A Concave Pairwise Fusion Approach to Subgroup Analysis

An important step in developing individualized treatment strategies is correct identification of subgroups of a heterogeneous population to allow specific treatment for each subgroup. This article considers the problem using samples drawn from a population consisting of subgroups with different mean...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 112; no. 517; pp. 410 - 423
Main Authors Ma, Shujie, Huang, Jian
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 02.01.2017
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An important step in developing individualized treatment strategies is correct identification of subgroups of a heterogeneous population to allow specific treatment for each subgroup. This article considers the problem using samples drawn from a population consisting of subgroups with different mean values, along with certain covariates. We propose a penalized approach for subgroup analysis based on a regression model, in which heterogeneity is driven by unobserved latent factors and thus can be represented by using subject-specific intercepts. We apply concave penalty functions to pairwise differences of the intercepts. This procedure automatically divides the observations into subgroups. To implement the proposed approach, we develop an alternating direction method of multipliers algorithm with concave penalties and demonstrate its convergence. We also establish the theoretical properties of our proposed estimator and determine the order requirement of the minimal difference of signals between groups to recover them. These results provide a sound basis for making statistical inference in subgroup analysis. Our proposed method is further illustrated by simulation studies and analysis of a Cleveland heart disease dataset. Supplementary materials for this article are available online.
AbstractList An important step in developing individualized treatment strategies is correct identification of subgroups of a heterogeneous population to allow specific treatment for each subgroup. This article considers the problem using samples drawn from a population consisting of subgroups with different mean values, along with certain covariates. We propose a penalized approach for subgroup analysis based on a regression model, in which heterogeneity is driven by unobserved latent factors and thus can be represented by using subject-specific intercepts. We apply concave penalty functions to pairwise differences of the intercepts. This procedure automatically divides the observations into subgroups. To implement the proposed approach, we develop an alternating direction method of multipliers algorithm with concave penalties and demonstrate its convergence. We also establish the theoretical properties of our proposed estimator and determine the order requirement of the minimal difference of signals between groups to recover them. These results provide a sound basis for making statistical inference in subgroup analysis. Our proposed method is further illustrated by simulation studies and analysis of a Cleveland heart disease dataset. Supplementary materials for this article are available online.
An important step in developing individualized treatment strategies is correct identification of subgroups of a heterogeneous population to allow specific treatment for each subgroup. This article considers the problem using samples drawn from a population consisting of subgroups with different mean values, along with certain covariates. We propose a penalized approach for subgroup analysis based on a regression model, in which heterogeneity is driven by unobserved latent factors and thus can be represented by using subject-specific intercepts. We apply concave penalty functions to pairwise differences of the intercepts. This procedure automatically divides the observations into subgroups. To implement the proposed approach, we develop an alternating direction method of multipliers algorithm with concave penalties and demonstrate its convergence. We also establish the theoretical properties of our proposed estimator and determine the order requirement of the minimal difference of signals between groups to recover them. These results provide a sound basis for making statistical inference in subgroup analysis. Our proposed method is further illustrated by simulation studies and analysis of a Cleveland heart disease dataset.
Author Ma, Shujie
Huang, Jian
Author_xml – sequence: 1
  givenname: Shujie
  surname: Ma
  fullname: Ma, Shujie
  organization: Department of Statistics, University of California Riverside
– sequence: 2
  givenname: Jian
  surname: Huang
  fullname: Huang, Jian
  email: jian-huang@uiowa.edu
  organization: Department of Statistics and Actuarial Science, University of Iowa
BookMark eNqFkF9LwzAUxYNMcE4_wqDgiy-d-dMkLb5YhlNhoKCCbyHNUs3ompq0jn17Uzp92IPel3shv3PvyTkFo9rWGoApgjMEU3gFEcMoodkMh2mGUJJCkh2BMaKEx5gnbyMw7pm4h07AqfdrGIqn6RjwPJrbWskvHT1J47bG62jReWPrKG8aZ6X6iFobPXfFu7NdE-W1rHbe-DNwXMrK6_N9n4DXxe3L_D5ePt49zPNlrCjJ2jjRlKVIFRymGEJaMog1x1mGC8ioYqmGvJAMkXJFKcFMqTBgWnCmVrRgmSITcDnsDV4-O-1bsTFe6aqStbadF2ErTDiiNA3oxQG6tp0LfgNFCOc8IVkSqOuBUs5673QplGllGz7cOmkqgaDoQxU_oYo-VLEPNajpgbpxZiPd7l_ddNCtfWvdryihEPMM995vhndTl9Zt5Na6aiVauausK52slfGC_H3iGwMflqU
CitedBy_id crossref_primary_10_1007_s42952_025_00308_4
crossref_primary_10_1080_02664763_2022_2036953
crossref_primary_10_1007_s11222_024_10558_7
crossref_primary_10_1016_j_jeconom_2020_04_003
crossref_primary_10_1016_j_csda_2019_04_011
crossref_primary_10_1007_s40304_023_00342_w
crossref_primary_10_1002_sim_9827
crossref_primary_10_1016_j_jeconom_2022_12_002
crossref_primary_10_3390_genes13040702
crossref_primary_10_1002_sim_9825
crossref_primary_10_1080_24754269_2019_1659097
crossref_primary_10_1111_biom_13514
crossref_primary_10_1111_biom_13357
crossref_primary_10_1016_j_eswa_2024_124709
crossref_primary_10_1080_00949655_2022_2029444
crossref_primary_10_1109_TASE_2020_3041411
crossref_primary_10_1016_j_csda_2024_107918
crossref_primary_10_1214_24_EJS2337
crossref_primary_10_3934_math_20241409
crossref_primary_10_1002_bimj_201900287
crossref_primary_10_1002_cjs_11646
crossref_primary_10_12677_SA_2021_105090
crossref_primary_10_1002_bimj_202100282
crossref_primary_10_1016_j_csda_2023_107910
crossref_primary_10_1002_sim_9386
crossref_primary_10_1002_cjs_11763
crossref_primary_10_1016_j_jmva_2019_06_007
crossref_primary_10_1214_24_EJS2295
crossref_primary_10_1016_j_jmva_2021_104874
crossref_primary_10_1080_01621459_2024_2308317
crossref_primary_10_1016_j_jmva_2020_104691
crossref_primary_10_1080_01621459_2021_1955690
crossref_primary_10_1093_jrsssb_qkad075
crossref_primary_10_1214_24_AOAS1884
crossref_primary_10_1016_j_jmva_2022_105023
crossref_primary_10_1080_01621459_2019_1705308
crossref_primary_10_1002_bimj_202300185
crossref_primary_10_1002_sim_70005
crossref_primary_10_1080_00401706_2023_2190779
crossref_primary_10_1080_00949655_2023_2215371
crossref_primary_10_1080_10618600_2024_2414113
crossref_primary_10_1109_TNNLS_2023_3276393
crossref_primary_10_1080_02664763_2023_2180167
crossref_primary_10_1080_07350015_2022_2140667
crossref_primary_10_1016_j_csda_2024_108037
crossref_primary_10_1007_s11749_024_00953_7
crossref_primary_10_1002_sim_10071
crossref_primary_10_1007_s10463_023_00871_9
crossref_primary_10_1007_s00362_023_01526_w
crossref_primary_10_1214_21_AOAS1470
crossref_primary_10_1007_s10114_024_3310_z
crossref_primary_10_1002_sim_8878
crossref_primary_10_1080_02664763_2018_1558186
crossref_primary_10_1007_s11222_024_10401_z
crossref_primary_10_3390_e26050376
crossref_primary_10_1007_s10114_024_4164_0
crossref_primary_10_1080_01621459_2022_2126363
crossref_primary_10_1016_j_jeconom_2022_08_009
crossref_primary_10_1214_21_AOAS1503
crossref_primary_10_1007_s00180_023_01436_3
crossref_primary_10_1016_j_csda_2021_107192
crossref_primary_10_1016_j_insmatheco_2019_01_009
crossref_primary_10_1007_s10107_020_01470_9
crossref_primary_10_1016_j_jspi_2024_106196
crossref_primary_10_1080_10485252_2024_2358435
crossref_primary_10_3390_math12050646
crossref_primary_10_1080_10618600_2024_2431057
crossref_primary_10_1080_01621459_2023_2178925
crossref_primary_10_1111_biom_13725
crossref_primary_10_1007_s40300_023_00253_4
crossref_primary_10_1007_s00180_020_00965_5
crossref_primary_10_1214_17_EJS1389
crossref_primary_10_1016_j_econlet_2023_111244
crossref_primary_10_1111_biom_13333
crossref_primary_10_1017_S1748499523000271
crossref_primary_10_1002_sim_8800
crossref_primary_10_1002_sim_9578
crossref_primary_10_1002_wics_1551
crossref_primary_10_1007_s13171_019_00177_0
crossref_primary_10_1080_01621459_2024_2422115
crossref_primary_10_1093_biomtc_ujae076
crossref_primary_10_1111_rssb_12432
crossref_primary_10_1080_07350015_2020_1841648
crossref_primary_10_1007_s00362_023_01461_w
crossref_primary_10_1016_j_ins_2024_120956
crossref_primary_10_1007_s00180_023_01380_2
crossref_primary_10_1177_09622802221133554
crossref_primary_10_1016_j_jspi_2023_106100
crossref_primary_10_1287_ijoc_2023_0366
crossref_primary_10_3390_math11214440
crossref_primary_10_1109_TSP_2020_3008050
crossref_primary_10_1002_bimj_202100119
crossref_primary_10_1111_biom_13557
crossref_primary_10_1007_s00180_021_01114_2
crossref_primary_10_1093_ectj_utae021
crossref_primary_10_1111_biom_13434
crossref_primary_10_1007_s11634_020_00435_2
crossref_primary_10_1080_10618600_2020_1763808
crossref_primary_10_3390_math11102333
crossref_primary_10_1080_10618600_2023_2284227
crossref_primary_10_1080_10618600_2022_2099405
crossref_primary_10_2139_ssrn_4694618
crossref_primary_10_1007_s11424_023_2011_5
crossref_primary_10_1080_00949655_2019_1700986
crossref_primary_10_1007_s13253_023_00529_2
crossref_primary_10_1080_01621459_2022_2157727
crossref_primary_10_1016_j_jmva_2022_105100
crossref_primary_10_1080_07350015_2022_2115498
crossref_primary_10_1111_biom_13544
crossref_primary_10_1214_23_AOAS1821
crossref_primary_10_1016_j_ins_2024_121143
crossref_primary_10_1214_23_AOS2347
crossref_primary_10_1177_09622802241267355
crossref_primary_10_1002_sim_10272
crossref_primary_10_1002_cjs_11696
crossref_primary_10_1016_j_csda_2022_107667
crossref_primary_10_1002_wics_1614
crossref_primary_10_1016_j_jspi_2023_106120
crossref_primary_10_1093_jrsssa_qnaf007
crossref_primary_10_1002_env_2849
crossref_primary_10_1111_biom_13815
crossref_primary_10_1080_07350015_2022_2118125
crossref_primary_10_1016_j_jeconom_2019_04_005
crossref_primary_10_1080_10485252_2024_2303103
crossref_primary_10_1002_sim_9006
crossref_primary_10_1007_s00180_018_0827_6
crossref_primary_10_1080_10543406_2022_2058528
crossref_primary_10_1016_j_csda_2021_107252
crossref_primary_10_1007_s11222_023_10353_w
crossref_primary_10_1016_j_csda_2024_108105
crossref_primary_10_1093_nar_gkac219
crossref_primary_10_3390_e24111557
crossref_primary_10_1109_TSIPN_2019_2957717
crossref_primary_10_1080_24709360_2022_2127650
crossref_primary_10_1080_03610926_2019_1710754
crossref_primary_10_1007_s11424_024_4025_z
crossref_primary_10_1002_bimj_202200231
crossref_primary_10_1080_01621459_2024_2321652
crossref_primary_10_1002_sta4_669
crossref_primary_10_1186_s12859_024_05652_6
crossref_primary_10_1007_s40304_018_0168_3
crossref_primary_10_1080_10618600_2025_2467649
crossref_primary_10_1002_cjs_11793
crossref_primary_10_1080_24754269_2024_2327113
crossref_primary_10_1002_cjs_11797
Cites_doi 10.2307/2532201
10.1016/S0304-4076(99)00044-5
10.1111/j.1467-9868.2008.00693.x
10.1111/j.2517-6161.1996.tb02073.x
10.1080/01621459.2014.892882
10.1080/01621459.2013.789695
10.1093/comjnl/41.8.578
10.2307/1914288
10.1111/1467-9868.00293
10.1214/aos/1176344136
10.1007/978-94-009-5897-5
10.1111/j.1541-0420.2009.01341.x
10.1111/j.1541-0420.2007.00843.x
10.1198/016214501753382273
10.1001/jama.281.6.524
10.1561/2200000016
10.1080/01621459.2014.894763
10.1080/10618600.2014.948181
10.1214/09-AOS729
10.1198/016214502760047131
10.1111/j.1467-9868.2005.00490.x
10.1080/01621459.1971.10482356
10.1016/j.jspi.2009.11.006
10.1198/jasa.2010.tm09380
10.1093/biomet/asm053
ContentType Journal Article
Copyright 2017 American Statistical Association 2017
Copyright © 2017 American Statistical Association
2017 American Statistical Association
Copyright_xml – notice: 2017 American Statistical Association 2017
– notice: Copyright © 2017 American Statistical Association
– notice: 2017 American Statistical Association
DBID AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
DOI 10.1080/01621459.2016.1148039
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
International Bibliography of the Social Sciences (IBSS)
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 423
ExternalDocumentID 10_1080_01621459_2016_1148039
45027928
1148039
Genre Article
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABRLO
ABTAI
ABXSQ
ABXUL
ABXYU
ABYAD
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACTWD
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
AEISY
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFSUE
AFVYC
AFXHP
AGDLA
AGMYJ
AHDZW
AIJEM
AKBVH
AKOOK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FJW
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IAO
IEA
IGG
IOF
IPNFZ
IPO
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
KYCEM
LJTGL
LU7
M4Z
MS~
MW2
N95
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
ZUP
~S~
AAGDL
AAHIA
AAWIL
ABAWQ
ACHJO
ADXHL
ADYSH
AFRVT
AGLNM
AIHAF
AIYEW
AMPGV
AMVHM
AAYXX
CITATION
8BJ
FQK
JBE
K9.
TASJS
7S9
L.6
ID FETCH-LOGICAL-c539t-4e5681cb7082005f602e72992b065c68e07ba613fd55326ccfd525b76cd5b69c3
ISSN 0162-1459
1537-274X
IngestDate Wed Jul 02 04:41:07 EDT 2025
Wed Aug 13 09:06:15 EDT 2025
Thu Apr 24 23:02:34 EDT 2025
Tue Jul 01 02:39:30 EDT 2025
Thu May 29 09:14:37 EDT 2025
Wed Dec 25 09:07:29 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 517
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c539t-4e5681cb7082005f602e72992b065c68e07ba613fd55326ccfd525b76cd5b69c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://figshare.com/articles/dataset/A_concave_pairwise_fusion_approach_to_subgroup_analysis/2082700
PQID 2337774394
PQPubID 41715
PageCount 14
ParticipantIDs crossref_citationtrail_10_1080_01621459_2016_1148039
crossref_primary_10_1080_01621459_2016_1148039
proquest_miscellaneous_2000471558
informaworld_taylorfrancis_310_1080_01621459_2016_1148039
proquest_journals_2337774394
jstor_primary_45027928
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-02
PublicationDateYYYYMMDD 2017-01-02
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-02
  day: 02
PublicationDecade 2010
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group,LLC
– name: Taylor & Francis Ltd
References cit0012
cit0010
Chaganty A. T. (cit0004) 2013; 28
cit0019
cit0017
cit0018
cit0015
cit0016
cit0013
cit0014
cit0022
cit0001
cit0023
cit0020
cit0021
Hastie T. (cit0011) 1996; 58
cit0008
cit0009
cit0006
cit0007
cit0026
cit0005
cit0002
cit0024
cit0003
cit0025
References_xml – ident: cit0001
  doi: 10.2307/2532201
– ident: cit0013
  doi: 10.1016/S0304-4076(99)00044-5
– ident: cit0023
  doi: 10.1111/j.1467-9868.2008.00693.x
– volume: 58
  start-page: 155
  year: 1996
  ident: cit0011
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.2517-6161.1996.tb02073.x
– ident: cit0012
  doi: 10.1080/01621459.2014.892882
– ident: cit0025
  doi: 10.1080/01621459.2013.789695
– ident: cit0008
  doi: 10.1093/comjnl/41.8.578
– ident: cit0016
  doi: 10.2307/1914288
– ident: cit0021
  doi: 10.1111/1467-9868.00293
– ident: cit0018
  doi: 10.1214/aos/1176344136
– volume: 28
  start-page: 1040
  year: 2013
  ident: cit0004
  publication-title: Proceedings of the 30th International Conference on Machine Learning
– ident: cit0006
  doi: 10.1007/978-94-009-5897-5
– ident: cit0010
  doi: 10.1111/j.1541-0420.2009.01341.x
– ident: cit0002
  doi: 10.1111/j.1541-0420.2007.00843.x
– ident: cit0007
  doi: 10.1198/016214501753382273
– ident: cit0014
  doi: 10.1001/jama.281.6.524
– ident: cit0003
  doi: 10.1561/2200000016
– ident: cit0019
  doi: 10.1080/01621459.2014.894763
– ident: cit0005
  doi: 10.1080/10618600.2014.948181
– ident: cit0026
  doi: 10.1214/09-AOS729
– ident: cit0009
  doi: 10.1198/016214502760047131
– ident: cit0022
  doi: 10.1111/j.1467-9868.2005.00490.x
– ident: cit0017
  doi: 10.1080/01621459.1971.10482356
– ident: cit0015
  doi: 10.1016/j.jspi.2009.11.006
– ident: cit0020
  doi: 10.1198/jasa.2010.tm09380
– ident: cit0024
  doi: 10.1093/biomet/asm053
SSID ssj0000788
Score 2.5802493
Snippet An important step in developing individualized treatment strategies is correct identification of subgroups of a heterogeneous population to allow specific...
SourceID proquest
crossref
jstor
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 410
SubjectTerms Algorithms
Asymptotic normality
Cardiovascular diseases
Computer simulation
Convergence
data collection
equations
Heart diseases
Heterogeneity
Inference
Linear regression
multipliers
Oracle property
Penalties
Penalty function
Regression analysis
Regression models
Simulation
Statistical analysis
Statistical inference
Statistical methods
Statistics
Subgroups
Theory and Methods
Title A Concave Pairwise Fusion Approach to Subgroup Analysis
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2016.1148039
https://www.jstor.org/stable/45027928
https://www.proquest.com/docview/2337774394
https://www.proquest.com/docview/2000471558
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgXHZBMJgoDGQkbihTasdxcpzQqmmaCodU6s2KXVsUoRStqZD21-89x05TtTDYJUpTOY78vjx_7-X9IOSTLnNnuMiQuYGBIh1L6hx-AjQWrqgNWAQ-QHaaX82y67mYx17tIbuk1efm7mBeyWOkCtdArpgl-x-S7W8KF-Ac5AtHkDAc_0nGmFLeGOwf9K1e3v5eru3nyQbdX0gu-1Qp0A0-d6MvQPIHQjpIMvFtfVtfw_mACL0D27tNv29-LAfICL7n6wi54E0YS-9N2Nqe1V5jj0F0kfc_5iwZZ6GIt406UyZg3M53lOqYDdAjuvzMoCSzLpB1T3mHaEeYAmfAsLscSxkXKS-3u1X8Qj_9qiazmxtVXc6rp-QZA6yhmuPpdLsRS992tH_mmMCFpdUPTbJDTXYK18Zg1b0N27OQ6gV5HqRFLzosvCRPbHNCjnthrV8ReUEDKGgEBe1AQSMoaLuiERQ0guI1mU0uqy9XSeiOkRjByzbJLNaOM1oiiUuFy1NmwVIqmQZWafLCplLXQNbcQgjg6MbACRNa5mYhdF4afkqOmlVj3xBaOLPQGVDDktdAr50umLYlqHJdp9JxNiJZXBhlQul47GDyU41jhdmwngrXU4X1HJHzftivrnbKQwPK4aqr1qPRdUBU_IGxp15E_UyZSLE4ZjEiZ1FmKry7a8U4lxJt8WxEPvZ_g2bFz2V1Y1ebNTZoTYG6CVG8_fst3pHj7at0Ro7a2419D1S11R88IO8BgKiIbQ
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3BbtQwEB2V9kAvhQIVC4UaCY5ZUju2kwOHVWG1pWXFoZV6M7HXlqqibNXNUsFn8Sv8EDNJvG2pqh6qHrglipyMPOOZN874DcBbW6jghMwIuWGCogNPSoW3aBqTkJcOM4KmQHasRofZ5yN5tAS_41kYKqukHDq0RBGNr6bFTZvRsSTuPcIUItimcybbithu81QUXWHlnv95jmnb7MPuR9TxO86Hnw52RknXWSBxUhR1knni3XJWUwBMZVAp94gyC24xIjuV-1TbEgNdmEiJ-MY5vODSauUm0qrCCXzvA1iRhdK0tkQ6vvD-uul1SSImJGM8NXST2Ffi4RW21FgheS1KNKFv-Aj-xElrK15O-vPa9t2vf_gk_69ZfQxrHRJng3bprMOSr57AKoHvlrv6KegB25lWrvzh2dfy-Oz8eObZcE7bi2zQUbGzesrQ9zZnY1gkeHkGh_ci-AYsV9PKPweWBzexGaKsQpSIVIPNufWYqeMLUh0E70EW1W1cx8JOzUC-m-1I1tqpwZAaTKeGHvQXw05bGpLbBhSXbcnUzf5PaJu1GHHL2I3G8BZfymRKPJN5DzajJZrO1c0MF0JrSmuzHrxZPEYnRX-eyspP5zPqdZoiCpIyf3EHubbg4ejgy77Z3x3vvYRVTgCLNsP4JizXZ3P_CuFhbV8365HBt_s21b8-m173
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RkCou_aFFbEtbV6LHbIMd28mhhxV0BaVacSgSNzd2bAmBsojNFrVv1VfpE3UmibdQhDhUHHrbaOVklBnPfOPMfAOwZQsVnJAZITdMUHTgSanwEk2jCnnpMCNoC2Qnau8o-3Qsj5fgZ-yFobJKyqFDRxTR-mra3OdViBVx7xGlEL82tZlsKyK7zVNR9HWVB_77JWZtsw_7u6jid5yPP37Z2Uv6wQKJk6JokswT7ZazmuJfKoNKuUeQWXCLAdmp3KfalhjnQiUlwhvn8AeXVitXSasKJ_C-D2BFUWMndY2kkz_OX7ejLknEhGSMTUO3iX0tHF4jS40FkjeCRBv5xo_hV3xnXcHL6XDe2KH78Red5H_1Up_Aox6Hs1G3cZ7Ckq_XYJWgd8dc_Qz0iO1Ma1d-8-ywPLm4PJl5Np7T4SIb9UTsrJky9LxtZwyL9C7P4eheBF-H5Xpa-w1geXCVzRBjFaJEnBpszq3HPB1vkOog-ACyqG3jeg52GgVyZrYjVWuvBkNqML0aBjBcLDvvSEjuWlBcNSXTtKc_oRvVYsQda9dbu1s8KZMpsUzmA9iMhmh6RzczXAitKanNBvB28Te6KPruVNZ-Op_RpNMUMZCU-Yt_kOsNPDzcHZvP-5ODl7DKCV3RSRjfhOXmYu5fITZs7Ot2NzL4et-W-htbP12b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Concave+Pairwise+Fusion+Approach+to+Subgroup+Analysis&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Ma%2C+Shujie&rft.au=Huang%2C+Jian&rft.date=2017-01-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=112&rft.issue=517&rft.spage=410&rft_id=info:doi/10.1080%2F01621459.2016.1148039&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon