Automatic Artifact Removal in EEG of Normal and Demented Individuals Using ICA–WT during Working Memory Tasks
Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG) is a promising tool to support the diagnosis and evaluation of abnormalities in the human brain. The EEG sensors record the brain activity directly with excellent time resolution. In...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 17; no. 6; p. 1326 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
08.06.2017
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s17061326 |
Cover
Loading…
Abstract | Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG) is a promising tool to support the diagnosis and evaluation of abnormalities in the human brain. The EEG sensors record the brain activity directly with excellent time resolution. In this study, EEG sensor with 19 electrodes were used to test the background activities of the brains of five vascular dementia (VaD), 15 stroke-related patients with mild cognitive impairment (MCI), and 15 healthy subjects during a working memory (WM) task. The objective of this study is twofold. First, it aims to enhance the recorded EEG signals using a novel technique that combines automatic independent component analysis (AICA) and wavelet transform (WT), that is, the AICA–WT technique; second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. The proposed AICA–WT technique is a four-stage approach. In the first stage, the independent components (ICs) were estimated. In the second stage, three-step artifact identification metrics were applied to detect the artifactual components. The components identified as artifacts were marked as critical and denoised through DWT in the third stage. In the fourth stage, the corrected ICs were reconstructed to obtain artifact-free EEG signals. The performance of the proposed AICA–WT technique was compared with those of two other techniques based on AICA and WT denoising methods using cross-correlation X C o r r and peak signal to noise ratio ( P S N R ) (ANOVA, p ˂ 0.05). The AICA–WT technique exhibited the best artifact removal performance. The assumption that there would be a deceleration of EEG dominant frequencies in VaD and MCI patients compared with control subjects was assessed with AICA–WT (ANOVA, p ˂ 0.05). Therefore, this study may provide information on post-stroke dementia particularly VaD and stroke-related MCI patients through spectral analysis of EEG background activities that can help to provide useful diagnostic indexes by using EEG signal processing. |
---|---|
AbstractList | Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG) is a promising tool to support the diagnosis and evaluation of abnormalities in the human brain. The EEG sensors record the brain activity directly with excellent time resolution. In this study, EEG sensor with 19 electrodes were used to test the background activities of the brains of five vascular dementia (VaD), 15 stroke-related patients with mild cognitive impairment (MCI), and 15 healthy subjects during a working memory (WM) task. The objective of this study is twofold. First, it aims to enhance the recorded EEG signals using a novel technique that combines automatic independent component analysis (AICA) and wavelet transform (WT), that is, the AICA–WT technique; second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. The proposed AICA–WT technique is a four-stage approach. In the first stage, the independent components (ICs) were estimated. In the second stage, three-step artifact identification metrics were applied to detect the artifactual components. The components identified as artifacts were marked as critical and denoised through DWT in the third stage. In the fourth stage, the corrected ICs were reconstructed to obtain artifact-free EEG signals. The performance of the proposed AICA–WT technique was compared with those of two other techniques based on AICA and WT denoising methods using cross-correlation X C o r r and peak signal to noise ratio ( P S N R ) (ANOVA, p ˂ 0.05). The AICA–WT technique exhibited the best artifact removal performance. The assumption that there would be a deceleration of EEG dominant frequencies in VaD and MCI patients compared with control subjects was assessed with AICA–WT (ANOVA, p ˂ 0.05). Therefore, this study may provide information on post-stroke dementia particularly VaD and stroke-related MCI patients through spectral analysis of EEG background activities that can help to provide useful diagnostic indexes by using EEG signal processing. Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG) is a promising tool to support the diagnosis and evaluation of abnormalities in the human brain. The EEG sensors record the brain activity directly with excellent time resolution. In this study, EEG sensor with 19 electrodes were used to test the background activities of the brains of five vascular dementia (VaD), 15 stroke-related patients with mild cognitive impairment (MCI), and 15 healthy subjects during a working memory (WM) task. The objective of this study is twofold. First, it aims to enhance the recorded EEG signals using a novel technique that combines automatic independent component analysis (AICA) and wavelet transform (WT), that is, the AICA–WT technique; second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. The proposed AICA–WT technique is a four-stage approach. In the first stage, the independent components (ICs) were estimated. In the second stage, three-step artifact identification metrics were applied to detect the artifactual components. The components identified as artifacts were marked as critical and denoised through DWT in the third stage. In the fourth stage, the corrected ICs were reconstructed to obtain artifact-free EEG signals. The performance of the proposed AICA–WT technique was compared with those of two other techniques based on AICA and WT denoising methods using cross-correlation X C o r r and peak signal to noise ratio ( P S N R ) (ANOVA, p ˂ 0.05). The AICA–WT technique exhibited the best artifact removal performance. The assumption that there would be a deceleration of EEG dominant frequencies in VaD and MCI patients compared with control subjects was assessed with AICA–WT (ANOVA, p ˂ 0.05). Therefore, this study may provide information on post-stroke dementia particularly VaD and stroke-related MCI patients through spectral analysis of EEG background activities that can help to provide useful diagnostic indexes by using EEG signal processing. Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG) is a promising tool to support the diagnosis and evaluation of abnormalities in the human brain. The EEG sensors record the brain activity directly with excellent time resolution. In this study, EEG sensor with 19 electrodes were used to test the background activities of the brains of five vascular dementia (VaD), 15 stroke-related patients with mild cognitive impairment (MCI), and 15 healthy subjects during a working memory (WM) task. The objective of this study is twofold. First, it aims to enhance the recorded EEG signals using a novel technique that combines automatic independent component analysis (AICA) and wavelet transform (WT), that is, the AICA-WT technique; second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. The proposed AICA-WT technique is a four-stage approach. In the first stage, the independent components (ICs) were estimated. In the second stage, three-step artifact identification metrics were applied to detect the artifactual components. The components identified as artifacts were marked as critical and denoised through DWT in the third stage. In the fourth stage, the corrected ICs were reconstructed to obtain artifact-free EEG signals. The performance of the proposed AICA-WT technique was compared with those of two other techniques based on AICA and WT denoising methods using cross-correlation X C o r r and peak signal to noise ratio ( P S N R ) (ANOVA, p ˂ 0.05). The AICA-WT technique exhibited the best artifact removal performance. The assumption that there would be a deceleration of EEG dominant frequencies in VaD and MCI patients compared with control subjects was assessed with AICA-WT (ANOVA, p ˂ 0.05). Therefore, this study may provide information on post-stroke dementia particularly VaD and stroke-related MCI patients through spectral analysis of EEG background activities that can help to provide useful diagnostic indexes by using EEG signal processing.Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG) is a promising tool to support the diagnosis and evaluation of abnormalities in the human brain. The EEG sensors record the brain activity directly with excellent time resolution. In this study, EEG sensor with 19 electrodes were used to test the background activities of the brains of five vascular dementia (VaD), 15 stroke-related patients with mild cognitive impairment (MCI), and 15 healthy subjects during a working memory (WM) task. The objective of this study is twofold. First, it aims to enhance the recorded EEG signals using a novel technique that combines automatic independent component analysis (AICA) and wavelet transform (WT), that is, the AICA-WT technique; second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. The proposed AICA-WT technique is a four-stage approach. In the first stage, the independent components (ICs) were estimated. In the second stage, three-step artifact identification metrics were applied to detect the artifactual components. The components identified as artifacts were marked as critical and denoised through DWT in the third stage. In the fourth stage, the corrected ICs were reconstructed to obtain artifact-free EEG signals. The performance of the proposed AICA-WT technique was compared with those of two other techniques based on AICA and WT denoising methods using cross-correlation X C o r r and peak signal to noise ratio ( P S N R ) (ANOVA, p ˂ 0.05). The AICA-WT technique exhibited the best artifact removal performance. The assumption that there would be a deceleration of EEG dominant frequencies in VaD and MCI patients compared with control subjects was assessed with AICA-WT (ANOVA, p ˂ 0.05). Therefore, this study may provide information on post-stroke dementia particularly VaD and stroke-related MCI patients through spectral analysis of EEG background activities that can help to provide useful diagnostic indexes by using EEG signal processing. Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG) is a promising tool to support the diagnosis and evaluation of abnormalities in the human brain. The EEG sensors record the brain activity directly with excellent time resolution. In this study, EEG sensor with 19 electrodes were used to test the background activities of the brains of five vascular dementia (VaD), 15 stroke-related patients with mild cognitive impairment (MCI), and 15 healthy subjects during a working memory (WM) task. The objective of this study is twofold. First, it aims to enhance the recorded EEG signals using a novel technique that combines automatic independent component analysis (AICA) and wavelet transform (WT), that is, the AICA–WT technique; second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. The proposed AICA–WT technique is a four-stage approach. In the first stage, the independent components (ICs) were estimated. In the second stage, three-step artifact identification metrics were applied to detect the artifactual components. The components identified as artifacts were marked as critical and denoised through DWT in the third stage. In the fourth stage, the corrected ICs were reconstructed to obtain artifact-free EEG signals. The performance of the proposed AICA–WT technique was compared with those of two other techniques based on AICA and WT denoising methods using cross-correlationXCorrand peak signal to noise ratio(PSNR)(ANOVA,p˂ 0.05). The AICA–WT technique exhibited the best artifact removal performance. The assumption that there would be a deceleration of EEG dominant frequencies in VaD and MCI patients compared with control subjects was assessed with AICA–WT (ANOVA,p˂ 0.05). Therefore, this study may provide information on post-stroke dementia particularly VaD and stroke-related MCI patients through spectral analysis of EEG background activities that can help to provide useful diagnostic indexes by using EEG signal processing. |
Author | Islam, Mohd Al-Qazzaz, Noor Ahmad, Siti Hamid Bin Mohd Ali, Sawal Escudero, Javier |
AuthorAffiliation | 6 Institute for Digital Communications, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FB, UK; javier.escudero@ed.ac.uk 3 Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; sanom@upm.edu.my 4 Malaysian Research Institute of Ageing (MyAgeing), Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia 1 Department of Electrical, Electronic & Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia; sawal@ukm.edu.my 2 Department of Biomedical Engineering, Al-Khwarizmi College of Engineering, Baghdad University, Baghdad 47146, Iraq 5 Faculty of Engineering, Multimedia Universiti, MMU Cyberjaya, Selangor 63100, Malaysia; shabiul@ukm.edu.my |
AuthorAffiliation_xml | – name: 2 Department of Biomedical Engineering, Al-Khwarizmi College of Engineering, Baghdad University, Baghdad 47146, Iraq – name: 1 Department of Electrical, Electronic & Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia; sawal@ukm.edu.my – name: 5 Faculty of Engineering, Multimedia Universiti, MMU Cyberjaya, Selangor 63100, Malaysia; shabiul@ukm.edu.my – name: 4 Malaysian Research Institute of Ageing (MyAgeing), Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia – name: 6 Institute for Digital Communications, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FB, UK; javier.escudero@ed.ac.uk – name: 3 Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; sanom@upm.edu.my |
Author_xml | – sequence: 1 givenname: Noor surname: Al-Qazzaz fullname: Al-Qazzaz, Noor – sequence: 2 givenname: Sawal surname: Hamid Bin Mohd Ali fullname: Hamid Bin Mohd Ali, Sawal – sequence: 3 givenname: Siti orcidid: 0000-0003-1759-0118 surname: Ahmad fullname: Ahmad, Siti – sequence: 4 givenname: Mohd surname: Islam fullname: Islam, Mohd – sequence: 5 givenname: Javier orcidid: 0000-0002-2105-8725 surname: Escudero fullname: Escudero, Javier |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28594352$$D View this record in MEDLINE/PubMed |
BookMark | eNptks1uEzEQxy1URD_gwAsgS1zgEOqPXX9ckKISSqQCEkrVo-W1vcHprl3s3Ui98Q68IU-Cl5SorThYY8_85u8Ze47BQYjBAfASo3eUSnSaMUcMU8KegCNckWomCEEH9_aH4DjnDUKEUiqegUMialnRmhyBOB-H2OvBGzhPg2-1GeA318et7qAPcLE4h7GFX2Lqi0MHCz-43oXBWbgM1m-9HXWX4WX2YQ2XZ_PfP39draAd03S-iul6sp-LXrqFK52v83PwtC0Z7sWdPQGXHxers0-zi6_nJf9iZmoqhxk1FkmGBGGYl9VgYbl0LSGWOUQtpUSXMGON4LyhGmGLmeVOGEqsNgjRE7Dc6dqoN-om-V6nWxW1V38dMa2VLv2azimGNZGtbIyWpKo0E7iR5TaBsTDGWFm03u-0bsamd9aU_pPuHog-jAT_Xa3jVtWVJILRIvDmTiDFH6PLg-p9Nq7rdHBxzApLxCnBkk7o60foJo4plKdSBCPBERU1L9Sr-xXtS_n3rwV4uwNMijkn1-4RjNQ0M2o_M4U9fcQaP5SJiFMzvvtPxh9sZ8Gk |
CitedBy_id | crossref_primary_10_1109_JBHI_2023_3314197 crossref_primary_10_1109_JSEN_2023_3307444 crossref_primary_10_1371_journal_pone_0305902 crossref_primary_10_3390_s20010059 crossref_primary_10_1016_j_bspc_2019_101624 crossref_primary_10_1109_TIM_2024_3417598 crossref_primary_10_3390_a17080346 crossref_primary_10_1016_j_ajp_2025_104460 crossref_primary_10_1016_j_compbiomed_2021_104799 crossref_primary_10_1109_ACCESS_2024_3396869 crossref_primary_10_3389_fnins_2019_00441 crossref_primary_10_1007_s11517_021_02452_5 crossref_primary_10_3390_s17102315 crossref_primary_10_37394_23203_2021_16_26 crossref_primary_10_1155_2021_8537000 crossref_primary_10_3389_fnins_2018_00097 crossref_primary_10_1016_j_nicl_2022_103040 crossref_primary_10_1109_TNSRE_2020_3007860 crossref_primary_10_3390_signals5020018 crossref_primary_10_1109_TNSRE_2022_3176575 crossref_primary_10_1016_j_jksuci_2021_03_009 crossref_primary_10_1093_sleep_zsad159 crossref_primary_10_1007_s11517_017_1734_7 crossref_primary_10_1007_s13369_023_07798_6 crossref_primary_10_3390_brainsci12060778 crossref_primary_10_1016_j_bbe_2021_06_007 crossref_primary_10_1016_j_neuri_2022_100101 crossref_primary_10_3389_fnhum_2023_1068216 crossref_primary_10_3390_s24206508 crossref_primary_10_1016_j_procs_2023_01_184 crossref_primary_10_2174_1573405617666210908124704 crossref_primary_10_1016_j_aej_2021_10_034 crossref_primary_10_3389_fnins_2018_00943 crossref_primary_10_1109_JBHI_2021_3057891 crossref_primary_10_1109_ACCESS_2021_3096430 crossref_primary_10_1016_j_bspc_2022_103966 crossref_primary_10_3390_electronics13224576 crossref_primary_10_3390_s24082625 crossref_primary_10_1109_ACCESS_2018_2842082 crossref_primary_10_1109_JBHI_2024_3352081 crossref_primary_10_1115_1_4056473 crossref_primary_10_1016_j_bspc_2021_102819 |
Cites_doi | 10.1016/j.clinph.2004.09.017 10.1017/CBO9780511546396.003 10.1016/j.artmed.2008.01.001 10.1007/s10439-011-0312-7 10.1111/1469-8986.3720163 10.1016/j.pnsc.2008.11.013 10.1016/j.eswa.2010.11.050 10.1007/s10439-008-9589-6 10.1016/j.medengphy.2010.04.010 10.1126/science.3336779 10.1016/0013-4694(93)90152-L 10.1161/01.STR.20.7.864 10.1162/neco.1995.7.6.1129 10.1016/S0165-0270(00)00356-3 10.1016/j.sigpro.2011.08.005 10.1016/j.compbiomed.2007.12.001 10.1152/ajpregu.00069.2002 10.1214/aos/1176345632 10.1016/0022-3956(75)90026-6 10.1016/S1388-2457(00)00386-2 10.3389/fnhum.2013.00138 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 10.1016/B978-012466606-1/50008-8 10.1109/CONIELECOMP.2011.5749325 10.1016/j.dsp.2008.07.004 10.5772/31609 10.1109/IECBES.2012.6498190 10.1016/j.bspc.2011.06.005 10.3390/s131114839 10.1016/j.clinph.2003.12.015 10.1109/IECBES.2014.7047488 10.1111/j.0013-9580.2005.50704.x 10.1109/TAU.1967.1161901 10.1016/S0165-0173(98)00056-3 10.1016/j.bspc.2015.06.009 10.3390/s151129015 10.1016/j.jns.2011.07.013 10.1016/j.clinph.2007.04.031 10.1016/S0893-6080(00)00073-3 10.1016/j.jns.2012.05.045 10.1016/S0026-2692(01)00095-7 10.1109/IEMBS.2007.4353577 10.1016/j.jns.2010.08.052 10.1016/j.clineuro.2012.11.026 10.1049/ip-f-2.1993.0054 10.1177/070674370705200508 10.1088/0967-3334/26/1/R02 10.1016/j.jalz.2012.08.008 10.1016/j.clinph.2008.11.012 10.1109/TBME.2010.2093932 10.3390/s140713046 10.1109/34.192463 10.1016/j.neuroimage.2005.04.014 10.2478/msr-2014-0032 10.1016/j.eswa.2015.04.068 10.1111/j.1747-4949.2012.00972.x 10.1016/j.jneumeth.2014.01.024 10.1109/NER.2013.6696203 10.1111/j.1365-2796.2004.01388.x 10.1016/j.bspc.2011.02.001 10.1016/j.medengphy.2009.04.003 10.1016/S0378-4371(02)00958-5 10.1016/j.neunet.2007.09.020 10.1136/jnnp.2006.095414 10.3390/s120201211 10.1109/JBHI.2014.2333010 10.1126/science.1736359 10.4061/2011/927573 10.1093/cercor/7.4.374 10.1109/72.761722 10.1007/978-1-4419-5913-3_65 10.1016/j.jneumeth.2015.01.030 10.1016/j.clinph.2004.01.001 10.1016/S0893-6080(00)00026-5 10.1016/j.clinph.2005.12.009 10.1155/2014/259121 10.1152/ajpheart.2000.278.6.H2039 10.1016/j.jneumeth.2006.05.033 10.1016/j.jalz.2007.07.011 10.1109/TBME.2007.894968 10.1109/RBME.2008.2008244 10.1007/s00422-001-0304-z 10.1162/jocn_a_00029 10.1016/S0165-0270(02)00340-0 10.1016/S0072-9752(07)88011-0 10.1016/j.sigpro.2013.11.015 10.1007/s12555-009-0521-0 10.1109/TBME.2008.926677 10.1109/TNN.2006.880980 10.1016/j.ijpsycho.2010.10.008 10.1109/JSEN.2011.2115236 10.1109/IJCNN.2007.4371184 |
ContentType | Journal Article |
Copyright | 2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2017 by the authors. 2017 |
Copyright_xml | – notice: 2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2017 by the authors. 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s17061326 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ - Directory of Open Access Journals (Some content may be blocked by TCTC IT security protocols) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_61a29f9bca9244a681b9d798118cccd9 PMC5492863 28594352 10_3390_s17061326 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c539t-3cd096082617261b18d79ef22d6e03d332a96066b877b3a01d16d7e8c32dac003 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:07:04 EDT 2025 Thu Aug 21 14:00:19 EDT 2025 Wed Jul 30 11:13:41 EDT 2025 Fri Jul 25 20:50:42 EDT 2025 Wed Feb 19 02:42:30 EST 2025 Tue Jul 01 01:36:36 EDT 2025 Thu Apr 24 23:10:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | wavelet electroencephalography spectral analysis independent component analysis mild cognitive impairment vascular dementia |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c539t-3cd096082617261b18d79ef22d6e03d332a96066b877b3a01d16d7e8c32dac003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1759-0118 0000-0002-2105-8725 |
OpenAccessLink | https://www.proquest.com/docview/2108703857?pq-origsite=%requestingapplication% |
PMID | 28594352 |
PQID | 2108703857 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_61a29f9bca9244a681b9d798118cccd9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5492863 proquest_miscellaneous_1907321933 proquest_journals_2108703857 pubmed_primary_28594352 crossref_primary_10_3390_s17061326 crossref_citationtrail_10_3390_s17061326 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-08 |
PublicationDateYYYYMMDD | 2017-06-08 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2017 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_94 ref_93 ref_92 ref_91 Mammone (ref_39) 2012; 12 Zeng (ref_73) 2013; 13 Folstein (ref_57) 1975; 12 Papadelis (ref_31) 2006; 117 ref_14 Dammers (ref_32) 2008; 55 Cumming (ref_9) 2013; 8 Oja (ref_29) 2008; 1 Zhou (ref_43) 2005; 46 ref_95 Cichocki (ref_67) 2005; 116 Leuchter (ref_18) 1993; 87 (ref_90) 2010; 2 Rosso (ref_88) 2002; 313 Reaz (ref_4) 2014; 14 Berger (ref_2) 1929; 87 (ref_52) 2009; 19 Lizio (ref_19) 2011; 2011 John (ref_17) 1988; 239 Escudero (ref_66) 2007; 54 ref_24 ref_23 Kirkove (ref_26) 2014; 98 James (ref_28) 2005; 26 Akhtar (ref_38) 2012; 92 Ghandeharion (ref_54) 2010; 32 Escudero (ref_63) 2009; 31 Rafiee (ref_96) 2011; 38 Cullen (ref_11) 2007; 78 Castellanos (ref_53) 2006; 158 Messer (ref_84) 2001; 32 ref_71 Klimesch (ref_5) 1999; 29 Mammone (ref_78) 2008; 21 Papadelis (ref_30) 2007; 118 Barbati (ref_64) 2004; 115 Ali (ref_1) 2014; 2014 ref_75 Zhou (ref_44) 2009; 19 Romero (ref_46) 2009; 37 Klados (ref_55) 2011; 6 Mowla (ref_49) 2015; 22 Rosso (ref_87) 2001; 105 Kandiah (ref_62) 2011; 309 ref_81 Petersen (ref_7) 2004; 256 Lundqvist (ref_21) 2011; 23 Menshawy (ref_97) 2015; 42 Ahmad (ref_59) 2015; 15 Brott (ref_56) 1989; 20 Romero (ref_45) 2008; 38 ref_86 ref_85 Oja (ref_37) 2000; 13 Bagnoli (ref_60) 2012; 322 Baddeley (ref_13) 1992; 255 Oja (ref_65) 2000; 13 Teplan (ref_98) 2014; 14 ref_50 Onton (ref_22) 2005; 27 Moretti (ref_101) 2009; 120 Pham (ref_27) 2011; 79 Sikaroodi (ref_61) 2013; 125 Borson (ref_8) 2013; 9 Zeng (ref_77) 2014; 2014 (ref_33) 2012; 12 Muthukumaraswamy (ref_74) 2013; 7 Hyvarinen (ref_70) 1999; 10 Ranta (ref_40) 2012; 7 Ko (ref_100) 2009; 7 Ali (ref_12) 2014; 10 Richman (ref_82) 2000; 278 Jeong (ref_16) 2004; 115 Adeli (ref_51) 2003; 123 Bell (ref_35) 1995; 7 Torrence (ref_48) 1998; 79 Oja (ref_72) 2006; 17 Jung (ref_25) 2000; 111 Mallat (ref_89) 1989; 11 Sameni (ref_42) 2014; 225 Jung (ref_36) 2000; 37 Welch (ref_99) 1967; 15 Pizzagalli (ref_3) 2007; 3 Gevins (ref_20) 1997; 7 Smith (ref_58) 2007; 52 Greco (ref_79) 2006; 2 Kelly (ref_34) 2011; 58 Michael (ref_15) 2008; Volume 88 Escudero (ref_76) 2011; 39 Jacova (ref_6) 2007; 3 Lake (ref_83) 2002; 283 ref_47 Mahajan (ref_80) 2015; 19 Scouten (ref_41) 2015; 243 Escudero (ref_68) 2008; 43 Jin (ref_69) 2002; 86 Ankolekar (ref_10) 2010; 299 19121602 - Clin Neurophysiol. 2009 Feb;120(2):295-303 18838360 - IEEE Trans Biomed Eng. 2008 Oct;55(10):2353-62 11984653 - Biol Cybern. 2002 May;86(5):395-401 10843903 - Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H2039-49 17131654 - IEEE Trans Neural Netw. 2006 Nov;17(6):1370-81 23375564 - Alzheimers Dement. 2013 Mar;9(2):151-9 18252563 - IEEE Trans Neural Netw. 1999;10(3):626-34 18329868 - Artif Intell Med. 2008 May;43(1):75-85 7508371 - Electroencephalogr Clin Neurophysiol. 1993 Dec;87(6):385-93 11156200 - Neural Netw. 2000 Oct-Nov;13(8-9):891-907 26593918 - Sensors (Basel). 2015 Nov 17;15(11):29015-35 25093211 - ScientificWorldJournal. 2014;2014:906038 24550696 - ScientificWorldJournal. 2014 Jan 12;2014:259121 15324362 - J Intern Med. 2004 Sep;256(3):183-94 11166367 - J Neurosci Methods. 2001 Jan 30;105(1):65-75 23596409 - Front Hum Neurosci. 2013 Apr 15;7:138 24189330 - Sensors (Basel). 2013 Nov 01;13(11):14839-59 10946390 - Neural Netw. 2000 May-Jun;13(4-5):411-30 22694976 - J Neurol Sci. 2012 Nov 15;322(1-2):41-5 7584893 - Neural Comput. 1995 Nov;7(6):1129-59 18430547 - Neural Netw. 2008 Sep;21(7):1029-40 21807379 - J Neurol Sci. 2011 Oct 15;309(1-2):92-5 20855090 - J Neurol Sci. 2010 Dec 15;299(1-2):168-74 24486874 - J Neurosci Methods. 2014 Mar 30;225:97-105 15927487 - Neuroimage. 2005 Aug 15;27(2):341-56 3336779 - Science. 1988 Jan 8;239(4836):162-9 2749846 - Stroke. 1989 Jul;20(7):864-70 21509634 - Ann Biomed Eng. 2011 Aug;39(8):2274-86 16495143 - Clin Neurophysiol. 2006 Apr;117(4):752-70 23290422 - Clin Neurol Neurosurg. 2013 Aug;115(8):1276-80 15203050 - Clin Neurophysiol. 2004 Jul;115(7):1490-505 25051031 - Sensors (Basel). 2014 Jul 21;14(7):13046-69 21629714 - Int J Alzheimers Dis. 2011;2011:927573 19482539 - Med Eng Phys. 2009 Sep;31(7):872-9 10731767 - Psychophysiology. 2000 Mar;37(2):163-78 25228808 - Neuropsychiatr Dis Treat. 2014 Sep 09;10:1677-91 22438708 - Sensors (Basel). 2012;12 (2):1211-79 17542384 - Can J Psychiatry. 2007 May;52(5):329-32 15721088 - Clin Neurophysiol. 2005 Mar;116(3):729-37 15742873 - Physiol Meas. 2005 Feb;26(1):R15-39 18003243 - Conf Proc IEEE Eng Med Biol Soc. 2007;2007:5445-8 23280268 - Int J Stroke. 2013 Jan;8(1):38-45 15066548 - Clin Neurophysiol. 2004 May;115(5):1220-32 15730538 - Epilepsia. 2005 Mar;46(3):409-14 17652020 - Clin Neurophysiol. 2007 Sep;118(9):1906-22 18985453 - Ann Biomed Eng. 2009 Jan;37(1):176-91 25666892 - J Neurosci Methods. 2015 Mar 30;243:84-93 24968340 - IEEE J Biomed Health Inform. 2015 Jan;19(1):158-65 1202204 - J Psychiatr Res. 1975 Nov;12(3):189-98 21097374 - IEEE Trans Biomed Eng. 2011 Mar;58(3):598-606 9177767 - Cereb Cortex. 1997 Jun;7(4):374-85 18222418 - Comput Biol Med. 2008 Mar;38(3):348-60 12185014 - Am J Physiol Regul Integr Comp Physiol. 2002 Sep;283(3):R789-97 11018488 - Clin Neurophysiol. 2000 Oct;111(10):1745-58 21452933 - J Cogn Neurosci. 2011 Oct;23(10):3008-20 20466582 - Med Eng Phys. 2010 Sep;32(7):720-9 10209231 - Brain Res Brain Res Rev. 1999 Apr;29(2-3):169-95 20865544 - Adv Exp Med Biol. 2010;680:593-9 16828877 - J Neurosci Methods. 2006 Dec 15;158(2):300-12 18018691 - IEEE Trans Biomed Eng. 2007 Nov;54(11):1965-73 22274899 - IEEE Rev Biomed Eng. 2008;1:50-61 1736359 - Science. 1992 Jan 31;255(5044):556-9 18631694 - Handb Clin Neurol. 2008;88:237-47 17178826 - J Neurol Neurosurg Psychiatry. 2007 Aug;78(8):790-9 21034784 - Int J Psychophysiol. 2011 Feb;79(2):203-10 12581851 - J Neurosci Methods. 2003 Feb 15;123(1):69-87 19595951 - Alzheimers Dement. 2007 Oct;3(4):299-317 |
References_xml | – volume: 116 start-page: 729 year: 2005 ident: ref_67 article-title: EEG filtering based on blind source separation (BSS) for early detection of Alzheimer’s disease publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2004.09.017 – volume: 3 start-page: 56 year: 2007 ident: ref_3 article-title: Electroencephalography and high-density electrophysiological source localization publication-title: Handb. Psychophysiol. doi: 10.1017/CBO9780511546396.003 – volume: 43 start-page: 75 year: 2008 ident: ref_68 article-title: Assessment of classification improvement in patients with Alzheimer’s disease based on magnetoencephalogram blind source separation publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2008.01.001 – volume: 39 start-page: 2274 year: 2011 ident: ref_76 article-title: Quantitative evaluation of artifact removal in real magnetoencephalogram signals with blind source separation publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-011-0312-7 – volume: 37 start-page: 163 year: 2000 ident: ref_36 article-title: Removing electroencephalographic artifacts by blind source separation publication-title: Psychophysiology doi: 10.1111/1469-8986.3720163 – volume: 2 start-page: 240 year: 2006 ident: ref_79 article-title: Kurtosis, Renyi’s entropy and independent component scalp maps for the automatic artifact rejection from EEG data publication-title: Int. J. Signal Process. – volume: 19 start-page: 1165 year: 2009 ident: ref_44 article-title: Automatic removal of eye movement artifacts from the EEG using ICA and the dipole model publication-title: Prog. Nat. Sci. doi: 10.1016/j.pnsc.2008.11.013 – volume: 38 start-page: 6190 year: 2011 ident: ref_96 article-title: Wavelet basis functions in biomedical signal processing publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.11.050 – volume: 37 start-page: 176 year: 2009 ident: ref_46 article-title: Ocular reduction in EEG signals based on adaptive filtering, regression and blind source separation publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-008-9589-6 – volume: 32 start-page: 720 year: 2010 ident: ref_54 article-title: A fully automatic ocular artifact suppression from EEG data using higher order statistics: Improved performance by wavelet analysis publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2010.04.010 – volume: 239 start-page: 162 year: 1988 ident: ref_17 article-title: Neurometrics: Computer-Assisted differential diagnosis of brain dysfunctions publication-title: Science doi: 10.1126/science.3336779 – volume: 87 start-page: 385 year: 1993 ident: ref_18 article-title: Regional differences in brain electrical activity in dementia: Use of spectral power and spectral ratio measures publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(93)90152-L – volume: 20 start-page: 864 year: 1989 ident: ref_56 article-title: Measurements of acute cerebral infarction: A clinical examination scale publication-title: Stroke doi: 10.1161/01.STR.20.7.864 – volume: 7 start-page: 1129 year: 1995 ident: ref_35 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Comput. doi: 10.1162/neco.1995.7.6.1129 – volume: 105 start-page: 65 year: 2001 ident: ref_87 article-title: Wavelet entropy: A new tool for analysis of short duration brain electrical signals publication-title: J. Neurosci. Methods doi: 10.1016/S0165-0270(00)00356-3 – volume: 92 start-page: 401 year: 2012 ident: ref_38 article-title: Employing spatially constrained ICA and wavelet denoising, for automatic removal of artifacts from multichannel EEG data publication-title: Signal Process. doi: 10.1016/j.sigpro.2011.08.005 – volume: 38 start-page: 348 year: 2008 ident: ref_45 article-title: A comparative study of automatic techniques for ocular artifact reduction in spontaneous EEG signals based on clinical target variables: A simulation case publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2007.12.001 – volume: 283 start-page: R789 year: 2002 ident: ref_83 article-title: Sample entropy analysis of neonatal heart rate variability publication-title: Am. J. Physiol.-Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00069.2002 – ident: ref_92 doi: 10.1214/aos/1176345632 – volume: 12 start-page: 189 year: 1975 ident: ref_57 article-title: “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician publication-title: J. Psychiatr. Res. doi: 10.1016/0022-3956(75)90026-6 – volume: 111 start-page: 1745 year: 2000 ident: ref_25 article-title: Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(00)00386-2 – volume: 7 start-page: 138 year: 2013 ident: ref_74 article-title: High-frequency brain activity and muscle artifacts in MEG/EEG: A review and recommendations publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00138 – volume: 79 start-page: 61 year: 1998 ident: ref_48 article-title: A practical guide to wavelet analysis publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 – ident: ref_91 doi: 10.1016/B978-012466606-1/50008-8 – ident: ref_47 – ident: ref_94 doi: 10.1109/CONIELECOMP.2011.5749325 – ident: ref_86 – volume: 19 start-page: 297 year: 2009 ident: ref_52 article-title: Combined neural network model employing wavelet coefficients for EEG signals classification publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2008.07.004 – ident: ref_23 doi: 10.5772/31609 – ident: ref_14 doi: 10.1109/IECBES.2012.6498190 – volume: 7 start-page: 389 year: 2012 ident: ref_40 article-title: Blind source separation, wavelet denoising and discriminant analysis for EEG artefacts and noise cancelling publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2011.06.005 – volume: 13 start-page: 14839 year: 2013 ident: ref_73 article-title: EOG artifact correction from EEG recording using stationary subspace analysis and empirical mode decomposition publication-title: Sensors doi: 10.3390/s131114839 – volume: 115 start-page: 1220 year: 2004 ident: ref_64 article-title: Optimization of an independent component analysis approach for artifact identification and removal in magnetoencephalographic signals publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2003.12.015 – ident: ref_95 doi: 10.1109/IECBES.2014.7047488 – volume: 46 start-page: 409 year: 2005 ident: ref_43 article-title: Removing Eye-movement Artifacts from the EEG during the Intracarotid Amobarbital Procedure publication-title: Epilepsia doi: 10.1111/j.0013-9580.2005.50704.x – volume: 15 start-page: 70 year: 1967 ident: ref_99 article-title: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms publication-title: IEEE Trans. Audio Electroacoust. doi: 10.1109/TAU.1967.1161901 – volume: 87 start-page: 527 year: 1929 ident: ref_2 article-title: Über das Elektrenkephalogramm des Menschen publication-title: Eur. Arch. Psychiatry Clin. Neurosci. – volume: 29 start-page: 169 year: 1999 ident: ref_5 article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis publication-title: Brain Res. Rev. doi: 10.1016/S0165-0173(98)00056-3 – volume: 22 start-page: 111 year: 2015 ident: ref_49 article-title: Artifacts-matched blind source separation and wavelet transform for multichannel EEG denoising publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2015.06.009 – volume: 15 start-page: 29015 year: 2015 ident: ref_59 article-title: Selection of Mother Wavelet Functions for Multi-Channel EEG Signal Analysis during a Working Memory Task publication-title: Sensors doi: 10.3390/s151129015 – volume: 309 start-page: 92 year: 2011 ident: ref_62 article-title: Frontal subcortical ischemia is crucial for post stroke cognitive impairment publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2011.07.013 – volume: 118 start-page: 1906 year: 2007 ident: ref_30 article-title: Monitoring sleepiness with on-board electrophysiological recordings for preventing sleep-deprived traffic accidents publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2007.04.031 – volume: 13 start-page: 891 year: 2000 ident: ref_65 article-title: Independence: A new criterion for the analysis of the electromagnetic fields in the global brain? publication-title: Neural Netw. doi: 10.1016/S0893-6080(00)00073-3 – volume: 322 start-page: 41 year: 2012 ident: ref_60 article-title: Suitability of neuropsychological tests in patients with vascular dementia (VaD) publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2012.05.045 – volume: 32 start-page: 931 year: 2001 ident: ref_84 article-title: Optimal wavelet denoising for phonocardiograms publication-title: Microelectron. J. doi: 10.1016/S0026-2692(01)00095-7 – ident: ref_93 doi: 10.1109/IEMBS.2007.4353577 – volume: 299 start-page: 168 year: 2010 ident: ref_10 article-title: Clinical trials for preventing post stroke cognitive impairment publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2010.08.052 – volume: 125 start-page: 1276 year: 2013 ident: ref_61 article-title: Cognitive impairments in patients with cerebrovascular risk factors: A comparison of Mini Mental Status Exam and Montreal Cognitive Assessment publication-title: Clin. Neurol. Neurosurg. doi: 10.1016/j.clineuro.2012.11.026 – ident: ref_71 doi: 10.1049/ip-f-2.1993.0054 – volume: 10 start-page: 1677 year: 2014 ident: ref_12 article-title: Cognitive impairment and memory dysfunction after a stroke diagnosis: A post-stroke memory assessment publication-title: Neuropsychiatr. Dis. Treatm. – volume: 52 start-page: 329 year: 2007 ident: ref_58 article-title: The Montreal Cognitive Assessment: Validity and utility in a memory clinic setting publication-title: Can. J. Psychiatry doi: 10.1177/070674370705200508 – volume: 26 start-page: R15 year: 2005 ident: ref_28 article-title: Independent component analysis for biomedical signals publication-title: Physiol. Meas. doi: 10.1088/0967-3334/26/1/R02 – volume: 9 start-page: 151 year: 2013 ident: ref_8 article-title: Improving dementia care: The role of screening and detection of cognitive impairment publication-title: Alzheimer Dement. doi: 10.1016/j.jalz.2012.08.008 – volume: 120 start-page: 295 year: 2009 ident: ref_101 article-title: Increase of theta/gamma ratio is associated with memory impairment publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2008.11.012 – volume: 58 start-page: 598 year: 2011 ident: ref_34 article-title: Fully automated reduction of ocular artifacts in high-dimensional neural data publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2093932 – volume: 14 start-page: 13046 year: 2014 ident: ref_4 article-title: Reduction of the Dimensionality of the EEG Channels during Scoliosis Correction Surgeries Using a Wavelet Decomposition Technique publication-title: Sensors doi: 10.3390/s140713046 – volume: 11 start-page: 674 year: 1989 ident: ref_89 article-title: A theory for multiresolution signal decomposition: The wavelet representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.192463 – volume: 27 start-page: 341 year: 2005 ident: ref_22 article-title: Frontal midline EEG dynamics during working memory publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.04.014 – volume: 14 start-page: 237 year: 2014 ident: ref_98 article-title: Spectral EEG features of a Short Psycho-physiological Relaxation publication-title: Meas. Sci. Rev. doi: 10.2478/msr-2014-0032 – volume: 42 start-page: 7157 year: 2015 ident: ref_97 article-title: An Automatic Mobile-Health based Approach for EEG Epileptic Seizures Detection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.04.068 – volume: 8 start-page: 38 year: 2013 ident: ref_9 article-title: Stroke, cognitive deficits, and rehabilitation: Still an incomplete picture publication-title: Int. J. Stroke doi: 10.1111/j.1747-4949.2012.00972.x – volume: 225 start-page: 97 year: 2014 ident: ref_42 article-title: An iterative subspace denoising algorithm for removing electroencephalogram ocular artifacts publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2014.01.024 – ident: ref_81 doi: 10.1109/NER.2013.6696203 – volume: 256 start-page: 183 year: 2004 ident: ref_7 article-title: Mild cognitive impairment as a diagnostic entity publication-title: J. Intern. Med. doi: 10.1111/j.1365-2796.2004.01388.x – volume: 6 start-page: 291 year: 2011 ident: ref_55 article-title: REG-ICA: A hybrid methodology combining Blind Source Separation and regression techniques for the rejection of ocular artifacts publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2011.02.001 – volume: 31 start-page: 872 year: 2009 ident: ref_63 article-title: Blind source separation to enhance spectral and non-linear features of magnetoencephalogram recordings. Application to Alzheimer’s disease publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2009.04.003 – volume: 313 start-page: 587 year: 2002 ident: ref_88 article-title: Brain electrical activity analysis using wavelet-based informational tools publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/S0378-4371(02)00958-5 – volume: 21 start-page: 1029 year: 2008 ident: ref_78 article-title: Enhanced automatic artifact detection based on independent component analysis and Renyi’s entropy publication-title: Neural Netw. doi: 10.1016/j.neunet.2007.09.020 – volume: 78 start-page: 790 year: 2007 ident: ref_11 article-title: A review of screening tests for cognitive impairment publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2006.095414 – volume: 12 start-page: 1211 year: 2012 ident: ref_33 article-title: Brain computer interfaces, a review publication-title: Sensors doi: 10.3390/s120201211 – volume: 2014 start-page: 906038 year: 2014 ident: ref_1 article-title: Role of EEG as Biomarker in the Early Detection and Classification of Dementia publication-title: Sci. World J. – volume: 19 start-page: 158 year: 2015 ident: ref_80 article-title: Unsupervised Eye Blink Artifact Denoising of EEG Data with Modified Multiscale Sample Entropy, Kurtosis, and Wavelet-ICA publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2014.2333010 – volume: 255 start-page: 556 year: 1992 ident: ref_13 article-title: Working memory publication-title: Science doi: 10.1126/science.1736359 – volume: 2011 start-page: 927573 year: 2011 ident: ref_19 article-title: Electroencephalographic rhythms in Alzheimer’s disease publication-title: Int. J. Alzheimer Dis. doi: 10.4061/2011/927573 – ident: ref_24 – volume: 7 start-page: 374 year: 1997 ident: ref_20 article-title: High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice publication-title: Cereb. Cortex doi: 10.1093/cercor/7.4.374 – volume: 10 start-page: 626 year: 1999 ident: ref_70 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.761722 – ident: ref_50 doi: 10.1007/978-1-4419-5913-3_65 – volume: 2 start-page: 136 year: 2010 ident: ref_90 article-title: Nonlinear filtering in ECG signal denoising publication-title: Acta Univ. Sapientiae Electr. Mech. Eng. – volume: 243 start-page: 84 year: 2015 ident: ref_41 article-title: EEG artifact elimination by extraction of ICA-component features using image processing algorithms publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.01.030 – volume: 115 start-page: 1490 year: 2004 ident: ref_16 article-title: EEG dynamics in patients with Alzheimer’s disease publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2004.01.001 – volume: 13 start-page: 411 year: 2000 ident: ref_37 article-title: Independent component analysis: Algorithms and applications publication-title: Neural Netw. doi: 10.1016/S0893-6080(00)00026-5 – volume: 117 start-page: 752 year: 2006 ident: ref_31 article-title: Quantitative multichannel EEG measure predicting the optimal weaning from ventilator in ICU patients with acute respiratory failure publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2005.12.009 – volume: 2014 start-page: 259121 year: 2014 ident: ref_77 article-title: Removal of EOG artifacts from EEG recordings using stationary subspace analysis publication-title: Sci. World J. doi: 10.1155/2014/259121 – volume: 278 start-page: H2039 year: 2000 ident: ref_82 article-title: Physiological time-series analysis using approximate entropy and sample entropy publication-title: Am. J. Physiol. Heart Circul. Physiol. doi: 10.1152/ajpheart.2000.278.6.H2039 – volume: 158 start-page: 300 year: 2006 ident: ref_53 article-title: Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2006.05.033 – volume: 3 start-page: 299 year: 2007 ident: ref_6 article-title: Neuropsychological testing and assessment for dementia publication-title: Alzheimer Dement. doi: 10.1016/j.jalz.2007.07.011 – volume: 54 start-page: 1965 year: 2007 ident: ref_66 article-title: Artifact removal in magnetoencephalogram background activity with independent component analysis publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.894968 – ident: ref_85 – volume: 1 start-page: 50 year: 2008 ident: ref_29 article-title: BSS and ICA in neuroinformatics: From current practices to open challenges publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2008.2008244 – volume: 86 start-page: 395 year: 2002 ident: ref_69 article-title: Nonlinear dynamics of the EEG separated by independent component analysis after sound and light stimulation publication-title: Biol. Cybern. doi: 10.1007/s00422-001-0304-z – volume: 23 start-page: 3008 year: 2011 ident: ref_21 article-title: Theta and gamma power increases and alpha/beta power decreases with memory load in an attractor network model publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn_a_00029 – volume: 123 start-page: 69 year: 2003 ident: ref_51 article-title: Analysis of EEG records in an epileptic patient using wavelet transform publication-title: J. Neurosci. Methods doi: 10.1016/S0165-0270(02)00340-0 – volume: Volume 88 start-page: 237 year: 2008 ident: ref_15 article-title: Chapter 11 Working memory publication-title: Handbook of Clinical Neurology doi: 10.1016/S0072-9752(07)88011-0 – volume: 98 start-page: 102 year: 2014 ident: ref_26 article-title: Comparative evaluation of existing and new methods for correcting ocular artifacts in electroencephalographic recordings publication-title: Signal Process. doi: 10.1016/j.sigpro.2013.11.015 – volume: 7 start-page: 865 year: 2009 ident: ref_100 article-title: Emotion recognition using EEG signals with relative power values and Bayesian network publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-009-0521-0 – volume: 55 start-page: 2353 year: 2008 ident: ref_32 article-title: Integration of amplitude and phase statistics for complete artifact removal in independent components of neuromagnetic recordings publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.926677 – volume: 17 start-page: 1370 year: 2006 ident: ref_72 article-title: The FastICA algorithm revisited: Convergence analysis publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2006.880980 – volume: 79 start-page: 203 year: 2011 ident: ref_27 article-title: A test of four EOG correction methods using an improved validation technique (Published Conference Proceedings style) publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2010.10.008 – volume: 12 start-page: 533 year: 2012 ident: ref_39 article-title: Automatic artifact rejection from multichannel scalp EEG by wavelet ICA publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2011.2115236 – ident: ref_75 doi: 10.1109/IJCNN.2007.4371184 – reference: 20855090 - J Neurol Sci. 2010 Dec 15;299(1-2):168-74 – reference: 24189330 - Sensors (Basel). 2013 Nov 01;13(11):14839-59 – reference: 18430547 - Neural Netw. 2008 Sep;21(7):1029-40 – reference: 21097374 - IEEE Trans Biomed Eng. 2011 Mar;58(3):598-606 – reference: 18018691 - IEEE Trans Biomed Eng. 2007 Nov;54(11):1965-73 – reference: 23280268 - Int J Stroke. 2013 Jan;8(1):38-45 – reference: 17542384 - Can J Psychiatry. 2007 May;52(5):329-32 – reference: 26593918 - Sensors (Basel). 2015 Nov 17;15(11):29015-35 – reference: 17178826 - J Neurol Neurosurg Psychiatry. 2007 Aug;78(8):790-9 – reference: 15324362 - J Intern Med. 2004 Sep;256(3):183-94 – reference: 18985453 - Ann Biomed Eng. 2009 Jan;37(1):176-91 – reference: 21452933 - J Cogn Neurosci. 2011 Oct;23(10):3008-20 – reference: 24486874 - J Neurosci Methods. 2014 Mar 30;225:97-105 – reference: 17652020 - Clin Neurophysiol. 2007 Sep;118(9):1906-22 – reference: 7508371 - Electroencephalogr Clin Neurophysiol. 1993 Dec;87(6):385-93 – reference: 16828877 - J Neurosci Methods. 2006 Dec 15;158(2):300-12 – reference: 21807379 - J Neurol Sci. 2011 Oct 15;309(1-2):92-5 – reference: 2749846 - Stroke. 1989 Jul;20(7):864-70 – reference: 22438708 - Sensors (Basel). 2012;12 (2):1211-79 – reference: 18329868 - Artif Intell Med. 2008 May;43(1):75-85 – reference: 15066548 - Clin Neurophysiol. 2004 May;115(5):1220-32 – reference: 10209231 - Brain Res Brain Res Rev. 1999 Apr;29(2-3):169-95 – reference: 22694976 - J Neurol Sci. 2012 Nov 15;322(1-2):41-5 – reference: 11984653 - Biol Cybern. 2002 May;86(5):395-401 – reference: 1202204 - J Psychiatr Res. 1975 Nov;12(3):189-98 – reference: 23596409 - Front Hum Neurosci. 2013 Apr 15;7:138 – reference: 23290422 - Clin Neurol Neurosurg. 2013 Aug;115(8):1276-80 – reference: 18222418 - Comput Biol Med. 2008 Mar;38(3):348-60 – reference: 10731767 - Psychophysiology. 2000 Mar;37(2):163-78 – reference: 19595951 - Alzheimers Dement. 2007 Oct;3(4):299-317 – reference: 16495143 - Clin Neurophysiol. 2006 Apr;117(4):752-70 – reference: 18631694 - Handb Clin Neurol. 2008;88:237-47 – reference: 15742873 - Physiol Meas. 2005 Feb;26(1):R15-39 – reference: 25666892 - J Neurosci Methods. 2015 Mar 30;243:84-93 – reference: 20466582 - Med Eng Phys. 2010 Sep;32(7):720-9 – reference: 20865544 - Adv Exp Med Biol. 2010;680:593-9 – reference: 25051031 - Sensors (Basel). 2014 Jul 21;14(7):13046-69 – reference: 18003243 - Conf Proc IEEE Eng Med Biol Soc. 2007;2007:5445-8 – reference: 3336779 - Science. 1988 Jan 8;239(4836):162-9 – reference: 12185014 - Am J Physiol Regul Integr Comp Physiol. 2002 Sep;283(3):R789-97 – reference: 15721088 - Clin Neurophysiol. 2005 Mar;116(3):729-37 – reference: 21509634 - Ann Biomed Eng. 2011 Aug;39(8):2274-86 – reference: 11156200 - Neural Netw. 2000 Oct-Nov;13(8-9):891-907 – reference: 19482539 - Med Eng Phys. 2009 Sep;31(7):872-9 – reference: 23375564 - Alzheimers Dement. 2013 Mar;9(2):151-9 – reference: 24550696 - ScientificWorldJournal. 2014 Jan 12;2014:259121 – reference: 25093211 - ScientificWorldJournal. 2014;2014:906038 – reference: 22274899 - IEEE Rev Biomed Eng. 2008;1:50-61 – reference: 15927487 - Neuroimage. 2005 Aug 15;27(2):341-56 – reference: 19121602 - Clin Neurophysiol. 2009 Feb;120(2):295-303 – reference: 17131654 - IEEE Trans Neural Netw. 2006 Nov;17(6):1370-81 – reference: 12581851 - J Neurosci Methods. 2003 Feb 15;123(1):69-87 – reference: 15730538 - Epilepsia. 2005 Mar;46(3):409-14 – reference: 11166367 - J Neurosci Methods. 2001 Jan 30;105(1):65-75 – reference: 7584893 - Neural Comput. 1995 Nov;7(6):1129-59 – reference: 1736359 - Science. 1992 Jan 31;255(5044):556-9 – reference: 11018488 - Clin Neurophysiol. 2000 Oct;111(10):1745-58 – reference: 25228808 - Neuropsychiatr Dis Treat. 2014 Sep 09;10:1677-91 – reference: 9177767 - Cereb Cortex. 1997 Jun;7(4):374-85 – reference: 15203050 - Clin Neurophysiol. 2004 Jul;115(7):1490-505 – reference: 21629714 - Int J Alzheimers Dis. 2011;2011:927573 – reference: 10946390 - Neural Netw. 2000 May-Jun;13(4-5):411-30 – reference: 24968340 - IEEE J Biomed Health Inform. 2015 Jan;19(1):158-65 – reference: 18252563 - IEEE Trans Neural Netw. 1999;10(3):626-34 – reference: 21034784 - Int J Psychophysiol. 2011 Feb;79(2):203-10 – reference: 18838360 - IEEE Trans Biomed Eng. 2008 Oct;55(10):2353-62 – reference: 10843903 - Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H2039-49 |
SSID | ssj0023338 |
Score | 2.4463537 |
Snippet | Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG) is a promising tool to support the... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1326 |
SubjectTerms | Algorithms Brain Dementia Electroencephalography Humans independent component analysis Memory, Short-Term mild cognitive impairment Signal processing Signal Processing, Computer-Assisted spectral analysis Stroke vascular dementia wavelet Wavelet Analysis |
SummonAdditionalLinks | – databaseName: DOAJ - Directory of Open Access Journals (Some content may be blocked by TCTC IT security protocols) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hTuVQFUrb8KgM4tBLBIkTP45burwkOKBFcIsc21ERkFTN7qG3_of-w_6SzjjZaBch9cIhh8Q-OJ6x_X32zGeAg7xKtanoyD_XOs5MIuLSlHms3ZFWpcc5M2SlXV6Js5vs4i6_W7jqi2LCOnngruMORWJSXenSGmQKmREIs7STWiEwtta6kLqHa96cTPVUiyPz6nSEOJL6w5ZEYpB3iaXVJ4j0v4QsnwdILqw4J-_gbQ8V2ahr4jqs-HoD1hYEBN9DM5pNmyC6GqpRlgK79k8Nug-7r9l4fMqail0RLn1kpnbsW9gN9I6dD4lYLQthA-z8ePT395_bCesyF1m_jc4uKRb3F5uY9qHdhJuT8eT4LO6vUIhtzvU05tYRR1Gku45PmSjsO1-lqRNoB8d5agKFKZWUJTdHiUuEk15ZnjpjccR_gNW6qf0nYKYyssosd17nmZVW5d4mWqJ1Db5zEcGXedcWttcXp2suHgvkGWSFYrBCBPtD1R-dqMZLlb6SfYYKpIMdPqB3FL13FP_zjgh25tYt-sHZFshycZbiKpcR7A3FOKzorMTUvpm1BeIkyXE25zyCj50zDC0hzT9EmWkEcslNlpq6XFLffw_S3aSHpwTfeo1_24Y3KWEM2hJSO7A6_Tnzu4iQpuXnMBj-ARNsD6I priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BucCh4ptAQQZx4BK1iRN_nNBSdtsitQe0Fb1Fju2UipK0ze6BG_-Bf8gvYcbxhi6qOOSQxAcnM7bfG888A7wtm1ybhrb8S63TwmQirU1dptrtaFV7nDNDVdrhkdg_Lj6dlCcx4NbHtMrVnBgmatdZipFvIzVB1-KqlO8vLlM6NYp2V-MRGrfhToYrDXm4mu2NhIsj_xrUhDhS--2epGKQfYm1NShI9d-EL_9Nk7y27szuw2YEjGwyWPgB3PLtQ7h3TUbwEXST5aIL0quhGdUqsM_-e4dOxM5aNp3usa5hR4ROz5lpHfsYYoLesYOxHKtnIXmAHexOfv_89WXOhvpFFoPp7JAycn-wuem_9Y_heDad7-6n8SCF1JZcL1JuHTEVRerreNWZclL7Js-dQGs4znMTiEytpKy52clcJpz0yvLcGYvj_glstF3rnwEzjZFNYbnzuiystKr0NtMSbWzwnosE3q1-bWWjyjgddnFeIdsgK1SjFRJ4Mza9GKQ1bmr0gewzNiA17PCguzqt4uCqRGZy3ejaGmSThREIxTV-oULyZK11OoGtlXWrOET76q9DJfB6fI2Di3ZMTOu7ZV8hWpIc53TOE3g6OMPYE1L-Q6yZJyDX3GStq-tv2rOvQcCbVPGU4M__360XcDcnDEEhH7UFG4urpX-JCGhRvwpu_gfjQQbm priority: 102 providerName: ProQuest |
Title | Automatic Artifact Removal in EEG of Normal and Demented Individuals Using ICA–WT during Working Memory Tasks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28594352 https://www.proquest.com/docview/2108703857 https://www.proquest.com/docview/1907321933 https://pubmed.ncbi.nlm.nih.gov/PMC5492863 https://doaj.org/article/61a29f9bca9244a681b9d798118cccd9 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Pb9MwFH_anwscEP8XGJVBHLgEmjiJ7cM0daPdhtQKTa3oLXJsByZKAk0rbTe-A99wn4RnJ40W1AOHRErsSI6f_d772X6_B_A2zkMhc7vlHwvhRzJI_ExmsS90X_DMoM50UWnjSXI-iz7N4_kObHJsNh1YbYV2Np_UbLl4f_3r5hgn_JFFnAjZP1SWAgZRVbIL-2iQmM3gMI7azYSQUpfQ2sZ0-WgP-zXBUPfTjlly7P3bXM5_T07eMUWjh_Cg8SHJoBb6I9gxxWO4f4dZ8AmUg_WqdGysrpoNXyCX5keJ44pcFWQ4PCNlTibWYV0QWWjy0S0TGk0u2gitirjzBOTidHD7-8-XKalDGkmzvk7G9pDuDZnK6nv1FGaj4fT03G9yK_gqpmLlU6UteOGWkB2vLOCaCZOHoU5QQJrSUDpsk3HGMir7gQ4SzQxXNNRSoSp4BntFWZgDIDKXLI8U1UbEkWKKx0YFgqHYJT7TxIN3m65NVUM8bvNfLFIEIFYKaSsFD960VX_WbBvbKp1Y-bQVLEG2e1Euv6bNfEuTQIYiF5mSCDAjmaB3LvAPOeIppZQWHhxupJtuBl2K8BfVF-Ux8-B1W4zzzW6iyMKU6ypFB4pRVPOUevC8HgxtSywZILqfoQesM0w6Te2WFFffHKe3JcrjCX3xPx3wEu6F1rmwa0H8EPZWy7V5ha7RKuvBLpszvPPRWQ_2T4aTz5c9t8zQc1PiLynKD-8 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOiH8CBQwCiUvUTZzE8QGhQrfs0u4e0FbsLTi2AxUlKc2uUG-8A-_BQ_EkzDg_7aKKWw972I21cjyf7W_smW8AnsdFKFVBV_6xlH6kgsTPVR770gxkmltcM11W2mSajPaj9_N4vga_u1wYCqvs1kS3UJtK0xn5JromCC2exuL10XefqkbR7WpXQqOBxa49-YEuW_1qvI32fRGGO8PZ25HfVhXwdczlwufaEG1PSYocP3mQGiFtEYYmwa4ZzkPlWH2eCpFzNQhMkBhhU81DozROAvzfS3AZN94BhRCK-amDx9Hfa9SLOJeDzZqkadDbS1b2PFca4Dw--29Y5pl9bucGXG8JKttqEHUT1mx5C66dkS28DdXWclE5qVfXjHIj2Af7rULQsoOSDYfvWFWwKbHhQ6ZKw7bdGaQ1bNynf9XMBSswHLI_P399nLEmX5K1h_dsQhHAJ2ym6q_1Hdi_kCG-C-tlVdr7wFShRBFpbqyMIy10GlsdSIGYUvidJx687IY2062qORXXOMzQuyErZL0VPHjWNz1qpDzOa_SG7NM3IPVt90N1_DlrJ3OWBCqUhcy1Qu81UglSf4lvmKKzprU20oONzrpZuyTU2SmAPXjaP8bJTDc0qrTVss6QnQmOewjnHtxrwND3hJQGkduGHogVmKx0dfVJefDFCYaTCl-a8Af_79YTuDKaTfayvfF09yFcDYm_0HFTugHri-OlfYTsa5E_dpBn8Omi59hf_39B8Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIiE4IP4JFDAIJC5RN3YS2weECrtLl9IVQluxt-DYDlSUpDS7Qr3xDrwNj8OTMHZ-2kUVtx5ySGJFjmfGns-e-QbgaVJQqQp35J9IGcYqSsNc5UkozUCK3OKc6bPSdqfp9l78dp7M1-B3lwvjwiq7OdFP1KbSbo98E6EJqhYTCOCLNizi_XD88vB76CpIuZPWrpxGoyI79vgHwrf6xWSIsn5G6Xg0e70dthUGQp0wuQiZNs6FF46WHK88EoZLW1BqUuymYYwq7-HngvOcqUFkotRwKzSjRmk0CPzuBbjIGS6baEt8fgL2GGK_hsmIMTnYrB1NDSK_dGX982UCzvJt_w3RPLXmja_B1dZZJVuNdl2HNVvegCunKAxvQrW1XFSe9tU3c3kS5IP9VqECk_2SjEZvSFWQqfOMD4gqDRn6_UhryKRPBauJD1wgOGR_fv76OCNN7iRpN_LJrosGPiYzVX-tb8HeuQzxbVgvq9LeBaIKxYtYM2NlEmuuRWJ1JDnql8J7lgbwvBvaTLcM567QxkGGSMdJIeulEMCTvulhQ-txVqNXTj59A8fE7R9UR5-z1rCzNFJUFjLXCpFsrFKEARL_UCBw01obGcBGJ92snR7q7ESZA3jcv0bDdqc1qrTVss7QU-MM1xPGArjTKEPfE8c6iH4uDYCvqMlKV1fflPtfPHm4Y-QTKbv3_249gktoXdm7yXTnPlymzpVxO09iA9YXR0v7AB2xRf7QazyBT-dtYn8B5wBGJw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Artifact+Removal+in+EEG+of+Normal+and+Demented+Individuals+Using+ICA%E2%80%93WT+during+Working+Memory+Tasks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Al-Qazzaz%2C+Noor&rft.au=Hamid+Bin+Mohd+Ali%2C+Sawal&rft.au=Ahmad%2C+Siti&rft.au=Islam%2C+Mohd&rft.date=2017-06-08&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=17&rft.issue=6&rft.spage=1326&rft_id=info:doi/10.3390%2Fs17061326&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s17061326 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |