Genetic Control of Fruit Vitamin C Contents

An F₁ progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci (QTL) linked to the vitamin C (L-ascorbate [L-AA]) contents of fruit skin and flesh (cortex) tissues. We identified up to three highly significant QTLs...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 142; no. 1; pp. 343 - 351
Main Authors Davey, Mark W, Kenis, Katrien, Keulemans, Johan
Format Journal Article
LanguageEnglish
Published Rockville, MD American Society of Plant Biologists 01.09.2006
American Society of Plant Physiologists
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An F₁ progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci (QTL) linked to the vitamin C (L-ascorbate [L-AA]) contents of fruit skin and flesh (cortex) tissues. We identified up to three highly significant QTLs for both the mean L-AA and the mean total L-AA contents of fruit flesh on both parental genetic linkage maps, confirming the quantitative nature of these traits. These QTLs account for up to a maximum of 60% of the total population variation observed in the progeny, and with a maximal individual contribution of 31% per QTL. QTLs common to both parents were identified on linkage groups (LGs) 6, 10, and 11 of the Malus reference map, while each parent also had additional unique QTLs on other LGs. Interestingly, one strong QTL on LG-17 of the Telamon linkage map colocalized with a highly significant QTL associated with flesh browning, and a minor QTL for dehydroascorbate content, supporting earlier work that links fruit L-AA contents with the susceptibility of hardfruit to postharvest browning. We also found significant minor QTLs for skin L-AA and total L-AA (L-AA + dehydroascorbate) contents in Telamon. Currently, little is known about the genetic determinants underlying tissue L-AA homeostasis, but the presence of major, highly significant QTL in both these apple genotypes under field conditions suggests the existence of common control mechanisms, allelic heterozygosity, and helps outline strategies and the potential for the molecular breeding of these traits.
AbstractList Abstract An F1 progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci (QTL) linked to the vitamin C (l-ascorbate [l-AA]) contents of fruit skin and flesh (cortex) tissues. We identified up to three highly significant QTLs for both the mean l-AA and the mean total l-AA contents of fruit flesh on both parental genetic linkage maps, confirming the quantitative nature of these traits. These QTLs account for up to a maximum of 60% of the total population variation observed in the progeny, and with a maximal individual contribution of 31% per QTL. QTLs common to both parents were identified on linkage groups (LGs) 6, 10, and 11 of the Malus reference map, while each parent also had additional unique QTLs on other LGs. Interestingly, one strong QTL on LG-17 of the Telamon linkage map colocalized with a highly significant QTL associated with flesh browning, and a minor QTL for dehydroascorbate content, supporting earlier work that links fruit l-AA contents with the susceptibility of hardfruit to postharvest browning. We also found significant minor QTLs for skin l-AA and total l-AA (l-AA + dehydroascorbate) contents in Telamon. Currently, little is known about the genetic determinants underlying tissue l-AA homeostasis, but the presence of major, highly significant QTL in both these apple genotypes under field conditions suggests the existence of common control mechanisms, allelic heterozygosity, and helps outline strategies and the potential for the molecular breeding of these traits.
An F₁ progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci (QTL) linked to the vitamin C (L-ascorbate [L-AA]) contents of fruit skin and flesh (cortex) tissues. We identified up to three highly significant QTLs for both the mean L-AA and the mean total L-AA contents of fruit flesh on both parental genetic linkage maps, confirming the quantitative nature of these traits. These QTLs account for up to a maximum of 60% of the total population variation observed in the progeny, and with a maximal individual contribution of 31% per QTL. QTLs common to both parents were identified on linkage groups (LGs) 6, 10, and 11 of the Malus reference map, while each parent also had additional unique QTLs on other LGs. Interestingly, one strong QTL on LG-17 of the Telamon linkage map colocalized with a highly significant QTL associated with flesh browning, and a minor QTL for dehydroascorbate content, supporting earlier work that links fruit L-AA contents with the susceptibility of hardfruit to postharvest browning. We also found significant minor QTLs for skin L-AA and total L-AA (L-AA + dehydroascorbate) contents in Telamon. Currently, little is known about the genetic determinants underlying tissue L-AA homeostasis, but the presence of major, highly significant QTL in both these apple genotypes under field conditions suggests the existence of common control mechanisms, allelic heterozygosity, and helps outline strategies and the potential for the molecular breeding of these traits.
An F(1) progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci (QTL) linked to the vitamin C (l-ascorbate [l-AA]) contents of fruit skin and flesh (cortex) tissues. We identified up to three highly significant QTLs for both the mean l-AA and the mean total l-AA contents of fruit flesh on both parental genetic linkage maps, confirming the quantitative nature of these traits. These QTLs account for up to a maximum of 60% of the total population variation observed in the progeny, and with a maximal individual contribution of 31% per QTL. QTLs common to both parents were identified on linkage groups (LGs) 6, 10, and 11 of the Malus reference map, while each parent also had additional unique QTLs on other LGs. Interestingly, one strong QTL on LG-17 of the Telamon linkage map colocalized with a highly significant QTL associated with flesh browning, and a minor QTL for dehydroascorbate content, supporting earlier work that links fruit l-AA contents with the susceptibility of hardfruit to postharvest browning. We also found significant minor QTLs for skin l-AA and total l-AA (l-AA + dehydroascorbate) contents in Telamon. Currently, little is known about the genetic determinants underlying tissue l-AA homeostasis, but the presence of major, highly significant QTL in both these apple genotypes under field conditions suggests the existence of common control mechanisms, allelic heterozygosity, and helps outline strategies and the potential for the molecular breeding of these traits.
An F sub(1) progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci (QTL) linked to the vitamin C (L-ascorbate [L-AA]) contents of fruit skin and flesh (cortex) tissues. We identified up to three highly significant QTLs for both the mean L-AA and the mean total L-AA contents of fruit flesh on both parental genetic linkage maps, confirming the quantitative nature of these traits. These QTLs account for up to a maximum of 60% of the total population variation observed in the progeny, and with a maximal individual contribution of 31% per QTL. QTLs common to both parents were identified on linkage groups (LGs) 6, 10, and 11 of the Malus reference map, while each parent also had additional unique QTLs on other LGs. Interestingly, one strong QTL on LG-17 of the Telamon linkage map colocalized with a highly significant QTL associated with flesh browning, and a minor QTL for dehydroascorbate content, supporting earlier work that links fruit L-AA contents with the susceptibility of hardfruit to postharvest browning. We also found significant minor QTLs for skin L-AA and total L-AA (L-AA + dehydroascorbate) contents in Telamon. Currently, little is known about the genetic determinants underlying tissue L-AA homeostasis, but the presence of major, highly significant QTL in both these apple genotypes under field conditions suggests the existence of common control mechanisms, allelic heterozygosity, and helps outline strategies and the potential for the molecular breeding of these traits.
Author Keulemans, Johan
Kenis, Katrien
Davey, Mark W
Author_xml – sequence: 1
  fullname: Davey, Mark W
– sequence: 2
  fullname: Kenis, Katrien
– sequence: 3
  fullname: Keulemans, Johan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18118577$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16844833$$D View this record in MEDLINE/PubMed
BookMark eNqFkM1LxDAQxYOsuB969Kj2ohfpOknafByluKuw4EHXa0nbVLp0m5q0B_97s7a4R2FgBt6PNzNvjiaNaTRClxiWGEP00LZLDGwJghIuT9AMx5SEJI7EBM0A_AxCyCmaO7cDAExxdIammIkoEpTO0P1aN7qr8iAxTWdNHZgyWNm-6oKPqlP7qgmSX0k3nTtHp6Wqnb4Y-wJtV0_vyXO4eV2_JI-bMI-p7EKu_RrGtCxLzHNZSKUEIxFIVciCawWFZEoXMsMR4ZhRoDJSeQGlEjzjWUwX6G7wba356rXr0n3lcl3XqtGmdykTgvoHxL8gltSXBA-GA5hb45zVZdraaq_sd4ohPcSYtq0fWTrE6Pnr0bjP9ro40mNuHrgdAeVyVZdWNXnljpzAWMSce-5q4HauM_ZPJ0AgluSg3wx6qUyqPq332L4Rnx_4q7wLpz8x04yf
CODEN PPHYA5
CitedBy_id crossref_primary_10_1007_s00122_011_1624_6
crossref_primary_10_1093_plphys_kiab010
crossref_primary_10_32604_phyton_2022_020100
crossref_primary_10_1371_journal_pone_0091016
crossref_primary_10_1016_j_postharvbio_2021_111563
crossref_primary_10_1007_s11295_016_1046_3
crossref_primary_10_1093_hr_uhad006
crossref_primary_10_3389_fpls_2016_00397
crossref_primary_10_1016_j_postharvbio_2013_07_035
crossref_primary_10_3390_molecules26010016
crossref_primary_10_1016_j_plaphy_2020_03_006
crossref_primary_10_1146_annurev_food_060822_113022
crossref_primary_10_1002_biot_201200041
crossref_primary_10_1093_jxb_err464
crossref_primary_10_1007_s11032_009_9268_9
crossref_primary_10_1007_s11032_011_9674_7
crossref_primary_10_1016_j_scienta_2023_112150
crossref_primary_10_1007_s11295_016_0996_9
crossref_primary_10_3389_fpls_2018_01694
crossref_primary_10_1007_s10535_015_0540_z
crossref_primary_10_3390_horticulturae8090814
crossref_primary_10_1016_j_plaphy_2014_09_009
crossref_primary_10_1007_s00299_017_2127_y
crossref_primary_10_1016_j_foodchem_2017_01_014
crossref_primary_10_1111_j_1467_7652_2011_00668_x
crossref_primary_10_1007_s11032_008_9252_9
crossref_primary_10_1038_s41598_019_55070_5
crossref_primary_10_1038_hortres_2016_57
crossref_primary_10_1016_j_foodchem_2021_131818
crossref_primary_10_1186_s12870_014_0328_x
crossref_primary_10_3389_fpls_2018_02006
crossref_primary_10_1002_biof_5520340104
crossref_primary_10_1007_s10341_015_0264_4
crossref_primary_10_1111_j_1399_3054_2012_01641_x
crossref_primary_10_1007_s00438_012_0689_5
crossref_primary_10_1007_s00122_012_1803_0
crossref_primary_10_1002_jsfa_12159
crossref_primary_10_1007_s11295_011_0425_z
crossref_primary_10_1093_jxb_err122
crossref_primary_10_5897_IJGMB2018_0167
crossref_primary_10_1007_s12041_019_1088_z
crossref_primary_10_1093_jxb_ers297
crossref_primary_10_1093_aob_mct026
crossref_primary_10_1007_s00438_014_0957_7
crossref_primary_10_1111_mec_17268
crossref_primary_10_3390_plants8070237
crossref_primary_10_1007_s11295_015_0947_x
crossref_primary_10_1104_pp_112_203786
crossref_primary_10_2503_jjshs1_78_279
crossref_primary_10_1007_s11295_009_0219_8
crossref_primary_10_1007_s11295_008_0140_6
crossref_primary_10_1007_s11295_008_0146_0
crossref_primary_10_3389_fchem_2017_00050
crossref_primary_10_1007_s11816_008_0059_2
crossref_primary_10_1016_j_foodchem_2015_12_044
crossref_primary_10_1016_j_pbi_2016_04_010
crossref_primary_10_1186_1471_2229_12_12
crossref_primary_10_1016_j_scienta_2023_112806
crossref_primary_10_1007_s00425_013_1898_9
crossref_primary_10_1111_j_1365_3040_2008_01824_x
crossref_primary_10_1371_journal_pone_0078004
crossref_primary_10_1016_j_scienta_2016_12_021
Cites_doi 10.1016/j.pbi.2006.01.010
10.1007/s00122-004-1624-x
10.1016/S0925-5214(02)00198-9
10.1104/pp.125.4.2164
10.1021/jf0503863
10.1007/s001220050835
10.1111/j.1365-3040.2004.01238.x
10.1111/j.1365-3040.2005.01467.x
10.1016/S0168-9452(01)00522-2
10.21273/JASHS.119.2.264
10.1007/s10681-005-6805-4
10.1007/s001220100720
10.1002/(SICI)1097-0010(20000515)80:7<861::AID-JSFA601>3.0.CO;2-P
10.1111/j.1365-3040.2004.01203.x
10.1073/pnas.96.7.4198
10.1046/j.1439-0523.2002.730285.x
10.2135/cropsci2004.1825
10.1126/science.1078002
10.1146/annurev.arplant.49.1.249
10.1105/tpc.105.036053
10.1016/S0003-2697(03)00047-2
10.1007/s00122-003-1209-0
10.1046/j.1365-313X.2002.01315.x
10.1016/j.plantsci.2005.08.009
10.1034/j.1399-3054.1999.100106.x
10.1021/jf9708406
10.1016/S0925-5214(03)00108-X
10.1007/s00122-004-1803-9
10.21273/HORTSCI.39.5.924
10.1007/BF01288367
10.1093/jxb/erh207
10.1080/14620316.2001.11511343
10.1094/PHYTO.2003.93.4.493
10.1016/S0925-5214(00)00095-8
10.1104/pp.103.023572
10.1007/s001220051389
10.1038/nbt1108
10.1007/s001220000530
10.21273/JASHS.120.3.532
10.1093/ajcn/69.6.1086
10.1021/jf026229a
10.1007/s10681-005-1681-5
10.1038/nbt1192
10.1093/genetics/141.3.1147
10.1016/S1369-5266(00)00069-8
10.1007/s00122-005-0071-7
10.21273/JASHS.123.6.992
10.1007/s001220050867
10.1111/j.1399-3054.2006.00640.x
10.1021/jf048531k
10.1023/A:1024886500979
10.1038/sj.hdy.6886230
10.1007/s11032-004-5592-2
10.1002/(SICI)1097-0010(20000515)80:7<825::AID-JSFA598>3.0.CO;2-6
ContentType Journal Article
Copyright Copyright 2006 American Society of Plant Biologists
2006 INIST-CNRS
Copyright_xml – notice: Copyright 2006 American Society of Plant Biologists
– notice: 2006 INIST-CNRS
DBID FBQ
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
FR3
P64
RC3
7X8
DOI 10.1104/pp.106.083279
DatabaseName AGRIS
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic

Genetics Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1532-2548
EndPage 351
ExternalDocumentID 10_1104_pp_106_083279
16844833
18118577
20205927
US201301101817
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
123
29O
2AX
2WC
2~F
3V.
4.4
53G
5VS
5WD
7X2
7X7
85S
88A
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8G5
8R4
8R5
AAHKG
AAPXW
AAVAP
AAWDT
AAXTN
AAYJJ
ABBHK
ABJNI
ABPLY
ABPPZ
ABPTD
ABPTK
ABTLG
ABUWG
ABXZS
ACBTR
ACFRR
ACGOD
ACIPB
ACNCT
ACPRK
ACUFI
ACUTJ
ADBBV
ADIPN
ADIYS
ADULT
ADVEK
ADYHW
ADZLD
AEEJZ
AENEX
AESBF
AEUPB
AFAZZ
AFDAS
AFFDN
AFFZL
AFGWE
AFKRA
AFRAH
AFYAG
AGUYK
AHMBA
AICQM
AIDAL
AIDBO
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ANFBD
AQDSO
AS~
ATCPS
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BHPHI
BPHCQ
BTFSW
BVXVI
BYORX
C1A
CBGCD
CCPQU
CS3
CWIXF
D1J
DATOO
DFEDG
DIK
DOOOF
DU5
DWIUU
DWQXO
E3Z
EBS
ECGQY
EJD
F20
F5P
FBQ
FLUFQ
FOEOM
FYUFA
GNUQQ
GTFYD
GUQSH
HCIFZ
HMCUK
HTVGU
ISR
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KOP
KQ8
KSI
KSN
LK8
M0K
M0L
M1P
M2O
M2P
M2Q
M7P
MV1
MVM
NOMLY
OBOKY
OJZSN
OK1
OWPYF
P0-
P2P
PQQKQ
PROAC
PSQYO
Q2X
QZG
RHF
RHI
ROX
RPB
RPM
RWL
RXW
S0X
SA0
TAE
TCN
TN5
TR2
UBC
UKHRP
UKR
VQA
W8F
WH7
WHG
WOQ
XOL
XSW
Y6R
YBU
YKV
YNT
YSK
YZZ
ZCA
ZCG
ZCN
~02
~KM
ABXSQ
AQVQM
08R
AAPBV
H13
IQODW
0R~
AAHBH
AARHZ
AAUAY
ABMNT
ABXVV
ACZBC
ADACV
ADQBN
AGMDO
AHXOZ
ALIPV
ATGXG
BEYMZ
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
AASNB
AAYXX
CITATION
8FD
FR3
P64
RC3
7X8
ID FETCH-LOGICAL-c539t-7e01366e9ff17c9d9aa862409ad9d7ea0d96aed9b14271630394acd0fa87b7b53
ISSN 0032-0889
1532-2548
IngestDate Fri Oct 25 05:25:43 EDT 2024
Fri Oct 25 21:36:44 EDT 2024
Fri Aug 23 03:05:50 EDT 2024
Tue Oct 15 23:30:52 EDT 2024
Sun Oct 22 16:05:09 EDT 2023
Fri Feb 02 08:15:41 EST 2024
Wed Dec 27 19:15:47 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Agronomic character
Quantitative trait loci
Fruit
Genetic control
Dicotyledones
Angiospermae
Rosaceae
Homeostasis
Spermatophyta
Malus
Heterozygosity
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c539t-7e01366e9ff17c9d9aa862409ad9d7ea0d96aed9b14271630394acd0fa87b7b53
Notes http://www.plantphysiol.org/
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/plphys/article-pdf/142/1/343/38708511/plphys_v142_1_343.pdf
PMID 16844833
PQID 19319390
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_68836848
proquest_miscellaneous_19319390
crossref_primary_10_1104_pp_106_083279
pubmed_primary_16844833
pascalfrancis_primary_18118577
jstor_primary_20205927
fao_agris_US201301101817
PublicationCentury 2000
PublicationDate 2006-09-01
PublicationDateYYYYMMDD 2006-09-01
PublicationDate_xml – month: 09
  year: 2006
  text: 2006-09-01
  day: 01
PublicationDecade 2000
PublicationPlace Rockville, MD
PublicationPlace_xml – name: Rockville, MD
– name: United States
PublicationTitle Plant physiology (Bethesda)
PublicationTitleAlternate Plant Physiol
PublicationYear 2006
Publisher American Society of Plant Biologists
American Society of Plant Physiologists
Publisher_xml – name: American Society of Plant Biologists
– name: American Society of Plant Physiologists
References 10097187 - Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4198-203
12956523 - Plant Mol Biol. 2003 Jun;52(3):511-26
16531992 - Nat Biotechnol. 2006 Apr;24(4):447-54
12970477 - Plant Physiol. 2003 Sep;133(1):84-99
15969504 - J Agric Food Chem. 2005 Jun 29;53(13):5248-57
10357726 - Am J Clin Nutr. 1999 Jun;69(6):1086-107
10837263 - Curr Opin Plant Biol. 2000 Jun;3(3):229-35
15052401 - Theor Appl Genet. 2004 Jun;109(1):231-9
15012235 - Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:249-279
18944365 - Phytopathology. 2003 Apr;93(4):493-501
15612792 - J Agric Food Chem. 2004 Dec 29;52(26):8031-8
16243903 - Plant Cell. 2005 Nov;17(11):2954-65
12677403 - Theor Appl Genet. 2003 May;106(8):1497-508
11299395 - Plant Physiol. 2001 Apr;125(4):2164-72
12481128 - Science. 2002 Dec 13;298(5601):2149-53
16480915 - Curr Opin Plant Biol. 2006 Apr;9(2):196-202
12694729 - Anal Biochem. 2003 May 1;316(1):74-81
17087471 - Plant Cell Environ. 2006 May;29(5):879-87
14705909 - J Agric Food Chem. 2003 Jul 30;51(16):4757-63
10620035 - Heredity (Edinb). 1999 Nov;83 (Pt 5):613-24
8582620 - Genetics. 1995 Nov;141(3):1147-62
15951803 - Nat Biotechnol. 2005 Jul;23(7):890-5
15365630 - Theor Appl Genet. 2004 Nov;109(8):1702-9
11732316 - Protoplasma. 2001;218(1-2):112-6
15258170 - J Exp Bot. 2004 Aug;55(403):1671-85
12047629 - Plant J. 2002 Jun;30(5):541-53
16177901 - Theor Appl Genet. 2005 Nov;111(7):1396-408
(2021062206094176200_b52) 2005; 111
(2021062206094176200_b42) 2001; 76
(2021062206094176200_b8) 2004; 27
(2021062206094176200_b31) 2005; 53
(2021062206094176200_b3) 2004; 109
(2021062206094176200_b35) 2005; 15
(2021062206094176200_b61) 2006; 170
(2021062206094176200_b26) 2002; 30
(2021062206094176200_b20) 2000; 190
(2021062206094176200_b22) 2003; 30
(2021062206094176200_b24) 2006
(2021062206094176200_b10) 1998; 96
(2021062206094176200_b21) 2006; 9
(2021062206094176200_b39) 2000; 100
(2021062206094176200_b7) 2005; 142
(2021062206094176200_b5) 1999; 69
(2021062206094176200_b46) 2003; 93
(2021062206094176200_b60) 2001; 125
(2021062206094176200_b27) 2006; 29
(2021062206094176200_b25) 2000; 80
(2021062206094176200_b45) 2003; 106
(2021062206094176200_b49) 2001; 218
(2021062206094176200_b23) 2003; 51
(2021062206094176200_b9) 1999; 96
(2021062206094176200_b53) 2006; 24
(2021062206094176200_b33) 2004; 39
(2021062206094176200_b12) 2003; 316
(2021062206094176200_b51) 2003; 133
(2021062206094176200_b11) 2005; 141
(2021062206094176200_b15) 2000; 80
(2021062206094176200_b2) 2002; 121
(2021062206094176200_b36) 2006
(2021062206094176200_b40) 2004; 44
(2021062206094176200_b14) 2004; 52
(2021062206094176200_b56) 2002
(2021062206094176200_b4) 1994; 119
(2021062206094176200_b50) 1998; 49
(2021062206094176200_b1) 2005; 17
(2021062206094176200_b41) 1999; 78
(2021062206094176200_b38) 2001; 102
(2021062206094176200_b30) 2004; 109
(2021062206094176200_b19) 1998; 46
(2021062206094176200_b58) 2003; 28
(2021062206094176200_b32) 1998; 123
(2021062206094176200_b48) 2001; 103
(2021062206094176200_b47) 1998; 97
(2021062206094176200_b44) 2003; 52
(2021062206094176200_b6) 2004; 55
(2021062206094176200_b55) 1999; 83
(2021062206094176200_b13) 2004; 27
(2021062206094176200_b57) 2000; 19
(2021062206094176200_b16) 2005; 23
(2021062206094176200_b54) 2000; 3
(2021062206094176200_b43) 1995; 120
(2021062206094176200_b17) 2002; 298
(2021062206094176200_b59) 1999; 107
(2021062206094176200_b18) 1995; 141
(2021062206094176200_b37) 2001; 161
(2021062206094176200_b34) 2006; 126
References_xml – volume: 9
  start-page: 196
  year: 2006
  ident: 2021062206094176200_b21
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2006.01.010
– volume: 109
  start-page: 231
  year: 2004
  ident: 2021062206094176200_b3
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-004-1624-x
– volume: 28
  start-page: 295
  year: 2003
  ident: 2021062206094176200_b58
  publication-title: Postharvest Biol Technol
  doi: 10.1016/S0925-5214(02)00198-9
– volume: 125
  start-page: 2164
  year: 2001
  ident: 2021062206094176200_b60
  publication-title: Plant Physiol
  doi: 10.1104/pp.125.4.2164
– volume: 53
  start-page: 5248
  year: 2005
  ident: 2021062206094176200_b31
  publication-title: J Agric Food Chem
  doi: 10.1021/jf0503863
– volume: 96
  start-page: 1027
  year: 1998
  ident: 2021062206094176200_b10
  publication-title: Theor Appl Genet
  doi: 10.1007/s001220050835
– volume: 27
  start-page: 1309
  year: 2004
  ident: 2021062206094176200_b13
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2004.01238.x
– volume: 29
  start-page: 879
  year: 2006
  ident: 2021062206094176200_b27
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2005.01467.x
– volume: 161
  start-page: 1145
  year: 2001
  ident: 2021062206094176200_b37
  publication-title: Plant Sci
  doi: 10.1016/S0168-9452(01)00522-2
– volume: 119
  start-page: 264
  year: 1994
  ident: 2021062206094176200_b4
  publication-title: J Am Soc Hortic Sci
  doi: 10.21273/JASHS.119.2.264
– volume: 141
  start-page: 181
  year: 2005
  ident: 2021062206094176200_b11
  publication-title: Euphytica
  doi: 10.1007/s10681-005-6805-4
– volume: 103
  start-page: 1243
  year: 2001
  ident: 2021062206094176200_b48
  publication-title: Theor Appl Genet
  doi: 10.1007/s001220100720
– volume: 80
  start-page: 861
  year: 2000
  ident: 2021062206094176200_b25
  publication-title: J Sci Food Agric
  doi: 10.1002/(SICI)1097-0010(20000515)80:7<861::AID-JSFA601>3.0.CO;2-P
– volume: 27
  start-page: 959
  year: 2004
  ident: 2021062206094176200_b8
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2004.01203.x
– volume: 96
  start-page: 4198
  year: 1999
  ident: 2021062206094176200_b9
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.96.7.4198
– year: 2006
  ident: 2021062206094176200_b36
– year: 2006
  ident: 2021062206094176200_b24
– volume: 121
  start-page: 281
  year: 2002
  ident: 2021062206094176200_b2
  publication-title: Plant Breed
  doi: 10.1046/j.1439-0523.2002.730285.x
– volume: 44
  start-page: 1825
  year: 2004
  ident: 2021062206094176200_b40
  publication-title: Crop Sci
  doi: 10.2135/cropsci2004.1825
– volume: 298
  start-page: 2149
  year: 2002
  ident: 2021062206094176200_b17
  publication-title: Science
  doi: 10.1126/science.1078002
– volume: 49
  start-page: 249
  year: 1998
  ident: 2021062206094176200_b50
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
  doi: 10.1146/annurev.arplant.49.1.249
– volume: 17
  start-page: 2954
  year: 2005
  ident: 2021062206094176200_b1
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.036053
– volume: 316
  start-page: 74
  year: 2003
  ident: 2021062206094176200_b12
  publication-title: Anal Biochem
  doi: 10.1016/S0003-2697(03)00047-2
– volume: 106
  start-page: 1497
  year: 2003
  ident: 2021062206094176200_b45
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-003-1209-0
– volume: 30
  start-page: 541
  year: 2002
  ident: 2021062206094176200_b26
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.2002.01315.x
– volume: 170
  start-page: 120
  year: 2006
  ident: 2021062206094176200_b61
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2005.08.009
– volume: 107
  start-page: 39
  year: 1999
  ident: 2021062206094176200_b59
  publication-title: Physiol Plant
  doi: 10.1034/j.1399-3054.1999.100106.x
– volume: 46
  start-page: 2469
  year: 1998
  ident: 2021062206094176200_b19
  publication-title: J Agric Food Chem
  doi: 10.1021/jf9708406
– volume: 30
  start-page: 133
  year: 2003
  ident: 2021062206094176200_b22
  publication-title: Postharvest Biol Technol
  doi: 10.1016/S0925-5214(03)00108-X
– volume: 190
  start-page: 1
  year: 2000
  ident: 2021062206094176200_b20
  publication-title: Physiol Plant
– year: 2002
  ident: 2021062206094176200_b56
– volume: 109
  start-page: 1702
  year: 2004
  ident: 2021062206094176200_b30
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-004-1803-9
– volume: 39
  start-page: 924
  year: 2004
  ident: 2021062206094176200_b33
  publication-title: HortScience
  doi: 10.21273/HORTSCI.39.5.924
– volume: 218
  start-page: 112
  year: 2001
  ident: 2021062206094176200_b49
  publication-title: Protoplasma
  doi: 10.1007/BF01288367
– volume: 55
  start-page: 1671
  year: 2004
  ident: 2021062206094176200_b6
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erh207
– volume: 76
  start-page: 157
  year: 2001
  ident: 2021062206094176200_b42
  publication-title: J Hortic Sci Biotechnol
  doi: 10.1080/14620316.2001.11511343
– volume: 93
  start-page: 493
  year: 2003
  ident: 2021062206094176200_b46
  publication-title: Phytopathology
  doi: 10.1094/PHYTO.2003.93.4.493
– volume: 19
  start-page: 129
  year: 2000
  ident: 2021062206094176200_b57
  publication-title: Postharvest Biol Technol
  doi: 10.1016/S0925-5214(00)00095-8
– volume: 133
  start-page: 84
  year: 2003
  ident: 2021062206094176200_b51
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.023572
– volume: 100
  start-page: 1074
  year: 2000
  ident: 2021062206094176200_b39
  publication-title: Theor Appl Genet
  doi: 10.1007/s001220051389
– volume: 23
  start-page: 890
  year: 2005
  ident: 2021062206094176200_b16
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1108
– volume: 102
  start-page: 1227
  year: 2001
  ident: 2021062206094176200_b38
  publication-title: Theor Appl Genet
  doi: 10.1007/s001220000530
– volume: 120
  start-page: 532
  year: 1995
  ident: 2021062206094176200_b43
  publication-title: J Am Soc Hortic Sci
  doi: 10.21273/JASHS.120.3.532
– volume: 69
  start-page: 1086
  year: 1999
  ident: 2021062206094176200_b5
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/69.6.1086
– volume: 51
  start-page: 4757
  year: 2003
  ident: 2021062206094176200_b23
  publication-title: J Agric Food Chem
  doi: 10.1021/jf026229a
– volume: 142
  start-page: 169
  year: 2005
  ident: 2021062206094176200_b7
  publication-title: Euphytica
  doi: 10.1007/s10681-005-1681-5
– volume: 24
  start-page: 447
  year: 2006
  ident: 2021062206094176200_b53
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1192
– volume: 141
  start-page: 1147
  year: 1995
  ident: 2021062206094176200_b18
  publication-title: Genetics
  doi: 10.1093/genetics/141.3.1147
– volume: 3
  start-page: 229
  year: 2000
  ident: 2021062206094176200_b54
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/S1369-5266(00)00069-8
– volume: 111
  start-page: 1396
  year: 2005
  ident: 2021062206094176200_b52
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-005-0071-7
– volume: 123
  start-page: 992
  year: 1998
  ident: 2021062206094176200_b32
  publication-title: J Am Soc Hortic Sci
  doi: 10.21273/JASHS.123.6.992
– volume: 97
  start-page: 60
  year: 1998
  ident: 2021062206094176200_b47
  publication-title: Theor Appl Genet
  doi: 10.1007/s001220050867
– volume: 126
  start-page: 343
  year: 2006
  ident: 2021062206094176200_b34
  publication-title: Physiol Plant
  doi: 10.1111/j.1399-3054.2006.00640.x
– volume: 52
  start-page: 8031
  year: 2004
  ident: 2021062206094176200_b14
  publication-title: J Agric Food Chem
  doi: 10.1021/jf048531k
– volume: 52
  start-page: 511
  year: 2003
  ident: 2021062206094176200_b44
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1024886500979
– volume: 83
  start-page: 613
  year: 1999
  ident: 2021062206094176200_b55
  publication-title: Heredity
  doi: 10.1038/sj.hdy.6886230
– volume: 15
  start-page: 205
  year: 2005
  ident: 2021062206094176200_b35
  publication-title: Mol Breed
  doi: 10.1007/s11032-004-5592-2
– volume: 80
  start-page: 825
  year: 2000
  ident: 2021062206094176200_b15
  publication-title: J Sci Food Agric
  doi: 10.1002/(SICI)1097-0010(20000515)80:7<825::AID-JSFA598>3.0.CO;2-6
– volume: 78
  start-page: 232
  year: 1999
  ident: 2021062206094176200_b41
  publication-title: J Sci Food Agric
SSID ssj0001314
Score 2.224745
Snippet An F₁ progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci (QTL)...
An F(1) progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci (QTL)...
Abstract An F1 progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci...
An F sub(1) progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci...
SourceID proquest
crossref
pubmed
pascalfrancis
jstor
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 343
SubjectTerms Agronomy. Soil science and plant productions
Antioxidants
Ascorbic Acid - metabolism
Biological and medical sciences
Economic plant physiology
Fructification, ripening. Postharvest physiology
Fruit - metabolism
Fruit - physiology
Fruits
Fundamental and applied biological sciences. Psychology
Genes, Plant
Genetic mapping
Genetics, Genomics, and Molecular Evolution
Growth and development
Malus
Malus - genetics
Malus - metabolism
Metabolism
Nutritive Value
Phenotypic traits
Plants
Population characteristics
Population mean
Quantitative Trait Loci
Vitamin C
Title Genetic Control of Fruit Vitamin C Contents
URI https://www.jstor.org/stable/20205927
https://www.ncbi.nlm.nih.gov/pubmed/16844833
https://search.proquest.com/docview/19319390
https://search.proquest.com/docview/68836848
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfoxgMviK-x8FHygHipMpLYie3HdgQNxqpBV1SeIsdxEA-01ZoiwV_P2Y6ThjHxIVVR5LR2enc-353vfkboOSGcJYTATCM0DoggUVCUmAREVmEomZLMFAqfTdOTOXm7SBZdSpCpLqmLI_njt3Ul_8NVaAO-6irZf-Bs2yk0wD3wF67AYbj-FY81ZrQGXHX55mD4VZfbL_XoG3j8X3U9n3nk4JqcEaoPKqptTMMiMIGVOdGFv5tS7EQGXo0_Zp9cPc-ojcWcZtM3syYRQ4Mkd-3zd9nZeDprMnwbsduJKPBedobbKnJ5ozoZz7zYuXsxkMDdUGKI40CnS9k1xSnSOADnk_U0LYmviJTVm9hiNTVLMLYYtFe1e0j0kcTro0hvIYEuorxbxtzW_S-rW5tzCKaMxr2iA7QPv8NaG56-75DlI2xx4N1_afFYycvegD37ZVCJlUtk1Vm1YgMTq7InolzvshjT5eIOut34HP7YCtBddEMt76GbkxX4Bd_vo1EjRX4jRf6q8o0U-Y0U-ce-k6IHaP46uzg-CZojNAKZYF4HVGlMvlTxqoqo5CUXQlcEhVyUvKRKhCVPhSq5DgWC5wz2DCdClmElGC1okeADtLdcLdUh8qNYsiRRXKcnEoplAZY-zO1UxKySSck99MIRJl9bpJTceJghyddruE1zS0EPHQLZcvEZVrF8Pov13nlkgOOohw4MLdsOYvBmEh7Dg2GPuN0IDVc99MxROwcFqXe9xFKttpscPBT48PD6b6SM4ZQR5qGHlk1d79BMGMaP_jT8Y3Srm0lP0F59uVVPwVqtiyEa0AUdov1JNj3_MDRC9xOyAZCR
link.rule.ids 315,783,787,27936,27937,31732,33757
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+control+of+fruit+vitamin+C+contents&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=DAVEY%2C+Mark+W&rft.au=KENIS%2C+Katrien&rft.au=KEULEMANS%2C+Johan&rft.date=2006-09-01&rft.pub=American+Society+of+Plant+Physiologists&rft.issn=0032-0889&rft.eissn=1532-2548&rft.volume=142&rft.issue=1&rft.spage=343&rft.epage=351&rft_id=info:doi/10.1104%2Fpp.106.083279&rft.externalDBID=n%2Fa&rft.externalDocID=18118577
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon