Unlocking the potential of LSTM for accurate salary prediction with MLE, Jeffreys prior, and advanced risk functions

This article aims to address the challenge of predicting the salaries of college graduates, a subject of significant practical value in the fields of human resources and career planning. Traditional prediction models often overlook diverse influencing factors and complex data distributions, limiting...

Full description

Saved in:
Bibliographic Details
Published inPeerJ. Computer science Vol. 10; p. e1875
Main Authors Li, Fanghong, Majid, Norliza Abdul, Ding, Shuo
Format Journal Article
LanguageEnglish
Published United States PeerJ. Ltd 22.02.2024
PeerJ, Inc
PeerJ Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article aims to address the challenge of predicting the salaries of college graduates, a subject of significant practical value in the fields of human resources and career planning. Traditional prediction models often overlook diverse influencing factors and complex data distributions, limiting the accuracy and reliability of their predictions. Against this backdrop, we propose a novel prediction model that integrates maximum likelihood estimation (MLE), Jeffreys priors, Kullback-Leibler risk function, and Gaussian mixture models to optimize LSTM models in deep learning. Compared to existing research, our approach has multiple innovations: First, we successfully improve the model’s predictive accuracy through the use of MLE. Second, we reduce the model’s complexity and enhance its interpretability by applying Jeffreys priors. Lastly, we employ the Kullback-Leibler risk function for model selection and optimization, while the Gaussian mixture models further refine the capture of complex characteristics of salary distribution. To validate the effectiveness and robustness of our model, we conducted experiments on two different datasets. The results show significant improvements in prediction accuracy, model complexity, and risk performance. This study not only provides an efficient and reliable tool for predicting the salaries of college graduates but also offers robust theoretical and empirical foundations for future research in this field.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2376-5992
2376-5992
DOI:10.7717/peerj-cs.1875