A Concave Pairwise Fusion Approach to Subgroup Analysis
An important step in developing individualized treatment strategies is correct identification of subgroups of a heterogeneous population to allow specific treatment for each subgroup. This article considers the problem using samples drawn from a population consisting of subgroups with different mean...
Saved in:
Published in | Journal of the American Statistical Association Vol. 112; no. 517; pp. 410 - 423 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Alexandria
Taylor & Francis
02.01.2017
Taylor & Francis Group,LLC Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An important step in developing individualized treatment strategies is correct identification of subgroups of a heterogeneous population to allow specific treatment for each subgroup. This article considers the problem using samples drawn from a population consisting of subgroups with different mean values, along with certain covariates. We propose a penalized approach for subgroup analysis based on a regression model, in which heterogeneity is driven by unobserved latent factors and thus can be represented by using subject-specific intercepts. We apply concave penalty functions to pairwise differences of the intercepts. This procedure automatically divides the observations into subgroups. To implement the proposed approach, we develop an alternating direction method of multipliers algorithm with concave penalties and demonstrate its convergence. We also establish the theoretical properties of our proposed estimator and determine the order requirement of the minimal difference of signals between groups to recover them. These results provide a sound basis for making statistical inference in subgroup analysis. Our proposed method is further illustrated by simulation studies and analysis of a Cleveland heart disease dataset. Supplementary materials for this article are available online. |
---|---|
AbstractList | An important step in developing individualized treatment strategies is correct identification of subgroups of a heterogeneous population to allow specific treatment for each subgroup. This article considers the problem using samples drawn from a population consisting of subgroups with different mean values, along with certain covariates. We propose a penalized approach for subgroup analysis based on a regression model, in which heterogeneity is driven by unobserved latent factors and thus can be represented by using subject-specific intercepts. We apply concave penalty functions to pairwise differences of the intercepts. This procedure automatically divides the observations into subgroups. To implement the proposed approach, we develop an alternating direction method of multipliers algorithm with concave penalties and demonstrate its convergence. We also establish the theoretical properties of our proposed estimator and determine the order requirement of the minimal difference of signals between groups to recover them. These results provide a sound basis for making statistical inference in subgroup analysis. Our proposed method is further illustrated by simulation studies and analysis of a Cleveland heart disease dataset. Supplementary materials for this article are available online. An important step in developing individualized treatment strategies is correct identification of subgroups of a heterogeneous population to allow specific treatment for each subgroup. This article considers the problem using samples drawn from a population consisting of subgroups with different mean values, along with certain covariates. We propose a penalized approach for subgroup analysis based on a regression model, in which heterogeneity is driven by unobserved latent factors and thus can be represented by using subject-specific intercepts. We apply concave penalty functions to pairwise differences of the intercepts. This procedure automatically divides the observations into subgroups. To implement the proposed approach, we develop an alternating direction method of multipliers algorithm with concave penalties and demonstrate its convergence. We also establish the theoretical properties of our proposed estimator and determine the order requirement of the minimal difference of signals between groups to recover them. These results provide a sound basis for making statistical inference in subgroup analysis. Our proposed method is further illustrated by simulation studies and analysis of a Cleveland heart disease dataset. |
Author | Ma, Shujie Huang, Jian |
Author_xml | – sequence: 1 givenname: Shujie surname: Ma fullname: Ma, Shujie organization: Department of Statistics, University of California Riverside – sequence: 2 givenname: Jian surname: Huang fullname: Huang, Jian email: jian-huang@uiowa.edu organization: Department of Statistics and Actuarial Science, University of Iowa |
BookMark | eNqFkF9LwzAUxYNMcE4_wqDgiy-d-dMkLb5YhlNhoKCCbyHNUs3ompq0jn17Uzp92IPel3shv3PvyTkFo9rWGoApgjMEU3gFEcMoodkMh2mGUJJCkh2BMaKEx5gnbyMw7pm4h07AqfdrGIqn6RjwPJrbWskvHT1J47bG62jReWPrKG8aZ6X6iFobPXfFu7NdE-W1rHbe-DNwXMrK6_N9n4DXxe3L_D5ePt49zPNlrCjJ2jjRlKVIFRymGEJaMog1x1mGC8ioYqmGvJAMkXJFKcFMqTBgWnCmVrRgmSITcDnsDV4-O-1bsTFe6aqStbadF2ErTDiiNA3oxQG6tp0LfgNFCOc8IVkSqOuBUs5673QplGllGz7cOmkqgaDoQxU_oYo-VLEPNajpgbpxZiPd7l_ddNCtfWvdryihEPMM995vhndTl9Zt5Na6aiVauausK52slfGC_H3iGwMflqU |
CitedBy_id | crossref_primary_10_1007_s42952_025_00308_4 crossref_primary_10_1080_02664763_2022_2036953 crossref_primary_10_1007_s11222_024_10558_7 crossref_primary_10_1016_j_jeconom_2020_04_003 crossref_primary_10_1016_j_csda_2019_04_011 crossref_primary_10_1007_s40304_023_00342_w crossref_primary_10_1002_sim_9827 crossref_primary_10_1016_j_jeconom_2022_12_002 crossref_primary_10_3390_genes13040702 crossref_primary_10_1002_sim_9825 crossref_primary_10_1080_24754269_2019_1659097 crossref_primary_10_1111_biom_13514 crossref_primary_10_1111_biom_13357 crossref_primary_10_1016_j_eswa_2024_124709 crossref_primary_10_1080_00949655_2022_2029444 crossref_primary_10_1109_TASE_2020_3041411 crossref_primary_10_1016_j_csda_2024_107918 crossref_primary_10_1214_24_EJS2337 crossref_primary_10_3934_math_20241409 crossref_primary_10_1002_bimj_201900287 crossref_primary_10_1002_cjs_11646 crossref_primary_10_12677_SA_2021_105090 crossref_primary_10_1002_bimj_202100282 crossref_primary_10_1016_j_csda_2023_107910 crossref_primary_10_1002_sim_9386 crossref_primary_10_1002_cjs_11763 crossref_primary_10_1016_j_jmva_2019_06_007 crossref_primary_10_1214_24_EJS2295 crossref_primary_10_1016_j_jmva_2021_104874 crossref_primary_10_1080_01621459_2024_2308317 crossref_primary_10_1016_j_jmva_2020_104691 crossref_primary_10_1080_01621459_2021_1955690 crossref_primary_10_1093_jrsssb_qkad075 crossref_primary_10_1214_24_AOAS1884 crossref_primary_10_1016_j_jmva_2022_105023 crossref_primary_10_1080_01621459_2019_1705308 crossref_primary_10_1002_bimj_202300185 crossref_primary_10_1002_sim_70005 crossref_primary_10_1080_00401706_2023_2190779 crossref_primary_10_1080_00949655_2023_2215371 crossref_primary_10_1080_10618600_2024_2414113 crossref_primary_10_1109_TNNLS_2023_3276393 crossref_primary_10_1080_02664763_2023_2180167 crossref_primary_10_1080_07350015_2022_2140667 crossref_primary_10_1016_j_csda_2024_108037 crossref_primary_10_1007_s11749_024_00953_7 crossref_primary_10_1002_sim_10071 crossref_primary_10_1007_s10463_023_00871_9 crossref_primary_10_1007_s00362_023_01526_w crossref_primary_10_1214_21_AOAS1470 crossref_primary_10_1007_s10114_024_3310_z crossref_primary_10_1002_sim_8878 crossref_primary_10_1080_02664763_2018_1558186 crossref_primary_10_1007_s11222_024_10401_z crossref_primary_10_3390_e26050376 crossref_primary_10_1007_s10114_024_4164_0 crossref_primary_10_1080_01621459_2022_2126363 crossref_primary_10_1016_j_jeconom_2022_08_009 crossref_primary_10_1214_21_AOAS1503 crossref_primary_10_1007_s00180_023_01436_3 crossref_primary_10_1016_j_csda_2021_107192 crossref_primary_10_1016_j_insmatheco_2019_01_009 crossref_primary_10_1007_s10107_020_01470_9 crossref_primary_10_1016_j_jspi_2024_106196 crossref_primary_10_1080_10485252_2024_2358435 crossref_primary_10_3390_math12050646 crossref_primary_10_1080_10618600_2024_2431057 crossref_primary_10_1080_01621459_2023_2178925 crossref_primary_10_1111_biom_13725 crossref_primary_10_1007_s40300_023_00253_4 crossref_primary_10_1007_s00180_020_00965_5 crossref_primary_10_1214_17_EJS1389 crossref_primary_10_1016_j_econlet_2023_111244 crossref_primary_10_1111_biom_13333 crossref_primary_10_1017_S1748499523000271 crossref_primary_10_1002_sim_8800 crossref_primary_10_1002_sim_9578 crossref_primary_10_1002_wics_1551 crossref_primary_10_1007_s13171_019_00177_0 crossref_primary_10_1080_01621459_2024_2422115 crossref_primary_10_1093_biomtc_ujae076 crossref_primary_10_1111_rssb_12432 crossref_primary_10_1080_07350015_2020_1841648 crossref_primary_10_1007_s00362_023_01461_w crossref_primary_10_1016_j_ins_2024_120956 crossref_primary_10_1007_s00180_023_01380_2 crossref_primary_10_1177_09622802221133554 crossref_primary_10_1016_j_jspi_2023_106100 crossref_primary_10_1287_ijoc_2023_0366 crossref_primary_10_3390_math11214440 crossref_primary_10_1109_TSP_2020_3008050 crossref_primary_10_1002_bimj_202100119 crossref_primary_10_1111_biom_13557 crossref_primary_10_1007_s00180_021_01114_2 crossref_primary_10_1093_ectj_utae021 crossref_primary_10_1111_biom_13434 crossref_primary_10_1007_s11634_020_00435_2 crossref_primary_10_1080_10618600_2020_1763808 crossref_primary_10_3390_math11102333 crossref_primary_10_1080_10618600_2023_2284227 crossref_primary_10_1080_10618600_2022_2099405 crossref_primary_10_2139_ssrn_4694618 crossref_primary_10_1007_s11424_023_2011_5 crossref_primary_10_1080_00949655_2019_1700986 crossref_primary_10_1007_s13253_023_00529_2 crossref_primary_10_1080_01621459_2022_2157727 crossref_primary_10_1016_j_jmva_2022_105100 crossref_primary_10_1080_07350015_2022_2115498 crossref_primary_10_1111_biom_13544 crossref_primary_10_1214_23_AOAS1821 crossref_primary_10_1016_j_ins_2024_121143 crossref_primary_10_1214_23_AOS2347 crossref_primary_10_1177_09622802241267355 crossref_primary_10_1002_sim_10272 crossref_primary_10_1002_cjs_11696 crossref_primary_10_1016_j_csda_2022_107667 crossref_primary_10_1002_wics_1614 crossref_primary_10_1016_j_jspi_2023_106120 crossref_primary_10_1093_jrsssa_qnaf007 crossref_primary_10_1002_env_2849 crossref_primary_10_1111_biom_13815 crossref_primary_10_1080_07350015_2022_2118125 crossref_primary_10_1016_j_jeconom_2019_04_005 crossref_primary_10_1080_10485252_2024_2303103 crossref_primary_10_1002_sim_9006 crossref_primary_10_1007_s00180_018_0827_6 crossref_primary_10_1080_10543406_2022_2058528 crossref_primary_10_1016_j_csda_2021_107252 crossref_primary_10_1007_s11222_023_10353_w crossref_primary_10_1016_j_csda_2024_108105 crossref_primary_10_1093_nar_gkac219 crossref_primary_10_3390_e24111557 crossref_primary_10_1109_TSIPN_2019_2957717 crossref_primary_10_1080_24709360_2022_2127650 crossref_primary_10_1080_03610926_2019_1710754 crossref_primary_10_1007_s11424_024_4025_z crossref_primary_10_1002_bimj_202200231 crossref_primary_10_1080_01621459_2024_2321652 crossref_primary_10_1002_sta4_669 crossref_primary_10_1186_s12859_024_05652_6 crossref_primary_10_1007_s40304_018_0168_3 crossref_primary_10_1080_10618600_2025_2467649 crossref_primary_10_1002_cjs_11793 crossref_primary_10_1080_24754269_2024_2327113 crossref_primary_10_1002_cjs_11797 |
Cites_doi | 10.2307/2532201 10.1016/S0304-4076(99)00044-5 10.1111/j.1467-9868.2008.00693.x 10.1111/j.2517-6161.1996.tb02073.x 10.1080/01621459.2014.892882 10.1080/01621459.2013.789695 10.1093/comjnl/41.8.578 10.2307/1914288 10.1111/1467-9868.00293 10.1214/aos/1176344136 10.1007/978-94-009-5897-5 10.1111/j.1541-0420.2009.01341.x 10.1111/j.1541-0420.2007.00843.x 10.1198/016214501753382273 10.1001/jama.281.6.524 10.1561/2200000016 10.1080/01621459.2014.894763 10.1080/10618600.2014.948181 10.1214/09-AOS729 10.1198/016214502760047131 10.1111/j.1467-9868.2005.00490.x 10.1080/01621459.1971.10482356 10.1016/j.jspi.2009.11.006 10.1198/jasa.2010.tm09380 10.1093/biomet/asm053 |
ContentType | Journal Article |
Copyright | 2017 American Statistical Association 2017 Copyright © 2017 American Statistical Association 2017 American Statistical Association |
Copyright_xml | – notice: 2017 American Statistical Association 2017 – notice: Copyright © 2017 American Statistical Association – notice: 2017 American Statistical Association |
DBID | AAYXX CITATION 8BJ FQK JBE K9. 7S9 L.6 |
DOI | 10.1080/01621459.2016.1148039 |
DatabaseName | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 1537-274X |
EndPage | 423 |
ExternalDocumentID | 10_1080_01621459_2016_1148039 45027928 1148039 |
Genre | Article |
GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 2AX 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVZ AABCJ AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABBHK ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABRLO ABTAI ABXSQ ABXUL ABXYU ABYAD ABYWD ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ACTWD ACUBG ADCVX ADGTB ADLSF ADMHG ADODI AEISY AENEX AEOZL AEPSL AEUPB AEYOC AFFNX AFSUE AFVYC AFXHP AGDLA AGMYJ AHDZW AIJEM AKBVH AKOOK ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AQRUH AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P FJW GROUPED_ABI_INFORM_COMPLETE GTTXZ H13 HF~ HQ6 HZ~ H~9 H~P IAO IEA IGG IOF IPNFZ IPO IPSME J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K60 K6~ KYCEM LJTGL LU7 M4Z MS~ MW2 N95 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SA0 SNACF TAE TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ U5U UPT UT5 UU3 WH7 WZA YQT YYM ZGOLN ZUP ~S~ AAGDL AAHIA AAWIL ABAWQ ACHJO ADXHL ADYSH AFRVT AGLNM AIHAF AIYEW AMPGV AMVHM AAYXX CITATION 8BJ FQK JBE K9. TASJS 7S9 L.6 |
ID | FETCH-LOGICAL-c539t-4e5681cb7082005f602e72992b065c68e07ba613fd55326ccfd525b76cd5b69c3 |
ISSN | 0162-1459 1537-274X |
IngestDate | Wed Jul 02 04:41:07 EDT 2025 Wed Aug 13 09:06:15 EDT 2025 Thu Apr 24 23:02:34 EDT 2025 Tue Jul 01 02:39:30 EDT 2025 Thu May 29 09:14:37 EDT 2025 Wed Dec 25 09:07:29 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 517 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c539t-4e5681cb7082005f602e72992b065c68e07ba613fd55326ccfd525b76cd5b69c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://figshare.com/articles/dataset/A_concave_pairwise_fusion_approach_to_subgroup_analysis/2082700 |
PQID | 2337774394 |
PQPubID | 41715 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1080_01621459_2016_1148039 crossref_primary_10_1080_01621459_2016_1148039 proquest_miscellaneous_2000471558 informaworld_taylorfrancis_310_1080_01621459_2016_1148039 proquest_journals_2337774394 jstor_primary_45027928 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-02 |
PublicationDateYYYYMMDD | 2017-01-02 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Alexandria |
PublicationPlace_xml | – name: Alexandria |
PublicationTitle | Journal of the American Statistical Association |
PublicationYear | 2017 |
Publisher | Taylor & Francis Taylor & Francis Group,LLC Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group,LLC – name: Taylor & Francis Ltd |
References | cit0012 cit0010 Chaganty A. T. (cit0004) 2013; 28 cit0019 cit0017 cit0018 cit0015 cit0016 cit0013 cit0014 cit0022 cit0001 cit0023 cit0020 cit0021 Hastie T. (cit0011) 1996; 58 cit0008 cit0009 cit0006 cit0007 cit0026 cit0005 cit0002 cit0024 cit0003 cit0025 |
References_xml | – ident: cit0001 doi: 10.2307/2532201 – ident: cit0013 doi: 10.1016/S0304-4076(99)00044-5 – ident: cit0023 doi: 10.1111/j.1467-9868.2008.00693.x – volume: 58 start-page: 155 year: 1996 ident: cit0011 publication-title: Journal of the Royal Statistical Society doi: 10.1111/j.2517-6161.1996.tb02073.x – ident: cit0012 doi: 10.1080/01621459.2014.892882 – ident: cit0025 doi: 10.1080/01621459.2013.789695 – ident: cit0008 doi: 10.1093/comjnl/41.8.578 – ident: cit0016 doi: 10.2307/1914288 – ident: cit0021 doi: 10.1111/1467-9868.00293 – ident: cit0018 doi: 10.1214/aos/1176344136 – volume: 28 start-page: 1040 year: 2013 ident: cit0004 publication-title: Proceedings of the 30th International Conference on Machine Learning – ident: cit0006 doi: 10.1007/978-94-009-5897-5 – ident: cit0010 doi: 10.1111/j.1541-0420.2009.01341.x – ident: cit0002 doi: 10.1111/j.1541-0420.2007.00843.x – ident: cit0007 doi: 10.1198/016214501753382273 – ident: cit0014 doi: 10.1001/jama.281.6.524 – ident: cit0003 doi: 10.1561/2200000016 – ident: cit0019 doi: 10.1080/01621459.2014.894763 – ident: cit0005 doi: 10.1080/10618600.2014.948181 – ident: cit0026 doi: 10.1214/09-AOS729 – ident: cit0009 doi: 10.1198/016214502760047131 – ident: cit0022 doi: 10.1111/j.1467-9868.2005.00490.x – ident: cit0017 doi: 10.1080/01621459.1971.10482356 – ident: cit0015 doi: 10.1016/j.jspi.2009.11.006 – ident: cit0020 doi: 10.1198/jasa.2010.tm09380 – ident: cit0024 doi: 10.1093/biomet/asm053 |
SSID | ssj0000788 |
Score | 2.5802493 |
Snippet | An important step in developing individualized treatment strategies is correct identification of subgroups of a heterogeneous population to allow specific... |
SourceID | proquest crossref jstor informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 410 |
SubjectTerms | Algorithms Asymptotic normality Cardiovascular diseases Computer simulation Convergence data collection equations Heart diseases Heterogeneity Inference Linear regression multipliers Oracle property Penalties Penalty function Regression analysis Regression models Simulation Statistical analysis Statistical inference Statistical methods Statistics Subgroups Theory and Methods |
Title | A Concave Pairwise Fusion Approach to Subgroup Analysis |
URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2016.1148039 https://www.jstor.org/stable/45027928 https://www.proquest.com/docview/2337774394 https://www.proquest.com/docview/2000471558 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgXHZBMJgoDGQkbihTasdxcpzQqmmaCodU6s2KXVsUoRStqZD21-89x05TtTDYJUpTOY78vjx_7-X9IOSTLnNnuMiQuYGBIh1L6hx-AjQWrqgNWAQ-QHaaX82y67mYx17tIbuk1efm7mBeyWOkCtdArpgl-x-S7W8KF-Ac5AtHkDAc_0nGmFLeGOwf9K1e3v5eru3nyQbdX0gu-1Qp0A0-d6MvQPIHQjpIMvFtfVtfw_mACL0D27tNv29-LAfICL7n6wi54E0YS-9N2Nqe1V5jj0F0kfc_5iwZZ6GIt406UyZg3M53lOqYDdAjuvzMoCSzLpB1T3mHaEeYAmfAsLscSxkXKS-3u1X8Qj_9qiazmxtVXc6rp-QZA6yhmuPpdLsRS992tH_mmMCFpdUPTbJDTXYK18Zg1b0N27OQ6gV5HqRFLzosvCRPbHNCjnthrV8ReUEDKGgEBe1AQSMoaLuiERQ0guI1mU0uqy9XSeiOkRjByzbJLNaOM1oiiUuFy1NmwVIqmQZWafLCplLXQNbcQgjg6MbACRNa5mYhdF4afkqOmlVj3xBaOLPQGVDDktdAr50umLYlqHJdp9JxNiJZXBhlQul47GDyU41jhdmwngrXU4X1HJHzftivrnbKQwPK4aqr1qPRdUBU_IGxp15E_UyZSLE4ZjEiZ1FmKry7a8U4lxJt8WxEPvZ_g2bFz2V1Y1ebNTZoTYG6CVG8_fst3pHj7at0Ro7a2419D1S11R88IO8BgKiIbQ |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3BbtQwEB2V9kAvhQIVC4UaCY5ZUju2kwOHVWG1pWXFoZV6M7HXlqqibNXNUsFn8Sv8EDNJvG2pqh6qHrglipyMPOOZN874DcBbW6jghMwIuWGCogNPSoW3aBqTkJcOM4KmQHasRofZ5yN5tAS_41kYKqukHDq0RBGNr6bFTZvRsSTuPcIUItimcybbithu81QUXWHlnv95jmnb7MPuR9TxO86Hnw52RknXWSBxUhR1knni3XJWUwBMZVAp94gyC24xIjuV-1TbEgNdmEiJ-MY5vODSauUm0qrCCXzvA1iRhdK0tkQ6vvD-uul1SSImJGM8NXST2Ffi4RW21FgheS1KNKFv-Aj-xElrK15O-vPa9t2vf_gk_69ZfQxrHRJng3bprMOSr57AKoHvlrv6KegB25lWrvzh2dfy-Oz8eObZcE7bi2zQUbGzesrQ9zZnY1gkeHkGh_ci-AYsV9PKPweWBzexGaKsQpSIVIPNufWYqeMLUh0E70EW1W1cx8JOzUC-m-1I1tqpwZAaTKeGHvQXw05bGpLbBhSXbcnUzf5PaJu1GHHL2I3G8BZfymRKPJN5DzajJZrO1c0MF0JrSmuzHrxZPEYnRX-eyspP5zPqdZoiCpIyf3EHubbg4ejgy77Z3x3vvYRVTgCLNsP4JizXZ3P_CuFhbV8365HBt_s21b8-m173 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RkCou_aFFbEtbV6LHbIMd28mhhxV0BaVacSgSNzd2bAmBsojNFrVv1VfpE3UmibdQhDhUHHrbaOVklBnPfOPMfAOwZQsVnJAZITdMUHTgSanwEk2jCnnpMCNoC2Qnau8o-3Qsj5fgZ-yFobJKyqFDRxTR-mra3OdViBVx7xGlEL82tZlsKyK7zVNR9HWVB_77JWZtsw_7u6jid5yPP37Z2Uv6wQKJk6JokswT7ZazmuJfKoNKuUeQWXCLAdmp3KfalhjnQiUlwhvn8AeXVitXSasKJ_C-D2BFUWMndY2kkz_OX7ejLknEhGSMTUO3iX0tHF4jS40FkjeCRBv5xo_hV3xnXcHL6XDe2KH78Red5H_1Up_Aox6Hs1G3cZ7Ckq_XYJWgd8dc_Qz0iO1Ma1d-8-ywPLm4PJl5Np7T4SIb9UTsrJky9LxtZwyL9C7P4eheBF-H5Xpa-w1geXCVzRBjFaJEnBpszq3HPB1vkOog-ACyqG3jeg52GgVyZrYjVWuvBkNqML0aBjBcLDvvSEjuWlBcNSXTtKc_oRvVYsQda9dbu1s8KZMpsUzmA9iMhmh6RzczXAitKanNBvB28Te6KPruVNZ-Op_RpNMUMZCU-Yt_kOsNPDzcHZvP-5ODl7DKCV3RSRjfhOXmYu5fITZs7Ot2NzL4et-W-htbP12b |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Concave+Pairwise+Fusion+Approach+to+Subgroup+Analysis&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Ma%2C+Shujie&rft.au=Huang%2C+Jian&rft.date=2017-01-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=112&rft.issue=517&rft.spage=410&rft_id=info:doi/10.1080%2F01621459.2016.1148039&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |