A super Degasperis-Procesi equation and related integrable systems
Based on a 4 × 4 matrix spectral problem, a super Degasperis-Procesi (DP) equation is proposed. We show that under a reciprocal transformation, the super DP equation is related to the first negative flow of a super Kaup-Kupershmidt (KK) hierarchy, which turns out to be a particular reduction of a su...
Saved in:
Published in | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Vol. 477; no. 2245; p. 20200780 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
The Royal Society Publishing
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Based on a 4 × 4 matrix spectral problem, a super Degasperis-Procesi (DP) equation is proposed. We show that under a reciprocal transformation, the super DP equation is related to the first negative flow of a super Kaup-Kupershmidt (KK) hierarchy, which turns out to be a particular reduction of a super Boussinesq hierarchy. The bi-Hamiltonian structure of the super Boussinesq hierarchy is established and subsequently produces a Hamiltonian structure, as well as a conjectured symplectic formulation of the super KK hierarchy via suitable reductions. With the help of the reciprocal transformation, the bi-Hamiltonian representation of the super DP equation is constructed from that of the super KK hierarchy. We also calculate a positive flow of the super DP hierarchy and explain its relations with the super KK equation. Infinitely many conservation laws are derived for the super DP equation, as well as its positive flow. |
---|---|
AbstractList | Based on a 4 × 4 matrix spectral problem, a super Degasperis-Procesi (DP) equation is proposed. We show that under a reciprocal transformation, the super DP equation is related to the first negative flow of a super Kaup-Kupershmidt (KK) hierarchy, which turns out to be a particular reduction of a super Boussinesq hierarchy. The bi-Hamiltonian structure of the super Boussinesq hierarchy is established and subsequently produces a Hamiltonian structure, as well as a conjectured symplectic formulation of the super KK hierarchy via suitable reductions. With the help of the reciprocal transformation, the bi-Hamiltonian representation of the super DP equation is constructed from that of the super KK hierarchy. We also calculate a positive flow of the super DP hierarchy and explain its relations with the super KK equation. Infinitely many conservation laws are derived for the super DP equation, as well as its positive flow. |
Author | Tian, Kai Gao, Binfang Liu, Qing Ping |
AuthorAffiliation | 1 Faculty of Applied Mathematics, Shanxi University of Finance and Economics , Taiyuan 030006, People’s Republic of China 2 Department of Mathematics, China University of Mining and Technology , Beijing 100083, People’s Republic of China |
AuthorAffiliation_xml | – name: 1 Faculty of Applied Mathematics, Shanxi University of Finance and Economics , Taiyuan 030006, People’s Republic of China – name: 2 Department of Mathematics, China University of Mining and Technology , Beijing 100083, People’s Republic of China |
Author_xml | – sequence: 1 givenname: Binfang surname: Gao fullname: Gao, Binfang organization: Faculty of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan 030006, People's Republic of China – sequence: 2 givenname: Kai orcidid: 0000-0001-8538-3933 surname: Tian fullname: Tian, Kai organization: Department of Mathematics, China University of Mining and Technology, Beijing 100083, People's Republic of China – sequence: 3 givenname: Qing Ping surname: Liu fullname: Liu, Qing Ping organization: Department of Mathematics, China University of Mining and Technology, Beijing 100083, People's Republic of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33642933$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkElLxEAQhRsZ0Rn16lFy9JKxt_RyEcZdEPSg56bSXRkjmWSmOxH892ZwQU_14L16VXwzMmm7Fgk5ZnTOqDVnMa1hzimnc6oN3SFTJjXLuZVqMmqhZF5QzvbJLKU3SqktjN4j-2I0uBViSi4WWRrWGLMrXEIaRZ3yp9h5THWGmwH6umszaEMWsYEeQ1a3PS4jlA1m6SP1uEqHZLeCJuHR9zwgLzfXz5d3-cPj7f3l4iH3hbB9XnLPdRUEDYUFqKpKacqsKoQIRuqgPGoPygIKCFBqL0sfglWGS8lVUYI4IOdfveuhXGHw2PYRGreO9Qrih-ugdv-dtn51y-7daWO1EnQsOP0uiN1mwNS7VZ08Ng202A3JcWmlMcwUbIzOv6I-dilFrH7PMOq24N0WvNuCd1vw48LJ3-d-4z-kxSeBpINF |
CitedBy_id | crossref_primary_10_1142_S0217979223501722 crossref_primary_10_1098_rspa_2023_0473 crossref_primary_10_3390_sym15091740 crossref_primary_10_1007_s12043_024_02737_y crossref_primary_10_1134_S0040577922030059 crossref_primary_10_4213_tmf10163 |
Cites_doi | 10.1063/1.528090 10.1063/1.3603817 10.1111/j.1467-9590.2012.00555.x 10.1007/s00332-006-0803-3 10.1016/j.aml.2020.106350 10.1007/s11005-008-0257-4 10.1016/j.jmaa.2017.04.043 10.1016/j.chaos.2006.09.092 10.1063/1.5134097 10.1007/BF01211044 10.1088/0266-5611/9/6/010 10.1016/S0375-9601(00)00684-8 10.1016/j.jmaa.2004.11.038 10.1088/0305-4470/17/16/002 10.4310/jdg/1214447538 10.1023/A:1021186408422 10.1002/cpa.20239 10.1063/1.2897036 10.1088/1361-6544/aad52c 10.1007/978-3-642-88703-1_4 10.1088/0266-5611/21/6/018 10.1088/1751-8113/46/4/045205 10.1063/1.1330196 10.1088/0253-6102/59/1/14 10.1088/0305-4470/30/2/023 10.1088/0266-5611/19/6/001 10.1103/PhysRevLett.71.1661 10.1088/0266-5611/19/1/307 10.1063/1.1606527 10.1016/j.physleta.2007.03.073 10.1016/0375-9601(84)90693-5 10.1016/j.jfa.2006.03.022 10.1016/0375-9601(85)90033-7 10.1088/0951-7715/23/10/012 10.5802/aif.3241 10.1007/BF02098018 10.1155/IMRP.2005.53 10.1088/0951-7715/26/7/2081 10.1137/12089689X 10.1007/s00220-006-0082-5 10.1016/j.physleta.2018.11.011 |
ContentType | Journal Article |
Copyright | 2021 The Author(s). 2021 The Author(s) 2021 |
Copyright_xml | – notice: 2021 The Author(s). – notice: 2021 The Author(s) 2021 |
DBID | NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1098/rspa.2020.0780 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
DocumentTitleAlternate | Super DP & related integrable systems |
EISSN | 1471-2946 |
EndPage | 20200780 |
ExternalDocumentID | 10_1098_rspa_2020_0780 33642933 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 00-800015Z1177 – fundername: ; grantid: 2020L0255 – fundername: ; grantid: 11505284; 11871471; 11931017 – fundername: ; grantid: 00-800015Z1201 – fundername: ; grantid: QN-202019 |
GroupedDBID | 18M 4.4 5VS AACGO AANCE ABBHK ABFAN ABPLY ABTLG ABXSQ ABYWD ACGFO ACIPV ACIWK ACMTB ACNCT ACQIA ACTMH ADACV ADBBV ADODI ADULT AELPN AEUPB AEXZC AFVYC AJZGM ALMA_UNASSIGNED_HOLDINGS ALMYZ AQVQM AS~ BGBPD BTFSW CAG COF DCCCD DOOOF DQDLB DSRWC EBS ECEWR EJD FEDTE FRP H13 HGD HH5 HQ3 HQ6 HTVGU IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JMS JPM JSG JSODD JST K-O KQ8 MRS MV1 NPM NSAHA OK1 OP1 RHF RNS ROL RRY SA0 TR2 V1E W8F WHG XSW YF5 ZCG ZE2 ~02 AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c539t-b2c27fd30d59aafff670196533d847d6ce7ca69ae3adab7c4bcdd968244265ba3 |
ISSN | 1364-5021 |
IngestDate | Tue Sep 17 21:27:58 EDT 2024 Fri Oct 25 00:52:26 EDT 2024 Thu Sep 26 21:17:53 EDT 2024 Sat Sep 28 08:30:00 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2245 |
Keywords | super trace identity conservation laws bi-Hamiltonian structure reciprocal transformation |
Language | English |
License | 2021 The Author(s). Published by the Royal Society. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c539t-b2c27fd30d59aafff670196533d847d6ce7ca69ae3adab7c4bcdd968244265ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 One contribution to the special feature ‘Hamiltonian and algebraic structures of finite and infinite dimensional Integrable Systems’ edited by Andrew Hone, Yuji Kodama, Qing Ping Liu, Sara Lombardo and Vladimir Novikov. Dedicated to Professor Allan P. Fordy on the occasion of his 70th birthday. |
ORCID | 0000-0001-8538-3933 |
OpenAccessLink | https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2020.0780 |
PMID | 33642933 |
PQID | 2494881851 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7897630 proquest_miscellaneous_2494881851 crossref_primary_10_1098_rspa_2020_0780 pubmed_primary_33642933 |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
PublicationTitleAlternate | Proc Math Phys Eng Sci |
PublicationYear | 2021 |
Publisher | The Royal Society Publishing |
Publisher_xml | – name: The Royal Society Publishing |
References | e_1_3_6_30_2 e_1_3_6_31_2 e_1_3_6_10_2 Kang J (e_1_3_6_13_2) 2017; 13 e_1_3_6_19_2 Xue LL (e_1_3_6_37_2) 2014; 10 e_1_3_6_14_2 e_1_3_6_38_2 e_1_3_6_12_2 e_1_3_6_39_2 e_1_3_6_11_2 e_1_3_6_33_2 e_1_3_6_17_2 e_1_3_6_34_2 e_1_3_6_16_2 e_1_3_6_35_2 e_1_3_6_15_2 e_1_3_6_36_2 Kupershmidt BA (e_1_3_6_25_2) 1985; 23 e_1_3_6_41_2 Lin Z (e_1_3_6_18_2) 2008; 62 e_1_3_6_40_2 e_1_3_6_20_2 e_1_3_6_43_2 e_1_3_6_21_2 e_1_3_6_42_2 e_1_3_6_5_2 e_1_3_6_4_2 e_1_3_6_3_2 e_1_3_6_2_2 e_1_3_6_9_2 e_1_3_6_8_2 e_1_3_6_7_2 e_1_3_6_6_2 Zuo DF (e_1_3_6_32_2) 2013; 9 e_1_3_6_26_2 e_1_3_6_27_2 e_1_3_6_28_2 e_1_3_6_29_2 e_1_3_6_22_2 e_1_3_6_45_2 e_1_3_6_23_2 e_1_3_6_44_2 e_1_3_6_24_2 e_1_3_6_47_2 e_1_3_6_46_2 |
References_xml | – ident: e_1_3_6_26_2 doi: 10.1063/1.528090 – volume: 13 start-page: 035 year: 2017 ident: e_1_3_6_13_2 article-title: Liouville correspondences between integrable hierarchies publication-title: SIGMA contributor: fullname: Kang J – ident: e_1_3_6_31_2 doi: 10.1063/1.3603817 – ident: e_1_3_6_33_2 doi: 10.1111/j.1467-9590.2012.00555.x – ident: e_1_3_6_9_2 doi: 10.1007/s00332-006-0803-3 – ident: e_1_3_6_44_2 doi: 10.1016/j.aml.2020.106350 – ident: e_1_3_6_35_2 doi: 10.1007/s11005-008-0257-4 – ident: e_1_3_6_43_2 doi: 10.1016/j.jmaa.2017.04.043 – ident: e_1_3_6_10_2 doi: 10.1016/j.chaos.2006.09.092 – ident: e_1_3_6_38_2 doi: 10.1063/1.5134097 – ident: e_1_3_6_28_2 doi: 10.1007/BF01211044 – ident: e_1_3_6_41_2 doi: 10.1088/0266-5611/9/6/010 – ident: e_1_3_6_42_2 doi: 10.1016/S0375-9601(00)00684-8 – volume: 10 start-page: 045 year: 2014 ident: e_1_3_6_37_2 article-title: Bäcklund-Darboux transformations and discretizations of super KdV equation publication-title: SIGMA contributor: fullname: Xue LL – ident: e_1_3_6_6_2 doi: 10.1016/j.jmaa.2004.11.038 – ident: e_1_3_6_24_2 doi: 10.1088/0305-4470/17/16/002 – ident: e_1_3_6_29_2 doi: 10.4310/jdg/1214447538 – ident: e_1_3_6_3_2 doi: 10.1023/A:1021186408422 – volume: 62 start-page: 125 year: 2008 ident: e_1_3_6_18_2 article-title: Stability of peakons for the Degasperis-Procesi equation publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20239 contributor: fullname: Lin Z – ident: e_1_3_6_46_2 doi: 10.1063/1.2897036 – volume: 23 start-page: 83 year: 1985 ident: e_1_3_6_25_2 article-title: A review of superintegrable systems publication-title: Lect. Appl. Math. contributor: fullname: Kupershmidt BA – ident: e_1_3_6_21_2 doi: 10.1088/1361-6544/aad52c – ident: e_1_3_6_47_2 doi: 10.1007/978-3-642-88703-1_4 – ident: e_1_3_6_8_2 doi: 10.1088/0266-5611/21/6/018 – ident: e_1_3_6_19_2 doi: 10.1088/1751-8113/46/4/045205 – ident: e_1_3_6_30_2 doi: 10.1063/1.1330196 – ident: e_1_3_6_39_2 doi: 10.1088/0253-6102/59/1/14 – ident: e_1_3_6_45_2 doi: 10.1088/0305-4470/30/2/023 – ident: e_1_3_6_5_2 doi: 10.1088/0266-5611/19/6/001 – ident: e_1_3_6_4_2 doi: 10.1103/PhysRevLett.71.1661 – ident: e_1_3_6_12_2 doi: 10.1088/0266-5611/19/1/307 – ident: e_1_3_6_36_2 doi: 10.1063/1.1606527 – volume: 9 start-page: 045 year: 2013 ident: e_1_3_6_32_2 article-title: Euler equations related to the generalized Neveu-Schwarz algebra publication-title: SIGMA contributor: fullname: Zuo DF – ident: e_1_3_6_17_2 doi: 10.1016/j.physleta.2007.03.073 – ident: e_1_3_6_23_2 doi: 10.1016/0375-9601(84)90693-5 – ident: e_1_3_6_16_2 doi: 10.1016/j.jfa.2006.03.022 – ident: e_1_3_6_27_2 doi: 10.1016/0375-9601(85)90033-7 – ident: e_1_3_6_7_2 doi: 10.1088/0951-7715/23/10/012 – ident: e_1_3_6_22_2 doi: 10.5802/aif.3241 – ident: e_1_3_6_40_2 doi: 10.1007/BF02098018 – ident: e_1_3_6_14_2 doi: 10.1155/IMRP.2005.53 – ident: e_1_3_6_20_2 doi: 10.1088/0951-7715/26/7/2081 – ident: e_1_3_6_2_2 – ident: e_1_3_6_11_2 doi: 10.1137/12089689X – ident: e_1_3_6_15_2 doi: 10.1007/s00220-006-0082-5 – ident: e_1_3_6_34_2 doi: 10.1016/j.physleta.2018.11.011 |
SSID | ssj0009587 |
Score | 2.384047 |
Snippet | Based on a 4 × 4 matrix spectral problem, a super Degasperis-Procesi (DP) equation is proposed. We show that under a reciprocal transformation, the super DP... Based on a 4 × 4 matrix spectral problem, a super Degasperis–Procesi (DP) equation is proposed. We show that under a reciprocal transformation, the super DP... Based on a 4 × 4 matrix spectral problem, a super Degasperis–Procesi (DP) equation is proposed. We show that under a reciprocal transformation, the super DP... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 20200780 |
Title | A super Degasperis-Procesi equation and related integrable systems |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33642933 https://search.proquest.com/docview/2494881851 https://pubmed.ncbi.nlm.nih.gov/PMC7897630 |
Volume | 477 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcoEDouW15SEjIQFaZZu1ncQ5Ls-KCtRKrdRb5MQO5JI-srlwQuIn8A_5JczEjpMteygcNoq8ayfrmcx8nsx8JuQFulUOqgCPeBoHQsc6kLLUgRAc1kCmzJXBAufPX-L9E_HpNDqdTH6OspbaVT4vvm-sK_kfqUIbyBWrZP9Bsn5QaIBzkC8cQcJwvJaMl7OmPTeXYDS-KmT8rpo-d4HbAoBqZi4sl7fNI8fMN6N7jggsmmpGjOUOox56n9b0GQQ2yOAyPOezpa3y6Qlfuz0DXIzEnuPFzMB0OHN-1uP3j6qL0L6BSVDOdXapwDYae6AqnydUtdhyhIMc9l7WBSnYYhSksHaVxyKIQlsMPTe2DfxiwFIXgXTGWLhNXazWAb6INtr5MMXaBVj5I3UUC-cAdMLBo_Vv8a84Op9-aF-8ywz7Z9g_w_43yE0G1grN5MGRHDE3d7ss-n_gmT_l3vr115HNX8uVq1m3IxhzfJfccesPurTKtE0mpt4htwdZNjtk29n7hr5ypOSv75F3S9rpGh107fePX07LaK9lFARPnZbRQcuo07L75OTD--O3-4HbgSMoIp6ugpwVLCk1D3WUKlWWZZx0FJSca0A1Oi5MUqg4VYYrrfKkEHmhdRpLwIwsjnLFH5Ct-qw2jwjVkVBRKPLFItGCJUrmWjLoKI2GDy-m5GU_e9m5JVrJNstpSp73k5uBLcQXXKo2Z22TMeQ6QgS6mJKHdrL9WBzkB9CWT0myJgb_A-RZX_-mrr51fOuJBMzOw91r3-Fjcmt4CJ6QrdVla54Cdl3lzzrd-gM-cZwc |
link.rule.ids | 230,315,783,787,888,27936,27937 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+super+Degasperis%E2%80%93Procesi+equation+and+related+integrable+systems&rft.jtitle=Proceedings+of+the+Royal+Society.+A%2C+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Gao%2C+Binfang&rft.au=Tian%2C+Kai&rft.au=Liu%2C+Qing+Ping&rft.date=2021-01-01&rft.issn=1364-5021&rft.eissn=1471-2946&rft.volume=477&rft.issue=2245&rft_id=info:doi/10.1098%2Frspa.2020.0780&rft.externalDBID=n%2Fa&rft.externalDocID=10_1098_rspa_2020_0780 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-5021&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-5021&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-5021&client=summon |