Short-day potentiation of low temperature-induced gene expression of a C-repeat-binding factor-controlled gene during cold acclimation in silver birch
Development of winter hardiness in trees is a two-stage process involving sequential perception of distinct environmental cues, short-day (SD) photoperiod and low temperature (LT). We have shown that both SD and LT are recognized by leaves of silver birch (Betula pendula cv Roth) leading to increase...
Saved in:
Published in | Plant physiology (Bethesda) Vol. 136; no. 4; pp. 4299 - 4307 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Rockville, MD
American Society of Plant Biologists
01.12.2004
American Society of Plant Physiologists |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Development of winter hardiness in trees is a two-stage process involving sequential perception of distinct environmental cues, short-day (SD) photoperiod and low temperature (LT). We have shown that both SD and LT are recognized by leaves of silver birch (Betula pendula cv Roth) leading to increased freezing tolerance, and thus leaves can be used as an experimental model to study the physiological and molecular events taking place during cold acclimation. To obtain a molecular marker for the acclimation process in birch we cloned a gene, designated Bplti36, encoding a 36-kD acidic SK2 type of dehydrin. The gene was responsive to LT, drought, salt, and exogenous abscisic acid. This responsiveness to abiotic stresses and abscisic acid was retained when Bplti36 was introduced to Arabidopsis (Arabidopsis thaliana). The LT induction of the gene appeared to be under the control of the C-repeat-binding factor pathway as suggested by the presence of several C-repeat/dehydration-responsive element/LT-responsive elements in the Bplti36 promoter and its constitutive expression in C-repeat-binding factor overproducing Arabidopsis. In birch SD photoperiod at normal-growth temperature did not result in significant induction of Bplti36. However, preexposure to SD followed by LT treatment resulted in a remarkable increase in Bplti36 transcript accumulation as compared to LT-treated plants grown at long-day photoperiod. This suggests that SD photoperiod potentiates the LT response by conditioning the leaf tissue to be more responsive to the LT stimulus. |
---|---|
AbstractList | Development of winter hardiness in trees is a two-stage process involving sequential perception of distinct environmental cues, short-day (SD) photoperiod and low temperature (LT). We have shown that both SD and LT are recognized by leaves of silver birch (Betula pendula cv Roth) leading to increased freezing tolerance, and thus leaves can be used as an experimental model to study the physiological and molecular events taking place during cold acclimation. To obtain a molecular marker for the acclimation process in birch we cloned a gene, designated Bplti36, encoding a 36-kD acidic $\text{SK}_{2}$ type of dehydrin. The gene was responsive to LT, drought, salt, and exogenous abscisic acid. This responsiveness to abiotic stresses and abscisic acid was retained when Bplti36 was introduced to Arabidopsis (Arabidopsis thaliana). The LT induction of the gene appeared to be under the control of the C-repeat-binding factor pathway as suggested by the presence of several C-repeat/dehydration-responsive element/LT-responsive elements in the Bplti36 promoter and its constitutive expression in C-repeat-binding factor overproducing Arabidopsis. In birch SD photoperiod at normal-growth temperature did not result in significant induction of Bplti36. However, preexposure to SD followed by LT treatment resulted in a remarkable increase in Bplti36 transcript accumulation as compared to LT-treated plants grown at long-day photoperiod. This suggests that SD photoperiod potentiates the LT response by conditioning the leaf tissue to be more responsive to the LT stimulus. Development of winter hardiness in trees is a two-stage process involving sequential perception of distinct environmental cues, short-day (SD) photoperiod and low temperature (LT). We have shown that both SD and LT are recognized by leaves of silver birch (Betula pendula cv Roth) leading to increased freezing tolerance, and thus leaves can be used as an experimental model to study the physiological and molecular events taking place during cold acclimation. To obtain a molecular marker for the acclimation process in birch we cloned a gene, designated Bplti36, encoding a 36-kD acidic SK2 type of dehydrin. The gene was responsive to LT, drought, salt, and exogenous abscisic acid. This responsiveness to abiotic stresses and abscisic acid was retained when Bplti36 was introduced to Arabidopsis (Arabidopsis thaliana). The LT induction of the gene appeared to be under the control of the C-repeat-binding factor pathway as suggested by the presence of several C-repeat/dehydration-responsive element/LT-responsive elements in the Bplti36 promoter and its constitutive expression in C-repeat-binding factor overproducing Arabidopsis. In birch SD photoperiod at normal-growth temperature did not result in significant induction of Bplti36. However, preexposure to SD followed by LT treatment resulted in a remarkable increase in Bplti36 transcript accumulation as compared to LT-treated plants grown at long-day photoperiod. This suggests that SD photoperiod potentiates the LT response by conditioning the leaf tissue to be more responsive to the LT stimulus. Development of winter hardiness in trees is a two-stage process involving sequential perception of distinct environmental cues, short-day (SD) photoperiod and low temperature (LT). We have shown that both SD and LT are recognized by leaves of silver birch (Betula pendula cv Roth) leading to increased freezing tolerance, and thus leaves can be used as an experimental model to study the physiological and molecular events taking place during cold acclimation. To obtain a molecular marker for the acclimation process in birch we cloned a gene, designated Bplti36, encoding a 36-kD acidic SK sub(2) type of dehydrin. The gene was responsive to LT, drought, salt, and exogenous abscisic acid. This responsiveness to abiotic stresses and abscisic acid was retained when Bplti36 was introduced to Arabidopsis (Arabidopsis thaliana). The LT induction of the gene appeared to be under the control of the C-repeat-binding factor pathway as suggested by the presence of several C-repeat/dehydration-responsive element/LT- responsive elements in the Bplti36 promoter and its constitutive expression in C-repeat-binding factor overproducing Arabidopsis. In birch SD photoperiod at normal-growth temperature did not result in significant induction of Bplti36. However, preexposure to SD followed by LT treatment resulted in a remarkable increase in Bplti36 transcript accumulation as compared to LT-treated plants grown at long-day photoperiod. This suggests that SD photoperiod potentiates the LT response by conditioning the leaf tissue to be more responsive to the LT stimulus. |
Author | Palva, E.T Kangasjarvi, J Li, C Boije-Malm, M Puhakainen, T Heino, P |
Author_xml | – sequence: 1 fullname: Puhakainen, T – sequence: 2 fullname: Li, C – sequence: 3 fullname: Boije-Malm, M – sequence: 4 fullname: Kangasjarvi, J – sequence: 5 fullname: Heino, P – sequence: 6 fullname: Palva, E.T |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16893044$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15563624$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0k2P1SAUBmBixjh3RpfujLLRXa98FFqW5savZBIX46wbCqd3OuFCBTo6f8TfK02rs3R1SN6HQ-Bwgc588IDQS0r2lJL6_TTtS9mTumGifYJ2VHBWMVG3Z2hHSFmTtlXn6CKlO0II5bR-hs6pEJJLVu_Q7-vbEHNl9QOeQgafR53H4HEYsAs_cYbTBFHnOUI1ejsbsPgIHjD8miKktFGND1WECXSu-sJGf8SDNjnEygSfY3Du7z47xyU1wVmsjXHjaT1v9DiN7h4i7sdobp-jp4N2CV5s9RLdfPr4_fCluvr2-evhw1VlBFe5Epq1ZrAKmGVW9b1QwBltqGhM31tmBqNEz4QUfc1qajlvCGvMIFVjqCSS8Ev0bu07xfBjhpS705gMOKc9hDl1sqGKcN7-F1KlWC3FAqsVmhhSijB0UyyXjA8dJd0ysW6auqWsEyv-9dZ47k9gH_U2ogLebkAno90QtTdjenSyVZzUi3u1urtUHv5fXnMhm5aW-M0aDzp0-hhLi5trVj4EIUq2jeT8D591tRg |
CODEN | PPHYA5 |
CitedBy_id | crossref_primary_10_1186_s12870_022_03578_w crossref_primary_10_1080_09291010600804619 crossref_primary_10_1111_j_1439_037X_2009_00393_x crossref_primary_10_1007_s10535_007_0133_6 crossref_primary_10_1016_j_plantsci_2017_09_003 crossref_primary_10_3390_plants9050560 crossref_primary_10_3724_SP_J_1259_2011_00079 crossref_primary_10_3732_ajb_1400373 crossref_primary_10_1134_S1021443718010090 crossref_primary_10_1111_j_1365_313X_2007_03077_x crossref_primary_10_1111_ppl_12306 crossref_primary_10_1104_pp_108_117812 crossref_primary_10_1007_s12041_012_0201_3 crossref_primary_10_3389_fgene_2020_584527 crossref_primary_10_1111_plb_13510 crossref_primary_10_1093_treephys_tpt001 crossref_primary_10_1093_treephys_tpu012 crossref_primary_10_1016_j_plantsci_2006_02_002 crossref_primary_10_3389_fpls_2020_00327 crossref_primary_10_1093_treephys_tpp125 crossref_primary_10_1134_S1990519X17060098 crossref_primary_10_1007_s00344_005_0079_x crossref_primary_10_1051_forest_2007068 crossref_primary_10_1111_j_1365_3040_2010_02247_x crossref_primary_10_1007_s11033_008_9410_5 crossref_primary_10_1104_pp_108_120725 crossref_primary_10_1134_S0012496611040193 crossref_primary_10_1111_j_1365_3040_2006_01505_x crossref_primary_10_1007_s00299_011_1136_5 crossref_primary_10_1079_IVP2005691 crossref_primary_10_1093_jxb_erj075 crossref_primary_10_1134_S1021443713060095 crossref_primary_10_1093_jpe_rtad044 crossref_primary_10_1007_s00299_019_02376_3 crossref_primary_10_1007_s11105_008_0079_7 crossref_primary_10_1093_pcp_pcr030 crossref_primary_10_1139_cjfr_2013_0481 crossref_primary_10_1007_s12298_021_01061_8 crossref_primary_10_4236_as_2013_49062 crossref_primary_10_1093_jxb_erq306 crossref_primary_10_1111_ppl_13019 crossref_primary_10_1186_1471_2229_11_158 crossref_primary_10_4161_psb_5_7_11701 crossref_primary_10_1111_j_1399_3054_2006_00672_x crossref_primary_10_1111_j_1399_3054_2006_00826_x crossref_primary_10_1186_1471_2229_12_22 crossref_primary_10_1515_sg_2012_0012 crossref_primary_10_2478_frp_2019_0028 crossref_primary_10_1111_j_1467_7652_2006_00228_x crossref_primary_10_1016_j_bbrc_2010_03_011 crossref_primary_10_1007_s00425_010_1279_6 crossref_primary_10_1073_pnas_0408549102 crossref_primary_10_3389_fpls_2022_843071 crossref_primary_10_1134_S1021443711060148 crossref_primary_10_3389_fbioe_2019_00030 crossref_primary_10_1007_s40333_022_0033_9 crossref_primary_10_1007_s11103_008_9434_1 crossref_primary_10_1007_s00425_008_0750_0 crossref_primary_10_1007_s11105_009_0110_7 crossref_primary_10_1007_s11738_013_1329_3 crossref_primary_10_1007_s40626_019_00140_2 crossref_primary_10_1016_j_envexpbot_2010_12_019 crossref_primary_10_1016_j_stress_2024_100429 crossref_primary_10_3390_life12111846 crossref_primary_10_1093_treephys_tps067 crossref_primary_10_1016_j_scienta_2015_10_011 crossref_primary_10_1016_j_semcdb_2013_02_006 crossref_primary_10_1007_s11103_013_0026_3 crossref_primary_10_1007_s13562_016_0374_6 |
Cites_doi | 10.1104/pp.71.2.362 10.1093/nar/27.1.297 10.1104/pp.118.1.1 10.1093/bioinformatics/7.2.203 10.1146/annurev.arplant.47.1.377 10.1104/pp.124.4.1854 10.1023/B:PLAN.0000040903.66496.a4 10.1046/j.1365-313X.2002.01359.x 10.1104/pp.99.4.1562 10.1016/S0981-9428(00)00764-6 10.1093/jxb/erh045 10.1105/tpc.9.11.1935 10.21273/JASHS.121.5.915 10.1034/j.1399-3054.1997.1000112.x 10.1016/S1369-5266(00)80068-0 10.1007/BF02668658 10.1105/tpc.6.2.251 10.1046/j.1365-313x.1997.12061339.x 10.1111/j.1399-3054.1978.tb08634.x 10.1146/annurev.arplant.50.1.571 10.1104/pp.103.023523 10.1073/pnas.94.3.1035 10.1007/BF00029852 10.1104/pp.104.4.1341 10.1034/j.1399-3054.1997.1010102.x 10.1046/j.1365-3040.1998.00306.x 10.1105/tpc.10.8.1391 10.1104/pp.125.1.89 10.1007/s10142-002-0070-6 10.1007/BF00039526 10.1104/pp.105.1.95 10.1002/j.1460-2075.1992.tb05294.x 10.1007/978-3-540-39402-0_7 10.1105/tpc.1.10.969 10.1105/tpc.003483 10.1093/jxb/47.3.291 10.1007/BF00014547 10.1126/science.280.5360.104 10.1034/j.1399-3054.1996.970422.x 10.1016/S0176-1617(96)80046-0 10.1126/science.169.3952.1269 10.1007/BF00019115 10.1023/A:1005787909506 10.21273/HORTSCI.31.6.923 10.1007/s001220051312 10.1016/S1568-1254(02)80013-4 10.1034/j.1399-3054.1996.960321.x 10.1073/pnas.81.7.1991 10.1104/pp.010483 10.1046/j.1469-8137.1997.00831.x 10.1038/7036 10.1007/978-1-4899-0277-1_1 10.1016/0014-5793(94)00353-X 10.1006/bbrc.1998.9267 10.1105/tpc.10.4.623 10.1104/pp.010548 10.1007/978-3-642-71745-1 10.1046/j.1365-313x.1998.00310.x 10.1104/pp.003814 10.1023/A:1005868715571 10.1104/pp.103.4.1035 10.1023/A:1006453811911 10.1007/BF02670468 10.1034/j.1399-3054.2002.1160406.x 10.1034/j.1399-3054.1997.1000210.x |
ContentType | Journal Article |
Copyright | Copyright 2004 American Society of Plant Biologists 2005 INIST-CNRS |
Copyright_xml | – notice: Copyright 2004 American Society of Plant Biologists – notice: 2005 INIST-CNRS |
DBID | FBQ IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FD FR3 P64 RC3 7X8 |
DOI | 10.1104/pp.104.047258 |
DatabaseName | AGRIS Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1532-2548 |
EndPage | 4307 |
ExternalDocumentID | 10_1104_pp_104_047258 15563624 16893044 4356781 US201300968763 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X 123 29O 2AX 2WC 2~F 3V. 4.4 53G 5VS 5WD 7X2 7X7 85S 88A 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8G5 8R4 8R5 AAHKG AAPXW AAVAP AAWDT AAXTN AAYJJ ABBHK ABJNI ABPLY ABPPZ ABPTD ABPTK ABTLG ABUWG ABXZS ACBTR ACFRR ACGOD ACIPB ACNCT ACPRK ACUFI ACUTJ ADBBV ADIPN ADIYS ADULT ADVEK ADYHW ADZLD AEEJZ AENEX AESBF AEUPB AFAZZ AFDAS AFFDN AFFZL AFGWE AFKRA AFRAH AFYAG AGUYK AHMBA AICQM AIDAL AIDBO AJEEA ALMA_UNASSIGNED_HOLDINGS ALXQX ANFBD AQDSO AS~ ATCPS AZQEC BAWUL BBNVY BCRHZ BENPR BHPHI BPHCQ BTFSW BVXVI BYORX C1A CBGCD CCPQU CS3 CWIXF D1J DATOO DFEDG DIK DOOOF DU5 DWIUU DWQXO E3Z EBS ECGQY EJD F20 F5P FBQ FLUFQ FOEOM FYUFA GNUQQ GTFYD GUQSH HCIFZ HMCUK HTVGU ISR JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST KOP KQ8 KSI KSN LK8 M0K M0L M1P M2O M2P M2Q M7P MV1 MVM NOMLY OBOKY OJZSN OK1 OWPYF P0- P2P PQQKQ PROAC PSQYO Q2X QZG RHF RHI ROX RPB RPM RWL RXW S0X SA0 TAE TCN TN5 TR2 UBC UKHRP UKR VQA W8F WH7 WHG WOQ XOL XSW Y6R YBU YKV YNT YSK YZZ ZCA ZCG ZCN ~02 ~KM 0R~ AAHBH AARHZ AAUAY ABEJV ABMNT ABXSQ ABXVV ADACV ADQBN AHXOZ ALIPV AQVQM ATGXG BEYMZ H13 IPSME NU- 08R AAPBV IQODW ACZBC AGMDO CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FD FR3 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c539t-5a28cfd9e2d2d9bb59e3217157cbbd2cfc95b2565b4241d337027cf697c160603 |
ISSN | 0032-0889 |
IngestDate | Wed Dec 04 01:03:19 EST 2024 Wed Dec 04 11:35:23 EST 2024 Fri Dec 06 04:54:10 EST 2024 Tue Oct 15 23:27:32 EDT 2024 Sun Oct 22 16:08:35 EDT 2023 Wed Dec 11 00:50:25 EST 2024 Wed Dec 27 19:12:54 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Temperature Cold Growth Tolerance Plant leaf Photoperiod Molecular marker Gene expression Stress Salinity Arabidopsis thaliana Dehydrin Gene Cruciferae Dicotyledones Angiospermae Abscisic acid Development Spermatophyta Betula pendula Drought Betulaceae Low temperature |
Language | English |
License | CC BY 4.0 https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c539t-5a28cfd9e2d2d9bb59e3217157cbbd2cfc95b2565b4241d337027cf697c160603 |
Notes | http://www.plantphysiol.org/ ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/plphys/article-pdf/136/4/4299/37813841/plphys_v136_4_4299.pdf |
PMID | 15563624 |
PQID | 19924658 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_67190338 proquest_miscellaneous_19924658 crossref_primary_10_1104_pp_104_047258 pubmed_primary_15563624 pascalfrancis_primary_16893044 jstor_primary_4356781 fao_agris_US201300968763 |
PublicationCentury | 2000 |
PublicationDate | 2004-12-01 |
PublicationDateYYYYMMDD | 2004-12-01 |
PublicationDate_xml | – month: 12 year: 2004 text: 2004-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Rockville, MD |
PublicationPlace_xml | – name: Rockville, MD – name: United States |
PublicationTitle | Plant physiology (Bethesda) |
PublicationTitleAlternate | Plant Physiol |
PublicationYear | 2004 |
Publisher | American Society of Plant Biologists American Society of Plant Physiologists |
Publisher_xml | – sequence: 0 name: American Society of Plant Biologists – name: American Society of Plant Physiologists |
References | 12172015 - Plant Cell. 2002 Aug;14(8):1675-90 9401119 - Plant Cell. 1997 Nov;9(11):1935-49 16669074 - Plant Physiol. 1992 Aug;99(4):1562-8 9707537 - Plant Cell. 1998 Aug;10(8):1391-406 12164808 - Plant J. 2002 Aug;31(3):279-92 10949369 - Plant Mol Biol. 2000 May;43(1):1-10 9548987 - Plant Cell. 1998 Apr;10(4):623-38 6326095 - Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991-5 12913142 - Plant Physiol. 2003 Aug;132(4):1849-60 7579157 - Plant Mol Biol. 1995 Oct;29(1):11-23 16662831 - Plant Physiol. 1983 Feb;71(2):362-5 8193295 - Plant Mol Biol. 1994 Mar;24(5):701-13 2059845 - Comput Appl Biosci. 1991 Apr;7(2):203-6 12231998 - Plant Physiol. 1993 Dec;103(4):1035-1040 7910142 - FEBS Lett. 1994 May 9;344(1):20-4 7948863 - Plant Mol Biol. 1994 Oct;26(1):131-44 2562556 - Plant Cell. 1989 Oct;1(10):969-76 17772511 - Science. 1970 Sep 25;169(3952):1269-78 10837265 - Curr Opin Plant Biol. 2000 Jun;3(3):217-23 12444421 - Funct Integr Genomics. 2002 Nov;2(6):282-91 9349251 - Plant Mol Biol. 1997 Oct;35(3):271-9 10096298 - Nat Biotechnol. 1999 Mar;17(3):287-91 15012220 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:571-599 9847208 - Nucleic Acids Res. 1999 Jan 1;27(1):297-300 9881163 - Plant J. 1998 Nov;16(4):433-42 11706173 - Plant Physiol. 2001 Nov;127(3):910-7 14739271 - J Exp Bot. 2004 Feb;55(396):507-16 15356392 - Plant Mol Biol. 2004 Mar;54(5):743-53 12232173 - Plant Physiol. 1994 Apr;104(4):1341-1349 11743112 - Plant Physiol. 2001 Dec;127(4):1676-81 15012294 - Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:377-403 9023378 - Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):1035-40 8148648 - Plant Cell. 1994 Feb;6(2):251-64 9733520 - Plant Physiol. 1998 Sep;118(1):1-8 8448363 - Plant Mol Biol. 1993 Feb;21(4):641-53 9525853 - Science. 1998 Apr 3;280(5360):104-6 1376250 - EMBO J. 1992 Jun;11(6):2345-55 11115899 - Plant Physiol. 2000 Dec;124(4):1854-65 9735350 - Biochem Biophys Res Commun. 1998 Sep 8;250(1):161-70 12177476 - Plant Physiol. 2002 Aug;129(4):1633-41 11154304 - Plant Physiol. 2001 Jan;125(1):89-93 9037159 - Plant Mol Biol. 1997 Jan;33(1):61-70 8029367 - Plant Physiol. 1994 May;105(1):95-101 2021050606581243800_R39 2021050606581243800_R1 2021050606581243800_R41 2021050606581243800_R40 2021050606581243800_R8 2021050606581243800_R43 2021050606581243800_R9 2021050606581243800_R42 2021050606581243800_R6 2021050606581243800_R45 2021050606581243800_R7 2021050606581243800_R44 2021050606581243800_R4 2021050606581243800_R47 2021050606581243800_R5 2021050606581243800_R46 2021050606581243800_R2 2021050606581243800_R49 2021050606581243800_R3 2021050606581243800_R48 2021050606581243800_R50 2021050606581243800_R52 2021050606581243800_R51 2021050606581243800_R10 2021050606581243800_R54 2021050606581243800_R53 2021050606581243800_R12 2021050606581243800_R56 2021050606581243800_R11 2021050606581243800_R55 2021050606581243800_R14 2021050606581243800_R58 2021050606581243800_R13 2021050606581243800_R57 2021050606581243800_R16 2021050606581243800_R15 2021050606581243800_R59 2021050606581243800_R18 2021050606581243800_R17 2021050606581243800_R19 2021050606581243800_R61 2021050606581243800_R60 2021050606581243800_R63 2021050606581243800_R62 2021050606581243800_R21 2021050606581243800_R65 2021050606581243800_R20 2021050606581243800_R64 2021050606581243800_R23 2021050606581243800_R67 2021050606581243800_R22 2021050606581243800_R66 2021050606581243800_R25 2021050606581243800_R69 2021050606581243800_R24 2021050606581243800_R68 2021050606581243800_R27 2021050606581243800_R26 2021050606581243800_R29 2021050606581243800_R28 2021050606581243800_R30 2021050606581243800_R32 2021050606581243800_R31 2021050606581243800_R34 2021050606581243800_R33 2021050606581243800_R36 2021050606581243800_R35 2021050606581243800_R38 |
References_xml | – ident: 2021050606581243800_R14 doi: 10.1104/pp.71.2.362 – ident: 2021050606581243800_R28 doi: 10.1093/nar/27.1.297 – ident: 2021050606581243800_R59 doi: 10.1104/pp.118.1.1 – ident: 2021050606581243800_R48 doi: 10.1093/bioinformatics/7.2.203 – ident: 2021050606581243800_R30 doi: 10.1146/annurev.arplant.47.1.377 – ident: 2021050606581243800_R25 doi: 10.1104/pp.124.4.1854 – ident: 2021050606581243800_R47 doi: 10.1023/B:PLAN.0000040903.66496.a4 – ident: 2021050606581243800_R53 doi: 10.1046/j.1365-313X.2002.01359.x – ident: 2021050606581243800_R5 doi: 10.1104/pp.99.4.1562 – ident: 2021050606581243800_R11 doi: 10.1016/S0981-9428(00)00764-6 – ident: 2021050606581243800_R51 – ident: 2021050606581243800_R66 doi: 10.1093/jxb/erh045 – ident: 2021050606581243800_R31 doi: 10.1105/tpc.9.11.1935 – ident: 2021050606581243800_R4 doi: 10.21273/JASHS.121.5.915 – ident: 2021050606581243800_R64 doi: 10.1034/j.1399-3054.1997.1000112.x – ident: 2021050606581243800_R54 doi: 10.1016/S1369-5266(00)80068-0 – ident: 2021050606581243800_R42 doi: 10.1007/BF02668658 – ident: 2021050606581243800_R68 doi: 10.1105/tpc.6.2.251 – ident: 2021050606581243800_R45 doi: 10.1046/j.1365-313x.1997.12061339.x – ident: 2021050606581243800_R15 doi: 10.1111/j.1399-3054.1978.tb08634.x – ident: 2021050606581243800_R60 doi: 10.1146/annurev.arplant.50.1.571 – ident: 2021050606581243800_R20 doi: 10.1104/pp.103.023523 – ident: 2021050606581243800_R56 doi: 10.1073/pnas.94.3.1035 – ident: 2021050606581243800_R8 – ident: 2021050606581243800_R7 doi: 10.1007/BF00029852 – ident: 2021050606581243800_R38 doi: 10.1104/pp.104.4.1341 – ident: 2021050606581243800_R1 doi: 10.1034/j.1399-3054.1997.1010102.x – ident: 2021050606581243800_R69 doi: 10.1046/j.1365-3040.1998.00306.x – ident: 2021050606581243800_R41 doi: 10.1105/tpc.10.8.1391 – ident: 2021050606581243800_R61 doi: 10.1104/pp.125.1.89 – ident: 2021050606581243800_R52 doi: 10.1007/s10142-002-0070-6 – ident: 2021050606581243800_R63 doi: 10.1007/BF00039526 – ident: 2021050606581243800_R2 doi: 10.1104/pp.105.1.95 – ident: 2021050606581243800_R22 doi: 10.1002/j.1460-2075.1992.tb05294.x – ident: 2021050606581243800_R27 doi: 10.1007/978-3-540-39402-0_7 – ident: 2021050606581243800_R43 doi: 10.1105/tpc.1.10.969 – ident: 2021050606581243800_R24 doi: 10.1105/tpc.003483 – ident: 2021050606581243800_R29 doi: 10.1093/jxb/47.3.291 – ident: 2021050606581243800_R44 doi: 10.1007/BF00014547 – ident: 2021050606581243800_R33 doi: 10.1126/science.280.5360.104 – ident: 2021050606581243800_R57 – ident: 2021050606581243800_R17 doi: 10.1034/j.1399-3054.1996.970422.x – ident: 2021050606581243800_R34 doi: 10.1016/S0176-1617(96)80046-0 – ident: 2021050606581243800_R62 doi: 10.1126/science.169.3952.1269 – ident: 2021050606581243800_R10 doi: 10.1007/BF00019115 – ident: 2021050606581243800_R6 doi: 10.1023/A:1005787909506 – ident: 2021050606581243800_R3 doi: 10.21273/HORTSCI.31.6.923 – ident: 2021050606581243800_R40 doi: 10.1007/s001220051312 – ident: 2021050606581243800_R58 doi: 10.1016/S1568-1254(02)80013-4 – ident: 2021050606581243800_R67 doi: 10.1034/j.1399-3054.1996.960321.x – ident: 2021050606581243800_R16 doi: 10.1073/pnas.81.7.1991 – ident: 2021050606581243800_R23 doi: 10.1104/pp.010483 – ident: 2021050606581243800_R12 doi: 10.1046/j.1469-8137.1997.00831.x – ident: 2021050606581243800_R35 doi: 10.1038/7036 – ident: 2021050606581243800_R46 doi: 10.1007/978-1-4899-0277-1_1 – ident: 2021050606581243800_R19 doi: 10.1016/0014-5793(94)00353-X – ident: 2021050606581243800_R55 doi: 10.1006/bbrc.1998.9267 – ident: 2021050606581243800_R21 doi: 10.1105/tpc.10.4.623 – ident: 2021050606581243800_R32 doi: 10.1104/pp.010548 – ident: 2021050606581243800_R50 doi: 10.1007/978-3-642-71745-1 – ident: 2021050606581243800_R26 doi: 10.1046/j.1365-313x.1998.00310.x – ident: 2021050606581243800_R65 doi: 10.1104/pp.003814 – ident: 2021050606581243800_R36 doi: 10.1023/A:1005868715571 – ident: 2021050606581243800_R9 doi: 10.1104/pp.103.4.1035 – ident: 2021050606581243800_R49 doi: 10.1023/A:1006453811911 – ident: 2021050606581243800_R13 doi: 10.1007/BF02670468 – ident: 2021050606581243800_R39 doi: 10.1034/j.1399-3054.2002.1160406.x – ident: 2021050606581243800_R18 doi: 10.1034/j.1399-3054.1997.1000210.x |
SSID | ssj0001314 |
Score | 2.1646953 |
Snippet | Development of winter hardiness in trees is a two-stage process involving sequential perception of distinct environmental cues, short-day (SD) photoperiod and... |
SourceID | proquest crossref pubmed pascalfrancis jstor fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 4299 |
SubjectTerms | abscisic acid acclimation Acclimatization Acclimatization - physiology Agronomy. Soil science and plant productions Amino Acid Sequence amino acid sequences Arabidopsis - metabolism Arabidopsis thaliana Betula - genetics Betula - metabolism Betula pendula Biological and medical sciences C-repeat binding factor Classical and quantitative genetics. Population genetics. Molecular genetics cold Cold Temperature dehydration-responsive element dehydrin Desiccation Drought Environmental Stress and Adaptation forest trees Freezing Fundamental and applied biological sciences. Psychology Gene expression gene expression regulation Gene Expression Regulation, Plant - physiology Generalities. Genetics. Plant material Genes Genes, Plant - physiology Genetics and breeding of economic plants Leaves Molecular genetics Molecular Sequence Data nucleotide sequences Photoperiod Plant Leaves - metabolism plant proteins Plant Proteins - metabolism Plants Plants, Genetically Modified promoter regions RNA salt stress Sequence Homology, Amino Acid Signal Transduction transcription factors transgenic plants water stress winter hardiness Woody plants |
Title | Short-day potentiation of low temperature-induced gene expression of a C-repeat-binding factor-controlled gene during cold acclimation in silver birch |
URI | https://www.jstor.org/stable/4356781 https://www.ncbi.nlm.nih.gov/pubmed/15563624 https://search.proquest.com/docview/19924658 https://search.proquest.com/docview/67190338 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9pAEF6RpIdeqj7Shj7oHqpe0KbYXtv4WAgobQmNGpC4WetX4oBsVLAq-kP6S_oDO-OxjWkS9XEBZK3XSPN555vdmW8Ye-NrmtKAVojQhNhEKisSSulS2B6ApeP5VpRXeJ-NrdOp_DgzZ43Gz1rWUrb2jv3vt9aV_I9V4RrYFatk_8Gy1aRwAX6DfeETLAyff2Xjiysgz-JEbdrn6RrTfir-N0q_tSchUGKSTBbYoQNP-lFlGuWNKfs1oerIvgAaDmuy6MVU4zLMm_CIPqWxL8r7ipLGfroIsMvEIqayR9wyuYgxw7rdi8udsYLvYk-kNW2fkNgTENoe1hivAlXbhDjPrtRcAeGlXslZtqi8xSimrIAs2ajCy-bZjfF1KM5UsaOrKFmaXAcMU6trhYsg5QGr-Tzd2d2QtUyRYsU24EKX2gwdh-UirQsIbLs7qzjpqBRwlbU1GT1uzb9Lg9rs3vQdHYkNj5d47H2MIpqkKb-r0T3-7A6no5E7Gcwme-wA5RexY8PJh0-V_9cMUpQv_3ml7Crf7Uy-w4T2IpWWKbGYn6tW8IpG1Fvl7uAnJ0GTh-xBEb3w9wTFR6wRJo_ZvV4KEcbmCftR4ZHX8cjTiAMe-S145IgrvsUjDlX8dzzyG3ik-wiPHPHIa3jkccIJjzzH4yGbDgeT_qko-n4I3zSctTCV3vWjwAn1QA8czzOd0IDIWTNt3_MC3Y98x_SAqpueBP4ZGIbd0W0_shzb1yAe7xhP2X6SJuER454KDN-RAbaNwKLqrhmFViC7looiFURhk70tbeAuSd7FzcPijnSXSxe_yFhNdgQWctUluF53eqHjgT9E_6jn2GSHudmqCSACAQqoNVlrx4zbB1gQJHSkbLLXpV1dWNTxpE4lYZqtXMwJlxY-9a4Rlg1M3jBgxDMCxHZ2lPyzdPn8j7O_YPe3r9xLtr_-moWvgGKvvRbbs2d2ix30BuPzL60c378A_APU6g |
link.rule.ids | 314,780,784,27924,27925,31720,33745 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-Day+Potentiation+of+Low+Temperature-Induced+Gene+Expression+of+a+C-Repeat-Binding+Factor-Controlled+Gene+during+Cold+Acclimation+in+Silver+Birch&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Puhakainen%2C+Tuula&rft.au=Li%2C+Chunyang&rft.au=Boije-Malm%2C+Maria&rft.au=Kangasjaervi%2C+Jaakko&rft.date=2004-12-01&rft.issn=0032-0889&rft.eissn=1532-2548&rft.volume=136&rft.issue=4&rft.spage=4299&rft.epage=4307&rft_id=info:doi/10.1104%2Fpp.104.047258&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon |