A Reference Population-Based Conformance Proportion

Conformance proportion is a useful index in agricultural, biological, and environmental applications, which is defined as the proportion that a characteristic of interest falls in an acceptance region of a specification. In practice, however, the acceptance region may not be available when employing...

Full description

Saved in:
Bibliographic Details
Published inJournal of Agricultural, Biological and Environmental Statistics Vol. 21; no. 4; pp. 684 - 697
Main Authors Lee, Hsin-I, Chen, Hungyen, Kishino, Hirohisa, Liao, Chen-Tuo
Format Journal Article
LanguageEnglish
Published New York Springer Science+Business Media, LLC 01.12.2016
Springer Science and Business Media LLC
Springer US
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conformance proportion is a useful index in agricultural, biological, and environmental applications, which is defined as the proportion that a characteristic of interest falls in an acceptance region of a specification. In practice, however, the acceptance region may not be available when employing the regular conformance proportion. In this article, we propose a new index in which the acceptance region is obtained from a reference population. Furthermore, we develop approaches to constructing confidence limits for the proposed conformance proportion using the concept of a fiducial generalized pivotal quantity. We first consider the simple situation that the characteristic is assumed to be a univariate normal random variable. Then we extend it to the one-way random effects model. The proposed method is evaluated through simulation study and real data analysis. It is shown that our proposed new index and its statistical inference are easy to implement and reasonably satisfactory for most applications. Supplementary materials accompanying this paper appear on-line.
AbstractList Conformance proportion is a useful index in agricultural, biological, and environmental applications, which is defined as the proportion that a characteristic of interest falls in an acceptance region of a specification. In practice, however, the acceptance region may not be available when employing the regular conformance proportion. In this article, we propose a new index in which the acceptance region is obtained from a reference population. Furthermore, we develop approaches to constructing confidence limits for the proposed conformance proportion using the concept of a fiducial generalized pivotal quantity. We first consider the simple situation that the characteristic is assumed to be a univariate normal random variable. Then we extend it to the one-way random effects model. The proposed method is evaluated through simulation study and real data analysis. It is shown that our proposed new index and its statistical inference are easy to implement and reasonably satisfactory for most applications.Supplementary materials accompanying this paper appear on-line.
Conformance proportion is a useful index in agricultural, biological, and environmental applications, which is defined as the proportion that a characteristic of interest falls in an acceptance region of a specification. In practice, however, the acceptance region may not be available when employing the regular conformance proportion. In this article, we propose a new index in which the acceptance region is obtained from a reference population. Furthermore, we develop approaches to constructing confidence limits for the proposed conformance proportion using the concept of a fiducial generalized pivotal quantity. We first consider the simple situation that the characteristic is assumed to be a univariate normal random variable. Then we extend it to the one-way random effects model. The proposed method is evaluated through simulation study and real data analysis. It is shown that our proposed new index and its statistical inference are easy to implement and reasonably satisfactory for most applications.
Conformance proportion is a useful index in agricultural, biological, and environmental applications, which is defined as the proportion that a characteristic of interest falls in an acceptance region of a specification. In practice, however, the acceptance region may not be available when employing the regular conformance proportion. In this article, we propose a new index in which the acceptance region is obtained from a reference population. Furthermore, we develop approaches to constructing confidence limits for the proposed conformance proportion using the concept of a fiducial generalized pivotal quantity. We first consider the simple situation that the characteristic is assumed to be a univariate normal random variable. Then we extend it to the one-way random effects model. The proposed method is evaluated through simulation study and real data analysis. It is shown that our proposed new index and its statistical inference are easy to implement and reasonably satisfactory for most applications. Supplementary materials accompanying this paper appear on-line.
Audience Academic
Author Lee, Hsin-I
Chen, Hungyen
Kishino, Hirohisa
Liao, Chen-Tuo
Author_xml – sequence: 1
  givenname: Hsin-I
  surname: Lee
  fullname: Lee, Hsin-I
– sequence: 2
  givenname: Hungyen
  surname: Chen
  fullname: Chen, Hungyen
– sequence: 3
  givenname: Hirohisa
  surname: Kishino
  fullname: Kishino, Hirohisa
– sequence: 4
  givenname: Chen-Tuo
  surname: Liao
  fullname: Liao, Chen-Tuo
BackLink https://cir.nii.ac.jp/crid/1872272493029499136$$DView record in CiNii
BookMark eNp9kl1rFDEUhoNUsK3-AC-EBb3Qi9R8f1xuFz8KBaXqdchkMkuW2WRNZkD76z3bEbG9KIHkkDxvzjl5c4ZOcskRoZeUXFBC9PtGOZMcE6owYcrg2yfolEquMVOWn0BMjMSaUv0MnbW2I4RyRdgp4uvVTRxijTnE1ddymEc_pZLxpW-xX21KHkrd-7vDWg6lHg-fo6eDH1t88Xc9Rz8-fvi--Yyvv3y62qyvcZDcTlhSwSwNwfacaC9j33W9toLJrtPUCEkD7SRXTKsIcR-6OHgVNNOiVzIEws_R2-XeQy0_59gmt08txHH0OZa5OUYIEcQwoQF9_QDdlblmqM5RY4CxxHKgLhZq68foEvQ2VR9g9HGfAjzokGB_LTmzhkopQPDungCYKf6atn5uzV19u7nP0oUNtbRW4-AONe19_e0ocUeP3OKRA4_c0SN3Cxr9QBPSdGcAFJbGR5VsUTbIkrex_tfwI6I3iyinBJmOMzWaMc2E5YRZYS18C8BeLdiuTaX-a4Mp8Mxozf8AVaW40Q
CitedBy_id crossref_primary_10_1007_s13253_019_00364_4
crossref_primary_10_1080_02664763_2020_1769578
crossref_primary_10_1080_03610918_2022_2051716
crossref_primary_10_1080_02664763_2019_1690639
Cites_doi 10.1080/00224065.2012.11917882
10.1080/01621459.1980.10477565
10.1002/sim.4780111004
10.1214/12-AOS1030
10.1080/00949650214270
10.1007/s13253-014-0166-1
10.1002/qre.1597
10.1080/01621459.2016.1165102
10.1002/(SICI)1097-0258(19960730)15:14<1489::AID-SIM293>3.0.CO;2-S
10.1007/978-1-4612-0825-9
10.2135/cropsci2014.01.0011
10.1080/00224065.1996.11979701
10.1198/016214505000000736
ContentType Journal Article
Copyright 2016 International Biometric Society
International Biometric Society 2016
COPYRIGHT 2016 Springer
Copyright Springer Science & Business Media 2016
Copyright_xml – notice: 2016 International Biometric Society
– notice: International Biometric Society 2016
– notice: COPYRIGHT 2016 Springer
– notice: Copyright Springer Science & Business Media 2016
DBID RYH
AAYXX
CITATION
ISR
7S9
L.6
DOI 10.1007/s13253-016-0268-z
DatabaseName CiNii Complete
CrossRef
Gale In Context: Science
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA





DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
Environmental Sciences
Medicine
Statistics
EISSN 1537-2693
EndPage 697
ExternalDocumentID A532981554
10_1007_s13253_016_0268_z
26451877
GroupedDBID 06D
0R~
0VY
199
1N0
203
2AX
2JN
2KG
2LR
2XV
3-Y
30V
4.4
406
408
40D
40E
5GY
8UJ
95.
96X
A8Z
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWIL
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABAWQ
ABBHK
ABBRH
ABDBE
ABDBF
ABDZT
ABECU
ABFAN
ABFSG
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQDR
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ABXSQ
ABYWD
ACAOD
ACDIW
ACDTI
ACGFS
ACHJO
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACMTB
ACOKC
ACPIV
ACPRK
ACSTC
ACTMH
ACUHS
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADODI
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AELLO
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUPB
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AFRAH
AFVYC
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGLNM
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIHAF
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKBRZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
BAPOH
BGNMA
CSCUP
D0L
DDRTE
DNIVK
DPUIP
DQDLB
DSRWC
DU5
EBD
EBLON
EBS
ECEWR
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GXS
H13
HF~
HMJXF
HQ6
HRMNR
IAO
IEP
IGS
IKXTQ
IPSME
ISR
ITM
IWAJR
I~Z
J-C
J0Z
JAA
JAAYA
JBMMH
JBSCW
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
JZLTJ
KOV
LLZTM
M4Y
ML.
NPVJJ
NQJWS
NU0
O93
O9J
P2P
P9R
PT4
R9I
ROL
RSV
S27
S3B
SA0
SHX
SISQX
SJN
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
ZMTXR
~KM
RYH
-5D
-5G
-BR
-EM
-~C
0VX
2VQ
AAKYL
AARHV
ABULA
ACBXY
ADINQ
AELPN
AFLOW
AI.
AS~
BHOJU
CAG
COF
FEDTE
GIFXF
GQ6
HGD
HVGLF
HZ~
IFM
JSODD
O9-
PKN
RNS
S1Z
UQL
VH1
Z7U
Z7W
Z7Y
Z7Z
Z81
AAYXX
ADXHL
CITATION
AEIIB
ABRTQ
7S9
L.6
ID FETCH-LOGICAL-c539t-514291cc9d307a5edbbd79425bb718451c1b536276e51cdcbefa6c7274d65cc03
IEDL.DBID U2A
ISSN 1085-7117
IngestDate Mon Jul 21 12:06:09 EDT 2025
Fri Jul 25 10:49:58 EDT 2025
Tue Jun 10 20:10:46 EDT 2025
Fri Jun 27 04:51:49 EDT 2025
Thu Apr 24 22:56:03 EDT 2025
Tue Jul 01 01:51:33 EDT 2025
Fri Feb 21 02:33:22 EST 2025
Thu Jun 26 23:56:21 EDT 2025
Fri Jun 20 01:29:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Environmental assessment
Agricultural management
Generalized pivotal quantity
Variance component
Tolerance interval
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c539t-514291cc9d307a5edbbd79425bb718451c1b536276e51cdcbefa6c7274d65cc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3693-9354
0000-0001-9777-3701
PQID 1880829093
PQPubID 2044458
PageCount 14
ParticipantIDs proquest_miscellaneous_2000408247
proquest_journals_1880829093
gale_infotracacademiconefile_A532981554
gale_incontextgauss_ISR_A532981554
crossref_primary_10_1007_s13253_016_0268_z
crossref_citationtrail_10_1007_s13253_016_0268_z
springer_journals_10_1007_s13253_016_0268_z
nii_cinii_1872272493029499136
jstor_primary_26451877
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of Agricultural, Biological and Environmental Statistics
PublicationTitleAbbrev JABES
PublicationYear 2016
Publisher Springer Science+Business Media, LLC
Springer Science and Business Media LLC
Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer Science+Business Media, LLC
– name: Springer Science and Business Media LLC
– name: Springer US
– name: Springer
– name: Springer Nature B.V
References (2014). Unilateral conformance proportions in balanced and unbalanced normal random effects models. Journal of Agricultural, Biological, and Environmental Statistics, 19, 202–218.
Yang, K. C. (2007). A Preliminary Study on Statistical Evaluation of Genetically Modified Products. Master thesis, Department of Agronomy, National Taiwan University.
Chen, C. L. (2016). Interval estimation for the multivariate conformance proportion. PhD dissertation, Department of Agronomy, National Taiwan University.
Graybill, F. and Wang, C. M. (1980). Confidence intervals on nonnegative linear combination of variances. Journal of the American Statistical Association, 75, 869–873.
Bohning, D., Hempfling, A., Schelp, F., and Schlattmann, P. (1992). The area between curves (ABC)-measure in nutritional anthropometry. Statistics in Medicine, 11, 1289–1304.
Hannig, J. (2009). On generalized fiducial inference. Statistica Sinica, 19, 491–544.
(2015). Assessing the proportion of conformance of a process from a Bayesian perspective. Quality and Reliability Engineering International, 31, 381–387.
Lee, H. I and Liao, C. T. (2012). Estimation for conformance proportions in a normal variance components model. Journal of Quality Technology, 44, 63–79.
Box, G. E. P. and Cox, D. R. (1969). An analysis of transformation. Journal of the Royal Statistical Society B, 26, 211–246.
Cisewski, J. and Hannig, J. (2012). Generalized fiducial inference for normal linear mixed models. The Annals of Statistics, 40, 2102–2127.
Iyer, H. K. and Patterson, P. (2002). A recipe for constructing generalized pivotal quantities and generalized confidence intervals. Technical Report, Colorado State University.
Perakis, M. and Xekalaki, E. (2002). A process capability index that is based on the proportion of conformance. Journal of Statistical Computation and Simulation, 72, 707–718.
Hannig, J., Iyer, H. K., Lai, C. S. and Lee, C. M. (2016). Generalized fiducial inference: a review and new results. Journal of the American Statistical Association. DOI:10.1080/01621459.2016.1165102.
(2004). Generalized Inference in Repeated Measures. Hoboken, NJ: John Wiley & Sons, Inc.
Weerahandi, S. (1995). Exact statistical methods for data analysis. New York: Springer.
Kang, Q and Vahl, C. I. (2014). Statistical analysis in the safety evaluation of genetically-modified crops: equivalence tests. Crop Science, 54, 2183–2200.
Patterson, P., Hannig, J. and Iyer, H. K. (2004). Fiducial generalized confidence intervals for proportion of conformance. Technical Report, Colorado State University.
Rom, D. M. and Hwang, E. (1996). Testing for individual and population equivalence based on the proportion of similar responses. Statistics in Medicine, 15, 1489–1505.
Wang, C. M. and Lam, C. T. (1996). Confidence limits for proportion of conformance. Journal of Quality Technology, 28, 439–445.
(2013). Generalized fiducial inference via discretization. Statistica Sinica, 23, 489–514.
Hannig, J., Iyer, H. K., and Patterson, P. (2006). Fiducial generalized confidence intervals. Journal of the American Statistical Association, 101, 254–269.
268_CR8
268_CR9
268_CR6
268_CR7
268_CR4
268_CR5
268_CR2
268_CR3
268_CR14
268_CR1
268_CR13
268_CR16
268_CR15
268_CR10
268_CR21
268_CR20
268_CR12
268_CR11
268_CR18
268_CR17
268_CR19
References_xml – reference: ———, (2015). Assessing the proportion of conformance of a process from a Bayesian perspective. Quality and Reliability Engineering International, 31, 381–387.
– reference: ———, (2013). Generalized fiducial inference via discretization. Statistica Sinica, 23, 489–514.
– reference: Iyer, H. K. and Patterson, P. (2002). A recipe for constructing generalized pivotal quantities and generalized confidence intervals. Technical Report, Colorado State University.
– reference: Chen, C. L. (2016). Interval estimation for the multivariate conformance proportion. PhD dissertation, Department of Agronomy, National Taiwan University.
– reference: Perakis, M. and Xekalaki, E. (2002). A process capability index that is based on the proportion of conformance. Journal of Statistical Computation and Simulation, 72, 707–718.
– reference: Kang, Q and Vahl, C. I. (2014). Statistical analysis in the safety evaluation of genetically-modified crops: equivalence tests. Crop Science, 54, 2183–2200.
– reference: Lee, H. I and Liao, C. T. (2012). Estimation for conformance proportions in a normal variance components model. Journal of Quality Technology, 44, 63–79.
– reference: ———, (2014). Unilateral conformance proportions in balanced and unbalanced normal random effects models. Journal of Agricultural, Biological, and Environmental Statistics, 19, 202–218.
– reference: Rom, D. M. and Hwang, E. (1996). Testing for individual and population equivalence based on the proportion of similar responses. Statistics in Medicine, 15, 1489–1505.
– reference: Wang, C. M. and Lam, C. T. (1996). Confidence limits for proportion of conformance. Journal of Quality Technology, 28, 439–445.
– reference: Bohning, D., Hempfling, A., Schelp, F., and Schlattmann, P. (1992). The area between curves (ABC)-measure in nutritional anthropometry. Statistics in Medicine, 11, 1289–1304.
– reference: Cisewski, J. and Hannig, J. (2012). Generalized fiducial inference for normal linear mixed models. The Annals of Statistics, 40, 2102–2127.
– reference: Hannig, J. (2009). On generalized fiducial inference. Statistica Sinica, 19, 491–544.
– reference: Graybill, F. and Wang, C. M. (1980). Confidence intervals on nonnegative linear combination of variances. Journal of the American Statistical Association, 75, 869–873.
– reference: Patterson, P., Hannig, J. and Iyer, H. K. (2004). Fiducial generalized confidence intervals for proportion of conformance. Technical Report, Colorado State University.
– reference: Yang, K. C. (2007). A Preliminary Study on Statistical Evaluation of Genetically Modified Products. Master thesis, Department of Agronomy, National Taiwan University.
– reference: ———, (2004). Generalized Inference in Repeated Measures. Hoboken, NJ: John Wiley & Sons, Inc.
– reference: Box, G. E. P. and Cox, D. R. (1969). An analysis of transformation. Journal of the Royal Statistical Society B, 26, 211–246.
– reference: Weerahandi, S. (1995). Exact statistical methods for data analysis. New York: Springer.
– reference: Hannig, J., Iyer, H. K., Lai, C. S. and Lee, C. M. (2016). Generalized fiducial inference: a review and new results. Journal of the American Statistical Association. DOI:10.1080/01621459.2016.1165102.
– reference: Hannig, J., Iyer, H. K., and Patterson, P. (2006). Fiducial generalized confidence intervals. Journal of the American Statistical Association, 101, 254–269.
– ident: 268_CR12
  doi: 10.1080/00224065.2012.11917882
– ident: 268_CR5
  doi: 10.1080/01621459.1980.10477565
– ident: 268_CR14
– ident: 268_CR1
  doi: 10.1002/sim.4780111004
– ident: 268_CR10
– ident: 268_CR4
  doi: 10.1214/12-AOS1030
– ident: 268_CR7
– ident: 268_CR6
– ident: 268_CR15
  doi: 10.1080/00949650214270
– ident: 268_CR13
  doi: 10.1007/s13253-014-0166-1
– ident: 268_CR16
  doi: 10.1002/qre.1597
– ident: 268_CR9
  doi: 10.1080/01621459.2016.1165102
– ident: 268_CR17
  doi: 10.1002/(SICI)1097-0258(19960730)15:14<1489::AID-SIM293>3.0.CO;2-S
– ident: 268_CR19
  doi: 10.1007/978-1-4612-0825-9
– ident: 268_CR3
– ident: 268_CR11
  doi: 10.2135/cropsci2014.01.0011
– ident: 268_CR2
– ident: 268_CR18
  doi: 10.1080/00224065.1996.11979701
– ident: 268_CR20
– ident: 268_CR21
– ident: 268_CR8
  doi: 10.1198/016214505000000736
SSID ssj0013602
ssib057178005
ssib031263655
ssib022725836
ssib029851721
ssib053834711
ssib000223439
ssib053834710
ssib000225579
ssib010623434
Score 2.1061292
Snippet Conformance proportion is a useful index in agricultural, biological, and environmental applications, which is defined as the proportion that a characteristic...
SourceID proquest
gale
crossref
springer
nii
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 684
SubjectTerms Agriculture
Biostatistics
Computer simulation
Confidence interval
Confidence intervals
Confidence limits
Data analysis
Data processing
Degrees of freedom
Gaussian distributions
Health Sciences
Inference
Mathematics and Statistics
Medicine
Monitoring/Environmental Analysis
Population (statistical)
population ecology
Proportions
Sample size
Simulations
statistical analysis
Statistical inference
statistical models
Statistics
Statistics for Life Sciences
Transgenic plants
Title A Reference Population-Based Conformance Proportion
URI https://www.jstor.org/stable/26451877
https://cir.nii.ac.jp/crid/1872272493029499136
https://link.springer.com/article/10.1007/s13253-016-0268-z
https://www.proquest.com/docview/1880829093
https://www.proquest.com/docview/2000408247
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB-0pVIfRKOH0bbEIghK4Da7m4_HKFerUimtB_Up7FdKQXJyuXuwf70zySbniQq-hJBssmxmZmfC_OY3AC9rmdW60FlsU6ljwRXugyzTcS6sSzlzosip3vnsc3o6Fx-v5JWv424HtPuQkux26k2xG08kYX8INJvm8e1d2JX46044rnlSblIHqQca5jLOGMuGVOafXrHljPyW3MMS0dU0NzdbYedvmdLOAZ08hAc-cozKXtSP4I5rArhfXi89e4YLYK_vLPkjgMlsU8CGD3kLbgO4d-aT6QHsU6DZ8zQ_Bl5GI-dsdD529YrfopezEdUF-vKC6Jz6Kizp5hOYn8y-vDuNfUOF2EherGIMjpKCGVNYtGwlndXaoj0mUmt0UUIyw7REj5alDs-t0a5WqcEIR6AkjZnyCew0i8Y9hSh30hpuaq0FF8rWqnCGKUfUN2jVzIUwHb5sZTzbODW9-FZteJJJGBUhzEgY1W0Ir8dHvvdUG_8afEziqojCoiGMzLVat2314fKiKiVPipzipBBe-UH1Aic3ypcc4BKI9Wpr5KQT-zgxxomS5VkWwiHqAS6BjnghSTL8YeXThEh9UNdCOBg0pPLW31bEcUcJ6oKH8GK8jXZLyRjVuMW6pfafU2r2LXCKN4Nm_fKKvy382X-Nfg77Cal7h785gJ3Vcu0OMYpa6SPYLd9__TQ76qznJ7pID8M
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEB5qRVsfRKOH0VajKIISuOxm8-PBh6gtd7ZXivagb2t2symFkpPLHdL-O_6jziSbnCcq-NCXcCSb7G1mdmbCfPMNwMtSxKVKVewXkVB-yHO0g0Gs_CQsTMQDE6YJ1TtPjqLRNPx0Kk434EdXC9Og3buUZGOpV8VunAnC_hBoNkr8K4ukPDCX3_E7rX43_ohCfcXY_t7Jh5FvWwn4WvB04WNYwNJA67RAnc6FKZQqUBOZUAqNcygCHSiBtjyODP4utDJlHmn07SGuQeshx-fegJsYeyS0daYsW6UqIgtsTIQfB0HcpU7_9JfXnJ91AS0MEl1bdX6-Fub-lpltHN7-PbhrI1Uva1XrPmyYyoE72dncsnUYB261nSwvHRjsrQrm8CZrMWoHbk9s8t6BbQpsW17oB8Azr-e49Y77LmL-e_SqhUd1iLacwTumPg5zuvgQptfy1gewWc0q8wi8xIhCc10qFfIwL8o8NTrIDVHtoBUJjAvD7s1KbdnNqcnGhVzxMpMwJCHaSBjyyoU3_S3fWmqPfw1-QeKSRJlRESbnLF_WtRx_-SwzwVmaUFzmwms7qJzh5Dq3JQ64BGLZWhs5aMTeT4xxqQiSOHZhF_UAl0BHPMFYjB_IfMiIRAh1zYWdTkOktTa1JE49Soin3IXn_WW0E5T8ySszW9bUbnRIzcVDnOJtp1m_POJvC3_8X6OfwdboZHIoD8dHB09gm5HqN9ifHdhczJdmFyO4hXra7CAPvl73lv0JplBLUA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qxVIfRKOH0VajKIISetmPfDz4EG2PnrXlUA_6FrObTSlIrlzukPaf8l90JtnkPFHBh76EI9lkbzOzMxNmfr8BeFHKqFSJivwilMoXPEc7GETKj0VhQh4YkcSEdz4-CQ-n4sOpPN2AHx0Wpql271KSLaaBWJqqxd5FUe6tgG-cSaoDogLaMPavbFXlkbn8jt9s9dvxPgr4JWOjgy_vD33bVsDXkicLH0MElgRaJwXqdy5NoVSBWsmkUmiohQx0oCTa9Sg0-LvQypR5qNHPC1yP1kOOz70BNwWBj3EDTVm6SluEtsgxln4UBFGXRv3TX15zhNYdtCWR6Oaq8_O1kPe3LG3j_EZ34Y6NWr20VbN7sGEqB26nZ3PL3GEcuNV2tbx0YHCwAs_hTdZ61A5sHdtEvgPbFOS2HNH3gadez3frTfqOYv479LCFR5hEC23wJtTTYU4XH8D0Wt76ADarWWUeghcbWWiuS6UEF3lR5onRQW6IdgctSmBcGHZvNtOW6ZwabnzLVhzNJIyMqttIGNmVC6_7Wy5amo9_DX5O4sqIPqOi-pyzfFnX2fjzpyyVnCUxxWguvLKDyhlOrnMLd8AlEOPW2shBI_Z-YoxRZRBHkQu7qAe4BDriCcYi_FjmQ0aEQqhrLux0GpJZy1NnxK9HyfGEu_Csv4w2gxJBeWVmy5pajw6p0bjAKd50mvXLI_628Ef_NfopbE32R9nH8cnRY9hmpPlNGdAObC7mS7OLwdxCPWk2kAdfr3vH_gTS1U-D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Reference+Population-Based+Conformance+Proportion&rft.jtitle=Journal+of+agricultural%2C+biological%2C+and+environmental+statistics&rft.au=Lee%2C+Hsin-I&rft.au=Chen%2C+Hungyen&rft.au=Kishino%2C+Hirohisa&rft.au=Liao%2C+Chen-Tuo&rft.date=2016-12-01&rft.issn=1085-7117&rft.eissn=1537-2693&rft.volume=21&rft.issue=4&rft.spage=684&rft.epage=697&rft_id=info:doi/10.1007%2Fs13253-016-0268-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13253_016_0268_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1085-7117&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1085-7117&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1085-7117&client=summon