A Reference Population-Based Conformance Proportion
Conformance proportion is a useful index in agricultural, biological, and environmental applications, which is defined as the proportion that a characteristic of interest falls in an acceptance region of a specification. In practice, however, the acceptance region may not be available when employing...
Saved in:
Published in | Journal of Agricultural, Biological and Environmental Statistics Vol. 21; no. 4; pp. 684 - 697 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer Science+Business Media, LLC
01.12.2016
Springer Science and Business Media LLC Springer US Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conformance proportion is a useful index in agricultural, biological, and environmental applications, which is defined as the proportion that a characteristic of interest falls in an acceptance region of a specification. In practice, however, the acceptance region may not be available when employing the regular conformance proportion. In this article, we propose a new index in which the acceptance region is obtained from a reference population. Furthermore, we develop approaches to constructing confidence limits for the proposed conformance proportion using the concept of a fiducial generalized pivotal quantity. We first consider the simple situation that the characteristic is assumed to be a univariate normal random variable. Then we extend it to the one-way random effects model. The proposed method is evaluated through simulation study and real data analysis. It is shown that our proposed new index and its statistical inference are easy to implement and reasonably satisfactory for most applications. Supplementary materials accompanying this paper appear on-line. |
---|---|
AbstractList | Conformance proportion is a useful index in agricultural, biological, and environmental applications, which is defined as the proportion that a characteristic of interest falls in an acceptance region of a specification. In practice, however, the acceptance region may not be available when employing the regular conformance proportion. In this article, we propose a new index in which the acceptance region is obtained from a reference population. Furthermore, we develop approaches to constructing confidence limits for the proposed conformance proportion using the concept of a fiducial generalized pivotal quantity. We first consider the simple situation that the characteristic is assumed to be a univariate normal random variable. Then we extend it to the one-way random effects model. The proposed method is evaluated through simulation study and real data analysis. It is shown that our proposed new index and its statistical inference are easy to implement and reasonably satisfactory for most applications.Supplementary materials accompanying this paper appear on-line. Conformance proportion is a useful index in agricultural, biological, and environmental applications, which is defined as the proportion that a characteristic of interest falls in an acceptance region of a specification. In practice, however, the acceptance region may not be available when employing the regular conformance proportion. In this article, we propose a new index in which the acceptance region is obtained from a reference population. Furthermore, we develop approaches to constructing confidence limits for the proposed conformance proportion using the concept of a fiducial generalized pivotal quantity. We first consider the simple situation that the characteristic is assumed to be a univariate normal random variable. Then we extend it to the one-way random effects model. The proposed method is evaluated through simulation study and real data analysis. It is shown that our proposed new index and its statistical inference are easy to implement and reasonably satisfactory for most applications. Conformance proportion is a useful index in agricultural, biological, and environmental applications, which is defined as the proportion that a characteristic of interest falls in an acceptance region of a specification. In practice, however, the acceptance region may not be available when employing the regular conformance proportion. In this article, we propose a new index in which the acceptance region is obtained from a reference population. Furthermore, we develop approaches to constructing confidence limits for the proposed conformance proportion using the concept of a fiducial generalized pivotal quantity. We first consider the simple situation that the characteristic is assumed to be a univariate normal random variable. Then we extend it to the one-way random effects model. The proposed method is evaluated through simulation study and real data analysis. It is shown that our proposed new index and its statistical inference are easy to implement and reasonably satisfactory for most applications. Supplementary materials accompanying this paper appear on-line. |
Audience | Academic |
Author | Lee, Hsin-I Chen, Hungyen Kishino, Hirohisa Liao, Chen-Tuo |
Author_xml | – sequence: 1 givenname: Hsin-I surname: Lee fullname: Lee, Hsin-I – sequence: 2 givenname: Hungyen surname: Chen fullname: Chen, Hungyen – sequence: 3 givenname: Hirohisa surname: Kishino fullname: Kishino, Hirohisa – sequence: 4 givenname: Chen-Tuo surname: Liao fullname: Liao, Chen-Tuo |
BackLink | https://cir.nii.ac.jp/crid/1872272493029499136$$DView record in CiNii |
BookMark | eNp9kl1rFDEUhoNUsK3-AC-EBb3Qi9R8f1xuFz8KBaXqdchkMkuW2WRNZkD76z3bEbG9KIHkkDxvzjl5c4ZOcskRoZeUXFBC9PtGOZMcE6owYcrg2yfolEquMVOWn0BMjMSaUv0MnbW2I4RyRdgp4uvVTRxijTnE1ddymEc_pZLxpW-xX21KHkrd-7vDWg6lHg-fo6eDH1t88Xc9Rz8-fvi--Yyvv3y62qyvcZDcTlhSwSwNwfacaC9j33W9toLJrtPUCEkD7SRXTKsIcR-6OHgVNNOiVzIEws_R2-XeQy0_59gmt08txHH0OZa5OUYIEcQwoQF9_QDdlblmqM5RY4CxxHKgLhZq68foEvQ2VR9g9HGfAjzokGB_LTmzhkopQPDungCYKf6atn5uzV19u7nP0oUNtbRW4-AONe19_e0ocUeP3OKRA4_c0SN3Cxr9QBPSdGcAFJbGR5VsUTbIkrex_tfwI6I3iyinBJmOMzWaMc2E5YRZYS18C8BeLdiuTaX-a4Mp8Mxozf8AVaW40Q |
CitedBy_id | crossref_primary_10_1007_s13253_019_00364_4 crossref_primary_10_1080_02664763_2020_1769578 crossref_primary_10_1080_03610918_2022_2051716 crossref_primary_10_1080_02664763_2019_1690639 |
Cites_doi | 10.1080/00224065.2012.11917882 10.1080/01621459.1980.10477565 10.1002/sim.4780111004 10.1214/12-AOS1030 10.1080/00949650214270 10.1007/s13253-014-0166-1 10.1002/qre.1597 10.1080/01621459.2016.1165102 10.1002/(SICI)1097-0258(19960730)15:14<1489::AID-SIM293>3.0.CO;2-S 10.1007/978-1-4612-0825-9 10.2135/cropsci2014.01.0011 10.1080/00224065.1996.11979701 10.1198/016214505000000736 |
ContentType | Journal Article |
Copyright | 2016 International Biometric Society International Biometric Society 2016 COPYRIGHT 2016 Springer Copyright Springer Science & Business Media 2016 |
Copyright_xml | – notice: 2016 International Biometric Society – notice: International Biometric Society 2016 – notice: COPYRIGHT 2016 Springer – notice: Copyright Springer Science & Business Media 2016 |
DBID | RYH AAYXX CITATION ISR 7S9 L.6 |
DOI | 10.1007/s13253-016-0268-z |
DatabaseName | CiNii Complete CrossRef Gale In Context: Science AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology Environmental Sciences Medicine Statistics |
EISSN | 1537-2693 |
EndPage | 697 |
ExternalDocumentID | A532981554 10_1007_s13253_016_0268_z 26451877 |
GroupedDBID | 06D 0R~ 0VY 199 1N0 203 2AX 2JN 2KG 2LR 2XV 3-Y 30V 4.4 406 408 40D 40E 5GY 8UJ 95. 96X A8Z AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAWIL AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABAWQ ABBHK ABBRH ABDBE ABDBF ABDZT ABECU ABFAN ABFSG ABFTV ABHLI ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQDR ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ABXSQ ABYWD ACAOD ACDIW ACDTI ACGFS ACHJO ACHSB ACHXU ACKNC ACMDZ ACMLO ACMTB ACOKC ACPIV ACPRK ACSTC ACTMH ACUHS ACZOJ ADHHG ADHIR ADKNI ADKPE ADODI ADRFC ADTPH ADULT ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AELLO AEMSY AENEX AEOHA AEPYU AESKC AETCA AEUPB AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFOHR AFQWF AFRAH AFVYC AFWTZ AFZKB AGAYW AGDGC AGJBK AGLNM AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIHAF AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKBRZ ALMA_UNASSIGNED_HOLDINGS ALRMG AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN BAPOH BGNMA CSCUP D0L DDRTE DNIVK DPUIP DQDLB DSRWC DU5 EBD EBLON EBS ECEWR EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GGRSB GJIRD GNWQR GQ7 GXS H13 HF~ HMJXF HQ6 HRMNR IAO IEP IGS IKXTQ IPSME ISR ITM IWAJR I~Z J-C J0Z JAA JAAYA JBMMH JBSCW JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST JZLTJ KOV LLZTM M4Y ML. NPVJJ NQJWS NU0 O93 O9J P2P P9R PT4 R9I ROL RSV S27 S3B SA0 SHX SISQX SJN SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 ZMTXR ~KM RYH -5D -5G -BR -EM -~C 0VX 2VQ AAKYL AARHV ABULA ACBXY ADINQ AELPN AFLOW AI. AS~ BHOJU CAG COF FEDTE GIFXF GQ6 HGD HVGLF HZ~ IFM JSODD O9- PKN RNS S1Z UQL VH1 Z7U Z7W Z7Y Z7Z Z81 AAYXX ADXHL CITATION AEIIB ABRTQ 7S9 L.6 |
ID | FETCH-LOGICAL-c539t-514291cc9d307a5edbbd79425bb718451c1b536276e51cdcbefa6c7274d65cc03 |
IEDL.DBID | U2A |
ISSN | 1085-7117 |
IngestDate | Mon Jul 21 12:06:09 EDT 2025 Fri Jul 25 10:49:58 EDT 2025 Tue Jun 10 20:10:46 EDT 2025 Fri Jun 27 04:51:49 EDT 2025 Thu Apr 24 22:56:03 EDT 2025 Tue Jul 01 01:51:33 EDT 2025 Fri Feb 21 02:33:22 EST 2025 Thu Jun 26 23:56:21 EDT 2025 Fri Jun 20 01:29:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Environmental assessment Agricultural management Generalized pivotal quantity Variance component Tolerance interval |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c539t-514291cc9d307a5edbbd79425bb718451c1b536276e51cdcbefa6c7274d65cc03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3693-9354 0000-0001-9777-3701 |
PQID | 1880829093 |
PQPubID | 2044458 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2000408247 proquest_journals_1880829093 gale_infotracacademiconefile_A532981554 gale_incontextgauss_ISR_A532981554 crossref_primary_10_1007_s13253_016_0268_z crossref_citationtrail_10_1007_s13253_016_0268_z springer_journals_10_1007_s13253_016_0268_z nii_cinii_1872272493029499136 jstor_primary_26451877 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-01 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of Agricultural, Biological and Environmental Statistics |
PublicationTitleAbbrev | JABES |
PublicationYear | 2016 |
Publisher | Springer Science+Business Media, LLC Springer Science and Business Media LLC Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer Science+Business Media, LLC – name: Springer Science and Business Media LLC – name: Springer US – name: Springer – name: Springer Nature B.V |
References | (2014). Unilateral conformance proportions in balanced and unbalanced normal random effects models. Journal of Agricultural, Biological, and Environmental Statistics, 19, 202–218. Yang, K. C. (2007). A Preliminary Study on Statistical Evaluation of Genetically Modified Products. Master thesis, Department of Agronomy, National Taiwan University. Chen, C. L. (2016). Interval estimation for the multivariate conformance proportion. PhD dissertation, Department of Agronomy, National Taiwan University. Graybill, F. and Wang, C. M. (1980). Confidence intervals on nonnegative linear combination of variances. Journal of the American Statistical Association, 75, 869–873. Bohning, D., Hempfling, A., Schelp, F., and Schlattmann, P. (1992). The area between curves (ABC)-measure in nutritional anthropometry. Statistics in Medicine, 11, 1289–1304. Hannig, J. (2009). On generalized fiducial inference. Statistica Sinica, 19, 491–544. (2015). Assessing the proportion of conformance of a process from a Bayesian perspective. Quality and Reliability Engineering International, 31, 381–387. Lee, H. I and Liao, C. T. (2012). Estimation for conformance proportions in a normal variance components model. Journal of Quality Technology, 44, 63–79. Box, G. E. P. and Cox, D. R. (1969). An analysis of transformation. Journal of the Royal Statistical Society B, 26, 211–246. Cisewski, J. and Hannig, J. (2012). Generalized fiducial inference for normal linear mixed models. The Annals of Statistics, 40, 2102–2127. Iyer, H. K. and Patterson, P. (2002). A recipe for constructing generalized pivotal quantities and generalized confidence intervals. Technical Report, Colorado State University. Perakis, M. and Xekalaki, E. (2002). A process capability index that is based on the proportion of conformance. Journal of Statistical Computation and Simulation, 72, 707–718. Hannig, J., Iyer, H. K., Lai, C. S. and Lee, C. M. (2016). Generalized fiducial inference: a review and new results. Journal of the American Statistical Association. DOI:10.1080/01621459.2016.1165102. (2004). Generalized Inference in Repeated Measures. Hoboken, NJ: John Wiley & Sons, Inc. Weerahandi, S. (1995). Exact statistical methods for data analysis. New York: Springer. Kang, Q and Vahl, C. I. (2014). Statistical analysis in the safety evaluation of genetically-modified crops: equivalence tests. Crop Science, 54, 2183–2200. Patterson, P., Hannig, J. and Iyer, H. K. (2004). Fiducial generalized confidence intervals for proportion of conformance. Technical Report, Colorado State University. Rom, D. M. and Hwang, E. (1996). Testing for individual and population equivalence based on the proportion of similar responses. Statistics in Medicine, 15, 1489–1505. Wang, C. M. and Lam, C. T. (1996). Confidence limits for proportion of conformance. Journal of Quality Technology, 28, 439–445. (2013). Generalized fiducial inference via discretization. Statistica Sinica, 23, 489–514. Hannig, J., Iyer, H. K., and Patterson, P. (2006). Fiducial generalized confidence intervals. Journal of the American Statistical Association, 101, 254–269. 268_CR8 268_CR9 268_CR6 268_CR7 268_CR4 268_CR5 268_CR2 268_CR3 268_CR14 268_CR1 268_CR13 268_CR16 268_CR15 268_CR10 268_CR21 268_CR20 268_CR12 268_CR11 268_CR18 268_CR17 268_CR19 |
References_xml | – reference: ———, (2015). Assessing the proportion of conformance of a process from a Bayesian perspective. Quality and Reliability Engineering International, 31, 381–387. – reference: ———, (2013). Generalized fiducial inference via discretization. Statistica Sinica, 23, 489–514. – reference: Iyer, H. K. and Patterson, P. (2002). A recipe for constructing generalized pivotal quantities and generalized confidence intervals. Technical Report, Colorado State University. – reference: Chen, C. L. (2016). Interval estimation for the multivariate conformance proportion. PhD dissertation, Department of Agronomy, National Taiwan University. – reference: Perakis, M. and Xekalaki, E. (2002). A process capability index that is based on the proportion of conformance. Journal of Statistical Computation and Simulation, 72, 707–718. – reference: Kang, Q and Vahl, C. I. (2014). Statistical analysis in the safety evaluation of genetically-modified crops: equivalence tests. Crop Science, 54, 2183–2200. – reference: Lee, H. I and Liao, C. T. (2012). Estimation for conformance proportions in a normal variance components model. Journal of Quality Technology, 44, 63–79. – reference: ———, (2014). Unilateral conformance proportions in balanced and unbalanced normal random effects models. Journal of Agricultural, Biological, and Environmental Statistics, 19, 202–218. – reference: Rom, D. M. and Hwang, E. (1996). Testing for individual and population equivalence based on the proportion of similar responses. Statistics in Medicine, 15, 1489–1505. – reference: Wang, C. M. and Lam, C. T. (1996). Confidence limits for proportion of conformance. Journal of Quality Technology, 28, 439–445. – reference: Bohning, D., Hempfling, A., Schelp, F., and Schlattmann, P. (1992). The area between curves (ABC)-measure in nutritional anthropometry. Statistics in Medicine, 11, 1289–1304. – reference: Cisewski, J. and Hannig, J. (2012). Generalized fiducial inference for normal linear mixed models. The Annals of Statistics, 40, 2102–2127. – reference: Hannig, J. (2009). On generalized fiducial inference. Statistica Sinica, 19, 491–544. – reference: Graybill, F. and Wang, C. M. (1980). Confidence intervals on nonnegative linear combination of variances. Journal of the American Statistical Association, 75, 869–873. – reference: Patterson, P., Hannig, J. and Iyer, H. K. (2004). Fiducial generalized confidence intervals for proportion of conformance. Technical Report, Colorado State University. – reference: Yang, K. C. (2007). A Preliminary Study on Statistical Evaluation of Genetically Modified Products. Master thesis, Department of Agronomy, National Taiwan University. – reference: ———, (2004). Generalized Inference in Repeated Measures. Hoboken, NJ: John Wiley & Sons, Inc. – reference: Box, G. E. P. and Cox, D. R. (1969). An analysis of transformation. Journal of the Royal Statistical Society B, 26, 211–246. – reference: Weerahandi, S. (1995). Exact statistical methods for data analysis. New York: Springer. – reference: Hannig, J., Iyer, H. K., Lai, C. S. and Lee, C. M. (2016). Generalized fiducial inference: a review and new results. Journal of the American Statistical Association. DOI:10.1080/01621459.2016.1165102. – reference: Hannig, J., Iyer, H. K., and Patterson, P. (2006). Fiducial generalized confidence intervals. Journal of the American Statistical Association, 101, 254–269. – ident: 268_CR12 doi: 10.1080/00224065.2012.11917882 – ident: 268_CR5 doi: 10.1080/01621459.1980.10477565 – ident: 268_CR14 – ident: 268_CR1 doi: 10.1002/sim.4780111004 – ident: 268_CR10 – ident: 268_CR4 doi: 10.1214/12-AOS1030 – ident: 268_CR7 – ident: 268_CR6 – ident: 268_CR15 doi: 10.1080/00949650214270 – ident: 268_CR13 doi: 10.1007/s13253-014-0166-1 – ident: 268_CR16 doi: 10.1002/qre.1597 – ident: 268_CR9 doi: 10.1080/01621459.2016.1165102 – ident: 268_CR17 doi: 10.1002/(SICI)1097-0258(19960730)15:14<1489::AID-SIM293>3.0.CO;2-S – ident: 268_CR19 doi: 10.1007/978-1-4612-0825-9 – ident: 268_CR3 – ident: 268_CR11 doi: 10.2135/cropsci2014.01.0011 – ident: 268_CR2 – ident: 268_CR18 doi: 10.1080/00224065.1996.11979701 – ident: 268_CR20 – ident: 268_CR21 – ident: 268_CR8 doi: 10.1198/016214505000000736 |
SSID | ssj0013602 ssib057178005 ssib031263655 ssib022725836 ssib029851721 ssib053834711 ssib000223439 ssib053834710 ssib000225579 ssib010623434 |
Score | 2.1061292 |
Snippet | Conformance proportion is a useful index in agricultural, biological, and environmental applications, which is defined as the proportion that a characteristic... |
SourceID | proquest gale crossref springer nii jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 684 |
SubjectTerms | Agriculture Biostatistics Computer simulation Confidence interval Confidence intervals Confidence limits Data analysis Data processing Degrees of freedom Gaussian distributions Health Sciences Inference Mathematics and Statistics Medicine Monitoring/Environmental Analysis Population (statistical) population ecology Proportions Sample size Simulations statistical analysis Statistical inference statistical models Statistics Statistics for Life Sciences Transgenic plants |
Title | A Reference Population-Based Conformance Proportion |
URI | https://www.jstor.org/stable/26451877 https://cir.nii.ac.jp/crid/1872272493029499136 https://link.springer.com/article/10.1007/s13253-016-0268-z https://www.proquest.com/docview/1880829093 https://www.proquest.com/docview/2000408247 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB-0pVIfRKOH0bbEIghK4Da7m4_HKFerUimtB_Up7FdKQXJyuXuwf70zySbniQq-hJBssmxmZmfC_OY3AC9rmdW60FlsU6ljwRXugyzTcS6sSzlzosip3vnsc3o6Fx-v5JWv424HtPuQkux26k2xG08kYX8INJvm8e1d2JX46044rnlSblIHqQca5jLOGMuGVOafXrHljPyW3MMS0dU0NzdbYedvmdLOAZ08hAc-cozKXtSP4I5rArhfXi89e4YLYK_vLPkjgMlsU8CGD3kLbgO4d-aT6QHsU6DZ8zQ_Bl5GI-dsdD529YrfopezEdUF-vKC6Jz6Kizp5hOYn8y-vDuNfUOF2EherGIMjpKCGVNYtGwlndXaoj0mUmt0UUIyw7REj5alDs-t0a5WqcEIR6AkjZnyCew0i8Y9hSh30hpuaq0FF8rWqnCGKUfUN2jVzIUwHb5sZTzbODW9-FZteJJJGBUhzEgY1W0Ir8dHvvdUG_8afEziqojCoiGMzLVat2314fKiKiVPipzipBBe-UH1Aic3ypcc4BKI9Wpr5KQT-zgxxomS5VkWwiHqAS6BjnghSTL8YeXThEh9UNdCOBg0pPLW31bEcUcJ6oKH8GK8jXZLyRjVuMW6pfafU2r2LXCKN4Nm_fKKvy382X-Nfg77Cal7h785gJ3Vcu0OMYpa6SPYLd9__TQ76qznJ7pID8M |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEB5qRVsfRKOH0VajKIISuOxm8-PBh6gtd7ZXivagb2t2symFkpPLHdL-O_6jziSbnCcq-NCXcCSb7G1mdmbCfPMNwMtSxKVKVewXkVB-yHO0g0Gs_CQsTMQDE6YJ1TtPjqLRNPx0Kk434EdXC9Og3buUZGOpV8VunAnC_hBoNkr8K4ukPDCX3_E7rX43_ohCfcXY_t7Jh5FvWwn4WvB04WNYwNJA67RAnc6FKZQqUBOZUAqNcygCHSiBtjyODP4utDJlHmn07SGuQeshx-fegJsYeyS0daYsW6UqIgtsTIQfB0HcpU7_9JfXnJ91AS0MEl1bdX6-Fub-lpltHN7-PbhrI1Uva1XrPmyYyoE72dncsnUYB261nSwvHRjsrQrm8CZrMWoHbk9s8t6BbQpsW17oB8Azr-e49Y77LmL-e_SqhUd1iLacwTumPg5zuvgQptfy1gewWc0q8wi8xIhCc10qFfIwL8o8NTrIDVHtoBUJjAvD7s1KbdnNqcnGhVzxMpMwJCHaSBjyyoU3_S3fWmqPfw1-QeKSRJlRESbnLF_WtRx_-SwzwVmaUFzmwms7qJzh5Dq3JQ64BGLZWhs5aMTeT4xxqQiSOHZhF_UAl0BHPMFYjB_IfMiIRAh1zYWdTkOktTa1JE49Soin3IXn_WW0E5T8ySszW9bUbnRIzcVDnOJtp1m_POJvC3_8X6OfwdboZHIoD8dHB09gm5HqN9ifHdhczJdmFyO4hXra7CAPvl73lv0JplBLUA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qxVIfRKOH0VajKIISetmPfDz4EG2PnrXlUA_6FrObTSlIrlzukPaf8l90JtnkPFHBh76EI9lkbzOzMxNmfr8BeFHKqFSJivwilMoXPEc7GETKj0VhQh4YkcSEdz4-CQ-n4sOpPN2AHx0Wpql271KSLaaBWJqqxd5FUe6tgG-cSaoDogLaMPavbFXlkbn8jt9s9dvxPgr4JWOjgy_vD33bVsDXkicLH0MElgRaJwXqdy5NoVSBWsmkUmiohQx0oCTa9Sg0-LvQypR5qNHPC1yP1kOOz70BNwWBj3EDTVm6SluEtsgxln4UBFGXRv3TX15zhNYdtCWR6Oaq8_O1kPe3LG3j_EZ34Y6NWr20VbN7sGEqB26nZ3PL3GEcuNV2tbx0YHCwAs_hTdZ61A5sHdtEvgPbFOS2HNH3gadez3frTfqOYv479LCFR5hEC23wJtTTYU4XH8D0Wt76ADarWWUeghcbWWiuS6UEF3lR5onRQW6IdgctSmBcGHZvNtOW6ZwabnzLVhzNJIyMqttIGNmVC6_7Wy5amo9_DX5O4sqIPqOi-pyzfFnX2fjzpyyVnCUxxWguvLKDyhlOrnMLd8AlEOPW2shBI_Z-YoxRZRBHkQu7qAe4BDriCcYi_FjmQ0aEQqhrLux0GpJZy1NnxK9HyfGEu_Csv4w2gxJBeWVmy5pajw6p0bjAKd50mvXLI_628Ef_NfopbE32R9nH8cnRY9hmpPlNGdAObC7mS7OLwdxCPWk2kAdfr3vH_gTS1U-D |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Reference+Population-Based+Conformance+Proportion&rft.jtitle=Journal+of+agricultural%2C+biological%2C+and+environmental+statistics&rft.au=Lee%2C+Hsin-I&rft.au=Chen%2C+Hungyen&rft.au=Kishino%2C+Hirohisa&rft.au=Liao%2C+Chen-Tuo&rft.date=2016-12-01&rft.issn=1085-7117&rft.eissn=1537-2693&rft.volume=21&rft.issue=4&rft.spage=684&rft.epage=697&rft_id=info:doi/10.1007%2Fs13253-016-0268-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13253_016_0268_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1085-7117&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1085-7117&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1085-7117&client=summon |