Droplet clusters: nature-inspired biological reactors and aerosols
Condensed microdroplets play a prominent role in living nature, participating in various phenomena, from water harvesting by plants and insects to microorganism migration in bioaerosols. Microdroplets may also form regular self-organized patterns, such as the hexagonally ordered breath figures on a...
Saved in:
Published in | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences Vol. 377; no. 2150; p. 20190121 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
The Royal Society Publishing
29.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Condensed microdroplets play a prominent role in living nature, participating in various phenomena, from water harvesting by plants and insects to microorganism migration in bioaerosols. Microdroplets may also form regular self-organized patterns, such as the hexagonally ordered breath figures on a solid surface or levitating monolayer droplet clusters over a locally heated water layer. While the breath figures have been studied since the nineteenth century, they have found a recent application in polymer surface micropatterning (e.g. for superhydrophobicity). Droplet clusters were discovered in 2004, and they are the subject of active research. Methods to control and stabilize droplet clusters make them suitable for the
in situ
analysis of bioaerosols. Studying life in bioaerosols is important for understanding microorganism origins and migration; however, direct observation with traditional methods has not been possible. We report preliminary results on direct
in situ
observation of microorganisms in droplet clusters. We also present a newly observed transition between the hexagonally ordered and chain-like states of a droplet cluster.
This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology (part 2)’. |
---|---|
AbstractList | Condensed microdroplets play a prominent role in living nature, participating in various phenomena, from water harvesting by plants and insects to microorganism migration in bioaerosols. Microdroplets may also form regular self-organized patterns, such as the hexagonally ordered breath figures on a solid surface or levitating monolayer droplet clusters over a locally heated water layer. While the breath figures have been studied since the nineteenth century, they have found a recent application in polymer surface micropatterning (e.g. for superhydrophobicity). Droplet clusters were discovered in 2004, and they are the subject of active research. Methods to control and stabilize droplet clusters make them suitable for the in situ analysis of bioaerosols. Studying life in bioaerosols is important for understanding microorganism origins and migration; however, direct observation with traditional methods has not been possible. We report preliminary results on direct in situ observation of microorganisms in droplet clusters. We also present a newly observed transition between the hexagonally ordered and chain-like states of a droplet cluster. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology (part 2)'.Condensed microdroplets play a prominent role in living nature, participating in various phenomena, from water harvesting by plants and insects to microorganism migration in bioaerosols. Microdroplets may also form regular self-organized patterns, such as the hexagonally ordered breath figures on a solid surface or levitating monolayer droplet clusters over a locally heated water layer. While the breath figures have been studied since the nineteenth century, they have found a recent application in polymer surface micropatterning (e.g. for superhydrophobicity). Droplet clusters were discovered in 2004, and they are the subject of active research. Methods to control and stabilize droplet clusters make them suitable for the in situ analysis of bioaerosols. Studying life in bioaerosols is important for understanding microorganism origins and migration; however, direct observation with traditional methods has not been possible. We report preliminary results on direct in situ observation of microorganisms in droplet clusters. We also present a newly observed transition between the hexagonally ordered and chain-like states of a droplet cluster. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology (part 2)'. Condensed microdroplets play a prominent role in living nature, participating in various phenomena, from water harvesting by plants and insects to microorganism migration in bioaerosols. Microdroplets may also form regular self-organized patterns, such as the hexagonally ordered breath figures on a solid surface or levitating monolayer droplet clusters over a locally heated water layer. While the breath figures have been studied since the nineteenth century, they have found a recent application in polymer surface micropatterning (e.g. for superhydrophobicity). Droplet clusters were discovered in 2004, and they are the subject of active research. Methods to control and stabilize droplet clusters make them suitable for the in situ analysis of bioaerosols. Studying life in bioaerosols is important for understanding microorganism origins and migration; however, direct observation with traditional methods has not been possible. We report preliminary results on direct in situ observation of microorganisms in droplet clusters. We also present a newly observed transition between the hexagonally ordered and chain-like states of a droplet cluster. This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology (part 2)’. Condensed microdroplets play a prominent role in living nature, participating in various phenomena, from water harvesting by plants and insects to microorganism migration in bioaerosols. Microdroplets may also form regular self-organized patterns, such as the hexagonally ordered breath figures on a solid surface or levitating monolayer droplet clusters over a locally heated water layer. While the breath figures have been studied since the nineteenth century, they have found a recent application in polymer surface micropatterning (e.g. for superhydrophobicity). Droplet clusters were discovered in 2004, and they are the subject of active research. Methods to control and stabilize droplet clusters make them suitable for the in situ analysis of bioaerosols. Studying life in bioaerosols is important for understanding microorganism origins and migration; however, direct observation with traditional methods has not been possible. We report preliminary results on direct in situ observation of microorganisms in droplet clusters. We also present a newly observed transition between the hexagonally ordered and chain-like states of a droplet cluster. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology (part 2)'. |
Author | Dombrovsky, Leonid A. Nosonovsky, Michael Bormashenko, Edward Fedorets, Alexander A. |
AuthorAffiliation | 4 Department of Mechanical Engineering, University of Wisconsin–Milwaukee , 3200 North Cramer St, Milwaukee, WI 53211 , USA 2 Department of Chemical Engineering, Biotechnology and Materials, Engineering Science Faculty, Ariel University , Ariel 40700 , Israel 1 University of Tyumen , 6 Volodarskogo St, Tyumen 625003 , Russia 3 Joint Institute for High Temperatures , 17A Krasnokazarmennaya St, Moscow 111116 , Russia |
AuthorAffiliation_xml | – name: 4 Department of Mechanical Engineering, University of Wisconsin–Milwaukee , 3200 North Cramer St, Milwaukee, WI 53211 , USA – name: 1 University of Tyumen , 6 Volodarskogo St, Tyumen 625003 , Russia – name: 3 Joint Institute for High Temperatures , 17A Krasnokazarmennaya St, Moscow 111116 , Russia – name: 2 Department of Chemical Engineering, Biotechnology and Materials, Engineering Science Faculty, Ariel University , Ariel 40700 , Israel |
Author_xml | – sequence: 1 givenname: Alexander A. orcidid: 0000-0001-6595-3927 surname: Fedorets fullname: Fedorets, Alexander A. organization: University of Tyumen, 6 Volodarskogo St, Tyumen 625003, Russia – sequence: 2 givenname: Edward orcidid: 0000-0003-1356-2486 surname: Bormashenko fullname: Bormashenko, Edward organization: Department of Chemical Engineering, Biotechnology and Materials, Engineering Science Faculty, Ariel University, Ariel 40700, Israel – sequence: 3 givenname: Leonid A. orcidid: 0000-0002-6290-019X surname: Dombrovsky fullname: Dombrovsky, Leonid A. organization: University of Tyumen, 6 Volodarskogo St, Tyumen 625003, Russia, Joint Institute for High Temperatures, 17A Krasnokazarmennaya St, Moscow 111116, Russia – sequence: 4 givenname: Michael orcidid: 0000-0003-0980-3670 surname: Nosonovsky fullname: Nosonovsky, Michael organization: University of Tyumen, 6 Volodarskogo St, Tyumen 625003, Russia, Department of Mechanical Engineering, University of Wisconsin–Milwaukee, 3200 North Cramer St, Milwaukee, WI 53211, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31177958$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UctKxTAQDaL43rqULt30mkmatHEh-FYQ3LhwF9LcqUZym2uSCv69LT5QwdUMzHkM52yR1T70SMge0BlQ1RzGlM2MUVAzCgxWyCZUNZRMSbY67lxWpaD8YYNspfRMKYAUbJ1scIC6VqLZJKfnMSw95sL6IWWM6ajoTR4ilq5PSxdxXrQu-PDorPFFRGNziKkw_bwwGEMKPu2Qtc74hLufc5vcX17cn12Xt3dXN2cnt6UVXOWybnnVoIBKWFMhV7I2TQtSQWspGNswiaau2o53HZcMOcOmlR1gq1gnasu3yfGH7HJoFzi32OdovF5GtzDxTQfj9O9L7570Y3jVUkjGRTMKHHwKxPAyYMp64ZJF702PYUiasarhNRNCjdD9n17fJl-5jYDZB8COGaSI3TcEqJ6K0VMxeipGT8WMhOoPwbpssgvTr87_R3sHNtSUfw |
CitedBy_id | crossref_primary_10_1021_acs_langmuir_9b03135 crossref_primary_10_3390_e23020181 crossref_primary_10_3390_e22060622 crossref_primary_10_3390_life11101034 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120053 crossref_primary_10_1134_S1061933X21050069 crossref_primary_10_1021_acs_jpcc_9b08194 crossref_primary_10_1021_acs_langmuir_0c02241 crossref_primary_10_1021_acs_langmuir_4c00138 crossref_primary_10_1039_C9NR09620E crossref_primary_10_1098_rsta_2019_0443 crossref_primary_10_1021_acs_jpcc_0c10384 crossref_primary_10_1039_D0CP01804J crossref_primary_10_1080_02786826_2020_1804522 crossref_primary_10_1021_acs_jpclett_4c01977 crossref_primary_10_1103_PhysRevFluids_8_043601 crossref_primary_10_1039_D4SC03066D crossref_primary_10_1016_j_elstat_2021_103596 crossref_primary_10_20935_AcadEng6093 crossref_primary_10_3103_S1541308X21040038 crossref_primary_10_1039_C9CS00541B crossref_primary_10_1039_D1RA02291A crossref_primary_10_1134_S1063784221090061 crossref_primary_10_1039_D0SM02185G crossref_primary_10_1016_j_ijthermalsci_2020_106375 crossref_primary_10_1021_acs_langmuir_9b02600 crossref_primary_10_1039_D3CP00542A crossref_primary_10_3390_atmos11090965 |
Cites_doi | 10.1021/la0518492 10.3390/biomimetics3020007 10.1016/j.ijheatmasstransfer.2017.06.015 10.1134/1.1772434 10.1038/s41598-017-02166-5 10.1080/14686996.2018.1528478 10.1103/PhysRevE.56.4596 10.1615/IHTC16.kn.000002 10.1021/la2000014 10.1080/01411599108206932 10.1016/S0928-4931(99)00070-3 10.1098/rsta.2018.0269 10.1021/acs.jpclett.7b02657 10.1038/nature08729 10.1098/rsta.2018.0335 10.1038/ncomms2253 10.1371/journal.pone.0034603 10.1038/nphys2843 10.1016/j.ijheatmasstransfer.2018.12.160 10.1080/14786441108634040 10.1016/j.progpolymsci.2013.08.006 10.1243/09576500260049034 10.1038/ncomms14668 10.1002/adma.19950071217 10.1098/rsta.2016.0135 10.1103/PhysRevLett.121.138002 10.1038/nplants.2016.76 10.1140/epje/i2016-16090-9 10.1126/science.1138325 10.1002/polb.23923 10.1016/j.jcis.2005.11.025 10.1038/090436c0 10.1098/rsif.2011.0847 10.3390/membranes7030045 10.1021/acs.jpclett.8b01693 10.1021/acs.chemrev.5b00069 10.1016/j.infrared.2015.12.020 10.1038/086516a0 10.1140/epje/i2018-11691-x 10.1002/adma.200501131 |
ContentType | Journal Article |
Copyright | 2019 The Author(s) 2019 |
Copyright_xml | – notice: 2019 The Author(s) 2019 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1098/rsta.2019.0121 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Sciences (General) Physics |
DocumentTitleAlternate | Droplet clusters |
EISSN | 1471-2962 |
ExternalDocumentID | PMC6562358 31177958 10_1098_rsta_2019_0121 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 19-19-00076 |
GroupedDBID | --- -~X 0R~ 18M 2WC 4.4 5VS AACGO AANCE AAWIL AAYXX ABBHK ABFAN ABPLY ABTLG ABXSQ ABYWD ACGFO ACHIC ACIWK ACMTB ACNCT ACQIA ACTMH ADBBV ADODI ADQXQ AEUPB AEXZC AFVYC AGLNM AIHAF ALMA_UNASSIGNED_HOLDINGS ALMYZ ALRMG AQVQM BTFSW CITATION DCCCD DIK DQDLB DSRWC EBS ECEWR EJD F5P H13 HH5 HQ6 HZ~ IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JMS JPM JSG JST KQ8 MRS MV1 NSAHA O9- OK1 P2P RRY SA0 TN5 TR2 V1E W8F XSW YNT ~02 NPM 7X8 5PM |
ID | FETCH-LOGICAL-c539t-7b348e5145ca4e3967a8b1691bc01ac826ea74bf3ff362e32e8b6f1eb92f57c3 |
ISSN | 1364-503X 1471-2962 |
IngestDate | Thu Aug 21 18:05:48 EDT 2025 Thu Jul 10 18:04:13 EDT 2025 Thu Apr 03 07:01:28 EDT 2025 Tue Jul 01 01:48:29 EDT 2025 Thu Apr 24 23:05:27 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2150 |
Keywords | breath figure self-assembly bioaerosol droplet cluster |
Language | English |
License | Published by the Royal Society. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c539t-7b348e5145ca4e3967a8b1691bc01ac826ea74bf3ff362e32e8b6f1eb92f57c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 One contribution of 15 to a theme issue ‘Bioinspired materials and surfaces for green science and technology (part 2)’. |
ORCID | 0000-0003-0980-3670 0000-0001-6595-3927 0000-0002-6290-019X 0000-0003-1356-2486 |
OpenAccessLink | https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2019.0121 |
PMID | 31177958 |
PQID | 2248372559 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6562358 proquest_miscellaneous_2248372559 pubmed_primary_31177958 crossref_primary_10_1098_rsta_2019_0121 crossref_citationtrail_10_1098_rsta_2019_0121 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-Jul-29 |
PublicationDateYYYYMMDD | 2019-07-29 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-Jul-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
PublicationTitleAlternate | Philos Trans A Math Phys Eng Sci |
PublicationYear | 2019 |
Publisher | The Royal Society Publishing |
Publisher_xml | – name: The Royal Society Publishing |
References | e_1_3_6_30_2 e_1_3_6_31_2 e_1_3_6_32_2 e_1_3_6_10_2 Guthrie WKC (e_1_3_6_7_2) 1962 e_1_3_6_19_2 e_1_3_6_14_2 e_1_3_6_37_2 e_1_3_6_13_2 e_1_3_6_38_2 e_1_3_6_12_2 e_1_3_6_39_2 e_1_3_6_11_2 e_1_3_6_18_2 e_1_3_6_33_2 e_1_3_6_17_2 e_1_3_6_34_2 e_1_3_6_16_2 e_1_3_6_35_2 e_1_3_6_15_2 e_1_3_6_36_2 e_1_3_6_41_2 e_1_3_6_40_2 e_1_3_6_20_2 e_1_3_6_21_2 e_1_3_6_42_2 e_1_3_6_5_2 e_1_3_6_4_2 e_1_3_6_3_2 e_1_3_6_2_2 e_1_3_6_9_2 e_1_3_6_8_2 e_1_3_6_6_2 Smith JB (e_1_3_6_43_2) 2004; 20 e_1_3_6_26_2 e_1_3_6_27_2 e_1_3_6_28_2 e_1_3_6_29_2 e_1_3_6_22_2 e_1_3_6_23_2 e_1_3_6_44_2 e_1_3_6_24_2 e_1_3_6_25_2 |
References_xml | – ident: e_1_3_6_21_2 doi: 10.1021/la0518492 – ident: e_1_3_6_26_2 doi: 10.3390/biomimetics3020007 – ident: e_1_3_6_37_2 doi: 10.1016/j.ijheatmasstransfer.2017.06.015 – ident: e_1_3_6_3_2 doi: 10.1134/1.1772434 – ident: e_1_3_6_35_2 doi: 10.1038/s41598-017-02166-5 – ident: e_1_3_6_17_2 doi: 10.1080/14686996.2018.1528478 – volume: 20 start-page: 237 year: 2004 ident: e_1_3_6_43_2 article-title: Studies on bacteria-like particles sampled from the stratosphere publication-title: Instrum. Methods Missions Astrobiol. – ident: e_1_3_6_38_2 doi: 10.1103/PhysRevE.56.4596 – ident: e_1_3_6_34_2 doi: 10.1615/IHTC16.kn.000002 – ident: e_1_3_6_32_2 doi: 10.1021/la2000014 – ident: e_1_3_6_12_2 doi: 10.1080/01411599108206932 – ident: e_1_3_6_18_2 doi: 10.1016/S0928-4931(99)00070-3 – ident: e_1_3_6_30_2 doi: 10.1098/rsta.2018.0269 – ident: e_1_3_6_5_2 doi: 10.1021/acs.jpclett.7b02657 – ident: e_1_3_6_33_2 doi: 10.1038/nature08729 – ident: e_1_3_6_24_2 doi: 10.1098/rsta.2018.0335 – ident: e_1_3_6_29_2 doi: 10.1038/ncomms2253 – ident: e_1_3_6_25_2 doi: 10.1371/journal.pone.0034603 – ident: e_1_3_6_39_2 doi: 10.1038/nphys2843 – ident: e_1_3_6_4_2 doi: 10.1016/j.ijheatmasstransfer.2018.12.160 – ident: e_1_3_6_10_2 doi: 10.1080/14786441108634040 – ident: e_1_3_6_15_2 doi: 10.1016/j.progpolymsci.2013.08.006 – ident: e_1_3_6_11_2 doi: 10.1243/09576500260049034 – ident: e_1_3_6_42_2 doi: 10.1038/ncomms14668 – ident: e_1_3_6_13_2 doi: 10.1002/adma.19950071217 – ident: e_1_3_6_31_2 doi: 10.1098/rsta.2016.0135 – ident: e_1_3_6_40_2 doi: 10.1103/PhysRevLett.121.138002 – ident: e_1_3_6_41_2 – ident: e_1_3_6_27_2 doi: 10.1038/nplants.2016.76 – ident: e_1_3_6_20_2 doi: 10.1140/epje/i2016-16090-9 – ident: e_1_3_6_44_2 doi: 10.1126/science.1138325 – ident: e_1_3_6_23_2 doi: 10.1002/polb.23923 – ident: e_1_3_6_22_2 doi: 10.1016/j.jcis.2005.11.025 – ident: e_1_3_6_9_2 doi: 10.1038/090436c0 – ident: e_1_3_6_28_2 doi: 10.1098/rsif.2011.0847 – ident: e_1_3_6_16_2 doi: 10.3390/membranes7030045 – ident: e_1_3_6_36_2 doi: 10.1021/acs.jpclett.8b01693 – ident: e_1_3_6_2_2 doi: 10.1021/acs.chemrev.5b00069 – ident: e_1_3_6_6_2 doi: 10.1016/j.infrared.2015.12.020 – start-page: 116 volume-title: The Milesians: Anaximenes. A history of Greek philosophy year: 1962 ident: e_1_3_6_7_2 – ident: e_1_3_6_8_2 doi: 10.1038/086516a0 – ident: e_1_3_6_19_2 doi: 10.1140/epje/i2018-11691-x – ident: e_1_3_6_14_2 doi: 10.1002/adma.200501131 |
SSID | ssj0011652 |
Score | 2.4537556 |
Snippet | Condensed microdroplets play a prominent role in living nature, participating in various phenomena, from water harvesting by plants and insects to... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 20190121 |
Title | Droplet clusters: nature-inspired biological reactors and aerosols |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31177958 https://www.proquest.com/docview/2248372559 https://pubmed.ncbi.nlm.nih.gov/PMC6562358 |
Volume | 377 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6FIlB5QLRQGi4ZCQlQ5BB7fS1vnKqAViAFqW-W1x2rUVO7ih0e-I38KGb28JFSCXixHHtty_4mszOzM98w9gzdaDGTnLs8A-4GAcSuyKBwoyAOMi-DSIZU4Hx4FB18Dz4dh8ej0a9e1tK6kdP85x_rSv4HVTyGuFKV7D8g294UD-A-4otbRBi3f4Xx-xWlfzeTfLkmvgOV3aaZOt1FSUvoZF4uWvWG9qFurqMIWgHnx2pZ963Tr7avgRredK3Ea5tKoKMNNtWT1hdUO5Ap6Rz0uScqXH_YUsGqbgImeqL36dHQcSBOzAzcVaGo1idNPSi-6QVcycSuT6E8UyFe3XK6Ncarc7mqfphw8BdAdXXSXXqEb1a2Z_vlAibooeqsXBMZAa2ocVLFI0NNzk1HGC2yaMzM-qqZquY9XY59ad6YCaqFoFoiyvYT082B-PEuzpUUcVrlFppufoOp2566xq776LRQP43P37o1LS8K_ZY2NHk1fNg2u2kvH1pIl9yezezdnjk0v8NuGz_GeaOFcoeNoNxlt3rslvirk4N6l91Quca0t2Pmk9p5YUjPX95lb40sO1aWXzsbkux0kuxYSXZQPBwryffY_OOH-bsD1_T3cPOQi8aNJQ8SQIs9zLMAuIjiLJFE3iTzmZfl6PhCFgey4EWBZhZwHxIZFR5I4RdhnPM9tlVWJewzR-C86-feCY-4F_hFjk5yknHwfAkCjVgxZq79pGluuO-pBcsy1TkYSUpopIRGSmiM2fN2_IVmfbly5FOLUIqKmVbbshKqdZ2ibZzwmDz2MbuvEWvvZaEes3iAZTuASN-HZ8rFqSJ_j8hhCZMHV97zIdvu_jGP2FazWsNjNJwb-UTJ42-aGsjT |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Droplet+clusters%3A+nature-inspired+biological+reactors+and+aerosols&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+A%3A+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Fedorets%2C+Alexander+A&rft.au=Bormashenko%2C+Edward&rft.au=Dombrovsky%2C+Leonid+A&rft.au=Nosonovsky%2C+Michael&rft.date=2019-07-29&rft.eissn=1471-2962&rft.volume=377&rft.issue=2150&rft.spage=20190121&rft_id=info:doi/10.1098%2Frsta.2019.0121&rft_id=info%3Apmid%2F31177958&rft.externalDocID=31177958 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-503X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-503X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-503X&client=summon |