Plant developmental stage drives the differentiation in ecological role of the maize microbiome
Background Plants live with diverse microbial communities which profoundly affect multiple facets of host performance, but if and how host development impacts the assembly, functions and microbial interactions of crop microbiomes are poorly understood. Here we examined both bacterial and fungal comm...
Saved in:
Published in | Microbiome Vol. 9; no. 1; pp. 1 - 15 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
13.08.2021
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background Plants live with diverse microbial communities which profoundly affect multiple facets of host performance, but if and how host development impacts the assembly, functions and microbial interactions of crop microbiomes are poorly understood. Here we examined both bacterial and fungal communities across soils, epiphytic and endophytic niches of leaf and root, and plastic leaf of fake plant (representing environment-originating microbes) at three developmental stages of maize at two contrasting sites, and further explored the potential function of phylloplane microbiomes based on metagenomics. Results Our results suggested that plant developmental stage had a much stronger influence on the microbial diversity, composition and interkingdom networks in plant compartments than in soils, with the strongest effect in the phylloplane. Phylloplane microbiomes were co-shaped by both plant growth and seasonal environmental factors, with the air (represented by fake plants) as its important source. Further, we found that bacterial communities in plant compartments were more strongly driven by deterministic processes at the early stage but a similar pattern was for fungal communities at the late stage. Moreover, bacterial taxa played a more important role in microbial interkingdom network and crop yield prediction at the early stage, while fungal taxa did so at the late stage. Metagenomic analyses further indicated that phylloplane microbiomes possessed higher functional diversity at the early stage than the late stage, with functional genes related to nutrient provision enriched at the early stage and N assimilation and C degradation enriched at the late stage. Coincidently, more abundant beneficial bacterial taxa like Actinobacteria, Burkholderiaceae and Rhizobiaceae in plant microbiomes were observed at the early stage, but more saprophytic fungi at the late stage. Conclusions Our results suggest that host developmental stage profoundly influences plant microbiome assembly and functions, and the bacterial and fungal microbiomes take a differentiated ecological role at different stages of plant development. This study provides empirical evidence for host exerting strong effect on plant microbiomes by deterministic selection during plant growth and development. These findings have implications for the development of future tools to manipulate microbiome for sustainable increase in primary productivity. Video Abstract |
---|---|
AbstractList | Background Plants live with diverse microbial communities which profoundly affect multiple facets of host performance, but if and how host development impacts the assembly, functions and microbial interactions of crop microbiomes are poorly understood. Here we examined both bacterial and fungal communities across soils, epiphytic and endophytic niches of leaf and root, and plastic leaf of fake plant (representing environment-originating microbes) at three developmental stages of maize at two contrasting sites, and further explored the potential function of phylloplane microbiomes based on metagenomics. Results Our results suggested that plant developmental stage had a much stronger influence on the microbial diversity, composition and interkingdom networks in plant compartments than in soils, with the strongest effect in the phylloplane. Phylloplane microbiomes were co-shaped by both plant growth and seasonal environmental factors, with the air (represented by fake plants) as its important source. Further, we found that bacterial communities in plant compartments were more strongly driven by deterministic processes at the early stage but a similar pattern was for fungal communities at the late stage. Moreover, bacterial taxa played a more important role in microbial interkingdom network and crop yield prediction at the early stage, while fungal taxa did so at the late stage. Metagenomic analyses further indicated that phylloplane microbiomes possessed higher functional diversity at the early stage than the late stage, with functional genes related to nutrient provision enriched at the early stage and N assimilation and C degradation enriched at the late stage. Coincidently, more abundant beneficial bacterial taxa like Actinobacteria, Burkholderiaceae and Rhizobiaceae in plant microbiomes were observed at the early stage, but more saprophytic fungi at the late stage. Conclusions Our results suggest that host developmental stage profoundly influences plant microbiome assembly and functions, and the bacterial and fungal microbiomes take a differentiated ecological role at different stages of plant development. This study provides empirical evidence for host exerting strong effect on plant microbiomes by deterministic selection during plant growth and development. These findings have implications for the development of future tools to manipulate microbiome for sustainable increase in primary productivity. Video Abstract Plants live with diverse microbial communities which profoundly affect multiple facets of host performance, but if and how host development impacts the assembly, functions and microbial interactions of crop microbiomes are poorly understood. Here we examined both bacterial and fungal communities across soils, epiphytic and endophytic niches of leaf and root, and plastic leaf of fake plant (representing environment-originating microbes) at three developmental stages of maize at two contrasting sites, and further explored the potential function of phylloplane microbiomes based on metagenomics.BACKGROUNDPlants live with diverse microbial communities which profoundly affect multiple facets of host performance, but if and how host development impacts the assembly, functions and microbial interactions of crop microbiomes are poorly understood. Here we examined both bacterial and fungal communities across soils, epiphytic and endophytic niches of leaf and root, and plastic leaf of fake plant (representing environment-originating microbes) at three developmental stages of maize at two contrasting sites, and further explored the potential function of phylloplane microbiomes based on metagenomics.Our results suggested that plant developmental stage had a much stronger influence on the microbial diversity, composition and interkingdom networks in plant compartments than in soils, with the strongest effect in the phylloplane. Phylloplane microbiomes were co-shaped by both plant growth and seasonal environmental factors, with the air (represented by fake plants) as its important source. Further, we found that bacterial communities in plant compartments were more strongly driven by deterministic processes at the early stage but a similar pattern was for fungal communities at the late stage. Moreover, bacterial taxa played a more important role in microbial interkingdom network and crop yield prediction at the early stage, while fungal taxa did so at the late stage. Metagenomic analyses further indicated that phylloplane microbiomes possessed higher functional diversity at the early stage than the late stage, with functional genes related to nutrient provision enriched at the early stage and N assimilation and C degradation enriched at the late stage. Coincidently, more abundant beneficial bacterial taxa like Actinobacteria, Burkholderiaceae and Rhizobiaceae in plant microbiomes were observed at the early stage, but more saprophytic fungi at the late stage.RESULTSOur results suggested that plant developmental stage had a much stronger influence on the microbial diversity, composition and interkingdom networks in plant compartments than in soils, with the strongest effect in the phylloplane. Phylloplane microbiomes were co-shaped by both plant growth and seasonal environmental factors, with the air (represented by fake plants) as its important source. Further, we found that bacterial communities in plant compartments were more strongly driven by deterministic processes at the early stage but a similar pattern was for fungal communities at the late stage. Moreover, bacterial taxa played a more important role in microbial interkingdom network and crop yield prediction at the early stage, while fungal taxa did so at the late stage. Metagenomic analyses further indicated that phylloplane microbiomes possessed higher functional diversity at the early stage than the late stage, with functional genes related to nutrient provision enriched at the early stage and N assimilation and C degradation enriched at the late stage. Coincidently, more abundant beneficial bacterial taxa like Actinobacteria, Burkholderiaceae and Rhizobiaceae in plant microbiomes were observed at the early stage, but more saprophytic fungi at the late stage.Our results suggest that host developmental stage profoundly influences plant microbiome assembly and functions, and the bacterial and fungal microbiomes take a differentiated ecological role at different stages of plant development. This study provides empirical evidence for host exerting strong effect on plant microbiomes by deterministic selection during plant growth and development. These findings have implications for the development of future tools to manipulate microbiome for sustainable increase in primary productivity. Video Abstract.CONCLUSIONSOur results suggest that host developmental stage profoundly influences plant microbiome assembly and functions, and the bacterial and fungal microbiomes take a differentiated ecological role at different stages of plant development. This study provides empirical evidence for host exerting strong effect on plant microbiomes by deterministic selection during plant growth and development. These findings have implications for the development of future tools to manipulate microbiome for sustainable increase in primary productivity. Video Abstract. Abstract Background Plants live with diverse microbial communities which profoundly affect multiple facets of host performance, but if and how host development impacts the assembly, functions and microbial interactions of crop microbiomes are poorly understood. Here we examined both bacterial and fungal communities across soils, epiphytic and endophytic niches of leaf and root, and plastic leaf of fake plant (representing environment-originating microbes) at three developmental stages of maize at two contrasting sites, and further explored the potential function of phylloplane microbiomes based on metagenomics. Results Our results suggested that plant developmental stage had a much stronger influence on the microbial diversity, composition and interkingdom networks in plant compartments than in soils, with the strongest effect in the phylloplane. Phylloplane microbiomes were co-shaped by both plant growth and seasonal environmental factors, with the air (represented by fake plants) as its important source. Further, we found that bacterial communities in plant compartments were more strongly driven by deterministic processes at the early stage but a similar pattern was for fungal communities at the late stage. Moreover, bacterial taxa played a more important role in microbial interkingdom network and crop yield prediction at the early stage, while fungal taxa did so at the late stage. Metagenomic analyses further indicated that phylloplane microbiomes possessed higher functional diversity at the early stage than the late stage, with functional genes related to nutrient provision enriched at the early stage and N assimilation and C degradation enriched at the late stage. Coincidently, more abundant beneficial bacterial taxa like Actinobacteria, Burkholderiaceae and Rhizobiaceae in plant microbiomes were observed at the early stage, but more saprophytic fungi at the late stage. Conclusions Our results suggest that host developmental stage profoundly influences plant microbiome assembly and functions, and the bacterial and fungal microbiomes take a differentiated ecological role at different stages of plant development. This study provides empirical evidence for host exerting strong effect on plant microbiomes by deterministic selection during plant growth and development. These findings have implications for the development of future tools to manipulate microbiome for sustainable increase in primary productivity. Video Abstract |
ArticleNumber | 171 |
Author | Wan, Li-Hua Meng, Guo-Zhong He, Ji-Zheng Zhang, Li-Mei Wu, Chuan-Fa Wang, Jun-Tao Ge, An-Hui Xiong, Chao Li, Pei-Pei Liu, Si-Yi Han, Yan-Lai Singh, Brajesh K. |
Author_xml | – sequence: 1 givenname: Chao surname: Xiong fullname: Xiong, Chao – sequence: 2 givenname: Brajesh K. surname: Singh fullname: Singh, Brajesh K. – sequence: 3 givenname: Ji-Zheng surname: He fullname: He, Ji-Zheng – sequence: 4 givenname: Yan-Lai surname: Han fullname: Han, Yan-Lai – sequence: 5 givenname: Pei-Pei surname: Li fullname: Li, Pei-Pei – sequence: 6 givenname: Li-Hua surname: Wan fullname: Wan, Li-Hua – sequence: 7 givenname: Guo-Zhong surname: Meng fullname: Meng, Guo-Zhong – sequence: 8 givenname: Si-Yi surname: Liu fullname: Liu, Si-Yi – sequence: 9 givenname: Jun-Tao surname: Wang fullname: Wang, Jun-Tao – sequence: 10 givenname: Chuan-Fa surname: Wu fullname: Wu, Chuan-Fa – sequence: 11 givenname: An-Hui surname: Ge fullname: Ge, An-Hui – sequence: 12 givenname: Li-Mei surname: Zhang fullname: Zhang, Li-Mei |
BookMark | eNp9Uk1vFDEMjVArWkr_AKeRuHAZyHcyFyRUUahUiR7gHGUyzjarzGRJsiuVX9_sbpFoD-QQW_bzc_ziN-hkSQsg9I7gj4Ro-alwTKTuMSU9Ji3Sy1fonGI-9FQSffKPf4YuS1njdgbCFdev0RnjTA-Yq3Nk7qJdajfBDmLazLBUG7tS7Qq6KYcdlK7eNzd4D7klg60hLV1YOnApplVwDZ5ThC75A3K24U-7g8tpDGmGt-jU21jg8sleoF_XX39efe9vf3y7ufpy2zvBhtorz_Vgp4l65qwmnikKSsiBYw7gMFNgx4kJ5rCEEWOrwAEbqbCejFjDwC7QzZF3SnZtNjnMNj-YZIM5BFJeGZtrcBEMmSRRxAoqBOECvBW6GT4xaKo0PRvX5yPXZjvOMLk2d7bxGenzzBLuzSrtjGaSYykawYcngpx-b6FUM4fiIDapIW2LoUISrhXBuEHfv4Cu0zYvTao9inIiqNq_SB9RTdZSMnjjQj18ResfoiHY7JfCHJfCtCHMYSmMbKX0RenfOf5T9AiLRLrM |
CitedBy_id | crossref_primary_10_1093_ismeco_ycaf037 crossref_primary_10_1016_j_envres_2024_119042 crossref_primary_10_1111_1758_2229_13126 crossref_primary_10_1007_s00374_024_01882_1 crossref_primary_10_1007_s11104_025_07208_w crossref_primary_10_1016_j_jhazmat_2024_135878 crossref_primary_10_1038_s42003_022_03726_w crossref_primary_10_3389_fpls_2024_1363063 crossref_primary_10_1094_PBIOMES_10_22_0068_R crossref_primary_10_3389_fmicb_2024_1387870 crossref_primary_10_1128_spectrum_03831_22 crossref_primary_10_3390_life12122041 crossref_primary_10_1038_s43705_023_00286_w crossref_primary_10_1016_j_rhisph_2023_100839 crossref_primary_10_1016_j_apsoil_2023_105075 crossref_primary_10_3389_fmicb_2022_916337 crossref_primary_10_1016_j_scitotenv_2022_153560 crossref_primary_10_1007_s11104_024_06825_1 crossref_primary_10_1016_j_envpol_2022_120344 crossref_primary_10_3390_agronomy13010090 crossref_primary_10_1128_spectrum_01059_23 crossref_primary_10_1016_j_geoderma_2024_116801 crossref_primary_10_3389_fsufs_2022_1012818 crossref_primary_10_1007_s11104_023_06302_1 crossref_primary_10_3389_fsoil_2021_805094 crossref_primary_10_1007_s42832_024_0245_3 crossref_primary_10_1016_j_pbi_2024_102603 crossref_primary_10_3389_fmicb_2024_1372471 crossref_primary_10_1038_s41598_023_34509_w crossref_primary_10_1002_ajb2_16366 crossref_primary_10_3390_d15010046 crossref_primary_10_1016_j_rhisph_2024_100896 crossref_primary_10_1128_spectrum_01335_23 crossref_primary_10_1016_j_foodchem_2024_140006 crossref_primary_10_3390_plants13060912 crossref_primary_10_1080_08905436_2022_2163402 crossref_primary_10_1128_msystems_01055_23 crossref_primary_10_1007_s00284_022_03083_1 crossref_primary_10_1038_s43705_023_00213_z crossref_primary_10_1016_j_apsoil_2023_105059 crossref_primary_10_1016_j_mib_2023_102268 crossref_primary_10_1186_s12915_024_01967_1 crossref_primary_10_1016_j_ecolind_2024_112087 crossref_primary_10_1007_s11258_024_01411_y crossref_primary_10_1128_mbio_02733_23 crossref_primary_10_1016_j_pedsph_2024_08_007 crossref_primary_10_5423_PPJ_OA_05_2022_0067 crossref_primary_10_1016_j_jhazmat_2024_135883 crossref_primary_10_1016_j_scitotenv_2023_162663 crossref_primary_10_1007_s00374_024_01884_z crossref_primary_10_1016_j_scitotenv_2024_171429 crossref_primary_10_1007_s00425_024_04338_w crossref_primary_10_1038_s43705_023_00296_8 crossref_primary_10_1007_s11274_021_03168_2 crossref_primary_10_1016_j_jenvman_2024_120886 crossref_primary_10_1186_s40793_023_00471_3 crossref_primary_10_7717_peerj_14988 crossref_primary_10_1016_j_scitotenv_2021_150781 crossref_primary_10_1186_s12866_024_03702_w crossref_primary_10_3390_microorganisms11092144 crossref_primary_10_1007_s11104_023_06433_5 crossref_primary_10_1186_s12866_023_02929_3 crossref_primary_10_1016_j_indcrop_2023_117736 crossref_primary_10_1016_j_rhisph_2025_101047 crossref_primary_10_1016_j_micres_2023_127553 crossref_primary_10_1007_s11104_024_06636_4 crossref_primary_10_1016_j_jhazmat_2022_129147 crossref_primary_10_3389_fmicb_2022_868307 crossref_primary_10_3389_fpls_2022_962759 crossref_primary_10_1016_j_fcr_2023_109167 crossref_primary_10_1186_s40168_022_01387_9 crossref_primary_10_1038_s41598_023_47099_4 crossref_primary_10_1007_s00344_024_11406_8 crossref_primary_10_1016_j_foodchem_2023_137988 crossref_primary_10_3389_fmicb_2021_778327 crossref_primary_10_1016_j_jenvman_2023_120012 crossref_primary_10_1007_s11104_024_06880_8 crossref_primary_10_3390_seeds3040035 crossref_primary_10_3389_fmicb_2023_979835 crossref_primary_10_3389_fpls_2024_1369754 crossref_primary_10_1007_s11356_024_32390_2 crossref_primary_10_3389_fmicb_2022_1023971 crossref_primary_10_1038_s41598_022_15133_6 crossref_primary_10_1016_j_envres_2022_114109 crossref_primary_10_3389_fmicb_2024_1470450 crossref_primary_10_1016_j_rhisph_2023_100805 crossref_primary_10_3389_fmicb_2024_1439735 crossref_primary_10_3389_fpls_2022_1023837 crossref_primary_10_1016_j_apsoil_2024_105823 crossref_primary_10_1186_s12870_024_04854_7 crossref_primary_10_1016_j_scitotenv_2024_171581 crossref_primary_10_1016_j_actaastro_2024_07_049 crossref_primary_10_1002_imt2_105 crossref_primary_10_1111_plb_13735 crossref_primary_10_1016_j_plantsci_2023_111898 crossref_primary_10_1007_s00374_022_01626_z crossref_primary_10_1016_j_micres_2024_127852 crossref_primary_10_3389_fmicb_2023_1284191 crossref_primary_10_3389_fmicb_2022_976154 crossref_primary_10_1128_spectrum_00611_23 crossref_primary_10_1186_s13568_023_01524_z crossref_primary_10_1038_s43016_022_00636_2 crossref_primary_10_3390_ijms24129879 crossref_primary_10_3390_sci6010006 crossref_primary_10_3389_fpls_2023_1168760 crossref_primary_10_3390_d15010112 crossref_primary_10_1007_s11104_023_06347_2 crossref_primary_10_1038_s42003_024_06907_x crossref_primary_10_1016_j_agee_2023_108647 crossref_primary_10_1016_j_agee_2023_108768 crossref_primary_10_1093_femsec_fiad079 crossref_primary_10_1111_jipb_13863 crossref_primary_10_1007_s42773_023_00247_5 crossref_primary_10_1007_s11356_022_24835_3 crossref_primary_10_1007_s11104_023_05981_0 crossref_primary_10_1186_s40538_024_00542_8 crossref_primary_10_3389_fmicb_2024_1361756 crossref_primary_10_1016_j_apsoil_2024_105644 crossref_primary_10_1128_spectrum_02800_22 crossref_primary_10_1038_s41598_025_86944_6 crossref_primary_10_1002_ldr_4547 crossref_primary_10_1007_s11104_023_06262_6 crossref_primary_10_1111_1751_7915_14322 crossref_primary_10_3389_fpls_2023_1304627 crossref_primary_10_1038_s41598_024_82833_6 crossref_primary_10_1016_j_cpb_2025_100456 crossref_primary_10_1016_j_scitotenv_2025_178524 crossref_primary_10_1186_s40793_024_00548_7 crossref_primary_10_1128_aem_01078_24 crossref_primary_10_1111_pbi_13950 crossref_primary_10_1016_j_tim_2024_08_002 crossref_primary_10_3390_microorganisms10050865 crossref_primary_10_1016_j_scitotenv_2022_161008 crossref_primary_10_3389_fmicb_2024_1478807 crossref_primary_10_1038_s41598_024_79850_w crossref_primary_10_1007_s00425_023_04074_7 crossref_primary_10_1016_j_soilbio_2022_108880 crossref_primary_10_1111_pce_15259 crossref_primary_10_3389_fmicb_2023_1241436 crossref_primary_10_1007_s42832_023_0196_0 crossref_primary_10_3390_jof10020128 crossref_primary_10_1007_s11368_025_03975_2 crossref_primary_10_1016_j_apsoil_2022_104574 crossref_primary_10_1016_j_apsoil_2023_104818 crossref_primary_10_1038_s41598_023_42291_y crossref_primary_10_1128_mbio_00343_22 crossref_primary_10_1016_j_ncrops_2023_11_002 crossref_primary_10_1007_s11104_023_05897_9 crossref_primary_10_1007_s44246_024_00163_8 crossref_primary_10_1016_j_scitotenv_2022_155204 crossref_primary_10_1016_j_apsoil_2025_105936 crossref_primary_10_1016_j_agee_2024_109441 crossref_primary_10_1002_ldr_4518 crossref_primary_10_1016_j_ifset_2022_103259 crossref_primary_10_1093_ismeco_ycae119 crossref_primary_10_1111_mec_17228 crossref_primary_10_1016_j_micres_2023_127344 crossref_primary_10_1021_acs_jafc_3c01052 crossref_primary_10_1016_j_scitotenv_2021_151737 crossref_primary_10_1128_spectrum_05333_22 crossref_primary_10_3390_foods13101580 crossref_primary_10_3389_fmicb_2022_1009505 crossref_primary_10_1016_j_fmre_2024_04_016 crossref_primary_10_3389_fmicb_2023_1257905 crossref_primary_10_1007_s11104_024_06519_8 crossref_primary_10_1016_j_jhazmat_2021_127767 crossref_primary_10_1007_s11104_024_06498_w crossref_primary_10_1016_j_apsoil_2023_104993 crossref_primary_10_3390_d16020077 crossref_primary_10_1016_j_scitotenv_2023_164827 crossref_primary_10_1016_j_micres_2024_127791 crossref_primary_10_1002_sae2_12043 crossref_primary_10_1007_s44279_025_00164_0 crossref_primary_10_1038_s41598_024_57939_6 crossref_primary_10_3389_fmicb_2022_825377 crossref_primary_10_1021_acs_est_1c06508 crossref_primary_10_1016_j_copbio_2024_103172 crossref_primary_10_1016_j_apsoil_2024_105453 crossref_primary_10_1016_j_scitotenv_2024_172622 crossref_primary_10_1093_ismeco_ycae132 crossref_primary_10_1016_j_scitotenv_2024_175334 crossref_primary_10_1016_j_scitotenv_2024_177074 crossref_primary_10_1111_pce_15215 crossref_primary_10_1038_s41467_024_45925_5 crossref_primary_10_1016_j_scitotenv_2023_164147 crossref_primary_10_1128_spectrum_01846_22 crossref_primary_10_1007_s10123_023_00470_x crossref_primary_10_1016_j_apsoil_2023_105161 crossref_primary_10_1016_j_scitotenv_2023_164260 crossref_primary_10_1094_PBIOMES_02_24_0012_R crossref_primary_10_3389_fmicb_2024_1340575 crossref_primary_10_1016_j_apsoil_2023_105023 crossref_primary_10_1016_j_scitotenv_2024_174333 crossref_primary_10_1186_s40168_024_01910_0 crossref_primary_10_1186_s40793_023_00534_5 crossref_primary_10_1016_j_indcrop_2024_120248 crossref_primary_10_1038_s41522_024_00616_3 crossref_primary_10_1186_s40168_022_01287_y crossref_primary_10_1016_j_eti_2025_104135 crossref_primary_10_1128_msystems_00886_23 crossref_primary_10_1128_msphere_00765_24 crossref_primary_10_1128_msystems_01124_23 crossref_primary_10_1016_j_fbio_2024_104917 crossref_primary_10_1128_spectrum_05051_22 crossref_primary_10_1016_j_geoderma_2024_116786 crossref_primary_10_1186_s40793_023_00546_1 crossref_primary_10_1128_aem_01003_22 crossref_primary_10_1016_j_heliyon_2024_e40517 crossref_primary_10_1128_spectrum_02097_24 crossref_primary_10_1186_s40793_023_00500_1 crossref_primary_10_3389_fpls_2022_1011001 crossref_primary_10_5423_PPJ_OA_06_2024_0086 crossref_primary_10_1038_s43705_023_00302_z crossref_primary_10_1016_j_jia_2024_07_004 crossref_primary_10_1016_j_cej_2022_139537 crossref_primary_10_3389_fpls_2022_1003868 crossref_primary_10_1111_jipb_13226 crossref_primary_10_1007_s11104_025_07335_4 crossref_primary_10_1128_spectrum_01670_24 crossref_primary_10_1016_j_envpol_2022_119531 crossref_primary_10_1007_s11104_024_07122_7 |
Cites_doi | 10.1016/j.chom.2019.07.009 10.1016/S0038-0717(01)00079-7 10.1111/1462-2920.15392 10.1186/s40168-017-0389-9 10.1038/s41467-019-11974-4 10.1101/gr.1239303 10.1016/j.soilbio.2017.03.013 10.2136/sssabookser5.2.c37 10.1126/science.aaf4507 10.1146/annurev-ecolsys-121415-032238 10.1038/nrmicro2910 10.1038/nature11336 10.1073/pnas.1414592112 10.1073/pnas.1324044111 10.1128/AEM.01564-17 10.1038/nmeth.1650 10.1038/nmeth.f.303 10.1111/1462-2920.15097 10.1038/s41587-019-0104-4 10.1073/pnas.1720589115 10.1371/journal.pcbi.1002606 10.1126/science.1203980 10.1038/s41467-019-13993-7 10.1186/s40168-019-0750-2 10.1126/science.aau6389 10.1016/j.cell.2018.10.020 10.1038/nature23292 10.1146/annurev-arplant-050312-120106 10.1111/nph.13312 10.1371/journal.pbio.1002352 10.1111/j.1462-2920.2006.01163.x 10.1016/j.funeco.2015.06.006 10.1073/pnas.1800918115 10.1093/bioinformatics/btq461 10.1007/s11427-018-9284-4 10.1007/s13225-013-0263-4 10.1146/annurev-micro-022620-014327 10.1609/icwsm.v3i1.13937 10.1146/annurev-genet-120215-034952 10.1186/gb-2011-12-6-r60 10.1111/j.1574-6941.2012.01437.x 10.1038/s41396-020-00785-x 10.1016/j.tig.2020.09.010 10.1038/s41586-020-2778-7 10.1038/s41564-020-00857-w 10.1126/science.aad2602 10.1186/s40168-018-0413-8 10.1146/annurev-micro-090817-062524 10.1038/nrg3748 10.1038/ncomms12219 10.1111/1462-2920.15240 10.1093/femsec/fiw119 10.1038/ismej.2013.93 10.1111/j.2041-210x.2012.00261.x 10.1371/journal.pbio.1002378 10.1126/science.aad4501 10.1186/s40168-017-0241-2 10.1186/s40168-018-0497-1 10.1111/pce.13928 10.1093/bioinformatics/btu153 10.1111/1462-2920.15262 10.1186/s40168-019-0756-9 10.1038/nrmicro3109 10.1101/081257 10.1093/bioinformatics/btv033 10.1111/nph.16890 10.1016/j.tplants.2018.12.004 10.1371/journal.pbio.2001793 10.1038/ismej.2013.196 10.1073/pnas.1216057111 10.1016/j.tplants.2017.09.003 10.1038/ismej.2013.28 10.1111/nph.15054 10.1038/ismej.2008.14 10.1111/1751-7915.12592 10.1038/s41467-019-10373-z 10.1186/s40168-018-0445-0 10.1038/nature11237 10.1094/MPMI-21-2-0208 10.1038/nmeth.2658 10.1093/bioinformatics/btp616 10.1093/nar/gky1085 10.1038/s41579-020-0412-1 10.1016/j.chom.2017.07.004 10.1038/s41559-019-1063-3 10.1038/s41396-020-00835-4 10.1038/s41396-019-0522-9 10.1016/j.chom.2020.09.006 10.1038/ismej.2011.119 10.1093/bioinformatics/btu170 10.1128/AEM.69.4.1875-1883.2003 10.1038/s41579-020-00446-y 10.1038/nbt.3935 10.1038/nmeth.1923 10.1038/s41396-019-0383-2 10.1038/s41477-018-0139-4 10.1186/s40168-019-0677-7 10.1146/annurev-micro-012520-072314 |
ContentType | Journal Article |
Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021. The Author(s). The Author(s) 2021 |
Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021. The Author(s). – notice: The Author(s) 2021 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s40168-021-01118-6 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Databases Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2049-2618 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_1d6171a5255145efa5845e4d3e438021 PMC8364065 10_1186_s40168_021_01118_6 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: ; grantid: DP170103628; DP190103714 – fundername: ; grantid: Y201615 – fundername: ; grantid: 2017YFD0200600 – fundername: ; grantid: XDB15020200 |
GroupedDBID | 0R~ 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABUWG ACGFS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ASPBG BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION DIK EBLON EBS FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IEP IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ ROL RPM RSV SOJ UKHRP 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c539t-7f489add2f3ca81f372e7569404eec037eabd353c06eb00a7ece3b25af1b08e93 |
IEDL.DBID | 7X7 |
ISSN | 2049-2618 |
IngestDate | Wed Aug 27 01:20:53 EDT 2025 Thu Aug 21 18:20:30 EDT 2025 Fri Jul 11 15:31:50 EDT 2025 Fri Jul 25 12:00:48 EDT 2025 Tue Jul 01 04:16:40 EDT 2025 Thu Apr 24 23:08:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c539t-7f489add2f3ca81f372e7569404eec037eabd353c06eb00a7ece3b25af1b08e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://www.proquest.com/docview/2562415271?pq-origsite=%requestingapplication% |
PMID | 34389047 |
PQID | 2562415271 |
PQPubID | 2040205 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1d6171a5255145efa5845e4d3e438021 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8364065 proquest_miscellaneous_2561487100 proquest_journals_2562415271 crossref_citationtrail_10_1186_s40168_021_01118_6 crossref_primary_10_1186_s40168_021_01118_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-13 |
PublicationDateYYYYMMDD | 2021-08-13 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Microbiome |
PublicationYear | 2021 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | 1118_CR49 FM Martin (1118_CR1) 2017; 356 J Zhou (1118_CR67) 2014; 111 TL Haskett (1118_CR13) 2021; 15 1118_CR48 VM Conn (1118_CR95) 2008; 21 B Langmead (1118_CR59) 2012; 9 CJ Harbort (1118_CR20) 2020; 28 ML Zhao (1118_CR39) 2021; 44 J Sasse (1118_CR79) 2018; 23 S Shakir (1118_CR21) 2021; 37 A Abdelfattah (1118_CR16) 2021; 23 JE Schmidt (1118_CR29) 2019; 7 KZ Coyte (1118_CR44) 2015; 350 P Trivedi (1118_CR9) 2020; 18 KD Hyde (1118_CR97) 2013; 63 BK Singh (1118_CR75) 2017; 10 D Knights (1118_CR71) 2011; 8 SE Lindow (1118_CR34) 2003; 69 H Toju (1118_CR101) 2018; 4 S Chen (1118_CR38) 2019; 7 SM Lee (1118_CR93) 2021; 15 BK Singh (1118_CR11) 2020; 18 H Toju (1118_CR43) 2018; 6 DS Lundberg (1118_CR25) 2012; 488 A Liaw (1118_CR73) 2002; 2 P Shannon (1118_CR69) 2003; 13 P Duran (1118_CR45) 2018; 175 S Jiao (1118_CR66) 2020; 14 OM Finkel (1118_CR87) 2020; 587 1118_CR63 A Sessitsch (1118_CR10) 2019; 24 1118_CR62 B Beckers (1118_CR31) 2017; 5 CR Fitzpatrick (1118_CR3) 2020; 74 P Vandenkoornhuyse (1118_CR4) 2015; 206 E Egidi (1118_CR99) 2019; 10 JG Caporaso (1118_CR56) 2010; 7 MA Hassani (1118_CR7) 2018; 6 1118_CR53 M Fürnkranz (1118_CR8) 2008; 2 K Faust (1118_CR68) 2012; 8 P Trivedi (1118_CR96) 2017; 111 JC Stegen (1118_CR65) 2013; 7 MNP Remus-Emsermann (1118_CR84) 2018; 218 T Seemann (1118_CR61) 2014; 30 AC Huang (1118_CR77) 2019; 364 FN New (1118_CR88) 2020; 74 WA Walters (1118_CR22) 2018; 115 L Philippot (1118_CR5) 2013; 11 K Hartman (1118_CR28) 2018; 6 S Compant (1118_CR19) 2021; 23 C Xiong (1118_CR33) 2021; 229 MGA van der Heijden (1118_CR41) 2016; 14 JA Vorholt (1118_CR85) 2012; 10 JM Alvarez-Perez (1118_CR92) 2017; 83 PE Busby (1118_CR12) 2017; 15 J Zhang (1118_CR86) 2019; 37 JN Paulson (1118_CR57) 2013; 10 KR Foster (1118_CR78) 2017; 548 T Thiergart (1118_CR27) 2020; 4 GC diCenzo (1118_CR23) 2016; 7 C Gao (1118_CR35) 2020; 11 R Mendes (1118_CR6) 2011; 332 KL Grady (1118_CR36) 2019; 10 AM Bolger (1118_CR58) 2014; 30 D Bulgarelli (1118_CR26) 2012; 488 JY Zhang (1118_CR37) 2018; 61 EN Kudjordjie (1118_CR81) 2019; 7 JM Chaparro (1118_CR76) 2013; 8 C Vacher (1118_CR83) 2016; 47 1118_CR72 NH Nguyen (1118_CR55) 2016; 20 C Viviane (1118_CR24) 2019; 73 J Edwards (1118_CR32) 2015; 112 C Xiong (1118_CR46) 2021; 23 RI Adams (1118_CR98) 2013; 7 C Quince (1118_CR89) 2017; 35 RC Edgar (1118_CR52) 2010; 26 D Li (1118_CR60) 2015; 31 DB Muller (1118_CR2) 2016; 50 L Liu (1118_CR17) 2007; 9 D Bulgarelli (1118_CR15) 2013; 64 MC Marx (1118_CR47) 2001; 33 A Barberan (1118_CR42) 2012; 6 N Segata (1118_CR74) 2011; 12 J Hu (1118_CR82) 2020; 22 J Oksanen (1118_CR64) 2007; 10 M Bastian (1118_CR70) 2009; 8 YT Cheng (1118_CR100) 2019; 26 JA Vorholt (1118_CR18) 2017; 22 1118_CR14 M Santolini (1118_CR90) 2018; 115 K Ihrmark (1118_CR50) 2012; 82 DS Guttman (1118_CR80) 2014; 15 1118_CR94 MT Agler (1118_CR40) 2016; 14 TJ White (1118_CR51) 1990 S Louca (1118_CR54) 2016; 353 MA Cregger (1118_CR30) 2018; 6 S Banerjee (1118_CR91) 2019; 13 |
References_xml | – volume: 26 start-page: 183 year: 2019 ident: 1118_CR100 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2019.07.009 – volume: 33 start-page: 1633 year: 2001 ident: 1118_CR47 publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(01)00079-7 – volume: 23 start-page: 2199 year: 2021 ident: 1118_CR16 publication-title: Environ Microbiol doi: 10.1111/1462-2920.15392 – volume: 6 start-page: 14 year: 2018 ident: 1118_CR28 publication-title: Microbiome doi: 10.1186/s40168-017-0389-9 – volume: 10 start-page: 4135 year: 2019 ident: 1118_CR36 publication-title: Nat Commun doi: 10.1038/s41467-019-11974-4 – volume: 13 start-page: 2498 year: 2003 ident: 1118_CR69 publication-title: Genome Res doi: 10.1101/gr.1239303 – volume: 111 start-page: 10 year: 2017 ident: 1118_CR96 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2017.03.013 – ident: 1118_CR48 doi: 10.2136/sssabookser5.2.c37 – volume: 353 start-page: 1272 year: 2016 ident: 1118_CR54 publication-title: Science doi: 10.1126/science.aaf4507 – volume: 47 start-page: 1 year: 2016 ident: 1118_CR83 publication-title: Annu Rev Ecol Evol S doi: 10.1146/annurev-ecolsys-121415-032238 – volume: 10 start-page: 828 year: 2012 ident: 1118_CR85 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2910 – volume: 488 start-page: 91 year: 2012 ident: 1118_CR26 publication-title: Nature doi: 10.1038/nature11336 – volume: 112 start-page: E911 year: 2015 ident: 1118_CR32 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1414592112 – volume: 111 start-page: E836 year: 2014 ident: 1118_CR67 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1324044111 – volume: 83 start-page: e01564 year: 2017 ident: 1118_CR92 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01564-17 – volume: 8 start-page: 761 year: 2011 ident: 1118_CR71 publication-title: Nat Methods doi: 10.1038/nmeth.1650 – volume: 7 start-page: 335 year: 2010 ident: 1118_CR56 publication-title: Nat Methods doi: 10.1038/nmeth.f.303 – volume: 22 start-page: 5005 year: 2020 ident: 1118_CR82 publication-title: Environ Microbiol doi: 10.1111/1462-2920.15097 – volume: 37 start-page: 676 year: 2019 ident: 1118_CR86 publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0104-4 – volume: 115 start-page: E6375 year: 2018 ident: 1118_CR90 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1720589115 – volume: 8 start-page: e1002606 year: 2012 ident: 1118_CR68 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002606 – volume: 332 start-page: 1097 year: 2011 ident: 1118_CR6 publication-title: Science doi: 10.1126/science.1203980 – volume: 11 start-page: 1 year: 2020 ident: 1118_CR35 publication-title: Nat Commun doi: 10.1038/s41467-019-13993-7 – volume: 7 start-page: 136 year: 2019 ident: 1118_CR38 publication-title: Microbiome doi: 10.1186/s40168-019-0750-2 – volume: 364 start-page: eaau6389 year: 2019 ident: 1118_CR77 publication-title: Science doi: 10.1126/science.aau6389 – volume: 175 start-page: 973 year: 2018 ident: 1118_CR45 publication-title: Cell doi: 10.1016/j.cell.2018.10.020 – volume: 548 start-page: 43 year: 2017 ident: 1118_CR78 publication-title: Nature doi: 10.1038/nature23292 – volume: 64 start-page: 807 year: 2013 ident: 1118_CR15 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-050312-120106 – volume: 206 start-page: 1196 year: 2015 ident: 1118_CR4 publication-title: New Phytol doi: 10.1111/nph.13312 – volume: 14 start-page: e1002352 year: 2016 ident: 1118_CR40 publication-title: PLoS Biol doi: 10.1371/journal.pbio.1002352 – volume: 9 start-page: 465 year: 2007 ident: 1118_CR17 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2006.01163.x – volume: 20 start-page: 241 year: 2016 ident: 1118_CR55 publication-title: Fungal Ecol doi: 10.1016/j.funeco.2015.06.006 – volume: 115 start-page: 7368 year: 2018 ident: 1118_CR22 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1800918115 – volume: 26 start-page: 2460 year: 2010 ident: 1118_CR52 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq461 – volume: 61 start-page: 613 year: 2018 ident: 1118_CR37 publication-title: Sci China Life Sci doi: 10.1007/s11427-018-9284-4 – volume: 63 start-page: 1 year: 2013 ident: 1118_CR97 publication-title: Fungal Diversity doi: 10.1007/s13225-013-0263-4 – volume: 74 start-page: 81 year: 2020 ident: 1118_CR3 publication-title: Annu Rev Microbiol doi: 10.1146/annurev-micro-022620-014327 – volume: 8 start-page: 361 year: 2009 ident: 1118_CR70 publication-title: Icwsm doi: 10.1609/icwsm.v3i1.13937 – volume: 50 start-page: 211 year: 2016 ident: 1118_CR2 publication-title: Annu Rev Genet doi: 10.1146/annurev-genet-120215-034952 – volume: 12 start-page: R60 year: 2011 ident: 1118_CR74 publication-title: Genome Biol doi: 10.1186/gb-2011-12-6-r60 – volume: 82 start-page: 666 year: 2012 ident: 1118_CR50 publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2012.01437.x – volume: 15 start-page: 330 year: 2021 ident: 1118_CR93 publication-title: ISME J doi: 10.1038/s41396-020-00785-x – volume: 37 start-page: 306 year: 2021 ident: 1118_CR21 publication-title: Trends Genet doi: 10.1016/j.tig.2020.09.010 – volume: 587 start-page: 103 year: 2020 ident: 1118_CR87 publication-title: Nature doi: 10.1038/s41586-020-2778-7 – ident: 1118_CR14 doi: 10.1038/s41564-020-00857-w – volume: 350 start-page: 663 year: 2015 ident: 1118_CR44 publication-title: Science doi: 10.1126/science.aad2602 – volume: 6 start-page: 31 year: 2018 ident: 1118_CR30 publication-title: Microbiome doi: 10.1186/s40168-018-0413-8 – volume: 73 start-page: 69 year: 2019 ident: 1118_CR24 publication-title: Annu Rev Microbiol doi: 10.1146/annurev-micro-090817-062524 – volume: 15 start-page: 797 year: 2014 ident: 1118_CR80 publication-title: Nat Rev Genet doi: 10.1038/nrg3748 – volume: 7 start-page: 12219 year: 2016 ident: 1118_CR23 publication-title: Nat Commun doi: 10.1038/ncomms12219 – volume: 23 start-page: 1812 year: 2021 ident: 1118_CR19 publication-title: Environ Microbiol doi: 10.1111/1462-2920.15240 – ident: 1118_CR94 doi: 10.1093/femsec/fiw119 – volume: 7 start-page: 2069 year: 2013 ident: 1118_CR65 publication-title: ISME J doi: 10.1038/ismej.2013.93 – ident: 1118_CR63 doi: 10.1111/j.2041-210x.2012.00261.x – volume: 14 start-page: e1002378 year: 2016 ident: 1118_CR41 publication-title: PLoS Biol doi: 10.1371/journal.pbio.1002378 – volume: 356 start-page: eaad4501 year: 2017 ident: 1118_CR1 publication-title: Science doi: 10.1126/science.aad4501 – volume: 5 start-page: 25 year: 2017 ident: 1118_CR31 publication-title: Microbiome doi: 10.1186/s40168-017-0241-2 – volume: 6 start-page: 116 year: 2018 ident: 1118_CR43 publication-title: Microbiome doi: 10.1186/s40168-018-0497-1 – volume: 44 start-page: 613 year: 2021 ident: 1118_CR39 publication-title: Plant Cell Environ doi: 10.1111/pce.13928 – volume: 30 start-page: 2068 year: 2014 ident: 1118_CR61 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu153 – volume: 23 start-page: 1907 year: 2021 ident: 1118_CR46 publication-title: Environ Microbiol doi: 10.1111/1462-2920.15262 – volume: 7 start-page: 146 year: 2019 ident: 1118_CR29 publication-title: Microbiome doi: 10.1186/s40168-019-0756-9 – volume: 11 start-page: 789 year: 2013 ident: 1118_CR5 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro3109 – ident: 1118_CR53 doi: 10.1101/081257 – volume: 31 start-page: 1674 year: 2015 ident: 1118_CR60 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv033 – volume: 229 start-page: 1091 year: 2021 ident: 1118_CR33 publication-title: New Phytol doi: 10.1111/nph.16890 – volume: 24 start-page: 194 year: 2019 ident: 1118_CR10 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2018.12.004 – volume: 15 start-page: e2001793 year: 2017 ident: 1118_CR12 publication-title: PLoS Biol doi: 10.1371/journal.pbio.2001793 – volume: 8 start-page: 790 year: 2013 ident: 1118_CR76 publication-title: ISME J doi: 10.1038/ismej.2013.196 – ident: 1118_CR49 doi: 10.1073/pnas.1216057111 – volume: 23 start-page: 25 year: 2018 ident: 1118_CR79 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2017.09.003 – volume: 7 start-page: 1262 year: 2013 ident: 1118_CR98 publication-title: ISME J doi: 10.1038/ismej.2013.28 – volume: 218 start-page: 1327 year: 2018 ident: 1118_CR84 publication-title: New Phytol doi: 10.1111/nph.15054 – volume: 2 start-page: 561 year: 2008 ident: 1118_CR8 publication-title: ISME J doi: 10.1038/ismej.2008.14 – volume: 2 start-page: 18 year: 2002 ident: 1118_CR73 publication-title: R news – volume: 10 start-page: 50 year: 2017 ident: 1118_CR75 publication-title: Microb biotechnol doi: 10.1111/1751-7915.12592 – volume: 10 start-page: 1 year: 2019 ident: 1118_CR99 publication-title: Nat Commun doi: 10.1038/s41467-019-10373-z – volume: 6 start-page: 58 year: 2018 ident: 1118_CR7 publication-title: Microbiome doi: 10.1186/s40168-018-0445-0 – volume: 488 start-page: 86 year: 2012 ident: 1118_CR25 publication-title: Nature doi: 10.1038/nature11237 – volume: 21 start-page: 208 year: 2008 ident: 1118_CR95 publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-21-2-0208 – volume: 10 start-page: 1200 year: 2013 ident: 1118_CR57 publication-title: Nat Methods doi: 10.1038/nmeth.2658 – ident: 1118_CR72 doi: 10.1093/bioinformatics/btp616 – ident: 1118_CR62 doi: 10.1093/nar/gky1085 – volume: 10 start-page: 631 year: 2007 ident: 1118_CR64 publication-title: Community Ecol Package – volume: 18 start-page: 607 year: 2020 ident: 1118_CR9 publication-title: Nat Rev Microbiol doi: 10.1038/s41579-020-0412-1 – volume: 22 start-page: 142 year: 2017 ident: 1118_CR18 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.07.004 – volume: 4 start-page: 122 year: 2020 ident: 1118_CR27 publication-title: Nat Ecol Evol doi: 10.1038/s41559-019-1063-3 – volume: 15 start-page: 949 year: 2021 ident: 1118_CR13 publication-title: ISME J doi: 10.1038/s41396-020-00835-4 – volume: 14 start-page: 202 year: 2020 ident: 1118_CR66 publication-title: ISME J doi: 10.1038/s41396-019-0522-9 – volume: 28 start-page: 825 year: 2020 ident: 1118_CR20 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.09.006 – volume: 6 start-page: 343 year: 2012 ident: 1118_CR42 publication-title: ISME J doi: 10.1038/ismej.2011.119 – volume: 30 start-page: 2114 year: 2014 ident: 1118_CR58 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – volume: 69 start-page: 1875 year: 2003 ident: 1118_CR34 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.69.4.1875-1883.2003 – volume: 18 start-page: 601 year: 2020 ident: 1118_CR11 publication-title: Nat Rev Microbiol doi: 10.1038/s41579-020-00446-y – volume: 35 start-page: 833 year: 2017 ident: 1118_CR89 publication-title: Nat Biotechnol doi: 10.1038/nbt.3935 – volume: 9 start-page: 357 year: 2012 ident: 1118_CR59 publication-title: Nat Methods doi: 10.1038/nmeth.1923 – volume: 13 start-page: 1722 year: 2019 ident: 1118_CR91 publication-title: ISME J doi: 10.1038/s41396-019-0383-2 – volume: 4 start-page: 247 year: 2018 ident: 1118_CR101 publication-title: Nat Plants doi: 10.1038/s41477-018-0139-4 – volume: 7 start-page: 59 year: 2019 ident: 1118_CR81 publication-title: Microbiome doi: 10.1186/s40168-019-0677-7 – start-page: 315 volume-title: PCR protocols year: 1990 ident: 1118_CR51 – volume: 74 start-page: 117 year: 2020 ident: 1118_CR88 publication-title: Annu Rev Microbiol doi: 10.1146/annurev-micro-012520-072314 |
SSID | ssj0000914748 |
Score | 2.6353076 |
Snippet | Background Plants live with diverse microbial communities which profoundly affect multiple facets of host performance, but if and how host development impacts... Plants live with diverse microbial communities which profoundly affect multiple facets of host performance, but if and how host development impacts the... Abstract Background Plants live with diverse microbial communities which profoundly affect multiple facets of host performance, but if and how host development... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1 |
SubjectTerms | Agricultural production Bacteria Biodegradation Corn Crop microbiomes Crop yield Developmental stages Endophytes Environmental factors Fungi Leaves Metagenomics Microbial interkingdom networks Microbiome assembly Microbiomes Phylloplane Phylloplane microbiome Physiology Plant communities Plant growth Soils Soil–plant continuum Temporal dynamics |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqJCQuVXmp2wIyEjcUEb-dIyAQqtSeutLeLMcZ05VKtoJwoL-esZNsN5dy4ZJDPImS8XjmG3n8DSFniBB4GZUsrOIBE5TAi7qxuogWPXJUteY-nR3-_kPfzeW3hVpstPpKNWE9PXCvuAvWYIxlXvEU2hVEjxFTgWwEJK70fIScY8zbSKayD66YNNKOp2SsvnjCRELbIlUkpPbqttCTSJQJ-ycoc1ojuRF0bj-RjwNapJf9V-6SD9Duke2-f-TLPnGp5VBHm3-FPyiMcO8eaPOY-GQpwjs69kDp-lmgy5ZCGH0eTeWFdBWz5INf_sXrsidneoADMr-9-Xl9VwwdE4qgRNUVJkpbocfiUQRvWRSGg1G6kqUECKUw4OtGKBFKnXoGeQMBRM2Vj6wuLVTikGy1qxY-E8q8qcrgmaxZ2oBpaouv4cZHKTHmNWxG2Kg9FwY68dTV4rfLaYXVrte4Q427rHGnZ-R8_cyfnkzjv9JXaVLWkokIO99A83CDebi3zGNGjsYpdcPqfHII8zJwMTh8uh7GdZU2S3wLq-csg5li4j6aETMxhckHTUfa5a_M0G2FRqCkvrzHH3wlOzxbLWb74ohsdY_PcIxAqKtPss2_Aru1BBc priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS90wFA5OGexFpm7sOh0Z-Dbqmt_pwxhzKDLQp13wLaTpibugvdu1wtxfv5O0vVtBfOlDc9KGk1_fISffR8gRIgReRiULq3jAACXwom6sLqLFFTmqWnOf7g5fXOrzufx2pa42yCh3NDjw7tHQLulJzVc3x79_PXzGCf8pT3irP95hjKBtkZINknK6LfQzsoU7k0mKBhcD3M8rc8WkkXa8O_No1cn-lGn8J9hzmjn531Z09pJsDxiSfuk7fYdsQLtLnveqkg97xCUhoo42_9KB0BhB4DXQZpVYZimCPjoqo3R939BFSyGMKyFNSYd0GbPlrV_8weeip2y6hVdkfnb6_et5MegoFEGJqitMlLbCdYxHEbxlURgORulKlhIglMKArxuhRCh1UhLyBgKImisfWV1aqMRrstkuW3hDKPOmKoNnsmbpWKapLX6GGx-lxJ2wYTPCRu-5MJCMJ62LG5eDDatd73GHHnfZ407PyId1nZ89xcaT1iepU9aWiR47v1iurt0w2xxrEJgxr3jCgwqiR5ilQDYCEsE-x2YejF3qxiHnEPxlOGOw-P26GGdbOkLxLSzvsw3Gj4kRaUbMZChMGjQtaRc_Mm-3FRrhk9p_-udvyQuexyNG9-KAbHarezhE4NPV7_Jo_gv4-AAv priority: 102 providerName: Scholars Portal |
Title | Plant developmental stage drives the differentiation in ecological role of the maize microbiome |
URI | https://www.proquest.com/docview/2562415271 https://www.proquest.com/docview/2561487100 https://pubmed.ncbi.nlm.nih.gov/PMC8364065 https://doaj.org/article/1d6171a5255145efa5845e4d3e438021 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFRIXxFMslJWRuKGo8ds5IYpaKqRWCFFpb5bj2GWlNim76QF-PTNOsiWXXnxIJollj2e-sSffEPIBEAIvk5KFVTxAgBJ4UTdWF8mCRU6q1tzjv8Nn5_r0Qn5bqdW44bYd0yonm5gNddMF3CM_BNecnY1hn25-F1g1Ck9XxxIaD8k-UpehVpuV2e2xgC-URtrpXxmrD7cQTmhbYF4CFlm3hZ75o0zbP8Oa80zJ_1zPyVPyZMSM9PMwyc_Ig9g-J4-GKpJ_XhCHhYd62tyl_4AwgL7LSJsNsspSAHl0qoTSD3NB1y2NYbJ8FJMMaZey5LVf_4V2PVA0XceX5OLk-OeX02Ksm1AEJaq-MEnaCuwWTyJ4y5IwPBqlK1nKGEMpTPR1I5QIpcbKQd7EEEXNlU-sLm2sxCuy13ZtfE0o86Yqg2eyZngM09QWXsONT1KC52vYgrBp9FwYScWxtsWVy8GF1W4YcQcj7vKIO70gH3fP3AyUGvdKH-Gk7CSRDjtf6DaXblxdjjUAxJhXHPGfiskDrFJRNiIioT6Hbh5MU-rGNbp1dxq1IO93t2F14ZGJb2N3m2UgXkQGpAUxM1WYdWh-p13_yjzdVmiAS-rN_R9_Sx7zrI8QzYsDstdvbuM7ADp9vczavCT7R8fn338s83YBtF9XDNozaf8BO0wBYQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxFMsLWAkOKGosePXHhDiVW3p49RKezOOY5eVaNLupkLlR_EbmXGSLbn01ksOyeSh8Xjmm3g8HyFvASHwPEqRGck9JCieZ2VlVBYNeOQoS8Ud7h0-PFKzE_F9Lucb5O-wFwbLKgefmBx11Xj8R74DoTkFG80-nl9kyBqFq6sDhUZnFvvh6jekbKsPe19hfN9xvvvt-Mss61kFMi-LaZvpKMwUZjWPhXeGxULzoKWailyE4PNCB1dWhSx8rpBXx-ngQ1Fy6SIrcxOw-RK4_DsQeHNM9vRcr__pQOwVWphhb45ROytIX5TJsA4CSd1NpkbxL9EEjLDtuDLzv1C3-5A86DEq_dQZ1SOyEerH5G7HWnn1hFgkOmppdV1uBMIAMk8DrZbYxZYCqKQD80rbjT1d1DT4wdNSLGqkTUySZ27xB46LriXUWXhKTm5Fo8_IZt3U4TmhzOlp7h0TJcNln6o08BiuXRQCIm3FJoQN2rO-b2KOXBq_bEpmjLKdxi1o3CaNWzUh79f3nHctPG6U_oyDspbE9tvpRLM8tf1stqwC4Mec5Ig3ZYgOYJwMoioCNvDn8Jnbw5Da3ies7LUFT8ib9WWYzbhE4-rQXCYZyE-x49KE6JEpjD5ofKVe_Ex9wU2hAJ7JFze__DW5Nzs-PLAHe0f7W-Q-T7ZpMlZsk812eRleAshqy1fJsin5cdtT6R_WvDse |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+developmental+stage+drives+the+differentiation+in+ecological+role+of+the+maize+microbiome&rft.jtitle=Microbiome&rft.au=Xiong%2C+Chao&rft.au=Singh%2C+Brajesh+K&rft.au=Ji-Zheng%2C+He&rft.au=Yan-Lai%2C+Han&rft.date=2021-08-13&rft.pub=BioMed+Central&rft.eissn=2049-2618&rft.volume=9&rft.spage=1&rft_id=info:doi/10.1186%2Fs40168-021-01118-6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-2618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-2618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-2618&client=summon |