Genetic Control of Fruit Vitamin C Contents
An F₁ progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci (QTL) linked to the vitamin C (L-ascorbate [L-AA]) contents of fruit skin and flesh (cortex) tissues. We identified up to three highly significant QTLs...
Saved in:
Published in | Plant physiology (Bethesda) Vol. 142; no. 1; pp. 343 - 351 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Rockville, MD
American Society of Plant Biologists
01.09.2006
American Society of Plant Physiologists |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An F₁ progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci (QTL) linked to the vitamin C (L-ascorbate [L-AA]) contents of fruit skin and flesh (cortex) tissues. We identified up to three highly significant QTLs for both the mean L-AA and the mean total L-AA contents of fruit flesh on both parental genetic linkage maps, confirming the quantitative nature of these traits. These QTLs account for up to a maximum of 60% of the total population variation observed in the progeny, and with a maximal individual contribution of 31% per QTL. QTLs common to both parents were identified on linkage groups (LGs) 6, 10, and 11 of the Malus reference map, while each parent also had additional unique QTLs on other LGs. Interestingly, one strong QTL on LG-17 of the Telamon linkage map colocalized with a highly significant QTL associated with flesh browning, and a minor QTL for dehydroascorbate content, supporting earlier work that links fruit L-AA contents with the susceptibility of hardfruit to postharvest browning. We also found significant minor QTLs for skin L-AA and total L-AA (L-AA + dehydroascorbate) contents in Telamon. Currently, little is known about the genetic determinants underlying tissue L-AA homeostasis, but the presence of major, highly significant QTL in both these apple genotypes under field conditions suggests the existence of common control mechanisms, allelic heterozygosity, and helps outline strategies and the potential for the molecular breeding of these traits. |
---|---|
AbstractList | Abstract
An F1 progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci (QTL) linked to the vitamin C (l-ascorbate [l-AA]) contents of fruit skin and flesh (cortex) tissues. We identified up to three highly significant QTLs for both the mean l-AA and the mean total l-AA contents of fruit flesh on both parental genetic linkage maps, confirming the quantitative nature of these traits. These QTLs account for up to a maximum of 60% of the total population variation observed in the progeny, and with a maximal individual contribution of 31% per QTL. QTLs common to both parents were identified on linkage groups (LGs) 6, 10, and 11 of the Malus reference map, while each parent also had additional unique QTLs on other LGs. Interestingly, one strong QTL on LG-17 of the Telamon linkage map colocalized with a highly significant QTL associated with flesh browning, and a minor QTL for dehydroascorbate content, supporting earlier work that links fruit l-AA contents with the susceptibility of hardfruit to postharvest browning. We also found significant minor QTLs for skin l-AA and total l-AA (l-AA + dehydroascorbate) contents in Telamon. Currently, little is known about the genetic determinants underlying tissue l-AA homeostasis, but the presence of major, highly significant QTL in both these apple genotypes under field conditions suggests the existence of common control mechanisms, allelic heterozygosity, and helps outline strategies and the potential for the molecular breeding of these traits. An F₁ progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci (QTL) linked to the vitamin C (L-ascorbate [L-AA]) contents of fruit skin and flesh (cortex) tissues. We identified up to three highly significant QTLs for both the mean L-AA and the mean total L-AA contents of fruit flesh on both parental genetic linkage maps, confirming the quantitative nature of these traits. These QTLs account for up to a maximum of 60% of the total population variation observed in the progeny, and with a maximal individual contribution of 31% per QTL. QTLs common to both parents were identified on linkage groups (LGs) 6, 10, and 11 of the Malus reference map, while each parent also had additional unique QTLs on other LGs. Interestingly, one strong QTL on LG-17 of the Telamon linkage map colocalized with a highly significant QTL associated with flesh browning, and a minor QTL for dehydroascorbate content, supporting earlier work that links fruit L-AA contents with the susceptibility of hardfruit to postharvest browning. We also found significant minor QTLs for skin L-AA and total L-AA (L-AA + dehydroascorbate) contents in Telamon. Currently, little is known about the genetic determinants underlying tissue L-AA homeostasis, but the presence of major, highly significant QTL in both these apple genotypes under field conditions suggests the existence of common control mechanisms, allelic heterozygosity, and helps outline strategies and the potential for the molecular breeding of these traits. An F(1) progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci (QTL) linked to the vitamin C (l-ascorbate [l-AA]) contents of fruit skin and flesh (cortex) tissues. We identified up to three highly significant QTLs for both the mean l-AA and the mean total l-AA contents of fruit flesh on both parental genetic linkage maps, confirming the quantitative nature of these traits. These QTLs account for up to a maximum of 60% of the total population variation observed in the progeny, and with a maximal individual contribution of 31% per QTL. QTLs common to both parents were identified on linkage groups (LGs) 6, 10, and 11 of the Malus reference map, while each parent also had additional unique QTLs on other LGs. Interestingly, one strong QTL on LG-17 of the Telamon linkage map colocalized with a highly significant QTL associated with flesh browning, and a minor QTL for dehydroascorbate content, supporting earlier work that links fruit l-AA contents with the susceptibility of hardfruit to postharvest browning. We also found significant minor QTLs for skin l-AA and total l-AA (l-AA + dehydroascorbate) contents in Telamon. Currently, little is known about the genetic determinants underlying tissue l-AA homeostasis, but the presence of major, highly significant QTL in both these apple genotypes under field conditions suggests the existence of common control mechanisms, allelic heterozygosity, and helps outline strategies and the potential for the molecular breeding of these traits. An F sub(1) progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci (QTL) linked to the vitamin C (L-ascorbate [L-AA]) contents of fruit skin and flesh (cortex) tissues. We identified up to three highly significant QTLs for both the mean L-AA and the mean total L-AA contents of fruit flesh on both parental genetic linkage maps, confirming the quantitative nature of these traits. These QTLs account for up to a maximum of 60% of the total population variation observed in the progeny, and with a maximal individual contribution of 31% per QTL. QTLs common to both parents were identified on linkage groups (LGs) 6, 10, and 11 of the Malus reference map, while each parent also had additional unique QTLs on other LGs. Interestingly, one strong QTL on LG-17 of the Telamon linkage map colocalized with a highly significant QTL associated with flesh browning, and a minor QTL for dehydroascorbate content, supporting earlier work that links fruit L-AA contents with the susceptibility of hardfruit to postharvest browning. We also found significant minor QTLs for skin L-AA and total L-AA (L-AA + dehydroascorbate) contents in Telamon. Currently, little is known about the genetic determinants underlying tissue L-AA homeostasis, but the presence of major, highly significant QTL in both these apple genotypes under field conditions suggests the existence of common control mechanisms, allelic heterozygosity, and helps outline strategies and the potential for the molecular breeding of these traits. |
Author | Keulemans, Johan Kenis, Katrien Davey, Mark W |
Author_xml | – sequence: 1 fullname: Davey, Mark W – sequence: 2 fullname: Kenis, Katrien – sequence: 3 fullname: Keulemans, Johan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18118577$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16844833$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkM1LxDAQxYOsuB969Kj2ohfpOknafByluKuw4EHXa0nbVLp0m5q0B_97s7a4R2FgBt6PNzNvjiaNaTRClxiWGEP00LZLDGwJghIuT9AMx5SEJI7EBM0A_AxCyCmaO7cDAExxdIammIkoEpTO0P1aN7qr8iAxTWdNHZgyWNm-6oKPqlP7qgmSX0k3nTtHp6Wqnb4Y-wJtV0_vyXO4eV2_JI-bMI-p7EKu_RrGtCxLzHNZSKUEIxFIVciCawWFZEoXMsMR4ZhRoDJSeQGlEjzjWUwX6G7wba356rXr0n3lcl3XqtGmdykTgvoHxL8gltSXBA-GA5hb45zVZdraaq_sd4ohPcSYtq0fWTrE6Pnr0bjP9ro40mNuHrgdAeVyVZdWNXnljpzAWMSce-5q4HauM_ZPJ0AgluSg3wx6qUyqPq332L4Rnx_4q7wLpz8x04yf |
CODEN | PPHYA5 |
CitedBy_id | crossref_primary_10_1007_s00122_011_1624_6 crossref_primary_10_1093_plphys_kiab010 crossref_primary_10_32604_phyton_2022_020100 crossref_primary_10_1371_journal_pone_0091016 crossref_primary_10_1016_j_postharvbio_2021_111563 crossref_primary_10_1007_s11295_016_1046_3 crossref_primary_10_1093_hr_uhad006 crossref_primary_10_3389_fpls_2016_00397 crossref_primary_10_1016_j_postharvbio_2013_07_035 crossref_primary_10_3390_molecules26010016 crossref_primary_10_1016_j_plaphy_2020_03_006 crossref_primary_10_1146_annurev_food_060822_113022 crossref_primary_10_1002_biot_201200041 crossref_primary_10_1093_jxb_err464 crossref_primary_10_1007_s11032_009_9268_9 crossref_primary_10_1007_s11032_011_9674_7 crossref_primary_10_1016_j_scienta_2023_112150 crossref_primary_10_1007_s11295_016_0996_9 crossref_primary_10_3389_fpls_2018_01694 crossref_primary_10_1007_s10535_015_0540_z crossref_primary_10_3390_horticulturae8090814 crossref_primary_10_1016_j_plaphy_2014_09_009 crossref_primary_10_1007_s00299_017_2127_y crossref_primary_10_1016_j_foodchem_2017_01_014 crossref_primary_10_1111_j_1467_7652_2011_00668_x crossref_primary_10_1007_s11032_008_9252_9 crossref_primary_10_1038_s41598_019_55070_5 crossref_primary_10_1038_hortres_2016_57 crossref_primary_10_1016_j_foodchem_2021_131818 crossref_primary_10_1186_s12870_014_0328_x crossref_primary_10_3389_fpls_2018_02006 crossref_primary_10_1002_biof_5520340104 crossref_primary_10_1007_s10341_015_0264_4 crossref_primary_10_1111_j_1399_3054_2012_01641_x crossref_primary_10_1007_s00438_012_0689_5 crossref_primary_10_1007_s00122_012_1803_0 crossref_primary_10_1002_jsfa_12159 crossref_primary_10_1007_s11295_011_0425_z crossref_primary_10_1093_jxb_err122 crossref_primary_10_5897_IJGMB2018_0167 crossref_primary_10_1007_s12041_019_1088_z crossref_primary_10_1093_jxb_ers297 crossref_primary_10_1093_aob_mct026 crossref_primary_10_1007_s00438_014_0957_7 crossref_primary_10_1111_mec_17268 crossref_primary_10_3390_plants8070237 crossref_primary_10_1007_s11295_015_0947_x crossref_primary_10_1104_pp_112_203786 crossref_primary_10_2503_jjshs1_78_279 crossref_primary_10_1007_s11295_009_0219_8 crossref_primary_10_1007_s11295_008_0140_6 crossref_primary_10_1007_s11295_008_0146_0 crossref_primary_10_3389_fchem_2017_00050 crossref_primary_10_1007_s11816_008_0059_2 crossref_primary_10_1016_j_foodchem_2015_12_044 crossref_primary_10_1016_j_pbi_2016_04_010 crossref_primary_10_1186_1471_2229_12_12 crossref_primary_10_1016_j_scienta_2023_112806 crossref_primary_10_1007_s00425_013_1898_9 crossref_primary_10_1111_j_1365_3040_2008_01824_x crossref_primary_10_1371_journal_pone_0078004 crossref_primary_10_1016_j_scienta_2016_12_021 |
Cites_doi | 10.1016/j.pbi.2006.01.010 10.1007/s00122-004-1624-x 10.1016/S0925-5214(02)00198-9 10.1104/pp.125.4.2164 10.1021/jf0503863 10.1007/s001220050835 10.1111/j.1365-3040.2004.01238.x 10.1111/j.1365-3040.2005.01467.x 10.1016/S0168-9452(01)00522-2 10.21273/JASHS.119.2.264 10.1007/s10681-005-6805-4 10.1007/s001220100720 10.1002/(SICI)1097-0010(20000515)80:7<861::AID-JSFA601>3.0.CO;2-P 10.1111/j.1365-3040.2004.01203.x 10.1073/pnas.96.7.4198 10.1046/j.1439-0523.2002.730285.x 10.2135/cropsci2004.1825 10.1126/science.1078002 10.1146/annurev.arplant.49.1.249 10.1105/tpc.105.036053 10.1016/S0003-2697(03)00047-2 10.1007/s00122-003-1209-0 10.1046/j.1365-313X.2002.01315.x 10.1016/j.plantsci.2005.08.009 10.1034/j.1399-3054.1999.100106.x 10.1021/jf9708406 10.1016/S0925-5214(03)00108-X 10.1007/s00122-004-1803-9 10.21273/HORTSCI.39.5.924 10.1007/BF01288367 10.1093/jxb/erh207 10.1080/14620316.2001.11511343 10.1094/PHYTO.2003.93.4.493 10.1016/S0925-5214(00)00095-8 10.1104/pp.103.023572 10.1007/s001220051389 10.1038/nbt1108 10.1007/s001220000530 10.21273/JASHS.120.3.532 10.1093/ajcn/69.6.1086 10.1021/jf026229a 10.1007/s10681-005-1681-5 10.1038/nbt1192 10.1093/genetics/141.3.1147 10.1016/S1369-5266(00)00069-8 10.1007/s00122-005-0071-7 10.21273/JASHS.123.6.992 10.1007/s001220050867 10.1111/j.1399-3054.2006.00640.x 10.1021/jf048531k 10.1023/A:1024886500979 10.1038/sj.hdy.6886230 10.1007/s11032-004-5592-2 10.1002/(SICI)1097-0010(20000515)80:7<825::AID-JSFA598>3.0.CO;2-6 |
ContentType | Journal Article |
Copyright | Copyright 2006 American Society of Plant Biologists 2006 INIST-CNRS |
Copyright_xml | – notice: Copyright 2006 American Society of Plant Biologists – notice: 2006 INIST-CNRS |
DBID | FBQ IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FD FR3 P64 RC3 7X8 |
DOI | 10.1104/pp.106.083279 |
DatabaseName | AGRIS Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1532-2548 |
EndPage | 351 |
ExternalDocumentID | 10_1104_pp_106_083279 16844833 18118577 20205927 US201301101817 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X 123 29O 2AX 2WC 2~F 3V. 4.4 53G 5VS 5WD 7X2 7X7 85S 88A 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8G5 8R4 8R5 AAHKG AAPXW AAVAP AAWDT AAXTN AAYJJ ABBHK ABJNI ABPLY ABPPZ ABPTD ABPTK ABTLG ABUWG ABXZS ACBTR ACFRR ACGOD ACIPB ACNCT ACPRK ACUFI ACUTJ ADBBV ADIPN ADIYS ADULT ADVEK ADYHW ADZLD AEEJZ AENEX AESBF AEUPB AFAZZ AFDAS AFFDN AFFZL AFGWE AFKRA AFRAH AFYAG AGUYK AHMBA AICQM AIDAL AIDBO AJEEA ALMA_UNASSIGNED_HOLDINGS ALXQX ANFBD AQDSO AS~ ATCPS AZQEC BAWUL BBNVY BCRHZ BENPR BHPHI BPHCQ BTFSW BVXVI BYORX C1A CBGCD CCPQU CS3 CWIXF D1J DATOO DFEDG DIK DOOOF DU5 DWIUU DWQXO E3Z EBS ECGQY EJD F20 F5P FBQ FLUFQ FOEOM FYUFA GNUQQ GTFYD GUQSH HCIFZ HMCUK HTVGU ISR JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST KOP KQ8 KSI KSN LK8 M0K M0L M1P M2O M2P M2Q M7P MV1 MVM NOMLY OBOKY OJZSN OK1 OWPYF P0- P2P PQQKQ PROAC PSQYO Q2X QZG RHF RHI ROX RPB RPM RWL RXW S0X SA0 TAE TCN TN5 TR2 UBC UKHRP UKR VQA W8F WH7 WHG WOQ XOL XSW Y6R YBU YKV YNT YSK YZZ ZCA ZCG ZCN ~02 ~KM ABXSQ AQVQM 08R AAPBV H13 IQODW 0R~ AAHBH AARHZ AAUAY ABMNT ABXVV ACZBC ADACV ADQBN AGMDO AHXOZ ALIPV ATGXG BEYMZ CGR CUY CVF ECM EIF IPSME NPM AASNB AAYXX CITATION 8FD FR3 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c539t-7e01366e9ff17c9d9aa862409ad9d7ea0d96aed9b14271630394acd0fa87b7b53 |
ISSN | 0032-0889 1532-2548 |
IngestDate | Fri Oct 25 05:25:43 EDT 2024 Fri Oct 25 21:36:44 EDT 2024 Fri Aug 23 03:05:50 EDT 2024 Tue Oct 15 23:30:52 EDT 2024 Sun Oct 22 16:05:09 EDT 2023 Fri Feb 02 08:15:41 EST 2024 Wed Dec 27 19:15:47 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Agronomic character Quantitative trait loci Fruit Genetic control Dicotyledones Angiospermae Rosaceae Homeostasis Spermatophyta Malus Heterozygosity |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c539t-7e01366e9ff17c9d9aa862409ad9d7ea0d96aed9b14271630394acd0fa87b7b53 |
Notes | http://www.plantphysiol.org/ ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/plphys/article-pdf/142/1/343/38708511/plphys_v142_1_343.pdf |
PMID | 16844833 |
PQID | 19319390 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_68836848 proquest_miscellaneous_19319390 crossref_primary_10_1104_pp_106_083279 pubmed_primary_16844833 pascalfrancis_primary_18118577 jstor_primary_20205927 fao_agris_US201301101817 |
PublicationCentury | 2000 |
PublicationDate | 2006-09-01 |
PublicationDateYYYYMMDD | 2006-09-01 |
PublicationDate_xml | – month: 09 year: 2006 text: 2006-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Rockville, MD |
PublicationPlace_xml | – name: Rockville, MD – name: United States |
PublicationTitle | Plant physiology (Bethesda) |
PublicationTitleAlternate | Plant Physiol |
PublicationYear | 2006 |
Publisher | American Society of Plant Biologists American Society of Plant Physiologists |
Publisher_xml | – name: American Society of Plant Biologists – name: American Society of Plant Physiologists |
References | 10097187 - Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4198-203 12956523 - Plant Mol Biol. 2003 Jun;52(3):511-26 16531992 - Nat Biotechnol. 2006 Apr;24(4):447-54 12970477 - Plant Physiol. 2003 Sep;133(1):84-99 15969504 - J Agric Food Chem. 2005 Jun 29;53(13):5248-57 10357726 - Am J Clin Nutr. 1999 Jun;69(6):1086-107 10837263 - Curr Opin Plant Biol. 2000 Jun;3(3):229-35 15052401 - Theor Appl Genet. 2004 Jun;109(1):231-9 15012235 - Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:249-279 18944365 - Phytopathology. 2003 Apr;93(4):493-501 15612792 - J Agric Food Chem. 2004 Dec 29;52(26):8031-8 16243903 - Plant Cell. 2005 Nov;17(11):2954-65 12677403 - Theor Appl Genet. 2003 May;106(8):1497-508 11299395 - Plant Physiol. 2001 Apr;125(4):2164-72 12481128 - Science. 2002 Dec 13;298(5601):2149-53 16480915 - Curr Opin Plant Biol. 2006 Apr;9(2):196-202 12694729 - Anal Biochem. 2003 May 1;316(1):74-81 17087471 - Plant Cell Environ. 2006 May;29(5):879-87 14705909 - J Agric Food Chem. 2003 Jul 30;51(16):4757-63 10620035 - Heredity (Edinb). 1999 Nov;83 (Pt 5):613-24 8582620 - Genetics. 1995 Nov;141(3):1147-62 15951803 - Nat Biotechnol. 2005 Jul;23(7):890-5 15365630 - Theor Appl Genet. 2004 Nov;109(8):1702-9 11732316 - Protoplasma. 2001;218(1-2):112-6 15258170 - J Exp Bot. 2004 Aug;55(403):1671-85 12047629 - Plant J. 2002 Jun;30(5):541-53 16177901 - Theor Appl Genet. 2005 Nov;111(7):1396-408 (2021062206094176200_b52) 2005; 111 (2021062206094176200_b42) 2001; 76 (2021062206094176200_b8) 2004; 27 (2021062206094176200_b31) 2005; 53 (2021062206094176200_b3) 2004; 109 (2021062206094176200_b35) 2005; 15 (2021062206094176200_b61) 2006; 170 (2021062206094176200_b26) 2002; 30 (2021062206094176200_b20) 2000; 190 (2021062206094176200_b22) 2003; 30 (2021062206094176200_b24) 2006 (2021062206094176200_b10) 1998; 96 (2021062206094176200_b21) 2006; 9 (2021062206094176200_b39) 2000; 100 (2021062206094176200_b7) 2005; 142 (2021062206094176200_b5) 1999; 69 (2021062206094176200_b46) 2003; 93 (2021062206094176200_b60) 2001; 125 (2021062206094176200_b27) 2006; 29 (2021062206094176200_b25) 2000; 80 (2021062206094176200_b45) 2003; 106 (2021062206094176200_b49) 2001; 218 (2021062206094176200_b23) 2003; 51 (2021062206094176200_b9) 1999; 96 (2021062206094176200_b53) 2006; 24 (2021062206094176200_b33) 2004; 39 (2021062206094176200_b12) 2003; 316 (2021062206094176200_b51) 2003; 133 (2021062206094176200_b11) 2005; 141 (2021062206094176200_b15) 2000; 80 (2021062206094176200_b2) 2002; 121 (2021062206094176200_b36) 2006 (2021062206094176200_b40) 2004; 44 (2021062206094176200_b14) 2004; 52 (2021062206094176200_b56) 2002 (2021062206094176200_b4) 1994; 119 (2021062206094176200_b50) 1998; 49 (2021062206094176200_b1) 2005; 17 (2021062206094176200_b41) 1999; 78 (2021062206094176200_b38) 2001; 102 (2021062206094176200_b30) 2004; 109 (2021062206094176200_b19) 1998; 46 (2021062206094176200_b58) 2003; 28 (2021062206094176200_b32) 1998; 123 (2021062206094176200_b48) 2001; 103 (2021062206094176200_b47) 1998; 97 (2021062206094176200_b44) 2003; 52 (2021062206094176200_b6) 2004; 55 (2021062206094176200_b55) 1999; 83 (2021062206094176200_b13) 2004; 27 (2021062206094176200_b57) 2000; 19 (2021062206094176200_b16) 2005; 23 (2021062206094176200_b54) 2000; 3 (2021062206094176200_b43) 1995; 120 (2021062206094176200_b17) 2002; 298 (2021062206094176200_b59) 1999; 107 (2021062206094176200_b18) 1995; 141 (2021062206094176200_b37) 2001; 161 (2021062206094176200_b34) 2006; 126 |
References_xml | – volume: 9 start-page: 196 year: 2006 ident: 2021062206094176200_b21 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2006.01.010 – volume: 109 start-page: 231 year: 2004 ident: 2021062206094176200_b3 publication-title: Theor Appl Genet doi: 10.1007/s00122-004-1624-x – volume: 28 start-page: 295 year: 2003 ident: 2021062206094176200_b58 publication-title: Postharvest Biol Technol doi: 10.1016/S0925-5214(02)00198-9 – volume: 125 start-page: 2164 year: 2001 ident: 2021062206094176200_b60 publication-title: Plant Physiol doi: 10.1104/pp.125.4.2164 – volume: 53 start-page: 5248 year: 2005 ident: 2021062206094176200_b31 publication-title: J Agric Food Chem doi: 10.1021/jf0503863 – volume: 96 start-page: 1027 year: 1998 ident: 2021062206094176200_b10 publication-title: Theor Appl Genet doi: 10.1007/s001220050835 – volume: 27 start-page: 1309 year: 2004 ident: 2021062206094176200_b13 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2004.01238.x – volume: 29 start-page: 879 year: 2006 ident: 2021062206094176200_b27 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2005.01467.x – volume: 161 start-page: 1145 year: 2001 ident: 2021062206094176200_b37 publication-title: Plant Sci doi: 10.1016/S0168-9452(01)00522-2 – volume: 119 start-page: 264 year: 1994 ident: 2021062206094176200_b4 publication-title: J Am Soc Hortic Sci doi: 10.21273/JASHS.119.2.264 – volume: 141 start-page: 181 year: 2005 ident: 2021062206094176200_b11 publication-title: Euphytica doi: 10.1007/s10681-005-6805-4 – volume: 103 start-page: 1243 year: 2001 ident: 2021062206094176200_b48 publication-title: Theor Appl Genet doi: 10.1007/s001220100720 – volume: 80 start-page: 861 year: 2000 ident: 2021062206094176200_b25 publication-title: J Sci Food Agric doi: 10.1002/(SICI)1097-0010(20000515)80:7<861::AID-JSFA601>3.0.CO;2-P – volume: 27 start-page: 959 year: 2004 ident: 2021062206094176200_b8 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2004.01203.x – volume: 96 start-page: 4198 year: 1999 ident: 2021062206094176200_b9 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.96.7.4198 – year: 2006 ident: 2021062206094176200_b36 – year: 2006 ident: 2021062206094176200_b24 – volume: 121 start-page: 281 year: 2002 ident: 2021062206094176200_b2 publication-title: Plant Breed doi: 10.1046/j.1439-0523.2002.730285.x – volume: 44 start-page: 1825 year: 2004 ident: 2021062206094176200_b40 publication-title: Crop Sci doi: 10.2135/cropsci2004.1825 – volume: 298 start-page: 2149 year: 2002 ident: 2021062206094176200_b17 publication-title: Science doi: 10.1126/science.1078002 – volume: 49 start-page: 249 year: 1998 ident: 2021062206094176200_b50 publication-title: Annu Rev Plant Physiol Plant Mol Biol doi: 10.1146/annurev.arplant.49.1.249 – volume: 17 start-page: 2954 year: 2005 ident: 2021062206094176200_b1 publication-title: Plant Cell doi: 10.1105/tpc.105.036053 – volume: 316 start-page: 74 year: 2003 ident: 2021062206094176200_b12 publication-title: Anal Biochem doi: 10.1016/S0003-2697(03)00047-2 – volume: 106 start-page: 1497 year: 2003 ident: 2021062206094176200_b45 publication-title: Theor Appl Genet doi: 10.1007/s00122-003-1209-0 – volume: 30 start-page: 541 year: 2002 ident: 2021062206094176200_b26 publication-title: Plant J doi: 10.1046/j.1365-313X.2002.01315.x – volume: 170 start-page: 120 year: 2006 ident: 2021062206094176200_b61 publication-title: Plant Sci doi: 10.1016/j.plantsci.2005.08.009 – volume: 107 start-page: 39 year: 1999 ident: 2021062206094176200_b59 publication-title: Physiol Plant doi: 10.1034/j.1399-3054.1999.100106.x – volume: 46 start-page: 2469 year: 1998 ident: 2021062206094176200_b19 publication-title: J Agric Food Chem doi: 10.1021/jf9708406 – volume: 30 start-page: 133 year: 2003 ident: 2021062206094176200_b22 publication-title: Postharvest Biol Technol doi: 10.1016/S0925-5214(03)00108-X – volume: 190 start-page: 1 year: 2000 ident: 2021062206094176200_b20 publication-title: Physiol Plant – year: 2002 ident: 2021062206094176200_b56 – volume: 109 start-page: 1702 year: 2004 ident: 2021062206094176200_b30 publication-title: Theor Appl Genet doi: 10.1007/s00122-004-1803-9 – volume: 39 start-page: 924 year: 2004 ident: 2021062206094176200_b33 publication-title: HortScience doi: 10.21273/HORTSCI.39.5.924 – volume: 218 start-page: 112 year: 2001 ident: 2021062206094176200_b49 publication-title: Protoplasma doi: 10.1007/BF01288367 – volume: 55 start-page: 1671 year: 2004 ident: 2021062206094176200_b6 publication-title: J Exp Bot doi: 10.1093/jxb/erh207 – volume: 76 start-page: 157 year: 2001 ident: 2021062206094176200_b42 publication-title: J Hortic Sci Biotechnol doi: 10.1080/14620316.2001.11511343 – volume: 93 start-page: 493 year: 2003 ident: 2021062206094176200_b46 publication-title: Phytopathology doi: 10.1094/PHYTO.2003.93.4.493 – volume: 19 start-page: 129 year: 2000 ident: 2021062206094176200_b57 publication-title: Postharvest Biol Technol doi: 10.1016/S0925-5214(00)00095-8 – volume: 133 start-page: 84 year: 2003 ident: 2021062206094176200_b51 publication-title: Plant Physiol doi: 10.1104/pp.103.023572 – volume: 100 start-page: 1074 year: 2000 ident: 2021062206094176200_b39 publication-title: Theor Appl Genet doi: 10.1007/s001220051389 – volume: 23 start-page: 890 year: 2005 ident: 2021062206094176200_b16 publication-title: Nat Biotechnol doi: 10.1038/nbt1108 – volume: 102 start-page: 1227 year: 2001 ident: 2021062206094176200_b38 publication-title: Theor Appl Genet doi: 10.1007/s001220000530 – volume: 120 start-page: 532 year: 1995 ident: 2021062206094176200_b43 publication-title: J Am Soc Hortic Sci doi: 10.21273/JASHS.120.3.532 – volume: 69 start-page: 1086 year: 1999 ident: 2021062206094176200_b5 publication-title: Am J Clin Nutr doi: 10.1093/ajcn/69.6.1086 – volume: 51 start-page: 4757 year: 2003 ident: 2021062206094176200_b23 publication-title: J Agric Food Chem doi: 10.1021/jf026229a – volume: 142 start-page: 169 year: 2005 ident: 2021062206094176200_b7 publication-title: Euphytica doi: 10.1007/s10681-005-1681-5 – volume: 24 start-page: 447 year: 2006 ident: 2021062206094176200_b53 publication-title: Nat Biotechnol doi: 10.1038/nbt1192 – volume: 141 start-page: 1147 year: 1995 ident: 2021062206094176200_b18 publication-title: Genetics doi: 10.1093/genetics/141.3.1147 – volume: 3 start-page: 229 year: 2000 ident: 2021062206094176200_b54 publication-title: Curr Opin Plant Biol doi: 10.1016/S1369-5266(00)00069-8 – volume: 111 start-page: 1396 year: 2005 ident: 2021062206094176200_b52 publication-title: Theor Appl Genet doi: 10.1007/s00122-005-0071-7 – volume: 123 start-page: 992 year: 1998 ident: 2021062206094176200_b32 publication-title: J Am Soc Hortic Sci doi: 10.21273/JASHS.123.6.992 – volume: 97 start-page: 60 year: 1998 ident: 2021062206094176200_b47 publication-title: Theor Appl Genet doi: 10.1007/s001220050867 – volume: 126 start-page: 343 year: 2006 ident: 2021062206094176200_b34 publication-title: Physiol Plant doi: 10.1111/j.1399-3054.2006.00640.x – volume: 52 start-page: 8031 year: 2004 ident: 2021062206094176200_b14 publication-title: J Agric Food Chem doi: 10.1021/jf048531k – volume: 52 start-page: 511 year: 2003 ident: 2021062206094176200_b44 publication-title: Plant Mol Biol doi: 10.1023/A:1024886500979 – volume: 83 start-page: 613 year: 1999 ident: 2021062206094176200_b55 publication-title: Heredity doi: 10.1038/sj.hdy.6886230 – volume: 15 start-page: 205 year: 2005 ident: 2021062206094176200_b35 publication-title: Mol Breed doi: 10.1007/s11032-004-5592-2 – volume: 80 start-page: 825 year: 2000 ident: 2021062206094176200_b15 publication-title: J Sci Food Agric doi: 10.1002/(SICI)1097-0010(20000515)80:7<825::AID-JSFA598>3.0.CO;2-6 – volume: 78 start-page: 232 year: 1999 ident: 2021062206094176200_b41 publication-title: J Sci Food Agric |
SSID | ssj0001314 |
Score | 2.224745 |
Snippet | An F₁ progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci (QTL)... An F(1) progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci (QTL)... Abstract An F1 progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci... An F sub(1) progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci... |
SourceID | proquest crossref pubmed pascalfrancis jstor fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 343 |
SubjectTerms | Agronomy. Soil science and plant productions Antioxidants Ascorbic Acid - metabolism Biological and medical sciences Economic plant physiology Fructification, ripening. Postharvest physiology Fruit - metabolism Fruit - physiology Fruits Fundamental and applied biological sciences. Psychology Genes, Plant Genetic mapping Genetics, Genomics, and Molecular Evolution Growth and development Malus Malus - genetics Malus - metabolism Metabolism Nutritive Value Phenotypic traits Plants Population characteristics Population mean Quantitative Trait Loci Vitamin C |
Title | Genetic Control of Fruit Vitamin C Contents |
URI | https://www.jstor.org/stable/20205927 https://www.ncbi.nlm.nih.gov/pubmed/16844833 https://search.proquest.com/docview/19319390 https://search.proquest.com/docview/68836848 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfoxgMviK-x8FHygHipMpLYie3HdgQNxqpBV1SeIsdxEA-01ZoiwV_P2Y6ThjHxIVVR5LR2enc-353vfkboOSGcJYTATCM0DoggUVCUmAREVmEomZLMFAqfTdOTOXm7SBZdSpCpLqmLI_njt3Ul_8NVaAO-6irZf-Bs2yk0wD3wF67AYbj-FY81ZrQGXHX55mD4VZfbL_XoG3j8X3U9n3nk4JqcEaoPKqptTMMiMIGVOdGFv5tS7EQGXo0_Zp9cPc-ojcWcZtM3syYRQ4Mkd-3zd9nZeDprMnwbsduJKPBedobbKnJ5ozoZz7zYuXsxkMDdUGKI40CnS9k1xSnSOADnk_U0LYmviJTVm9hiNTVLMLYYtFe1e0j0kcTro0hvIYEuorxbxtzW_S-rW5tzCKaMxr2iA7QPv8NaG56-75DlI2xx4N1_afFYycvegD37ZVCJlUtk1Vm1YgMTq7InolzvshjT5eIOut34HP7YCtBddEMt76GbkxX4Bd_vo1EjRX4jRf6q8o0U-Y0U-ce-k6IHaP46uzg-CZojNAKZYF4HVGlMvlTxqoqo5CUXQlcEhVyUvKRKhCVPhSq5DgWC5wz2DCdClmElGC1okeADtLdcLdUh8qNYsiRRXKcnEoplAZY-zO1UxKySSck99MIRJl9bpJTceJghyddruE1zS0EPHQLZcvEZVrF8Pov13nlkgOOohw4MLdsOYvBmEh7Dg2GPuN0IDVc99MxROwcFqXe9xFKttpscPBT48PD6b6SM4ZQR5qGHlk1d79BMGMaP_jT8Y3Srm0lP0F59uVVPwVqtiyEa0AUdov1JNj3_MDRC9xOyAZCR |
link.rule.ids | 315,783,787,27936,27937,31732,33757 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+control+of+fruit+vitamin+C+contents&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=DAVEY%2C+Mark+W&rft.au=KENIS%2C+Katrien&rft.au=KEULEMANS%2C+Johan&rft.date=2006-09-01&rft.pub=American+Society+of+Plant+Physiologists&rft.issn=0032-0889&rft.eissn=1532-2548&rft.volume=142&rft.issue=1&rft.spage=343&rft.epage=351&rft_id=info:doi/10.1104%2Fpp.106.083279&rft.externalDBID=n%2Fa&rft.externalDocID=18118577 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon |