Plant developmental stage drives the differentiation in ecological role of the maize microbiome

Background Plants live with diverse microbial communities which profoundly affect multiple facets of host performance, but if and how host development impacts the assembly, functions and microbial interactions of crop microbiomes are poorly understood. Here we examined both bacterial and fungal comm...

Full description

Saved in:
Bibliographic Details
Published inMicrobiome Vol. 9; no. 1; pp. 1 - 15
Main Authors Xiong, Chao, Singh, Brajesh K., He, Ji-Zheng, Han, Yan-Lai, Li, Pei-Pei, Wan, Li-Hua, Meng, Guo-Zhong, Liu, Si-Yi, Wang, Jun-Tao, Wu, Chuan-Fa, Ge, An-Hui, Zhang, Li-Mei
Format Journal Article
LanguageEnglish
Published London BioMed Central 13.08.2021
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Plants live with diverse microbial communities which profoundly affect multiple facets of host performance, but if and how host development impacts the assembly, functions and microbial interactions of crop microbiomes are poorly understood. Here we examined both bacterial and fungal communities across soils, epiphytic and endophytic niches of leaf and root, and plastic leaf of fake plant (representing environment-originating microbes) at three developmental stages of maize at two contrasting sites, and further explored the potential function of phylloplane microbiomes based on metagenomics. Results Our results suggested that plant developmental stage had a much stronger influence on the microbial diversity, composition and interkingdom networks in plant compartments than in soils, with the strongest effect in the phylloplane. Phylloplane microbiomes were co-shaped by both plant growth and seasonal environmental factors, with the air (represented by fake plants) as its important source. Further, we found that bacterial communities in plant compartments were more strongly driven by deterministic processes at the early stage but a similar pattern was for fungal communities at the late stage. Moreover, bacterial taxa played a more important role in microbial interkingdom network and crop yield prediction at the early stage, while fungal taxa did so at the late stage. Metagenomic analyses further indicated that phylloplane microbiomes possessed higher functional diversity at the early stage than the late stage, with functional genes related to nutrient provision enriched at the early stage and N assimilation and C degradation enriched at the late stage. Coincidently, more abundant beneficial bacterial taxa like Actinobacteria, Burkholderiaceae and Rhizobiaceae in plant microbiomes were observed at the early stage, but more saprophytic fungi at the late stage. Conclusions Our results suggest that host developmental stage profoundly influences plant microbiome assembly and functions, and the bacterial and fungal microbiomes take a differentiated ecological role at different stages of plant development. This study provides empirical evidence for host exerting strong effect on plant microbiomes by deterministic selection during plant growth and development. These findings have implications for the development of future tools to manipulate microbiome for sustainable increase in primary productivity. Video Abstract
AbstractList Background Plants live with diverse microbial communities which profoundly affect multiple facets of host performance, but if and how host development impacts the assembly, functions and microbial interactions of crop microbiomes are poorly understood. Here we examined both bacterial and fungal communities across soils, epiphytic and endophytic niches of leaf and root, and plastic leaf of fake plant (representing environment-originating microbes) at three developmental stages of maize at two contrasting sites, and further explored the potential function of phylloplane microbiomes based on metagenomics. Results Our results suggested that plant developmental stage had a much stronger influence on the microbial diversity, composition and interkingdom networks in plant compartments than in soils, with the strongest effect in the phylloplane. Phylloplane microbiomes were co-shaped by both plant growth and seasonal environmental factors, with the air (represented by fake plants) as its important source. Further, we found that bacterial communities in plant compartments were more strongly driven by deterministic processes at the early stage but a similar pattern was for fungal communities at the late stage. Moreover, bacterial taxa played a more important role in microbial interkingdom network and crop yield prediction at the early stage, while fungal taxa did so at the late stage. Metagenomic analyses further indicated that phylloplane microbiomes possessed higher functional diversity at the early stage than the late stage, with functional genes related to nutrient provision enriched at the early stage and N assimilation and C degradation enriched at the late stage. Coincidently, more abundant beneficial bacterial taxa like Actinobacteria, Burkholderiaceae and Rhizobiaceae in plant microbiomes were observed at the early stage, but more saprophytic fungi at the late stage. Conclusions Our results suggest that host developmental stage profoundly influences plant microbiome assembly and functions, and the bacterial and fungal microbiomes take a differentiated ecological role at different stages of plant development. This study provides empirical evidence for host exerting strong effect on plant microbiomes by deterministic selection during plant growth and development. These findings have implications for the development of future tools to manipulate microbiome for sustainable increase in primary productivity. Video Abstract
Plants live with diverse microbial communities which profoundly affect multiple facets of host performance, but if and how host development impacts the assembly, functions and microbial interactions of crop microbiomes are poorly understood. Here we examined both bacterial and fungal communities across soils, epiphytic and endophytic niches of leaf and root, and plastic leaf of fake plant (representing environment-originating microbes) at three developmental stages of maize at two contrasting sites, and further explored the potential function of phylloplane microbiomes based on metagenomics.BACKGROUNDPlants live with diverse microbial communities which profoundly affect multiple facets of host performance, but if and how host development impacts the assembly, functions and microbial interactions of crop microbiomes are poorly understood. Here we examined both bacterial and fungal communities across soils, epiphytic and endophytic niches of leaf and root, and plastic leaf of fake plant (representing environment-originating microbes) at three developmental stages of maize at two contrasting sites, and further explored the potential function of phylloplane microbiomes based on metagenomics.Our results suggested that plant developmental stage had a much stronger influence on the microbial diversity, composition and interkingdom networks in plant compartments than in soils, with the strongest effect in the phylloplane. Phylloplane microbiomes were co-shaped by both plant growth and seasonal environmental factors, with the air (represented by fake plants) as its important source. Further, we found that bacterial communities in plant compartments were more strongly driven by deterministic processes at the early stage but a similar pattern was for fungal communities at the late stage. Moreover, bacterial taxa played a more important role in microbial interkingdom network and crop yield prediction at the early stage, while fungal taxa did so at the late stage. Metagenomic analyses further indicated that phylloplane microbiomes possessed higher functional diversity at the early stage than the late stage, with functional genes related to nutrient provision enriched at the early stage and N assimilation and C degradation enriched at the late stage. Coincidently, more abundant beneficial bacterial taxa like Actinobacteria, Burkholderiaceae and Rhizobiaceae in plant microbiomes were observed at the early stage, but more saprophytic fungi at the late stage.RESULTSOur results suggested that plant developmental stage had a much stronger influence on the microbial diversity, composition and interkingdom networks in plant compartments than in soils, with the strongest effect in the phylloplane. Phylloplane microbiomes were co-shaped by both plant growth and seasonal environmental factors, with the air (represented by fake plants) as its important source. Further, we found that bacterial communities in plant compartments were more strongly driven by deterministic processes at the early stage but a similar pattern was for fungal communities at the late stage. Moreover, bacterial taxa played a more important role in microbial interkingdom network and crop yield prediction at the early stage, while fungal taxa did so at the late stage. Metagenomic analyses further indicated that phylloplane microbiomes possessed higher functional diversity at the early stage than the late stage, with functional genes related to nutrient provision enriched at the early stage and N assimilation and C degradation enriched at the late stage. Coincidently, more abundant beneficial bacterial taxa like Actinobacteria, Burkholderiaceae and Rhizobiaceae in plant microbiomes were observed at the early stage, but more saprophytic fungi at the late stage.Our results suggest that host developmental stage profoundly influences plant microbiome assembly and functions, and the bacterial and fungal microbiomes take a differentiated ecological role at different stages of plant development. This study provides empirical evidence for host exerting strong effect on plant microbiomes by deterministic selection during plant growth and development. These findings have implications for the development of future tools to manipulate microbiome for sustainable increase in primary productivity. Video Abstract.CONCLUSIONSOur results suggest that host developmental stage profoundly influences plant microbiome assembly and functions, and the bacterial and fungal microbiomes take a differentiated ecological role at different stages of plant development. This study provides empirical evidence for host exerting strong effect on plant microbiomes by deterministic selection during plant growth and development. These findings have implications for the development of future tools to manipulate microbiome for sustainable increase in primary productivity. Video Abstract.
Abstract Background Plants live with diverse microbial communities which profoundly affect multiple facets of host performance, but if and how host development impacts the assembly, functions and microbial interactions of crop microbiomes are poorly understood. Here we examined both bacterial and fungal communities across soils, epiphytic and endophytic niches of leaf and root, and plastic leaf of fake plant (representing environment-originating microbes) at three developmental stages of maize at two contrasting sites, and further explored the potential function of phylloplane microbiomes based on metagenomics. Results Our results suggested that plant developmental stage had a much stronger influence on the microbial diversity, composition and interkingdom networks in plant compartments than in soils, with the strongest effect in the phylloplane. Phylloplane microbiomes were co-shaped by both plant growth and seasonal environmental factors, with the air (represented by fake plants) as its important source. Further, we found that bacterial communities in plant compartments were more strongly driven by deterministic processes at the early stage but a similar pattern was for fungal communities at the late stage. Moreover, bacterial taxa played a more important role in microbial interkingdom network and crop yield prediction at the early stage, while fungal taxa did so at the late stage. Metagenomic analyses further indicated that phylloplane microbiomes possessed higher functional diversity at the early stage than the late stage, with functional genes related to nutrient provision enriched at the early stage and N assimilation and C degradation enriched at the late stage. Coincidently, more abundant beneficial bacterial taxa like Actinobacteria, Burkholderiaceae and Rhizobiaceae in plant microbiomes were observed at the early stage, but more saprophytic fungi at the late stage. Conclusions Our results suggest that host developmental stage profoundly influences plant microbiome assembly and functions, and the bacterial and fungal microbiomes take a differentiated ecological role at different stages of plant development. This study provides empirical evidence for host exerting strong effect on plant microbiomes by deterministic selection during plant growth and development. These findings have implications for the development of future tools to manipulate microbiome for sustainable increase in primary productivity. Video Abstract
ArticleNumber 171
Author Wan, Li-Hua
Meng, Guo-Zhong
He, Ji-Zheng
Zhang, Li-Mei
Wu, Chuan-Fa
Wang, Jun-Tao
Ge, An-Hui
Xiong, Chao
Li, Pei-Pei
Liu, Si-Yi
Han, Yan-Lai
Singh, Brajesh K.
Author_xml – sequence: 1
  givenname: Chao
  surname: Xiong
  fullname: Xiong, Chao
– sequence: 2
  givenname: Brajesh K.
  surname: Singh
  fullname: Singh, Brajesh K.
– sequence: 3
  givenname: Ji-Zheng
  surname: He
  fullname: He, Ji-Zheng
– sequence: 4
  givenname: Yan-Lai
  surname: Han
  fullname: Han, Yan-Lai
– sequence: 5
  givenname: Pei-Pei
  surname: Li
  fullname: Li, Pei-Pei
– sequence: 6
  givenname: Li-Hua
  surname: Wan
  fullname: Wan, Li-Hua
– sequence: 7
  givenname: Guo-Zhong
  surname: Meng
  fullname: Meng, Guo-Zhong
– sequence: 8
  givenname: Si-Yi
  surname: Liu
  fullname: Liu, Si-Yi
– sequence: 9
  givenname: Jun-Tao
  surname: Wang
  fullname: Wang, Jun-Tao
– sequence: 10
  givenname: Chuan-Fa
  surname: Wu
  fullname: Wu, Chuan-Fa
– sequence: 11
  givenname: An-Hui
  surname: Ge
  fullname: Ge, An-Hui
– sequence: 12
  givenname: Li-Mei
  surname: Zhang
  fullname: Zhang, Li-Mei
BookMark eNp9Uk1vFDEMjVArWkr_AKeRuHAZyHcyFyRUUahUiR7gHGUyzjarzGRJsiuVX9_sbpFoD-QQW_bzc_ziN-hkSQsg9I7gj4Ro-alwTKTuMSU9Ji3Sy1fonGI-9FQSffKPf4YuS1njdgbCFdev0RnjTA-Yq3Nk7qJdajfBDmLazLBUG7tS7Qq6KYcdlK7eNzd4D7klg60hLV1YOnApplVwDZ5ThC75A3K24U-7g8tpDGmGt-jU21jg8sleoF_XX39efe9vf3y7ufpy2zvBhtorz_Vgp4l65qwmnikKSsiBYw7gMFNgx4kJ5rCEEWOrwAEbqbCejFjDwC7QzZF3SnZtNjnMNj-YZIM5BFJeGZtrcBEMmSRRxAoqBOECvBW6GT4xaKo0PRvX5yPXZjvOMLk2d7bxGenzzBLuzSrtjGaSYykawYcngpx-b6FUM4fiIDapIW2LoUISrhXBuEHfv4Cu0zYvTao9inIiqNq_SB9RTdZSMnjjQj18ResfoiHY7JfCHJfCtCHMYSmMbKX0RenfOf5T9AiLRLrM
CitedBy_id crossref_primary_10_1093_ismeco_ycaf037
crossref_primary_10_1016_j_envres_2024_119042
crossref_primary_10_1111_1758_2229_13126
crossref_primary_10_1007_s00374_024_01882_1
crossref_primary_10_1007_s11104_025_07208_w
crossref_primary_10_1016_j_jhazmat_2024_135878
crossref_primary_10_1038_s42003_022_03726_w
crossref_primary_10_3389_fpls_2024_1363063
crossref_primary_10_1094_PBIOMES_10_22_0068_R
crossref_primary_10_3389_fmicb_2024_1387870
crossref_primary_10_1128_spectrum_03831_22
crossref_primary_10_3390_life12122041
crossref_primary_10_1038_s43705_023_00286_w
crossref_primary_10_1016_j_rhisph_2023_100839
crossref_primary_10_1016_j_apsoil_2023_105075
crossref_primary_10_3389_fmicb_2022_916337
crossref_primary_10_1016_j_scitotenv_2022_153560
crossref_primary_10_1007_s11104_024_06825_1
crossref_primary_10_1016_j_envpol_2022_120344
crossref_primary_10_3390_agronomy13010090
crossref_primary_10_1128_spectrum_01059_23
crossref_primary_10_1016_j_geoderma_2024_116801
crossref_primary_10_3389_fsufs_2022_1012818
crossref_primary_10_1007_s11104_023_06302_1
crossref_primary_10_3389_fsoil_2021_805094
crossref_primary_10_1007_s42832_024_0245_3
crossref_primary_10_1016_j_pbi_2024_102603
crossref_primary_10_3389_fmicb_2024_1372471
crossref_primary_10_1038_s41598_023_34509_w
crossref_primary_10_1002_ajb2_16366
crossref_primary_10_3390_d15010046
crossref_primary_10_1016_j_rhisph_2024_100896
crossref_primary_10_1128_spectrum_01335_23
crossref_primary_10_1016_j_foodchem_2024_140006
crossref_primary_10_3390_plants13060912
crossref_primary_10_1080_08905436_2022_2163402
crossref_primary_10_1128_msystems_01055_23
crossref_primary_10_1007_s00284_022_03083_1
crossref_primary_10_1038_s43705_023_00213_z
crossref_primary_10_1016_j_apsoil_2023_105059
crossref_primary_10_1016_j_mib_2023_102268
crossref_primary_10_1186_s12915_024_01967_1
crossref_primary_10_1016_j_ecolind_2024_112087
crossref_primary_10_1007_s11258_024_01411_y
crossref_primary_10_1128_mbio_02733_23
crossref_primary_10_1016_j_pedsph_2024_08_007
crossref_primary_10_5423_PPJ_OA_05_2022_0067
crossref_primary_10_1016_j_jhazmat_2024_135883
crossref_primary_10_1016_j_scitotenv_2023_162663
crossref_primary_10_1007_s00374_024_01884_z
crossref_primary_10_1016_j_scitotenv_2024_171429
crossref_primary_10_1007_s00425_024_04338_w
crossref_primary_10_1038_s43705_023_00296_8
crossref_primary_10_1007_s11274_021_03168_2
crossref_primary_10_1016_j_jenvman_2024_120886
crossref_primary_10_1186_s40793_023_00471_3
crossref_primary_10_7717_peerj_14988
crossref_primary_10_1016_j_scitotenv_2021_150781
crossref_primary_10_1186_s12866_024_03702_w
crossref_primary_10_3390_microorganisms11092144
crossref_primary_10_1007_s11104_023_06433_5
crossref_primary_10_1186_s12866_023_02929_3
crossref_primary_10_1016_j_indcrop_2023_117736
crossref_primary_10_1016_j_rhisph_2025_101047
crossref_primary_10_1016_j_micres_2023_127553
crossref_primary_10_1007_s11104_024_06636_4
crossref_primary_10_1016_j_jhazmat_2022_129147
crossref_primary_10_3389_fmicb_2022_868307
crossref_primary_10_3389_fpls_2022_962759
crossref_primary_10_1016_j_fcr_2023_109167
crossref_primary_10_1186_s40168_022_01387_9
crossref_primary_10_1038_s41598_023_47099_4
crossref_primary_10_1007_s00344_024_11406_8
crossref_primary_10_1016_j_foodchem_2023_137988
crossref_primary_10_3389_fmicb_2021_778327
crossref_primary_10_1016_j_jenvman_2023_120012
crossref_primary_10_1007_s11104_024_06880_8
crossref_primary_10_3390_seeds3040035
crossref_primary_10_3389_fmicb_2023_979835
crossref_primary_10_3389_fpls_2024_1369754
crossref_primary_10_1007_s11356_024_32390_2
crossref_primary_10_3389_fmicb_2022_1023971
crossref_primary_10_1038_s41598_022_15133_6
crossref_primary_10_1016_j_envres_2022_114109
crossref_primary_10_3389_fmicb_2024_1470450
crossref_primary_10_1016_j_rhisph_2023_100805
crossref_primary_10_3389_fmicb_2024_1439735
crossref_primary_10_3389_fpls_2022_1023837
crossref_primary_10_1016_j_apsoil_2024_105823
crossref_primary_10_1186_s12870_024_04854_7
crossref_primary_10_1016_j_scitotenv_2024_171581
crossref_primary_10_1016_j_actaastro_2024_07_049
crossref_primary_10_1002_imt2_105
crossref_primary_10_1111_plb_13735
crossref_primary_10_1016_j_plantsci_2023_111898
crossref_primary_10_1007_s00374_022_01626_z
crossref_primary_10_1016_j_micres_2024_127852
crossref_primary_10_3389_fmicb_2023_1284191
crossref_primary_10_3389_fmicb_2022_976154
crossref_primary_10_1128_spectrum_00611_23
crossref_primary_10_1186_s13568_023_01524_z
crossref_primary_10_1038_s43016_022_00636_2
crossref_primary_10_3390_ijms24129879
crossref_primary_10_3390_sci6010006
crossref_primary_10_3389_fpls_2023_1168760
crossref_primary_10_3390_d15010112
crossref_primary_10_1007_s11104_023_06347_2
crossref_primary_10_1038_s42003_024_06907_x
crossref_primary_10_1016_j_agee_2023_108647
crossref_primary_10_1016_j_agee_2023_108768
crossref_primary_10_1093_femsec_fiad079
crossref_primary_10_1111_jipb_13863
crossref_primary_10_1007_s42773_023_00247_5
crossref_primary_10_1007_s11356_022_24835_3
crossref_primary_10_1007_s11104_023_05981_0
crossref_primary_10_1186_s40538_024_00542_8
crossref_primary_10_3389_fmicb_2024_1361756
crossref_primary_10_1016_j_apsoil_2024_105644
crossref_primary_10_1128_spectrum_02800_22
crossref_primary_10_1038_s41598_025_86944_6
crossref_primary_10_1002_ldr_4547
crossref_primary_10_1007_s11104_023_06262_6
crossref_primary_10_1111_1751_7915_14322
crossref_primary_10_3389_fpls_2023_1304627
crossref_primary_10_1038_s41598_024_82833_6
crossref_primary_10_1016_j_cpb_2025_100456
crossref_primary_10_1016_j_scitotenv_2025_178524
crossref_primary_10_1186_s40793_024_00548_7
crossref_primary_10_1128_aem_01078_24
crossref_primary_10_1111_pbi_13950
crossref_primary_10_1016_j_tim_2024_08_002
crossref_primary_10_3390_microorganisms10050865
crossref_primary_10_1016_j_scitotenv_2022_161008
crossref_primary_10_3389_fmicb_2024_1478807
crossref_primary_10_1038_s41598_024_79850_w
crossref_primary_10_1007_s00425_023_04074_7
crossref_primary_10_1016_j_soilbio_2022_108880
crossref_primary_10_1111_pce_15259
crossref_primary_10_3389_fmicb_2023_1241436
crossref_primary_10_1007_s42832_023_0196_0
crossref_primary_10_3390_jof10020128
crossref_primary_10_1007_s11368_025_03975_2
crossref_primary_10_1016_j_apsoil_2022_104574
crossref_primary_10_1016_j_apsoil_2023_104818
crossref_primary_10_1038_s41598_023_42291_y
crossref_primary_10_1128_mbio_00343_22
crossref_primary_10_1016_j_ncrops_2023_11_002
crossref_primary_10_1007_s11104_023_05897_9
crossref_primary_10_1007_s44246_024_00163_8
crossref_primary_10_1016_j_scitotenv_2022_155204
crossref_primary_10_1016_j_apsoil_2025_105936
crossref_primary_10_1016_j_agee_2024_109441
crossref_primary_10_1002_ldr_4518
crossref_primary_10_1016_j_ifset_2022_103259
crossref_primary_10_1093_ismeco_ycae119
crossref_primary_10_1111_mec_17228
crossref_primary_10_1016_j_micres_2023_127344
crossref_primary_10_1021_acs_jafc_3c01052
crossref_primary_10_1016_j_scitotenv_2021_151737
crossref_primary_10_1128_spectrum_05333_22
crossref_primary_10_3390_foods13101580
crossref_primary_10_3389_fmicb_2022_1009505
crossref_primary_10_1016_j_fmre_2024_04_016
crossref_primary_10_3389_fmicb_2023_1257905
crossref_primary_10_1007_s11104_024_06519_8
crossref_primary_10_1016_j_jhazmat_2021_127767
crossref_primary_10_1007_s11104_024_06498_w
crossref_primary_10_1016_j_apsoil_2023_104993
crossref_primary_10_3390_d16020077
crossref_primary_10_1016_j_scitotenv_2023_164827
crossref_primary_10_1016_j_micres_2024_127791
crossref_primary_10_1002_sae2_12043
crossref_primary_10_1007_s44279_025_00164_0
crossref_primary_10_1038_s41598_024_57939_6
crossref_primary_10_3389_fmicb_2022_825377
crossref_primary_10_1021_acs_est_1c06508
crossref_primary_10_1016_j_copbio_2024_103172
crossref_primary_10_1016_j_apsoil_2024_105453
crossref_primary_10_1016_j_scitotenv_2024_172622
crossref_primary_10_1093_ismeco_ycae132
crossref_primary_10_1016_j_scitotenv_2024_175334
crossref_primary_10_1016_j_scitotenv_2024_177074
crossref_primary_10_1111_pce_15215
crossref_primary_10_1038_s41467_024_45925_5
crossref_primary_10_1016_j_scitotenv_2023_164147
crossref_primary_10_1128_spectrum_01846_22
crossref_primary_10_1007_s10123_023_00470_x
crossref_primary_10_1016_j_apsoil_2023_105161
crossref_primary_10_1016_j_scitotenv_2023_164260
crossref_primary_10_1094_PBIOMES_02_24_0012_R
crossref_primary_10_3389_fmicb_2024_1340575
crossref_primary_10_1016_j_apsoil_2023_105023
crossref_primary_10_1016_j_scitotenv_2024_174333
crossref_primary_10_1186_s40168_024_01910_0
crossref_primary_10_1186_s40793_023_00534_5
crossref_primary_10_1016_j_indcrop_2024_120248
crossref_primary_10_1038_s41522_024_00616_3
crossref_primary_10_1186_s40168_022_01287_y
crossref_primary_10_1016_j_eti_2025_104135
crossref_primary_10_1128_msystems_00886_23
crossref_primary_10_1128_msphere_00765_24
crossref_primary_10_1128_msystems_01124_23
crossref_primary_10_1016_j_fbio_2024_104917
crossref_primary_10_1128_spectrum_05051_22
crossref_primary_10_1016_j_geoderma_2024_116786
crossref_primary_10_1186_s40793_023_00546_1
crossref_primary_10_1128_aem_01003_22
crossref_primary_10_1016_j_heliyon_2024_e40517
crossref_primary_10_1128_spectrum_02097_24
crossref_primary_10_1186_s40793_023_00500_1
crossref_primary_10_3389_fpls_2022_1011001
crossref_primary_10_5423_PPJ_OA_06_2024_0086
crossref_primary_10_1038_s43705_023_00302_z
crossref_primary_10_1016_j_jia_2024_07_004
crossref_primary_10_1016_j_cej_2022_139537
crossref_primary_10_3389_fpls_2022_1003868
crossref_primary_10_1111_jipb_13226
crossref_primary_10_1007_s11104_025_07335_4
crossref_primary_10_1128_spectrum_01670_24
crossref_primary_10_1016_j_envpol_2022_119531
crossref_primary_10_1007_s11104_024_07122_7
Cites_doi 10.1016/j.chom.2019.07.009
10.1016/S0038-0717(01)00079-7
10.1111/1462-2920.15392
10.1186/s40168-017-0389-9
10.1038/s41467-019-11974-4
10.1101/gr.1239303
10.1016/j.soilbio.2017.03.013
10.2136/sssabookser5.2.c37
10.1126/science.aaf4507
10.1146/annurev-ecolsys-121415-032238
10.1038/nrmicro2910
10.1038/nature11336
10.1073/pnas.1414592112
10.1073/pnas.1324044111
10.1128/AEM.01564-17
10.1038/nmeth.1650
10.1038/nmeth.f.303
10.1111/1462-2920.15097
10.1038/s41587-019-0104-4
10.1073/pnas.1720589115
10.1371/journal.pcbi.1002606
10.1126/science.1203980
10.1038/s41467-019-13993-7
10.1186/s40168-019-0750-2
10.1126/science.aau6389
10.1016/j.cell.2018.10.020
10.1038/nature23292
10.1146/annurev-arplant-050312-120106
10.1111/nph.13312
10.1371/journal.pbio.1002352
10.1111/j.1462-2920.2006.01163.x
10.1016/j.funeco.2015.06.006
10.1073/pnas.1800918115
10.1093/bioinformatics/btq461
10.1007/s11427-018-9284-4
10.1007/s13225-013-0263-4
10.1146/annurev-micro-022620-014327
10.1609/icwsm.v3i1.13937
10.1146/annurev-genet-120215-034952
10.1186/gb-2011-12-6-r60
10.1111/j.1574-6941.2012.01437.x
10.1038/s41396-020-00785-x
10.1016/j.tig.2020.09.010
10.1038/s41586-020-2778-7
10.1038/s41564-020-00857-w
10.1126/science.aad2602
10.1186/s40168-018-0413-8
10.1146/annurev-micro-090817-062524
10.1038/nrg3748
10.1038/ncomms12219
10.1111/1462-2920.15240
10.1093/femsec/fiw119
10.1038/ismej.2013.93
10.1111/j.2041-210x.2012.00261.x
10.1371/journal.pbio.1002378
10.1126/science.aad4501
10.1186/s40168-017-0241-2
10.1186/s40168-018-0497-1
10.1111/pce.13928
10.1093/bioinformatics/btu153
10.1111/1462-2920.15262
10.1186/s40168-019-0756-9
10.1038/nrmicro3109
10.1101/081257
10.1093/bioinformatics/btv033
10.1111/nph.16890
10.1016/j.tplants.2018.12.004
10.1371/journal.pbio.2001793
10.1038/ismej.2013.196
10.1073/pnas.1216057111
10.1016/j.tplants.2017.09.003
10.1038/ismej.2013.28
10.1111/nph.15054
10.1038/ismej.2008.14
10.1111/1751-7915.12592
10.1038/s41467-019-10373-z
10.1186/s40168-018-0445-0
10.1038/nature11237
10.1094/MPMI-21-2-0208
10.1038/nmeth.2658
10.1093/bioinformatics/btp616
10.1093/nar/gky1085
10.1038/s41579-020-0412-1
10.1016/j.chom.2017.07.004
10.1038/s41559-019-1063-3
10.1038/s41396-020-00835-4
10.1038/s41396-019-0522-9
10.1016/j.chom.2020.09.006
10.1038/ismej.2011.119
10.1093/bioinformatics/btu170
10.1128/AEM.69.4.1875-1883.2003
10.1038/s41579-020-00446-y
10.1038/nbt.3935
10.1038/nmeth.1923
10.1038/s41396-019-0383-2
10.1038/s41477-018-0139-4
10.1186/s40168-019-0677-7
10.1146/annurev-micro-012520-072314
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021. The Author(s).
The Author(s) 2021
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021. The Author(s).
– notice: The Author(s) 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s40168-021-01118-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Databases
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2049-2618
EndPage 15
ExternalDocumentID oai_doaj_org_article_1d6171a5255145efa5845e4d3e438021
PMC8364065
10_1186_s40168_021_01118_6
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: ;
  grantid: DP170103628; DP190103714
– fundername: ;
  grantid: Y201615
– fundername: ;
  grantid: 2017YFD0200600
– fundername: ;
  grantid: XDB15020200
GroupedDBID 0R~
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABUWG
ACGFS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ASPBG
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
DIK
EBLON
EBS
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IEP
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
ROL
RPM
RSV
SOJ
UKHRP
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c539t-7f489add2f3ca81f372e7569404eec037eabd353c06eb00a7ece3b25af1b08e93
IEDL.DBID 7X7
ISSN 2049-2618
IngestDate Wed Aug 27 01:20:53 EDT 2025
Thu Aug 21 18:20:30 EDT 2025
Fri Jul 11 15:31:50 EDT 2025
Fri Jul 25 12:00:48 EDT 2025
Tue Jul 01 04:16:40 EDT 2025
Thu Apr 24 23:08:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c539t-7f489add2f3ca81f372e7569404eec037eabd353c06eb00a7ece3b25af1b08e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.proquest.com/docview/2562415271?pq-origsite=%requestingapplication%
PMID 34389047
PQID 2562415271
PQPubID 2040205
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_1d6171a5255145efa5845e4d3e438021
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8364065
proquest_miscellaneous_2561487100
proquest_journals_2562415271
crossref_citationtrail_10_1186_s40168_021_01118_6
crossref_primary_10_1186_s40168_021_01118_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-13
PublicationDateYYYYMMDD 2021-08-13
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Microbiome
PublicationYear 2021
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References 1118_CR49
FM Martin (1118_CR1) 2017; 356
J Zhou (1118_CR67) 2014; 111
TL Haskett (1118_CR13) 2021; 15
1118_CR48
VM Conn (1118_CR95) 2008; 21
B Langmead (1118_CR59) 2012; 9
CJ Harbort (1118_CR20) 2020; 28
ML Zhao (1118_CR39) 2021; 44
J Sasse (1118_CR79) 2018; 23
S Shakir (1118_CR21) 2021; 37
A Abdelfattah (1118_CR16) 2021; 23
JE Schmidt (1118_CR29) 2019; 7
KZ Coyte (1118_CR44) 2015; 350
P Trivedi (1118_CR9) 2020; 18
KD Hyde (1118_CR97) 2013; 63
BK Singh (1118_CR75) 2017; 10
D Knights (1118_CR71) 2011; 8
SE Lindow (1118_CR34) 2003; 69
H Toju (1118_CR101) 2018; 4
S Chen (1118_CR38) 2019; 7
SM Lee (1118_CR93) 2021; 15
BK Singh (1118_CR11) 2020; 18
H Toju (1118_CR43) 2018; 6
DS Lundberg (1118_CR25) 2012; 488
A Liaw (1118_CR73) 2002; 2
P Shannon (1118_CR69) 2003; 13
P Duran (1118_CR45) 2018; 175
S Jiao (1118_CR66) 2020; 14
OM Finkel (1118_CR87) 2020; 587
1118_CR63
A Sessitsch (1118_CR10) 2019; 24
1118_CR62
B Beckers (1118_CR31) 2017; 5
CR Fitzpatrick (1118_CR3) 2020; 74
P Vandenkoornhuyse (1118_CR4) 2015; 206
E Egidi (1118_CR99) 2019; 10
JG Caporaso (1118_CR56) 2010; 7
MA Hassani (1118_CR7) 2018; 6
1118_CR53
M Fürnkranz (1118_CR8) 2008; 2
K Faust (1118_CR68) 2012; 8
P Trivedi (1118_CR96) 2017; 111
JC Stegen (1118_CR65) 2013; 7
MNP Remus-Emsermann (1118_CR84) 2018; 218
T Seemann (1118_CR61) 2014; 30
AC Huang (1118_CR77) 2019; 364
FN New (1118_CR88) 2020; 74
WA Walters (1118_CR22) 2018; 115
L Philippot (1118_CR5) 2013; 11
K Hartman (1118_CR28) 2018; 6
S Compant (1118_CR19) 2021; 23
C Xiong (1118_CR33) 2021; 229
MGA van der Heijden (1118_CR41) 2016; 14
JA Vorholt (1118_CR85) 2012; 10
JM Alvarez-Perez (1118_CR92) 2017; 83
PE Busby (1118_CR12) 2017; 15
J Zhang (1118_CR86) 2019; 37
JN Paulson (1118_CR57) 2013; 10
KR Foster (1118_CR78) 2017; 548
T Thiergart (1118_CR27) 2020; 4
GC diCenzo (1118_CR23) 2016; 7
C Gao (1118_CR35) 2020; 11
R Mendes (1118_CR6) 2011; 332
KL Grady (1118_CR36) 2019; 10
AM Bolger (1118_CR58) 2014; 30
D Bulgarelli (1118_CR26) 2012; 488
JY Zhang (1118_CR37) 2018; 61
EN Kudjordjie (1118_CR81) 2019; 7
JM Chaparro (1118_CR76) 2013; 8
C Vacher (1118_CR83) 2016; 47
1118_CR72
NH Nguyen (1118_CR55) 2016; 20
C Viviane (1118_CR24) 2019; 73
J Edwards (1118_CR32) 2015; 112
C Xiong (1118_CR46) 2021; 23
RI Adams (1118_CR98) 2013; 7
C Quince (1118_CR89) 2017; 35
RC Edgar (1118_CR52) 2010; 26
D Li (1118_CR60) 2015; 31
DB Muller (1118_CR2) 2016; 50
L Liu (1118_CR17) 2007; 9
D Bulgarelli (1118_CR15) 2013; 64
MC Marx (1118_CR47) 2001; 33
A Barberan (1118_CR42) 2012; 6
N Segata (1118_CR74) 2011; 12
J Hu (1118_CR82) 2020; 22
J Oksanen (1118_CR64) 2007; 10
M Bastian (1118_CR70) 2009; 8
YT Cheng (1118_CR100) 2019; 26
JA Vorholt (1118_CR18) 2017; 22
1118_CR14
M Santolini (1118_CR90) 2018; 115
K Ihrmark (1118_CR50) 2012; 82
DS Guttman (1118_CR80) 2014; 15
1118_CR94
MT Agler (1118_CR40) 2016; 14
TJ White (1118_CR51) 1990
S Louca (1118_CR54) 2016; 353
MA Cregger (1118_CR30) 2018; 6
S Banerjee (1118_CR91) 2019; 13
References_xml – volume: 26
  start-page: 183
  year: 2019
  ident: 1118_CR100
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2019.07.009
– volume: 33
  start-page: 1633
  year: 2001
  ident: 1118_CR47
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(01)00079-7
– volume: 23
  start-page: 2199
  year: 2021
  ident: 1118_CR16
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.15392
– volume: 6
  start-page: 14
  year: 2018
  ident: 1118_CR28
  publication-title: Microbiome
  doi: 10.1186/s40168-017-0389-9
– volume: 10
  start-page: 4135
  year: 2019
  ident: 1118_CR36
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-11974-4
– volume: 13
  start-page: 2498
  year: 2003
  ident: 1118_CR69
  publication-title: Genome Res
  doi: 10.1101/gr.1239303
– volume: 111
  start-page: 10
  year: 2017
  ident: 1118_CR96
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2017.03.013
– ident: 1118_CR48
  doi: 10.2136/sssabookser5.2.c37
– volume: 353
  start-page: 1272
  year: 2016
  ident: 1118_CR54
  publication-title: Science
  doi: 10.1126/science.aaf4507
– volume: 47
  start-page: 1
  year: 2016
  ident: 1118_CR83
  publication-title: Annu Rev Ecol Evol S
  doi: 10.1146/annurev-ecolsys-121415-032238
– volume: 10
  start-page: 828
  year: 2012
  ident: 1118_CR85
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2910
– volume: 488
  start-page: 91
  year: 2012
  ident: 1118_CR26
  publication-title: Nature
  doi: 10.1038/nature11336
– volume: 112
  start-page: E911
  year: 2015
  ident: 1118_CR32
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1414592112
– volume: 111
  start-page: E836
  year: 2014
  ident: 1118_CR67
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1324044111
– volume: 83
  start-page: e01564
  year: 2017
  ident: 1118_CR92
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01564-17
– volume: 8
  start-page: 761
  year: 2011
  ident: 1118_CR71
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1650
– volume: 7
  start-page: 335
  year: 2010
  ident: 1118_CR56
  publication-title: Nat Methods
  doi: 10.1038/nmeth.f.303
– volume: 22
  start-page: 5005
  year: 2020
  ident: 1118_CR82
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.15097
– volume: 37
  start-page: 676
  year: 2019
  ident: 1118_CR86
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0104-4
– volume: 115
  start-page: E6375
  year: 2018
  ident: 1118_CR90
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1720589115
– volume: 8
  start-page: e1002606
  year: 2012
  ident: 1118_CR68
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002606
– volume: 332
  start-page: 1097
  year: 2011
  ident: 1118_CR6
  publication-title: Science
  doi: 10.1126/science.1203980
– volume: 11
  start-page: 1
  year: 2020
  ident: 1118_CR35
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13993-7
– volume: 7
  start-page: 136
  year: 2019
  ident: 1118_CR38
  publication-title: Microbiome
  doi: 10.1186/s40168-019-0750-2
– volume: 364
  start-page: eaau6389
  year: 2019
  ident: 1118_CR77
  publication-title: Science
  doi: 10.1126/science.aau6389
– volume: 175
  start-page: 973
  year: 2018
  ident: 1118_CR45
  publication-title: Cell
  doi: 10.1016/j.cell.2018.10.020
– volume: 548
  start-page: 43
  year: 2017
  ident: 1118_CR78
  publication-title: Nature
  doi: 10.1038/nature23292
– volume: 64
  start-page: 807
  year: 2013
  ident: 1118_CR15
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev-arplant-050312-120106
– volume: 206
  start-page: 1196
  year: 2015
  ident: 1118_CR4
  publication-title: New Phytol
  doi: 10.1111/nph.13312
– volume: 14
  start-page: e1002352
  year: 2016
  ident: 1118_CR40
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1002352
– volume: 9
  start-page: 465
  year: 2007
  ident: 1118_CR17
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2006.01163.x
– volume: 20
  start-page: 241
  year: 2016
  ident: 1118_CR55
  publication-title: Fungal Ecol
  doi: 10.1016/j.funeco.2015.06.006
– volume: 115
  start-page: 7368
  year: 2018
  ident: 1118_CR22
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1800918115
– volume: 26
  start-page: 2460
  year: 2010
  ident: 1118_CR52
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq461
– volume: 61
  start-page: 613
  year: 2018
  ident: 1118_CR37
  publication-title: Sci China Life Sci
  doi: 10.1007/s11427-018-9284-4
– volume: 63
  start-page: 1
  year: 2013
  ident: 1118_CR97
  publication-title: Fungal Diversity
  doi: 10.1007/s13225-013-0263-4
– volume: 74
  start-page: 81
  year: 2020
  ident: 1118_CR3
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev-micro-022620-014327
– volume: 8
  start-page: 361
  year: 2009
  ident: 1118_CR70
  publication-title: Icwsm
  doi: 10.1609/icwsm.v3i1.13937
– volume: 50
  start-page: 211
  year: 2016
  ident: 1118_CR2
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev-genet-120215-034952
– volume: 12
  start-page: R60
  year: 2011
  ident: 1118_CR74
  publication-title: Genome Biol
  doi: 10.1186/gb-2011-12-6-r60
– volume: 82
  start-page: 666
  year: 2012
  ident: 1118_CR50
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2012.01437.x
– volume: 15
  start-page: 330
  year: 2021
  ident: 1118_CR93
  publication-title: ISME J
  doi: 10.1038/s41396-020-00785-x
– volume: 37
  start-page: 306
  year: 2021
  ident: 1118_CR21
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2020.09.010
– volume: 587
  start-page: 103
  year: 2020
  ident: 1118_CR87
  publication-title: Nature
  doi: 10.1038/s41586-020-2778-7
– ident: 1118_CR14
  doi: 10.1038/s41564-020-00857-w
– volume: 350
  start-page: 663
  year: 2015
  ident: 1118_CR44
  publication-title: Science
  doi: 10.1126/science.aad2602
– volume: 6
  start-page: 31
  year: 2018
  ident: 1118_CR30
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0413-8
– volume: 73
  start-page: 69
  year: 2019
  ident: 1118_CR24
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev-micro-090817-062524
– volume: 15
  start-page: 797
  year: 2014
  ident: 1118_CR80
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3748
– volume: 7
  start-page: 12219
  year: 2016
  ident: 1118_CR23
  publication-title: Nat Commun
  doi: 10.1038/ncomms12219
– volume: 23
  start-page: 1812
  year: 2021
  ident: 1118_CR19
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.15240
– ident: 1118_CR94
  doi: 10.1093/femsec/fiw119
– volume: 7
  start-page: 2069
  year: 2013
  ident: 1118_CR65
  publication-title: ISME J
  doi: 10.1038/ismej.2013.93
– ident: 1118_CR63
  doi: 10.1111/j.2041-210x.2012.00261.x
– volume: 14
  start-page: e1002378
  year: 2016
  ident: 1118_CR41
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1002378
– volume: 356
  start-page: eaad4501
  year: 2017
  ident: 1118_CR1
  publication-title: Science
  doi: 10.1126/science.aad4501
– volume: 5
  start-page: 25
  year: 2017
  ident: 1118_CR31
  publication-title: Microbiome
  doi: 10.1186/s40168-017-0241-2
– volume: 6
  start-page: 116
  year: 2018
  ident: 1118_CR43
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0497-1
– volume: 44
  start-page: 613
  year: 2021
  ident: 1118_CR39
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.13928
– volume: 30
  start-page: 2068
  year: 2014
  ident: 1118_CR61
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu153
– volume: 23
  start-page: 1907
  year: 2021
  ident: 1118_CR46
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.15262
– volume: 7
  start-page: 146
  year: 2019
  ident: 1118_CR29
  publication-title: Microbiome
  doi: 10.1186/s40168-019-0756-9
– volume: 11
  start-page: 789
  year: 2013
  ident: 1118_CR5
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro3109
– ident: 1118_CR53
  doi: 10.1101/081257
– volume: 31
  start-page: 1674
  year: 2015
  ident: 1118_CR60
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv033
– volume: 229
  start-page: 1091
  year: 2021
  ident: 1118_CR33
  publication-title: New Phytol
  doi: 10.1111/nph.16890
– volume: 24
  start-page: 194
  year: 2019
  ident: 1118_CR10
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2018.12.004
– volume: 15
  start-page: e2001793
  year: 2017
  ident: 1118_CR12
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.2001793
– volume: 8
  start-page: 790
  year: 2013
  ident: 1118_CR76
  publication-title: ISME J
  doi: 10.1038/ismej.2013.196
– ident: 1118_CR49
  doi: 10.1073/pnas.1216057111
– volume: 23
  start-page: 25
  year: 2018
  ident: 1118_CR79
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2017.09.003
– volume: 7
  start-page: 1262
  year: 2013
  ident: 1118_CR98
  publication-title: ISME J
  doi: 10.1038/ismej.2013.28
– volume: 218
  start-page: 1327
  year: 2018
  ident: 1118_CR84
  publication-title: New Phytol
  doi: 10.1111/nph.15054
– volume: 2
  start-page: 561
  year: 2008
  ident: 1118_CR8
  publication-title: ISME J
  doi: 10.1038/ismej.2008.14
– volume: 2
  start-page: 18
  year: 2002
  ident: 1118_CR73
  publication-title: R news
– volume: 10
  start-page: 50
  year: 2017
  ident: 1118_CR75
  publication-title: Microb biotechnol
  doi: 10.1111/1751-7915.12592
– volume: 10
  start-page: 1
  year: 2019
  ident: 1118_CR99
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-10373-z
– volume: 6
  start-page: 58
  year: 2018
  ident: 1118_CR7
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0445-0
– volume: 488
  start-page: 86
  year: 2012
  ident: 1118_CR25
  publication-title: Nature
  doi: 10.1038/nature11237
– volume: 21
  start-page: 208
  year: 2008
  ident: 1118_CR95
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-21-2-0208
– volume: 10
  start-page: 1200
  year: 2013
  ident: 1118_CR57
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2658
– ident: 1118_CR72
  doi: 10.1093/bioinformatics/btp616
– ident: 1118_CR62
  doi: 10.1093/nar/gky1085
– volume: 10
  start-page: 631
  year: 2007
  ident: 1118_CR64
  publication-title: Community Ecol Package
– volume: 18
  start-page: 607
  year: 2020
  ident: 1118_CR9
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-020-0412-1
– volume: 22
  start-page: 142
  year: 2017
  ident: 1118_CR18
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2017.07.004
– volume: 4
  start-page: 122
  year: 2020
  ident: 1118_CR27
  publication-title: Nat Ecol Evol
  doi: 10.1038/s41559-019-1063-3
– volume: 15
  start-page: 949
  year: 2021
  ident: 1118_CR13
  publication-title: ISME J
  doi: 10.1038/s41396-020-00835-4
– volume: 14
  start-page: 202
  year: 2020
  ident: 1118_CR66
  publication-title: ISME J
  doi: 10.1038/s41396-019-0522-9
– volume: 28
  start-page: 825
  year: 2020
  ident: 1118_CR20
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.09.006
– volume: 6
  start-page: 343
  year: 2012
  ident: 1118_CR42
  publication-title: ISME J
  doi: 10.1038/ismej.2011.119
– volume: 30
  start-page: 2114
  year: 2014
  ident: 1118_CR58
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu170
– volume: 69
  start-page: 1875
  year: 2003
  ident: 1118_CR34
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.69.4.1875-1883.2003
– volume: 18
  start-page: 601
  year: 2020
  ident: 1118_CR11
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-020-00446-y
– volume: 35
  start-page: 833
  year: 2017
  ident: 1118_CR89
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3935
– volume: 9
  start-page: 357
  year: 2012
  ident: 1118_CR59
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1923
– volume: 13
  start-page: 1722
  year: 2019
  ident: 1118_CR91
  publication-title: ISME J
  doi: 10.1038/s41396-019-0383-2
– volume: 4
  start-page: 247
  year: 2018
  ident: 1118_CR101
  publication-title: Nat Plants
  doi: 10.1038/s41477-018-0139-4
– volume: 7
  start-page: 59
  year: 2019
  ident: 1118_CR81
  publication-title: Microbiome
  doi: 10.1186/s40168-019-0677-7
– start-page: 315
  volume-title: PCR protocols
  year: 1990
  ident: 1118_CR51
– volume: 74
  start-page: 117
  year: 2020
  ident: 1118_CR88
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev-micro-012520-072314
SSID ssj0000914748
Score 2.6353076
Snippet Background Plants live with diverse microbial communities which profoundly affect multiple facets of host performance, but if and how host development impacts...
Plants live with diverse microbial communities which profoundly affect multiple facets of host performance, but if and how host development impacts the...
Abstract Background Plants live with diverse microbial communities which profoundly affect multiple facets of host performance, but if and how host development...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Agricultural production
Bacteria
Biodegradation
Corn
Crop microbiomes
Crop yield
Developmental stages
Endophytes
Environmental factors
Fungi
Leaves
Metagenomics
Microbial interkingdom networks
Microbiome assembly
Microbiomes
Phylloplane
Phylloplane microbiome
Physiology
Plant communities
Plant growth
Soils
Soil–plant continuum
Temporal dynamics
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqJCQuVXmp2wIyEjcUEb-dIyAQqtSeutLeLMcZ05VKtoJwoL-esZNsN5dy4ZJDPImS8XjmG3n8DSFniBB4GZUsrOIBE5TAi7qxuogWPXJUteY-nR3-_kPfzeW3hVpstPpKNWE9PXCvuAvWYIxlXvEU2hVEjxFTgWwEJK70fIScY8zbSKayD66YNNKOp2SsvnjCRELbIlUkpPbqttCTSJQJ-ycoc1ojuRF0bj-RjwNapJf9V-6SD9Duke2-f-TLPnGp5VBHm3-FPyiMcO8eaPOY-GQpwjs69kDp-lmgy5ZCGH0eTeWFdBWz5INf_sXrsidneoADMr-9-Xl9VwwdE4qgRNUVJkpbocfiUQRvWRSGg1G6kqUECKUw4OtGKBFKnXoGeQMBRM2Vj6wuLVTikGy1qxY-E8q8qcrgmaxZ2oBpaouv4cZHKTHmNWxG2Kg9FwY68dTV4rfLaYXVrte4Q427rHGnZ-R8_cyfnkzjv9JXaVLWkokIO99A83CDebi3zGNGjsYpdcPqfHII8zJwMTh8uh7GdZU2S3wLq-csg5li4j6aETMxhckHTUfa5a_M0G2FRqCkvrzHH3wlOzxbLWb74ohsdY_PcIxAqKtPss2_Aru1BBc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS90wFA5OGexFpm7sOh0Z-Dbqmt_pwxhzKDLQp13wLaTpibugvdu1wtxfv5O0vVtBfOlDc9KGk1_fISffR8gRIgReRiULq3jAACXwom6sLqLFFTmqWnOf7g5fXOrzufx2pa42yCh3NDjw7tHQLulJzVc3x79_PXzGCf8pT3irP95hjKBtkZINknK6LfQzsoU7k0mKBhcD3M8rc8WkkXa8O_No1cn-lGn8J9hzmjn531Z09pJsDxiSfuk7fYdsQLtLnveqkg97xCUhoo42_9KB0BhB4DXQZpVYZimCPjoqo3R939BFSyGMKyFNSYd0GbPlrV_8weeip2y6hVdkfnb6_et5MegoFEGJqitMlLbCdYxHEbxlURgORulKlhIglMKArxuhRCh1UhLyBgKImisfWV1aqMRrstkuW3hDKPOmKoNnsmbpWKapLX6GGx-lxJ2wYTPCRu-5MJCMJ62LG5eDDatd73GHHnfZ407PyId1nZ89xcaT1iepU9aWiR47v1iurt0w2xxrEJgxr3jCgwqiR5ilQDYCEsE-x2YejF3qxiHnEPxlOGOw-P26GGdbOkLxLSzvsw3Gj4kRaUbMZChMGjQtaRc_Mm-3FRrhk9p_-udvyQuexyNG9-KAbHarezhE4NPV7_Jo_gv4-AAv
  priority: 102
  providerName: Scholars Portal
Title Plant developmental stage drives the differentiation in ecological role of the maize microbiome
URI https://www.proquest.com/docview/2562415271
https://www.proquest.com/docview/2561487100
https://pubmed.ncbi.nlm.nih.gov/PMC8364065
https://doaj.org/article/1d6171a5255145efa5845e4d3e438021
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFRIXxFMslJWRuKGo8ds5IYpaKqRWCFFpb5bj2GWlNim76QF-PTNOsiWXXnxIJollj2e-sSffEPIBEAIvk5KFVTxAgBJ4UTdWF8mCRU6q1tzjv8Nn5_r0Qn5bqdW44bYd0yonm5gNddMF3CM_BNecnY1hn25-F1g1Ck9XxxIaD8k-UpehVpuV2e2xgC-URtrpXxmrD7cQTmhbYF4CFlm3hZ75o0zbP8Oa80zJ_1zPyVPyZMSM9PMwyc_Ig9g-J4-GKpJ_XhCHhYd62tyl_4AwgL7LSJsNsspSAHl0qoTSD3NB1y2NYbJ8FJMMaZey5LVf_4V2PVA0XceX5OLk-OeX02Ksm1AEJaq-MEnaCuwWTyJ4y5IwPBqlK1nKGEMpTPR1I5QIpcbKQd7EEEXNlU-sLm2sxCuy13ZtfE0o86Yqg2eyZngM09QWXsONT1KC52vYgrBp9FwYScWxtsWVy8GF1W4YcQcj7vKIO70gH3fP3AyUGvdKH-Gk7CSRDjtf6DaXblxdjjUAxJhXHPGfiskDrFJRNiIioT6Hbh5MU-rGNbp1dxq1IO93t2F14ZGJb2N3m2UgXkQGpAUxM1WYdWh-p13_yjzdVmiAS-rN_R9_Sx7zrI8QzYsDstdvbuM7ADp9vczavCT7R8fn338s83YBtF9XDNozaf8BO0wBYQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxFMsLWAkOKGosePXHhDiVW3p49RKezOOY5eVaNLupkLlR_EbmXGSLbn01ksOyeSh8Xjmm3g8HyFvASHwPEqRGck9JCieZ2VlVBYNeOQoS8Ud7h0-PFKzE_F9Lucb5O-wFwbLKgefmBx11Xj8R74DoTkFG80-nl9kyBqFq6sDhUZnFvvh6jekbKsPe19hfN9xvvvt-Mss61kFMi-LaZvpKMwUZjWPhXeGxULzoKWailyE4PNCB1dWhSx8rpBXx-ngQ1Fy6SIrcxOw-RK4_DsQeHNM9vRcr__pQOwVWphhb45ROytIX5TJsA4CSd1NpkbxL9EEjLDtuDLzv1C3-5A86DEq_dQZ1SOyEerH5G7HWnn1hFgkOmppdV1uBMIAMk8DrZbYxZYCqKQD80rbjT1d1DT4wdNSLGqkTUySZ27xB46LriXUWXhKTm5Fo8_IZt3U4TmhzOlp7h0TJcNln6o08BiuXRQCIm3FJoQN2rO-b2KOXBq_bEpmjLKdxi1o3CaNWzUh79f3nHctPG6U_oyDspbE9tvpRLM8tf1stqwC4Mec5Ig3ZYgOYJwMoioCNvDn8Jnbw5Da3ies7LUFT8ib9WWYzbhE4-rQXCYZyE-x49KE6JEpjD5ofKVe_Ex9wU2hAJ7JFze__DW5Nzs-PLAHe0f7W-Q-T7ZpMlZsk812eRleAshqy1fJsin5cdtT6R_WvDse
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+developmental+stage+drives+the+differentiation+in+ecological+role+of+the+maize+microbiome&rft.jtitle=Microbiome&rft.au=Xiong%2C+Chao&rft.au=Singh%2C+Brajesh+K&rft.au=Ji-Zheng%2C+He&rft.au=Yan-Lai%2C+Han&rft.date=2021-08-13&rft.pub=BioMed+Central&rft.eissn=2049-2618&rft.volume=9&rft.spage=1&rft_id=info:doi/10.1186%2Fs40168-021-01118-6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-2618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-2618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-2618&client=summon