Droplet clusters: nature-inspired biological reactors and aerosols

Condensed microdroplets play a prominent role in living nature, participating in various phenomena, from water harvesting by plants and insects to microorganism migration in bioaerosols. Microdroplets may also form regular self-organized patterns, such as the hexagonally ordered breath figures on a...

Full description

Saved in:
Bibliographic Details
Published inPhilosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences Vol. 377; no. 2150; p. 20190121
Main Authors Fedorets, Alexander A., Bormashenko, Edward, Dombrovsky, Leonid A., Nosonovsky, Michael
Format Journal Article
LanguageEnglish
Published England The Royal Society Publishing 29.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Condensed microdroplets play a prominent role in living nature, participating in various phenomena, from water harvesting by plants and insects to microorganism migration in bioaerosols. Microdroplets may also form regular self-organized patterns, such as the hexagonally ordered breath figures on a solid surface or levitating monolayer droplet clusters over a locally heated water layer. While the breath figures have been studied since the nineteenth century, they have found a recent application in polymer surface micropatterning (e.g. for superhydrophobicity). Droplet clusters were discovered in 2004, and they are the subject of active research. Methods to control and stabilize droplet clusters make them suitable for the in situ analysis of bioaerosols. Studying life in bioaerosols is important for understanding microorganism origins and migration; however, direct observation with traditional methods has not been possible. We report preliminary results on direct in situ observation of microorganisms in droplet clusters. We also present a newly observed transition between the hexagonally ordered and chain-like states of a droplet cluster. This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology (part 2)’.
AbstractList Condensed microdroplets play a prominent role in living nature, participating in various phenomena, from water harvesting by plants and insects to microorganism migration in bioaerosols. Microdroplets may also form regular self-organized patterns, such as the hexagonally ordered breath figures on a solid surface or levitating monolayer droplet clusters over a locally heated water layer. While the breath figures have been studied since the nineteenth century, they have found a recent application in polymer surface micropatterning (e.g. for superhydrophobicity). Droplet clusters were discovered in 2004, and they are the subject of active research. Methods to control and stabilize droplet clusters make them suitable for the in situ analysis of bioaerosols. Studying life in bioaerosols is important for understanding microorganism origins and migration; however, direct observation with traditional methods has not been possible. We report preliminary results on direct in situ observation of microorganisms in droplet clusters. We also present a newly observed transition between the hexagonally ordered and chain-like states of a droplet cluster. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology (part 2)'.Condensed microdroplets play a prominent role in living nature, participating in various phenomena, from water harvesting by plants and insects to microorganism migration in bioaerosols. Microdroplets may also form regular self-organized patterns, such as the hexagonally ordered breath figures on a solid surface or levitating monolayer droplet clusters over a locally heated water layer. While the breath figures have been studied since the nineteenth century, they have found a recent application in polymer surface micropatterning (e.g. for superhydrophobicity). Droplet clusters were discovered in 2004, and they are the subject of active research. Methods to control and stabilize droplet clusters make them suitable for the in situ analysis of bioaerosols. Studying life in bioaerosols is important for understanding microorganism origins and migration; however, direct observation with traditional methods has not been possible. We report preliminary results on direct in situ observation of microorganisms in droplet clusters. We also present a newly observed transition between the hexagonally ordered and chain-like states of a droplet cluster. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology (part 2)'.
Condensed microdroplets play a prominent role in living nature, participating in various phenomena, from water harvesting by plants and insects to microorganism migration in bioaerosols. Microdroplets may also form regular self-organized patterns, such as the hexagonally ordered breath figures on a solid surface or levitating monolayer droplet clusters over a locally heated water layer. While the breath figures have been studied since the nineteenth century, they have found a recent application in polymer surface micropatterning (e.g. for superhydrophobicity). Droplet clusters were discovered in 2004, and they are the subject of active research. Methods to control and stabilize droplet clusters make them suitable for the in situ analysis of bioaerosols. Studying life in bioaerosols is important for understanding microorganism origins and migration; however, direct observation with traditional methods has not been possible. We report preliminary results on direct in situ observation of microorganisms in droplet clusters. We also present a newly observed transition between the hexagonally ordered and chain-like states of a droplet cluster. This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology (part 2)’.
Condensed microdroplets play a prominent role in living nature, participating in various phenomena, from water harvesting by plants and insects to microorganism migration in bioaerosols. Microdroplets may also form regular self-organized patterns, such as the hexagonally ordered breath figures on a solid surface or levitating monolayer droplet clusters over a locally heated water layer. While the breath figures have been studied since the nineteenth century, they have found a recent application in polymer surface micropatterning (e.g. for superhydrophobicity). Droplet clusters were discovered in 2004, and they are the subject of active research. Methods to control and stabilize droplet clusters make them suitable for the in situ analysis of bioaerosols. Studying life in bioaerosols is important for understanding microorganism origins and migration; however, direct observation with traditional methods has not been possible. We report preliminary results on direct in situ observation of microorganisms in droplet clusters. We also present a newly observed transition between the hexagonally ordered and chain-like states of a droplet cluster. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology (part 2)'.
Author Dombrovsky, Leonid A.
Nosonovsky, Michael
Bormashenko, Edward
Fedorets, Alexander A.
AuthorAffiliation 4 Department of Mechanical Engineering, University of Wisconsin–Milwaukee , 3200 North Cramer St, Milwaukee, WI 53211 , USA
2 Department of Chemical Engineering, Biotechnology and Materials, Engineering Science Faculty, Ariel University , Ariel 40700 , Israel
1 University of Tyumen , 6 Volodarskogo St, Tyumen 625003 , Russia
3 Joint Institute for High Temperatures , 17A Krasnokazarmennaya St, Moscow 111116 , Russia
AuthorAffiliation_xml – name: 4 Department of Mechanical Engineering, University of Wisconsin–Milwaukee , 3200 North Cramer St, Milwaukee, WI 53211 , USA
– name: 1 University of Tyumen , 6 Volodarskogo St, Tyumen 625003 , Russia
– name: 3 Joint Institute for High Temperatures , 17A Krasnokazarmennaya St, Moscow 111116 , Russia
– name: 2 Department of Chemical Engineering, Biotechnology and Materials, Engineering Science Faculty, Ariel University , Ariel 40700 , Israel
Author_xml – sequence: 1
  givenname: Alexander A.
  orcidid: 0000-0001-6595-3927
  surname: Fedorets
  fullname: Fedorets, Alexander A.
  organization: University of Tyumen, 6 Volodarskogo St, Tyumen 625003, Russia
– sequence: 2
  givenname: Edward
  orcidid: 0000-0003-1356-2486
  surname: Bormashenko
  fullname: Bormashenko, Edward
  organization: Department of Chemical Engineering, Biotechnology and Materials, Engineering Science Faculty, Ariel University, Ariel 40700, Israel
– sequence: 3
  givenname: Leonid A.
  orcidid: 0000-0002-6290-019X
  surname: Dombrovsky
  fullname: Dombrovsky, Leonid A.
  organization: University of Tyumen, 6 Volodarskogo St, Tyumen 625003, Russia, Joint Institute for High Temperatures, 17A Krasnokazarmennaya St, Moscow 111116, Russia
– sequence: 4
  givenname: Michael
  orcidid: 0000-0003-0980-3670
  surname: Nosonovsky
  fullname: Nosonovsky, Michael
  organization: University of Tyumen, 6 Volodarskogo St, Tyumen 625003, Russia, Department of Mechanical Engineering, University of Wisconsin–Milwaukee, 3200 North Cramer St, Milwaukee, WI 53211, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31177958$$D View this record in MEDLINE/PubMed
BookMark eNp1UctKxTAQDaL43rqULt30mkmatHEh-FYQ3LhwF9LcqUZym2uSCv69LT5QwdUMzHkM52yR1T70SMge0BlQ1RzGlM2MUVAzCgxWyCZUNZRMSbY67lxWpaD8YYNspfRMKYAUbJ1scIC6VqLZJKfnMSw95sL6IWWM6ajoTR4ilq5PSxdxXrQu-PDorPFFRGNziKkw_bwwGEMKPu2Qtc74hLufc5vcX17cn12Xt3dXN2cnt6UVXOWybnnVoIBKWFMhV7I2TQtSQWspGNswiaau2o53HZcMOcOmlR1gq1gnasu3yfGH7HJoFzi32OdovF5GtzDxTQfj9O9L7570Y3jVUkjGRTMKHHwKxPAyYMp64ZJF702PYUiasarhNRNCjdD9n17fJl-5jYDZB8COGaSI3TcEqJ6K0VMxeipGT8WMhOoPwbpssgvTr87_R3sHNtSUfw
CitedBy_id crossref_primary_10_1021_acs_langmuir_9b03135
crossref_primary_10_3390_e23020181
crossref_primary_10_3390_e22060622
crossref_primary_10_3390_life11101034
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120053
crossref_primary_10_1134_S1061933X21050069
crossref_primary_10_1021_acs_jpcc_9b08194
crossref_primary_10_1021_acs_langmuir_0c02241
crossref_primary_10_1021_acs_langmuir_4c00138
crossref_primary_10_1039_C9NR09620E
crossref_primary_10_1098_rsta_2019_0443
crossref_primary_10_1021_acs_jpcc_0c10384
crossref_primary_10_1039_D0CP01804J
crossref_primary_10_1080_02786826_2020_1804522
crossref_primary_10_1021_acs_jpclett_4c01977
crossref_primary_10_1103_PhysRevFluids_8_043601
crossref_primary_10_1039_D4SC03066D
crossref_primary_10_1016_j_elstat_2021_103596
crossref_primary_10_20935_AcadEng6093
crossref_primary_10_3103_S1541308X21040038
crossref_primary_10_1039_C9CS00541B
crossref_primary_10_1039_D1RA02291A
crossref_primary_10_1134_S1063784221090061
crossref_primary_10_1039_D0SM02185G
crossref_primary_10_1016_j_ijthermalsci_2020_106375
crossref_primary_10_1021_acs_langmuir_9b02600
crossref_primary_10_1039_D3CP00542A
crossref_primary_10_3390_atmos11090965
Cites_doi 10.1021/la0518492
10.3390/biomimetics3020007
10.1016/j.ijheatmasstransfer.2017.06.015
10.1134/1.1772434
10.1038/s41598-017-02166-5
10.1080/14686996.2018.1528478
10.1103/PhysRevE.56.4596
10.1615/IHTC16.kn.000002
10.1021/la2000014
10.1080/01411599108206932
10.1016/S0928-4931(99)00070-3
10.1098/rsta.2018.0269
10.1021/acs.jpclett.7b02657
10.1038/nature08729
10.1098/rsta.2018.0335
10.1038/ncomms2253
10.1371/journal.pone.0034603
10.1038/nphys2843
10.1016/j.ijheatmasstransfer.2018.12.160
10.1080/14786441108634040
10.1016/j.progpolymsci.2013.08.006
10.1243/09576500260049034
10.1038/ncomms14668
10.1002/adma.19950071217
10.1098/rsta.2016.0135
10.1103/PhysRevLett.121.138002
10.1038/nplants.2016.76
10.1140/epje/i2016-16090-9
10.1126/science.1138325
10.1002/polb.23923
10.1016/j.jcis.2005.11.025
10.1038/090436c0
10.1098/rsif.2011.0847
10.3390/membranes7030045
10.1021/acs.jpclett.8b01693
10.1021/acs.chemrev.5b00069
10.1016/j.infrared.2015.12.020
10.1038/086516a0
10.1140/epje/i2018-11691-x
10.1002/adma.200501131
ContentType Journal Article
Copyright 2019 The Author(s) 2019
Copyright_xml – notice: 2019 The Author(s) 2019
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1098/rsta.2019.0121
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Physics
DocumentTitleAlternate Droplet clusters
EISSN 1471-2962
ExternalDocumentID PMC6562358
31177958
10_1098_rsta_2019_0121
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 19-19-00076
GroupedDBID ---
-~X
0R~
18M
2WC
4.4
5VS
AACGO
AANCE
AAWIL
AAYXX
ABBHK
ABFAN
ABPLY
ABTLG
ABXSQ
ABYWD
ACGFO
ACHIC
ACIWK
ACMTB
ACNCT
ACQIA
ACTMH
ADBBV
ADODI
ADQXQ
AEUPB
AEXZC
AFVYC
AGLNM
AIHAF
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
ALRMG
AQVQM
BTFSW
CITATION
DCCCD
DIK
DQDLB
DSRWC
EBS
ECEWR
EJD
F5P
H13
HH5
HQ6
HZ~
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JMS
JPM
JSG
JST
KQ8
MRS
MV1
NSAHA
O9-
OK1
P2P
RRY
SA0
TN5
TR2
V1E
W8F
XSW
YNT
~02
NPM
7X8
5PM
ID FETCH-LOGICAL-c539t-7b348e5145ca4e3967a8b1691bc01ac826ea74bf3ff362e32e8b6f1eb92f57c3
ISSN 1364-503X
1471-2962
IngestDate Thu Aug 21 18:05:48 EDT 2025
Thu Jul 10 18:04:13 EDT 2025
Thu Apr 03 07:01:28 EDT 2025
Tue Jul 01 01:48:29 EDT 2025
Thu Apr 24 23:05:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2150
Keywords breath figure
self-assembly
bioaerosol
droplet cluster
Language English
License Published by the Royal Society. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c539t-7b348e5145ca4e3967a8b1691bc01ac826ea74bf3ff362e32e8b6f1eb92f57c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
One contribution of 15 to a theme issue ‘Bioinspired materials and surfaces for green science and technology (part 2)’.
ORCID 0000-0003-0980-3670
0000-0001-6595-3927
0000-0002-6290-019X
0000-0003-1356-2486
OpenAccessLink https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2019.0121
PMID 31177958
PQID 2248372559
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6562358
proquest_miscellaneous_2248372559
pubmed_primary_31177958
crossref_primary_10_1098_rsta_2019_0121
crossref_citationtrail_10_1098_rsta_2019_0121
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Jul-29
PublicationDateYYYYMMDD 2019-07-29
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-Jul-29
  day: 29
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
PublicationTitleAlternate Philos Trans A Math Phys Eng Sci
PublicationYear 2019
Publisher The Royal Society Publishing
Publisher_xml – name: The Royal Society Publishing
References e_1_3_6_30_2
e_1_3_6_31_2
e_1_3_6_32_2
e_1_3_6_10_2
Guthrie WKC (e_1_3_6_7_2) 1962
e_1_3_6_19_2
e_1_3_6_14_2
e_1_3_6_37_2
e_1_3_6_13_2
e_1_3_6_38_2
e_1_3_6_12_2
e_1_3_6_39_2
e_1_3_6_11_2
e_1_3_6_18_2
e_1_3_6_33_2
e_1_3_6_17_2
e_1_3_6_34_2
e_1_3_6_16_2
e_1_3_6_35_2
e_1_3_6_15_2
e_1_3_6_36_2
e_1_3_6_41_2
e_1_3_6_40_2
e_1_3_6_20_2
e_1_3_6_21_2
e_1_3_6_42_2
e_1_3_6_5_2
e_1_3_6_4_2
e_1_3_6_3_2
e_1_3_6_2_2
e_1_3_6_9_2
e_1_3_6_8_2
e_1_3_6_6_2
Smith JB (e_1_3_6_43_2) 2004; 20
e_1_3_6_26_2
e_1_3_6_27_2
e_1_3_6_28_2
e_1_3_6_29_2
e_1_3_6_22_2
e_1_3_6_23_2
e_1_3_6_44_2
e_1_3_6_24_2
e_1_3_6_25_2
References_xml – ident: e_1_3_6_21_2
  doi: 10.1021/la0518492
– ident: e_1_3_6_26_2
  doi: 10.3390/biomimetics3020007
– ident: e_1_3_6_37_2
  doi: 10.1016/j.ijheatmasstransfer.2017.06.015
– ident: e_1_3_6_3_2
  doi: 10.1134/1.1772434
– ident: e_1_3_6_35_2
  doi: 10.1038/s41598-017-02166-5
– ident: e_1_3_6_17_2
  doi: 10.1080/14686996.2018.1528478
– volume: 20
  start-page: 237
  year: 2004
  ident: e_1_3_6_43_2
  article-title: Studies on bacteria-like particles sampled from the stratosphere
  publication-title: Instrum. Methods Missions Astrobiol.
– ident: e_1_3_6_38_2
  doi: 10.1103/PhysRevE.56.4596
– ident: e_1_3_6_34_2
  doi: 10.1615/IHTC16.kn.000002
– ident: e_1_3_6_32_2
  doi: 10.1021/la2000014
– ident: e_1_3_6_12_2
  doi: 10.1080/01411599108206932
– ident: e_1_3_6_18_2
  doi: 10.1016/S0928-4931(99)00070-3
– ident: e_1_3_6_30_2
  doi: 10.1098/rsta.2018.0269
– ident: e_1_3_6_5_2
  doi: 10.1021/acs.jpclett.7b02657
– ident: e_1_3_6_33_2
  doi: 10.1038/nature08729
– ident: e_1_3_6_24_2
  doi: 10.1098/rsta.2018.0335
– ident: e_1_3_6_29_2
  doi: 10.1038/ncomms2253
– ident: e_1_3_6_25_2
  doi: 10.1371/journal.pone.0034603
– ident: e_1_3_6_39_2
  doi: 10.1038/nphys2843
– ident: e_1_3_6_4_2
  doi: 10.1016/j.ijheatmasstransfer.2018.12.160
– ident: e_1_3_6_10_2
  doi: 10.1080/14786441108634040
– ident: e_1_3_6_15_2
  doi: 10.1016/j.progpolymsci.2013.08.006
– ident: e_1_3_6_11_2
  doi: 10.1243/09576500260049034
– ident: e_1_3_6_42_2
  doi: 10.1038/ncomms14668
– ident: e_1_3_6_13_2
  doi: 10.1002/adma.19950071217
– ident: e_1_3_6_31_2
  doi: 10.1098/rsta.2016.0135
– ident: e_1_3_6_40_2
  doi: 10.1103/PhysRevLett.121.138002
– ident: e_1_3_6_41_2
– ident: e_1_3_6_27_2
  doi: 10.1038/nplants.2016.76
– ident: e_1_3_6_20_2
  doi: 10.1140/epje/i2016-16090-9
– ident: e_1_3_6_44_2
  doi: 10.1126/science.1138325
– ident: e_1_3_6_23_2
  doi: 10.1002/polb.23923
– ident: e_1_3_6_22_2
  doi: 10.1016/j.jcis.2005.11.025
– ident: e_1_3_6_9_2
  doi: 10.1038/090436c0
– ident: e_1_3_6_28_2
  doi: 10.1098/rsif.2011.0847
– ident: e_1_3_6_16_2
  doi: 10.3390/membranes7030045
– ident: e_1_3_6_36_2
  doi: 10.1021/acs.jpclett.8b01693
– ident: e_1_3_6_2_2
  doi: 10.1021/acs.chemrev.5b00069
– ident: e_1_3_6_6_2
  doi: 10.1016/j.infrared.2015.12.020
– start-page: 116
  volume-title: The Milesians: Anaximenes. A history of Greek philosophy
  year: 1962
  ident: e_1_3_6_7_2
– ident: e_1_3_6_8_2
  doi: 10.1038/086516a0
– ident: e_1_3_6_19_2
  doi: 10.1140/epje/i2018-11691-x
– ident: e_1_3_6_14_2
  doi: 10.1002/adma.200501131
SSID ssj0011652
Score 2.4537556
Snippet Condensed microdroplets play a prominent role in living nature, participating in various phenomena, from water harvesting by plants and insects to...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 20190121
Title Droplet clusters: nature-inspired biological reactors and aerosols
URI https://www.ncbi.nlm.nih.gov/pubmed/31177958
https://www.proquest.com/docview/2248372559
https://pubmed.ncbi.nlm.nih.gov/PMC6562358
Volume 377
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6FIlB5QLRQGi4ZCQlQ5BB7fS1vnKqAViAFqW-W1x2rUVO7ih0e-I38KGb28JFSCXixHHtty_4mszOzM98w9gzdaDGTnLs8A-4GAcSuyKBwoyAOMi-DSIZU4Hx4FB18Dz4dh8ej0a9e1tK6kdP85x_rSv4HVTyGuFKV7D8g294UD-A-4otbRBi3f4Xx-xWlfzeTfLkmvgOV3aaZOt1FSUvoZF4uWvWG9qFurqMIWgHnx2pZ963Tr7avgRredK3Ea5tKoKMNNtWT1hdUO5Ap6Rz0uScqXH_YUsGqbgImeqL36dHQcSBOzAzcVaGo1idNPSi-6QVcycSuT6E8UyFe3XK6Ncarc7mqfphw8BdAdXXSXXqEb1a2Z_vlAibooeqsXBMZAa2ocVLFI0NNzk1HGC2yaMzM-qqZquY9XY59ad6YCaqFoFoiyvYT082B-PEuzpUUcVrlFppufoOp2566xq776LRQP43P37o1LS8K_ZY2NHk1fNg2u2kvH1pIl9yezezdnjk0v8NuGz_GeaOFcoeNoNxlt3rslvirk4N6l91Quca0t2Pmk9p5YUjPX95lb40sO1aWXzsbkux0kuxYSXZQPBwryffY_OOH-bsD1_T3cPOQi8aNJQ8SQIs9zLMAuIjiLJFE3iTzmZfl6PhCFgey4EWBZhZwHxIZFR5I4RdhnPM9tlVWJewzR-C86-feCY-4F_hFjk5yknHwfAkCjVgxZq79pGluuO-pBcsy1TkYSUpopIRGSmiM2fN2_IVmfbly5FOLUIqKmVbbshKqdZ2ibZzwmDz2MbuvEWvvZaEes3iAZTuASN-HZ8rFqSJ_j8hhCZMHV97zIdvu_jGP2FazWsNjNJwb-UTJ42-aGsjT
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Droplet+clusters%3A+nature-inspired+biological+reactors+and+aerosols&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+A%3A+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Fedorets%2C+Alexander+A&rft.au=Bormashenko%2C+Edward&rft.au=Dombrovsky%2C+Leonid+A&rft.au=Nosonovsky%2C+Michael&rft.date=2019-07-29&rft.eissn=1471-2962&rft.volume=377&rft.issue=2150&rft.spage=20190121&rft_id=info:doi/10.1098%2Frsta.2019.0121&rft_id=info%3Apmid%2F31177958&rft.externalDocID=31177958
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-503X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-503X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-503X&client=summon