A super Degasperis-Procesi equation and related integrable systems

Based on a 4 × 4 matrix spectral problem, a super Degasperis-Procesi (DP) equation is proposed. We show that under a reciprocal transformation, the super DP equation is related to the first negative flow of a super Kaup-Kupershmidt (KK) hierarchy, which turns out to be a particular reduction of a su...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Vol. 477; no. 2245; p. 20200780
Main Authors Gao, Binfang, Tian, Kai, Liu, Qing Ping
Format Journal Article
LanguageEnglish
Published England The Royal Society Publishing 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Based on a 4 × 4 matrix spectral problem, a super Degasperis-Procesi (DP) equation is proposed. We show that under a reciprocal transformation, the super DP equation is related to the first negative flow of a super Kaup-Kupershmidt (KK) hierarchy, which turns out to be a particular reduction of a super Boussinesq hierarchy. The bi-Hamiltonian structure of the super Boussinesq hierarchy is established and subsequently produces a Hamiltonian structure, as well as a conjectured symplectic formulation of the super KK hierarchy via suitable reductions. With the help of the reciprocal transformation, the bi-Hamiltonian representation of the super DP equation is constructed from that of the super KK hierarchy. We also calculate a positive flow of the super DP hierarchy and explain its relations with the super KK equation. Infinitely many conservation laws are derived for the super DP equation, as well as its positive flow.
AbstractList Based on a 4 × 4 matrix spectral problem, a super Degasperis-Procesi (DP) equation is proposed. We show that under a reciprocal transformation, the super DP equation is related to the first negative flow of a super Kaup-Kupershmidt (KK) hierarchy, which turns out to be a particular reduction of a super Boussinesq hierarchy. The bi-Hamiltonian structure of the super Boussinesq hierarchy is established and subsequently produces a Hamiltonian structure, as well as a conjectured symplectic formulation of the super KK hierarchy via suitable reductions. With the help of the reciprocal transformation, the bi-Hamiltonian representation of the super DP equation is constructed from that of the super KK hierarchy. We also calculate a positive flow of the super DP hierarchy and explain its relations with the super KK equation. Infinitely many conservation laws are derived for the super DP equation, as well as its positive flow.
Author Tian, Kai
Gao, Binfang
Liu, Qing Ping
AuthorAffiliation 1 Faculty of Applied Mathematics, Shanxi University of Finance and Economics , Taiyuan 030006, People’s Republic of China
2 Department of Mathematics, China University of Mining and Technology , Beijing 100083, People’s Republic of China
AuthorAffiliation_xml – name: 1 Faculty of Applied Mathematics, Shanxi University of Finance and Economics , Taiyuan 030006, People’s Republic of China
– name: 2 Department of Mathematics, China University of Mining and Technology , Beijing 100083, People’s Republic of China
Author_xml – sequence: 1
  givenname: Binfang
  surname: Gao
  fullname: Gao, Binfang
  organization: Faculty of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan 030006, People's Republic of China
– sequence: 2
  givenname: Kai
  orcidid: 0000-0001-8538-3933
  surname: Tian
  fullname: Tian, Kai
  organization: Department of Mathematics, China University of Mining and Technology, Beijing 100083, People's Republic of China
– sequence: 3
  givenname: Qing Ping
  surname: Liu
  fullname: Liu, Qing Ping
  organization: Department of Mathematics, China University of Mining and Technology, Beijing 100083, People's Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33642933$$D View this record in MEDLINE/PubMed
BookMark eNpVkElLxEAQhRsZ0Rn16lFy9JKxt_RyEcZdEPSg56bSXRkjmWSmOxH892ZwQU_14L16VXwzMmm7Fgk5ZnTOqDVnMa1hzimnc6oN3SFTJjXLuZVqMmqhZF5QzvbJLKU3SqktjN4j-2I0uBViSi4WWRrWGLMrXEIaRZ3yp9h5THWGmwH6umszaEMWsYEeQ1a3PS4jlA1m6SP1uEqHZLeCJuHR9zwgLzfXz5d3-cPj7f3l4iH3hbB9XnLPdRUEDYUFqKpKacqsKoQIRuqgPGoPygIKCFBqL0sfglWGS8lVUYI4IOdfveuhXGHw2PYRGreO9Qrih-ugdv-dtn51y-7daWO1EnQsOP0uiN1mwNS7VZ08Ng202A3JcWmlMcwUbIzOv6I-dilFrH7PMOq24N0WvNuCd1vw48LJ3-d-4z-kxSeBpINF
CitedBy_id crossref_primary_10_1142_S0217979223501722
crossref_primary_10_1098_rspa_2023_0473
crossref_primary_10_3390_sym15091740
crossref_primary_10_1007_s12043_024_02737_y
crossref_primary_10_1134_S0040577922030059
crossref_primary_10_4213_tmf10163
Cites_doi 10.1063/1.528090
10.1063/1.3603817
10.1111/j.1467-9590.2012.00555.x
10.1007/s00332-006-0803-3
10.1016/j.aml.2020.106350
10.1007/s11005-008-0257-4
10.1016/j.jmaa.2017.04.043
10.1016/j.chaos.2006.09.092
10.1063/1.5134097
10.1007/BF01211044
10.1088/0266-5611/9/6/010
10.1016/S0375-9601(00)00684-8
10.1016/j.jmaa.2004.11.038
10.1088/0305-4470/17/16/002
10.4310/jdg/1214447538
10.1023/A:1021186408422
10.1002/cpa.20239
10.1063/1.2897036
10.1088/1361-6544/aad52c
10.1007/978-3-642-88703-1_4
10.1088/0266-5611/21/6/018
10.1088/1751-8113/46/4/045205
10.1063/1.1330196
10.1088/0253-6102/59/1/14
10.1088/0305-4470/30/2/023
10.1088/0266-5611/19/6/001
10.1103/PhysRevLett.71.1661
10.1088/0266-5611/19/1/307
10.1063/1.1606527
10.1016/j.physleta.2007.03.073
10.1016/0375-9601(84)90693-5
10.1016/j.jfa.2006.03.022
10.1016/0375-9601(85)90033-7
10.1088/0951-7715/23/10/012
10.5802/aif.3241
10.1007/BF02098018
10.1155/IMRP.2005.53
10.1088/0951-7715/26/7/2081
10.1137/12089689X
10.1007/s00220-006-0082-5
10.1016/j.physleta.2018.11.011
ContentType Journal Article
Copyright 2021 The Author(s).
2021 The Author(s) 2021
Copyright_xml – notice: 2021 The Author(s).
– notice: 2021 The Author(s) 2021
DBID NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1098/rspa.2020.0780
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
DocumentTitleAlternate Super DP & related integrable systems
EISSN 1471-2946
EndPage 20200780
ExternalDocumentID 10_1098_rspa_2020_0780
33642933
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 00-800015Z1177
– fundername: ;
  grantid: 2020L0255
– fundername: ;
  grantid: 11505284; 11871471; 11931017
– fundername: ;
  grantid: 00-800015Z1201
– fundername: ;
  grantid: QN-202019
GroupedDBID 18M
4.4
5VS
AACGO
AANCE
ABBHK
ABFAN
ABPLY
ABTLG
ABXSQ
ABYWD
ACGFO
ACIPV
ACIWK
ACMTB
ACNCT
ACQIA
ACTMH
ADACV
ADBBV
ADODI
ADULT
AELPN
AEUPB
AEXZC
AFVYC
AJZGM
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
AQVQM
AS~
BGBPD
BTFSW
CAG
COF
DCCCD
DOOOF
DQDLB
DSRWC
EBS
ECEWR
EJD
FEDTE
FRP
H13
HGD
HH5
HQ3
HQ6
HTVGU
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JMS
JPM
JSG
JSODD
JST
K-O
KQ8
MRS
MV1
NPM
NSAHA
OK1
OP1
RHF
RNS
ROL
RRY
SA0
TR2
V1E
W8F
WHG
XSW
YF5
ZCG
ZE2
~02
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c539t-b2c27fd30d59aafff670196533d847d6ce7ca69ae3adab7c4bcdd968244265ba3
ISSN 1364-5021
IngestDate Tue Sep 17 21:27:58 EDT 2024
Fri Oct 25 00:52:26 EDT 2024
Thu Sep 26 21:17:53 EDT 2024
Sat Sep 28 08:30:00 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2245
Keywords super trace identity
conservation laws
bi-Hamiltonian structure
reciprocal transformation
Language English
License 2021 The Author(s).
Published by the Royal Society. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c539t-b2c27fd30d59aafff670196533d847d6ce7ca69ae3adab7c4bcdd968244265ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
One contribution to the special feature ‘Hamiltonian and algebraic structures of finite and infinite dimensional Integrable Systems’ edited by Andrew Hone, Yuji Kodama, Qing Ping Liu, Sara Lombardo and Vladimir Novikov.
Dedicated to Professor Allan P. Fordy on the occasion of his 70th birthday.
ORCID 0000-0001-8538-3933
OpenAccessLink https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2020.0780
PMID 33642933
PQID 2494881851
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7897630
proquest_miscellaneous_2494881851
crossref_primary_10_1098_rspa_2020_0780
pubmed_primary_33642933
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
PublicationTitleAlternate Proc Math Phys Eng Sci
PublicationYear 2021
Publisher The Royal Society Publishing
Publisher_xml – name: The Royal Society Publishing
References e_1_3_6_30_2
e_1_3_6_31_2
e_1_3_6_10_2
Kang J (e_1_3_6_13_2) 2017; 13
e_1_3_6_19_2
Xue LL (e_1_3_6_37_2) 2014; 10
e_1_3_6_14_2
e_1_3_6_38_2
e_1_3_6_12_2
e_1_3_6_39_2
e_1_3_6_11_2
e_1_3_6_33_2
e_1_3_6_17_2
e_1_3_6_34_2
e_1_3_6_16_2
e_1_3_6_35_2
e_1_3_6_15_2
e_1_3_6_36_2
Kupershmidt BA (e_1_3_6_25_2) 1985; 23
e_1_3_6_41_2
Lin Z (e_1_3_6_18_2) 2008; 62
e_1_3_6_40_2
e_1_3_6_20_2
e_1_3_6_43_2
e_1_3_6_21_2
e_1_3_6_42_2
e_1_3_6_5_2
e_1_3_6_4_2
e_1_3_6_3_2
e_1_3_6_2_2
e_1_3_6_9_2
e_1_3_6_8_2
e_1_3_6_7_2
e_1_3_6_6_2
Zuo DF (e_1_3_6_32_2) 2013; 9
e_1_3_6_26_2
e_1_3_6_27_2
e_1_3_6_28_2
e_1_3_6_29_2
e_1_3_6_22_2
e_1_3_6_45_2
e_1_3_6_23_2
e_1_3_6_44_2
e_1_3_6_24_2
e_1_3_6_47_2
e_1_3_6_46_2
References_xml – ident: e_1_3_6_26_2
  doi: 10.1063/1.528090
– volume: 13
  start-page: 035
  year: 2017
  ident: e_1_3_6_13_2
  article-title: Liouville correspondences between integrable hierarchies
  publication-title: SIGMA
  contributor:
    fullname: Kang J
– ident: e_1_3_6_31_2
  doi: 10.1063/1.3603817
– ident: e_1_3_6_33_2
  doi: 10.1111/j.1467-9590.2012.00555.x
– ident: e_1_3_6_9_2
  doi: 10.1007/s00332-006-0803-3
– ident: e_1_3_6_44_2
  doi: 10.1016/j.aml.2020.106350
– ident: e_1_3_6_35_2
  doi: 10.1007/s11005-008-0257-4
– ident: e_1_3_6_43_2
  doi: 10.1016/j.jmaa.2017.04.043
– ident: e_1_3_6_10_2
  doi: 10.1016/j.chaos.2006.09.092
– ident: e_1_3_6_38_2
  doi: 10.1063/1.5134097
– ident: e_1_3_6_28_2
  doi: 10.1007/BF01211044
– ident: e_1_3_6_41_2
  doi: 10.1088/0266-5611/9/6/010
– ident: e_1_3_6_42_2
  doi: 10.1016/S0375-9601(00)00684-8
– volume: 10
  start-page: 045
  year: 2014
  ident: e_1_3_6_37_2
  article-title: Bäcklund-Darboux transformations and discretizations of super KdV equation
  publication-title: SIGMA
  contributor:
    fullname: Xue LL
– ident: e_1_3_6_6_2
  doi: 10.1016/j.jmaa.2004.11.038
– ident: e_1_3_6_24_2
  doi: 10.1088/0305-4470/17/16/002
– ident: e_1_3_6_29_2
  doi: 10.4310/jdg/1214447538
– ident: e_1_3_6_3_2
  doi: 10.1023/A:1021186408422
– volume: 62
  start-page: 125
  year: 2008
  ident: e_1_3_6_18_2
  article-title: Stability of peakons for the Degasperis-Procesi equation
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20239
  contributor:
    fullname: Lin Z
– ident: e_1_3_6_46_2
  doi: 10.1063/1.2897036
– volume: 23
  start-page: 83
  year: 1985
  ident: e_1_3_6_25_2
  article-title: A review of superintegrable systems
  publication-title: Lect. Appl. Math.
  contributor:
    fullname: Kupershmidt BA
– ident: e_1_3_6_21_2
  doi: 10.1088/1361-6544/aad52c
– ident: e_1_3_6_47_2
  doi: 10.1007/978-3-642-88703-1_4
– ident: e_1_3_6_8_2
  doi: 10.1088/0266-5611/21/6/018
– ident: e_1_3_6_19_2
  doi: 10.1088/1751-8113/46/4/045205
– ident: e_1_3_6_30_2
  doi: 10.1063/1.1330196
– ident: e_1_3_6_39_2
  doi: 10.1088/0253-6102/59/1/14
– ident: e_1_3_6_45_2
  doi: 10.1088/0305-4470/30/2/023
– ident: e_1_3_6_5_2
  doi: 10.1088/0266-5611/19/6/001
– ident: e_1_3_6_4_2
  doi: 10.1103/PhysRevLett.71.1661
– ident: e_1_3_6_12_2
  doi: 10.1088/0266-5611/19/1/307
– ident: e_1_3_6_36_2
  doi: 10.1063/1.1606527
– volume: 9
  start-page: 045
  year: 2013
  ident: e_1_3_6_32_2
  article-title: Euler equations related to the generalized Neveu-Schwarz algebra
  publication-title: SIGMA
  contributor:
    fullname: Zuo DF
– ident: e_1_3_6_17_2
  doi: 10.1016/j.physleta.2007.03.073
– ident: e_1_3_6_23_2
  doi: 10.1016/0375-9601(84)90693-5
– ident: e_1_3_6_16_2
  doi: 10.1016/j.jfa.2006.03.022
– ident: e_1_3_6_27_2
  doi: 10.1016/0375-9601(85)90033-7
– ident: e_1_3_6_7_2
  doi: 10.1088/0951-7715/23/10/012
– ident: e_1_3_6_22_2
  doi: 10.5802/aif.3241
– ident: e_1_3_6_40_2
  doi: 10.1007/BF02098018
– ident: e_1_3_6_14_2
  doi: 10.1155/IMRP.2005.53
– ident: e_1_3_6_20_2
  doi: 10.1088/0951-7715/26/7/2081
– ident: e_1_3_6_2_2
– ident: e_1_3_6_11_2
  doi: 10.1137/12089689X
– ident: e_1_3_6_15_2
  doi: 10.1007/s00220-006-0082-5
– ident: e_1_3_6_34_2
  doi: 10.1016/j.physleta.2018.11.011
SSID ssj0009587
Score 2.384047
Snippet Based on a 4 × 4 matrix spectral problem, a super Degasperis-Procesi (DP) equation is proposed. We show that under a reciprocal transformation, the super DP...
Based on a 4 × 4 matrix spectral problem, a super Degasperis–Procesi (DP) equation is proposed. We show that under a reciprocal transformation, the super DP...
Based on a 4 × 4 matrix spectral problem, a super Degasperis–Procesi (DP) equation is proposed. We show that under a reciprocal transformation, the super DP...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 20200780
Title A super Degasperis-Procesi equation and related integrable systems
URI https://www.ncbi.nlm.nih.gov/pubmed/33642933
https://search.proquest.com/docview/2494881851
https://pubmed.ncbi.nlm.nih.gov/PMC7897630
Volume 477
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcoEDouW15SEjIQFaZZu1ncQ5Ls-KCtRKrdRb5MQO5JI-srlwQuIn8A_5JczEjpMteygcNoq8ayfrmcx8nsx8JuQFulUOqgCPeBoHQsc6kLLUgRAc1kCmzJXBAufPX-L9E_HpNDqdTH6OspbaVT4vvm-sK_kfqUIbyBWrZP9Bsn5QaIBzkC8cQcJwvJaMl7OmPTeXYDS-KmT8rpo-d4HbAoBqZi4sl7fNI8fMN6N7jggsmmpGjOUOox56n9b0GQQ2yOAyPOezpa3y6Qlfuz0DXIzEnuPFzMB0OHN-1uP3j6qL0L6BSVDOdXapwDYae6AqnydUtdhyhIMc9l7WBSnYYhSksHaVxyKIQlsMPTe2DfxiwFIXgXTGWLhNXazWAb6INtr5MMXaBVj5I3UUC-cAdMLBo_Vv8a84Op9-aF-8ywz7Z9g_w_43yE0G1grN5MGRHDE3d7ss-n_gmT_l3vr115HNX8uVq1m3IxhzfJfccesPurTKtE0mpt4htwdZNjtk29n7hr5ypOSv75F3S9rpGh107fePX07LaK9lFARPnZbRQcuo07L75OTD--O3-4HbgSMoIp6ugpwVLCk1D3WUKlWWZZx0FJSca0A1Oi5MUqg4VYYrrfKkEHmhdRpLwIwsjnLFH5Ct-qw2jwjVkVBRKPLFItGCJUrmWjLoKI2GDy-m5GU_e9m5JVrJNstpSp73k5uBLcQXXKo2Z22TMeQ6QgS6mJKHdrL9WBzkB9CWT0myJgb_A-RZX_-mrr51fOuJBMzOw91r3-Fjcmt4CJ6QrdVla54Cdl3lzzrd-gM-cZwc
link.rule.ids 230,315,783,787,888,27936,27937
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+super+Degasperis%E2%80%93Procesi+equation+and+related+integrable+systems&rft.jtitle=Proceedings+of+the+Royal+Society.+A%2C+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Gao%2C+Binfang&rft.au=Tian%2C+Kai&rft.au=Liu%2C+Qing+Ping&rft.date=2021-01-01&rft.issn=1364-5021&rft.eissn=1471-2946&rft.volume=477&rft.issue=2245&rft_id=info:doi/10.1098%2Frspa.2020.0780&rft.externalDBID=n%2Fa&rft.externalDocID=10_1098_rspa_2020_0780
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-5021&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-5021&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-5021&client=summon