IsV3nmGHLoOuDfPCfLIGgypZAU1SYiXrnodqifwHjqoHRIdhlD2_dPmUPEmAkp7FMT8jR1UzJo96NINjcnLxN5sNRNN03o7J43hoR2Mu0nPye7Fp03Mp5l9iDBHF6kSA0-mveJS4pcuGAmSki9ObU7o-FP_6SK96kekUgHAr5cq7_bYNY6ermjarJlvj8RwYFrSERFVA9-mmyASAwUIbimGrL8ji8uLb-TxL1RqyMONml3nAKoq7UpcslzW4gLyGz3nlXCWDU7p2zrPAAheVCs7JlnkdtKwB4uTeKH5CRjCQ6iWh8EqV8j4w6CBCmeuaY5XLupLKa6HLCeGdhmxIVOZYUeOn7WLW7mzUq0W92qjXCckOvdaRyuMe-U-o_IMsEnG3DavNd5ss0XpwXK5UpVDSiFJxzWCEBYBq5h1AvzAhqjMdO7Br-KnlPbd_31mahSmP_-O4plrtt5bNuBRSw1r8LxmA5rAbNgZGMDDTwfMMv2mWP1qCcc11Lg1_9d9jf00e4lXM2XxDRrvNvnoL4G3n36XJ-QfugEkp
  priority: 102
  providerName: Elsevier
Title Urinary specific gravity measures in the U.S. population: Implications for the adjustment of non-persistent chemical urinary biomarker data
URI https://dx.doi.org/10.1016/j.envint.2021.106656
https://www.proquest.com/docview/2536468832
https://www.proquest.com/docview/2551928799
https://pubmed.ncbi.nlm.nih.gov/PMC8380693
https://doaj.org/article/beacad7d47694d7382b8419772ba993c
Volume 156
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZguYAQgsKK8qiMxDXFsV0_uC1oV10Qe4FKe7P8SERXkFZ9XPcP7J9mbCcludALt8iZNI5nPP7sznyD0HvhHPMSNjm0rmnBhS8LR60uNOfBMe6VTmTV367EfMG_XM-ue6W-YkxYpgfOA_fBgWewQQYuheZBMkWd4iWgFuosrK0-el-iSbeZan1wJOrKrN6k4CUlXdJciuyKKWRNjKOkJTQJEYtX9xalxN0_WJt62HMYOdlbii6eoicthsRnue_P0L2qGaFHPWbBETo9_5vABqLtDN6O0ON8Todz-tFzdLfYpIxcHFMuY9gQjgWJAJrj3_n0cIuXDQaUiBfT71O8PtT7-ogve8HoGLBvkrLhZr9Nket4VeNm1RTreCIHtgQtvmUnwPv2pTH5P8YHbXCMVH2BFhfnPz7Pi7ZAQ-FnTO8KB_BEMhtUoETU4PVJDdeksrYS3kpVW-uop57xSnprRSJb91VQgGqI05KdohPoSPUSYRhSKZ3zFB7gPhBVs1jYsq6EBH2rMEas05DxLXt5LKLxy3Rhajcm69VEvZqs1zEqDk-tM3vHEflPUfkH2ci9nRrAIk1rkeaYRY6R7EzHtDAmwxP4qeWR17_rLM3ALI9_3dimWu23hs6Y4EKB-_2XDKBx2ABrDT0YmOnge4Z3muXPxCmumCJCs1f_YwBeo4fxo3LG5ht0stvsq7cA3XZugu5Pb8sJenB2-XV-NUlz9g930UmQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGeIAJIShMK59G4jVtYru2wxtMmzrY9rJV2ptlOwl0grTqxyv_AP80d3bSJS9M4q1yLs01d_ad3d_9jpCP0jnuFWxyWFWxREifJY7ZPMmFKBwXXueBrPriUk5n4uvN5GaPHLe1MAirbNb-uKaH1boZGTdvc7ycz8dXyI0mMoabFgiSmXxAHooJV4jrG_2-w3kgZ1ck-E4TFG_r5wLIC6vJaoRUsgyGpMQ-1p34FGj8e2Gqk4b2QZSdqHT6jDxt0kn6OWr8nOyV9YAcdEgGB-Tw5K6WDUSbybwekCfxyI7GSqQX5M9sFYpzKVZfIoKIYm8iyNLpr3iQuKbzmkLCSGejqxFd7lp_faJnHVw6hTQ4SNnidrsOIHa6qGi9qJMlHs6BW8GIb4gK6LZ5KPIAIFRoRRG0-pLMTk-uj6dJ06sh8ROebxIHmYrittAFS2UFASCt4HNaWltKb5WurHXMM89Fqby1MvCug401JDipyxU_JPugSHlEKLxSpZzzDG4Qvkh1xbHHZVVK5bTQxZDw1kLGN0Tm2E_jp2kRa7cm2tWgXU2065Aku7uWkcjjHvkvaPydLNJwh4HF6rtp_NA4CFu2UIVQMheF4pqBhhmk1MxZSPz8kKjWdUzPq-Gr5vc8_kPraQYmPP6LY-tysV0bNuFSSA0r8b9kIDGHvXCegwY9N-39nv6Vev4j0ItrrlOZ81f_rft78mh6fXFuzs8uv70mj_FKrN58Q_Y3q235FtK4jXsXpulfiOZK8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Urinary+specific+gravity+measures+in+the+U.S.+population%3A+Implications+for+the+adjustment+of+non-persistent+chemical+urinary+biomarker+data&rft.jtitle=Environment+international&rft.au=Kuiper%2C+Jordan+R&rft.au=O%27Brien%2C+Katie+M&rft.au=Ferguson%2C+Kelly+K&rft.au=Buckley%2C+Jessie+P&rft.date=2021-11-01&rft.issn=0160-4120&rft.volume=156+p.106656-&rft_id=info:doi/10.1016%2Fj.envint.2021.106656&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-4120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-4120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-4120&client=summon