Automatic Artifact Removal in EEG of Normal and Demented Individuals Using ICA–WT during Working Memory Tasks

Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG) is a promising tool to support the diagnosis and evaluation of abnormalities in the human brain. The EEG sensors record the brain activity directly with excellent time resolution. In...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 17; no. 6; p. 1326
Main Authors Al-Qazzaz, Noor, Hamid Bin Mohd Ali, Sawal, Ahmad, Siti, Islam, Mohd, Escudero, Javier
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 08.06.2017
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s17061326

Cover

Loading…
Abstract Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG) is a promising tool to support the diagnosis and evaluation of abnormalities in the human brain. The EEG sensors record the brain activity directly with excellent time resolution. In this study, EEG sensor with 19 electrodes were used to test the background activities of the brains of five vascular dementia (VaD), 15 stroke-related patients with mild cognitive impairment (MCI), and 15 healthy subjects during a working memory (WM) task. The objective of this study is twofold. First, it aims to enhance the recorded EEG signals using a novel technique that combines automatic independent component analysis (AICA) and wavelet transform (WT), that is, the AICA–WT technique; second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. The proposed AICA–WT technique is a four-stage approach. In the first stage, the independent components (ICs) were estimated. In the second stage, three-step artifact identification metrics were applied to detect the artifactual components. The components identified as artifacts were marked as critical and denoised through DWT in the third stage. In the fourth stage, the corrected ICs were reconstructed to obtain artifact-free EEG signals. The performance of the proposed AICA–WT technique was compared with those of two other techniques based on AICA and WT denoising methods using cross-correlation X C o r r and peak signal to noise ratio ( P S N R ) (ANOVA, p ˂ 0.05). The AICA–WT technique exhibited the best artifact removal performance. The assumption that there would be a deceleration of EEG dominant frequencies in VaD and MCI patients compared with control subjects was assessed with AICA–WT (ANOVA, p ˂ 0.05). Therefore, this study may provide information on post-stroke dementia particularly VaD and stroke-related MCI patients through spectral analysis of EEG background activities that can help to provide useful diagnostic indexes by using EEG signal processing.
AbstractList Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG) is a promising tool to support the diagnosis and evaluation of abnormalities in the human brain. The EEG sensors record the brain activity directly with excellent time resolution. In this study, EEG sensor with 19 electrodes were used to test the background activities of the brains of five vascular dementia (VaD), 15 stroke-related patients with mild cognitive impairment (MCI), and 15 healthy subjects during a working memory (WM) task. The objective of this study is twofold. First, it aims to enhance the recorded EEG signals using a novel technique that combines automatic independent component analysis (AICA) and wavelet transform (WT), that is, the AICA–WT technique; second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. The proposed AICA–WT technique is a four-stage approach. In the first stage, the independent components (ICs) were estimated. In the second stage, three-step artifact identification metrics were applied to detect the artifactual components. The components identified as artifacts were marked as critical and denoised through DWT in the third stage. In the fourth stage, the corrected ICs were reconstructed to obtain artifact-free EEG signals. The performance of the proposed AICA–WT technique was compared with those of two other techniques based on AICA and WT denoising methods using cross-correlation X C o r r and peak signal to noise ratio ( P S N R ) (ANOVA, p ˂ 0.05). The AICA–WT technique exhibited the best artifact removal performance. The assumption that there would be a deceleration of EEG dominant frequencies in VaD and MCI patients compared with control subjects was assessed with AICA–WT (ANOVA, p ˂ 0.05). Therefore, this study may provide information on post-stroke dementia particularly VaD and stroke-related MCI patients through spectral analysis of EEG background activities that can help to provide useful diagnostic indexes by using EEG signal processing.
Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG) is a promising tool to support the diagnosis and evaluation of abnormalities in the human brain. The EEG sensors record the brain activity directly with excellent time resolution. In this study, EEG sensor with 19 electrodes were used to test the background activities of the brains of five vascular dementia (VaD), 15 stroke-related patients with mild cognitive impairment (MCI), and 15 healthy subjects during a working memory (WM) task. The objective of this study is twofold. First, it aims to enhance the recorded EEG signals using a novel technique that combines automatic independent component analysis (AICA) and wavelet transform (WT), that is, the AICA–WT technique; second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. The proposed AICA–WT technique is a four-stage approach. In the first stage, the independent components (ICs) were estimated. In the second stage, three-step artifact identification metrics were applied to detect the artifactual components. The components identified as artifacts were marked as critical and denoised through DWT in the third stage. In the fourth stage, the corrected ICs were reconstructed to obtain artifact-free EEG signals. The performance of the proposed AICA–WT technique was compared with those of two other techniques based on AICA and WT denoising methods using cross-correlation X C o r r and peak signal to noise ratio ( P S N R ) (ANOVA, p ˂ 0.05). The AICA–WT technique exhibited the best artifact removal performance. The assumption that there would be a deceleration of EEG dominant frequencies in VaD and MCI patients compared with control subjects was assessed with AICA–WT (ANOVA, p ˂ 0.05). Therefore, this study may provide information on post-stroke dementia particularly VaD and stroke-related MCI patients through spectral analysis of EEG background activities that can help to provide useful diagnostic indexes by using EEG signal processing.
Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG) is a promising tool to support the diagnosis and evaluation of abnormalities in the human brain. The EEG sensors record the brain activity directly with excellent time resolution. In this study, EEG sensor with 19 electrodes were used to test the background activities of the brains of five vascular dementia (VaD), 15 stroke-related patients with mild cognitive impairment (MCI), and 15 healthy subjects during a working memory (WM) task. The objective of this study is twofold. First, it aims to enhance the recorded EEG signals using a novel technique that combines automatic independent component analysis (AICA) and wavelet transform (WT), that is, the AICA-WT technique; second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. The proposed AICA-WT technique is a four-stage approach. In the first stage, the independent components (ICs) were estimated. In the second stage, three-step artifact identification metrics were applied to detect the artifactual components. The components identified as artifacts were marked as critical and denoised through DWT in the third stage. In the fourth stage, the corrected ICs were reconstructed to obtain artifact-free EEG signals. The performance of the proposed AICA-WT technique was compared with those of two other techniques based on AICA and WT denoising methods using cross-correlation X C o r r and peak signal to noise ratio ( P S N R ) (ANOVA, p ˂ 0.05). The AICA-WT technique exhibited the best artifact removal performance. The assumption that there would be a deceleration of EEG dominant frequencies in VaD and MCI patients compared with control subjects was assessed with AICA-WT (ANOVA, p ˂ 0.05). Therefore, this study may provide information on post-stroke dementia particularly VaD and stroke-related MCI patients through spectral analysis of EEG background activities that can help to provide useful diagnostic indexes by using EEG signal processing.Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG) is a promising tool to support the diagnosis and evaluation of abnormalities in the human brain. The EEG sensors record the brain activity directly with excellent time resolution. In this study, EEG sensor with 19 electrodes were used to test the background activities of the brains of five vascular dementia (VaD), 15 stroke-related patients with mild cognitive impairment (MCI), and 15 healthy subjects during a working memory (WM) task. The objective of this study is twofold. First, it aims to enhance the recorded EEG signals using a novel technique that combines automatic independent component analysis (AICA) and wavelet transform (WT), that is, the AICA-WT technique; second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. The proposed AICA-WT technique is a four-stage approach. In the first stage, the independent components (ICs) were estimated. In the second stage, three-step artifact identification metrics were applied to detect the artifactual components. The components identified as artifacts were marked as critical and denoised through DWT in the third stage. In the fourth stage, the corrected ICs were reconstructed to obtain artifact-free EEG signals. The performance of the proposed AICA-WT technique was compared with those of two other techniques based on AICA and WT denoising methods using cross-correlation X C o r r and peak signal to noise ratio ( P S N R ) (ANOVA, p ˂ 0.05). The AICA-WT technique exhibited the best artifact removal performance. The assumption that there would be a deceleration of EEG dominant frequencies in VaD and MCI patients compared with control subjects was assessed with AICA-WT (ANOVA, p ˂ 0.05). Therefore, this study may provide information on post-stroke dementia particularly VaD and stroke-related MCI patients through spectral analysis of EEG background activities that can help to provide useful diagnostic indexes by using EEG signal processing.
Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG) is a promising tool to support the diagnosis and evaluation of abnormalities in the human brain. The EEG sensors record the brain activity directly with excellent time resolution. In this study, EEG sensor with 19 electrodes were used to test the background activities of the brains of five vascular dementia (VaD), 15 stroke-related patients with mild cognitive impairment (MCI), and 15 healthy subjects during a working memory (WM) task. The objective of this study is twofold. First, it aims to enhance the recorded EEG signals using a novel technique that combines automatic independent component analysis (AICA) and wavelet transform (WT), that is, the AICA–WT technique; second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. The proposed AICA–WT technique is a four-stage approach. In the first stage, the independent components (ICs) were estimated. In the second stage, three-step artifact identification metrics were applied to detect the artifactual components. The components identified as artifacts were marked as critical and denoised through DWT in the third stage. In the fourth stage, the corrected ICs were reconstructed to obtain artifact-free EEG signals. The performance of the proposed AICA–WT technique was compared with those of two other techniques based on AICA and WT denoising methods using cross-correlationXCorrand peak signal to noise ratio(PSNR)(ANOVA,p˂ 0.05). The AICA–WT technique exhibited the best artifact removal performance. The assumption that there would be a deceleration of EEG dominant frequencies in VaD and MCI patients compared with control subjects was assessed with AICA–WT (ANOVA,p˂ 0.05). Therefore, this study may provide information on post-stroke dementia particularly VaD and stroke-related MCI patients through spectral analysis of EEG background activities that can help to provide useful diagnostic indexes by using EEG signal processing.
Author Islam, Mohd
Al-Qazzaz, Noor
Ahmad, Siti
Hamid Bin Mohd Ali, Sawal
Escudero, Javier
AuthorAffiliation 6 Institute for Digital Communications, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FB, UK; javier.escudero@ed.ac.uk
3 Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; sanom@upm.edu.my
4 Malaysian Research Institute of Ageing (MyAgeing), Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
1 Department of Electrical, Electronic & Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia; sawal@ukm.edu.my
2 Department of Biomedical Engineering, Al-Khwarizmi College of Engineering, Baghdad University, Baghdad 47146, Iraq
5 Faculty of Engineering, Multimedia Universiti, MMU Cyberjaya, Selangor 63100, Malaysia; shabiul@ukm.edu.my
AuthorAffiliation_xml – name: 2 Department of Biomedical Engineering, Al-Khwarizmi College of Engineering, Baghdad University, Baghdad 47146, Iraq
– name: 1 Department of Electrical, Electronic & Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia; sawal@ukm.edu.my
– name: 5 Faculty of Engineering, Multimedia Universiti, MMU Cyberjaya, Selangor 63100, Malaysia; shabiul@ukm.edu.my
– name: 4 Malaysian Research Institute of Ageing (MyAgeing), Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
– name: 6 Institute for Digital Communications, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FB, UK; javier.escudero@ed.ac.uk
– name: 3 Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; sanom@upm.edu.my
Author_xml – sequence: 1
  givenname: Noor
  surname: Al-Qazzaz
  fullname: Al-Qazzaz, Noor
– sequence: 2
  givenname: Sawal
  surname: Hamid Bin Mohd Ali
  fullname: Hamid Bin Mohd Ali, Sawal
– sequence: 3
  givenname: Siti
  orcidid: 0000-0003-1759-0118
  surname: Ahmad
  fullname: Ahmad, Siti
– sequence: 4
  givenname: Mohd
  surname: Islam
  fullname: Islam, Mohd
– sequence: 5
  givenname: Javier
  orcidid: 0000-0002-2105-8725
  surname: Escudero
  fullname: Escudero, Javier
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28594352$$D View this record in MEDLINE/PubMed
BookMark eNptks1uEzEQxy1URD_gwAsgS1zgEOqPXX9ckKISSqQCEkrVo-W1vcHprl3s3Ui98Q68IU-Cl5SorThYY8_85u8Ze47BQYjBAfASo3eUSnSaMUcMU8KegCNckWomCEEH9_aH4DjnDUKEUiqegUMialnRmhyBOB-H2OvBGzhPg2-1GeA318et7qAPcLE4h7GFX2Lqi0MHCz-43oXBWbgM1m-9HXWX4WX2YQ2XZ_PfP39draAd03S-iul6sp-LXrqFK52v83PwtC0Z7sWdPQGXHxers0-zi6_nJf9iZmoqhxk1FkmGBGGYl9VgYbl0LSGWOUQtpUSXMGON4LyhGmGLmeVOGEqsNgjRE7Dc6dqoN-om-V6nWxW1V38dMa2VLv2azimGNZGtbIyWpKo0E7iR5TaBsTDGWFm03u-0bsamd9aU_pPuHog-jAT_Xa3jVtWVJILRIvDmTiDFH6PLg-p9Nq7rdHBxzApLxCnBkk7o60foJo4plKdSBCPBERU1L9Sr-xXtS_n3rwV4uwNMijkn1-4RjNQ0M2o_M4U9fcQaP5SJiFMzvvtPxh9sZ8Gk
CitedBy_id crossref_primary_10_1109_JBHI_2023_3314197
crossref_primary_10_1109_JSEN_2023_3307444
crossref_primary_10_1371_journal_pone_0305902
crossref_primary_10_3390_s20010059
crossref_primary_10_1016_j_bspc_2019_101624
crossref_primary_10_1109_TIM_2024_3417598
crossref_primary_10_3390_a17080346
crossref_primary_10_1016_j_ajp_2025_104460
crossref_primary_10_1016_j_compbiomed_2021_104799
crossref_primary_10_1109_ACCESS_2024_3396869
crossref_primary_10_3389_fnins_2019_00441
crossref_primary_10_1007_s11517_021_02452_5
crossref_primary_10_3390_s17102315
crossref_primary_10_37394_23203_2021_16_26
crossref_primary_10_1155_2021_8537000
crossref_primary_10_3389_fnins_2018_00097
crossref_primary_10_1016_j_nicl_2022_103040
crossref_primary_10_1109_TNSRE_2020_3007860
crossref_primary_10_3390_signals5020018
crossref_primary_10_1109_TNSRE_2022_3176575
crossref_primary_10_1016_j_jksuci_2021_03_009
crossref_primary_10_1093_sleep_zsad159
crossref_primary_10_1007_s11517_017_1734_7
crossref_primary_10_1007_s13369_023_07798_6
crossref_primary_10_3390_brainsci12060778
crossref_primary_10_1016_j_bbe_2021_06_007
crossref_primary_10_1016_j_neuri_2022_100101
crossref_primary_10_3389_fnhum_2023_1068216
crossref_primary_10_3390_s24206508
crossref_primary_10_1016_j_procs_2023_01_184
crossref_primary_10_2174_1573405617666210908124704
crossref_primary_10_1016_j_aej_2021_10_034
crossref_primary_10_3389_fnins_2018_00943
crossref_primary_10_1109_JBHI_2021_3057891
crossref_primary_10_1109_ACCESS_2021_3096430
crossref_primary_10_1016_j_bspc_2022_103966
crossref_primary_10_3390_electronics13224576
crossref_primary_10_3390_s24082625
crossref_primary_10_1109_ACCESS_2018_2842082
crossref_primary_10_1109_JBHI_2024_3352081
crossref_primary_10_1115_1_4056473
crossref_primary_10_1016_j_bspc_2021_102819
Cites_doi 10.1016/j.clinph.2004.09.017
10.1017/CBO9780511546396.003
10.1016/j.artmed.2008.01.001
10.1007/s10439-011-0312-7
10.1111/1469-8986.3720163
10.1016/j.pnsc.2008.11.013
10.1016/j.eswa.2010.11.050
10.1007/s10439-008-9589-6
10.1016/j.medengphy.2010.04.010
10.1126/science.3336779
10.1016/0013-4694(93)90152-L
10.1161/01.STR.20.7.864
10.1162/neco.1995.7.6.1129
10.1016/S0165-0270(00)00356-3
10.1016/j.sigpro.2011.08.005
10.1016/j.compbiomed.2007.12.001
10.1152/ajpregu.00069.2002
10.1214/aos/1176345632
10.1016/0022-3956(75)90026-6
10.1016/S1388-2457(00)00386-2
10.3389/fnhum.2013.00138
10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
10.1016/B978-012466606-1/50008-8
10.1109/CONIELECOMP.2011.5749325
10.1016/j.dsp.2008.07.004
10.5772/31609
10.1109/IECBES.2012.6498190
10.1016/j.bspc.2011.06.005
10.3390/s131114839
10.1016/j.clinph.2003.12.015
10.1109/IECBES.2014.7047488
10.1111/j.0013-9580.2005.50704.x
10.1109/TAU.1967.1161901
10.1016/S0165-0173(98)00056-3
10.1016/j.bspc.2015.06.009
10.3390/s151129015
10.1016/j.jns.2011.07.013
10.1016/j.clinph.2007.04.031
10.1016/S0893-6080(00)00073-3
10.1016/j.jns.2012.05.045
10.1016/S0026-2692(01)00095-7
10.1109/IEMBS.2007.4353577
10.1016/j.jns.2010.08.052
10.1016/j.clineuro.2012.11.026
10.1049/ip-f-2.1993.0054
10.1177/070674370705200508
10.1088/0967-3334/26/1/R02
10.1016/j.jalz.2012.08.008
10.1016/j.clinph.2008.11.012
10.1109/TBME.2010.2093932
10.3390/s140713046
10.1109/34.192463
10.1016/j.neuroimage.2005.04.014
10.2478/msr-2014-0032
10.1016/j.eswa.2015.04.068
10.1111/j.1747-4949.2012.00972.x
10.1016/j.jneumeth.2014.01.024
10.1109/NER.2013.6696203
10.1111/j.1365-2796.2004.01388.x
10.1016/j.bspc.2011.02.001
10.1016/j.medengphy.2009.04.003
10.1016/S0378-4371(02)00958-5
10.1016/j.neunet.2007.09.020
10.1136/jnnp.2006.095414
10.3390/s120201211
10.1109/JBHI.2014.2333010
10.1126/science.1736359
10.4061/2011/927573
10.1093/cercor/7.4.374
10.1109/72.761722
10.1007/978-1-4419-5913-3_65
10.1016/j.jneumeth.2015.01.030
10.1016/j.clinph.2004.01.001
10.1016/S0893-6080(00)00026-5
10.1016/j.clinph.2005.12.009
10.1155/2014/259121
10.1152/ajpheart.2000.278.6.H2039
10.1016/j.jneumeth.2006.05.033
10.1016/j.jalz.2007.07.011
10.1109/TBME.2007.894968
10.1109/RBME.2008.2008244
10.1007/s00422-001-0304-z
10.1162/jocn_a_00029
10.1016/S0165-0270(02)00340-0
10.1016/S0072-9752(07)88011-0
10.1016/j.sigpro.2013.11.015
10.1007/s12555-009-0521-0
10.1109/TBME.2008.926677
10.1109/TNN.2006.880980
10.1016/j.ijpsycho.2010.10.008
10.1109/JSEN.2011.2115236
10.1109/IJCNN.2007.4371184
ContentType Journal Article
Copyright 2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2017 by the authors. 2017
Copyright_xml – notice: 2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2017 by the authors. 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s17061326
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ - Directory of Open Access Journals (Some content may be blocked by TCTC IT security protocols)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
CrossRef
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_61a29f9bca9244a681b9d798118cccd9
PMC5492863
28594352
10_3390_s17061326
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c539t-3cd096082617261b18d79ef22d6e03d332a96066b877b3a01d16d7e8c32dac003
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:07:04 EDT 2025
Thu Aug 21 14:00:19 EDT 2025
Wed Jul 30 11:13:41 EDT 2025
Fri Jul 25 20:50:42 EDT 2025
Wed Feb 19 02:42:30 EST 2025
Tue Jul 01 01:36:36 EDT 2025
Thu Apr 24 23:10:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords wavelet
electroencephalography
spectral analysis
independent component analysis
mild cognitive impairment
vascular dementia
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c539t-3cd096082617261b18d79ef22d6e03d332a96066b877b3a01d16d7e8c32dac003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1759-0118
0000-0002-2105-8725
OpenAccessLink https://www.proquest.com/docview/2108703857?pq-origsite=%requestingapplication%
PMID 28594352
PQID 2108703857
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_61a29f9bca9244a681b9d798118cccd9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5492863
proquest_miscellaneous_1907321933
proquest_journals_2108703857
pubmed_primary_28594352
crossref_primary_10_3390_s17061326
crossref_citationtrail_10_3390_s17061326
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-08
PublicationDateYYYYMMDD 2017-06-08
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-08
  day: 08
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2017
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_94
ref_93
ref_92
ref_91
Mammone (ref_39) 2012; 12
Zeng (ref_73) 2013; 13
Folstein (ref_57) 1975; 12
Papadelis (ref_31) 2006; 117
ref_14
Dammers (ref_32) 2008; 55
Cumming (ref_9) 2013; 8
Oja (ref_29) 2008; 1
Zhou (ref_43) 2005; 46
ref_95
Cichocki (ref_67) 2005; 116
Leuchter (ref_18) 1993; 87
(ref_90) 2010; 2
Rosso (ref_88) 2002; 313
Reaz (ref_4) 2014; 14
Berger (ref_2) 1929; 87
(ref_52) 2009; 19
Lizio (ref_19) 2011; 2011
John (ref_17) 1988; 239
Escudero (ref_66) 2007; 54
ref_24
ref_23
Kirkove (ref_26) 2014; 98
James (ref_28) 2005; 26
Akhtar (ref_38) 2012; 92
Ghandeharion (ref_54) 2010; 32
Escudero (ref_63) 2009; 31
Rafiee (ref_96) 2011; 38
Cullen (ref_11) 2007; 78
Castellanos (ref_53) 2006; 158
Messer (ref_84) 2001; 32
ref_71
Klimesch (ref_5) 1999; 29
Mammone (ref_78) 2008; 21
Papadelis (ref_30) 2007; 118
Barbati (ref_64) 2004; 115
Ali (ref_1) 2014; 2014
ref_75
Zhou (ref_44) 2009; 19
Romero (ref_46) 2009; 37
Klados (ref_55) 2011; 6
Mowla (ref_49) 2015; 22
Rosso (ref_87) 2001; 105
Kandiah (ref_62) 2011; 309
ref_81
Petersen (ref_7) 2004; 256
Lundqvist (ref_21) 2011; 23
Menshawy (ref_97) 2015; 42
Ahmad (ref_59) 2015; 15
Brott (ref_56) 1989; 20
Romero (ref_45) 2008; 38
ref_86
ref_85
Oja (ref_37) 2000; 13
Bagnoli (ref_60) 2012; 322
Baddeley (ref_13) 1992; 255
Oja (ref_65) 2000; 13
Teplan (ref_98) 2014; 14
ref_50
Onton (ref_22) 2005; 27
Moretti (ref_101) 2009; 120
Pham (ref_27) 2011; 79
Sikaroodi (ref_61) 2013; 125
Borson (ref_8) 2013; 9
Zeng (ref_77) 2014; 2014
(ref_33) 2012; 12
Muthukumaraswamy (ref_74) 2013; 7
Hyvarinen (ref_70) 1999; 10
Ranta (ref_40) 2012; 7
Ko (ref_100) 2009; 7
Ali (ref_12) 2014; 10
Richman (ref_82) 2000; 278
Jeong (ref_16) 2004; 115
Adeli (ref_51) 2003; 123
Bell (ref_35) 1995; 7
Torrence (ref_48) 1998; 79
Oja (ref_72) 2006; 17
Jung (ref_25) 2000; 111
Mallat (ref_89) 1989; 11
Sameni (ref_42) 2014; 225
Jung (ref_36) 2000; 37
Welch (ref_99) 1967; 15
Pizzagalli (ref_3) 2007; 3
Gevins (ref_20) 1997; 7
Smith (ref_58) 2007; 52
Greco (ref_79) 2006; 2
Kelly (ref_34) 2011; 58
Michael (ref_15) 2008; Volume 88
Escudero (ref_76) 2011; 39
Jacova (ref_6) 2007; 3
Lake (ref_83) 2002; 283
ref_47
Mahajan (ref_80) 2015; 19
Scouten (ref_41) 2015; 243
Escudero (ref_68) 2008; 43
Jin (ref_69) 2002; 86
Ankolekar (ref_10) 2010; 299
19121602 - Clin Neurophysiol. 2009 Feb;120(2):295-303
18838360 - IEEE Trans Biomed Eng. 2008 Oct;55(10):2353-62
11984653 - Biol Cybern. 2002 May;86(5):395-401
10843903 - Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H2039-49
17131654 - IEEE Trans Neural Netw. 2006 Nov;17(6):1370-81
23375564 - Alzheimers Dement. 2013 Mar;9(2):151-9
18252563 - IEEE Trans Neural Netw. 1999;10(3):626-34
18329868 - Artif Intell Med. 2008 May;43(1):75-85
7508371 - Electroencephalogr Clin Neurophysiol. 1993 Dec;87(6):385-93
11156200 - Neural Netw. 2000 Oct-Nov;13(8-9):891-907
26593918 - Sensors (Basel). 2015 Nov 17;15(11):29015-35
25093211 - ScientificWorldJournal. 2014;2014:906038
24550696 - ScientificWorldJournal. 2014 Jan 12;2014:259121
15324362 - J Intern Med. 2004 Sep;256(3):183-94
11166367 - J Neurosci Methods. 2001 Jan 30;105(1):65-75
23596409 - Front Hum Neurosci. 2013 Apr 15;7:138
24189330 - Sensors (Basel). 2013 Nov 01;13(11):14839-59
10946390 - Neural Netw. 2000 May-Jun;13(4-5):411-30
22694976 - J Neurol Sci. 2012 Nov 15;322(1-2):41-5
7584893 - Neural Comput. 1995 Nov;7(6):1129-59
18430547 - Neural Netw. 2008 Sep;21(7):1029-40
21807379 - J Neurol Sci. 2011 Oct 15;309(1-2):92-5
20855090 - J Neurol Sci. 2010 Dec 15;299(1-2):168-74
24486874 - J Neurosci Methods. 2014 Mar 30;225:97-105
15927487 - Neuroimage. 2005 Aug 15;27(2):341-56
3336779 - Science. 1988 Jan 8;239(4836):162-9
2749846 - Stroke. 1989 Jul;20(7):864-70
21509634 - Ann Biomed Eng. 2011 Aug;39(8):2274-86
16495143 - Clin Neurophysiol. 2006 Apr;117(4):752-70
23290422 - Clin Neurol Neurosurg. 2013 Aug;115(8):1276-80
15203050 - Clin Neurophysiol. 2004 Jul;115(7):1490-505
25051031 - Sensors (Basel). 2014 Jul 21;14(7):13046-69
21629714 - Int J Alzheimers Dis. 2011;2011:927573
19482539 - Med Eng Phys. 2009 Sep;31(7):872-9
10731767 - Psychophysiology. 2000 Mar;37(2):163-78
25228808 - Neuropsychiatr Dis Treat. 2014 Sep 09;10:1677-91
22438708 - Sensors (Basel). 2012;12 (2):1211-79
17542384 - Can J Psychiatry. 2007 May;52(5):329-32
15721088 - Clin Neurophysiol. 2005 Mar;116(3):729-37
15742873 - Physiol Meas. 2005 Feb;26(1):R15-39
18003243 - Conf Proc IEEE Eng Med Biol Soc. 2007;2007:5445-8
23280268 - Int J Stroke. 2013 Jan;8(1):38-45
15066548 - Clin Neurophysiol. 2004 May;115(5):1220-32
15730538 - Epilepsia. 2005 Mar;46(3):409-14
17652020 - Clin Neurophysiol. 2007 Sep;118(9):1906-22
18985453 - Ann Biomed Eng. 2009 Jan;37(1):176-91
25666892 - J Neurosci Methods. 2015 Mar 30;243:84-93
24968340 - IEEE J Biomed Health Inform. 2015 Jan;19(1):158-65
1202204 - J Psychiatr Res. 1975 Nov;12(3):189-98
21097374 - IEEE Trans Biomed Eng. 2011 Mar;58(3):598-606
9177767 - Cereb Cortex. 1997 Jun;7(4):374-85
18222418 - Comput Biol Med. 2008 Mar;38(3):348-60
12185014 - Am J Physiol Regul Integr Comp Physiol. 2002 Sep;283(3):R789-97
11018488 - Clin Neurophysiol. 2000 Oct;111(10):1745-58
21452933 - J Cogn Neurosci. 2011 Oct;23(10):3008-20
20466582 - Med Eng Phys. 2010 Sep;32(7):720-9
10209231 - Brain Res Brain Res Rev. 1999 Apr;29(2-3):169-95
20865544 - Adv Exp Med Biol. 2010;680:593-9
16828877 - J Neurosci Methods. 2006 Dec 15;158(2):300-12
18018691 - IEEE Trans Biomed Eng. 2007 Nov;54(11):1965-73
22274899 - IEEE Rev Biomed Eng. 2008;1:50-61
1736359 - Science. 1992 Jan 31;255(5044):556-9
18631694 - Handb Clin Neurol. 2008;88:237-47
17178826 - J Neurol Neurosurg Psychiatry. 2007 Aug;78(8):790-9
21034784 - Int J Psychophysiol. 2011 Feb;79(2):203-10
12581851 - J Neurosci Methods. 2003 Feb 15;123(1):69-87
19595951 - Alzheimers Dement. 2007 Oct;3(4):299-317
References_xml – volume: 116
  start-page: 729
  year: 2005
  ident: ref_67
  article-title: EEG filtering based on blind source separation (BSS) for early detection of Alzheimer’s disease
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2004.09.017
– volume: 3
  start-page: 56
  year: 2007
  ident: ref_3
  article-title: Electroencephalography and high-density electrophysiological source localization
  publication-title: Handb. Psychophysiol.
  doi: 10.1017/CBO9780511546396.003
– volume: 43
  start-page: 75
  year: 2008
  ident: ref_68
  article-title: Assessment of classification improvement in patients with Alzheimer’s disease based on magnetoencephalogram blind source separation
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2008.01.001
– volume: 39
  start-page: 2274
  year: 2011
  ident: ref_76
  article-title: Quantitative evaluation of artifact removal in real magnetoencephalogram signals with blind source separation
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-011-0312-7
– volume: 37
  start-page: 163
  year: 2000
  ident: ref_36
  article-title: Removing electroencephalographic artifacts by blind source separation
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.3720163
– volume: 2
  start-page: 240
  year: 2006
  ident: ref_79
  article-title: Kurtosis, Renyi’s entropy and independent component scalp maps for the automatic artifact rejection from EEG data
  publication-title: Int. J. Signal Process.
– volume: 19
  start-page: 1165
  year: 2009
  ident: ref_44
  article-title: Automatic removal of eye movement artifacts from the EEG using ICA and the dipole model
  publication-title: Prog. Nat. Sci.
  doi: 10.1016/j.pnsc.2008.11.013
– volume: 38
  start-page: 6190
  year: 2011
  ident: ref_96
  article-title: Wavelet basis functions in biomedical signal processing
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.11.050
– volume: 37
  start-page: 176
  year: 2009
  ident: ref_46
  article-title: Ocular reduction in EEG signals based on adaptive filtering, regression and blind source separation
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-008-9589-6
– volume: 32
  start-page: 720
  year: 2010
  ident: ref_54
  article-title: A fully automatic ocular artifact suppression from EEG data using higher order statistics: Improved performance by wavelet analysis
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.04.010
– volume: 239
  start-page: 162
  year: 1988
  ident: ref_17
  article-title: Neurometrics: Computer-Assisted differential diagnosis of brain dysfunctions
  publication-title: Science
  doi: 10.1126/science.3336779
– volume: 87
  start-page: 385
  year: 1993
  ident: ref_18
  article-title: Regional differences in brain electrical activity in dementia: Use of spectral power and spectral ratio measures
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(93)90152-L
– volume: 20
  start-page: 864
  year: 1989
  ident: ref_56
  article-title: Measurements of acute cerebral infarction: A clinical examination scale
  publication-title: Stroke
  doi: 10.1161/01.STR.20.7.864
– volume: 7
  start-page: 1129
  year: 1995
  ident: ref_35
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput.
  doi: 10.1162/neco.1995.7.6.1129
– volume: 105
  start-page: 65
  year: 2001
  ident: ref_87
  article-title: Wavelet entropy: A new tool for analysis of short duration brain electrical signals
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(00)00356-3
– volume: 92
  start-page: 401
  year: 2012
  ident: ref_38
  article-title: Employing spatially constrained ICA and wavelet denoising, for automatic removal of artifacts from multichannel EEG data
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2011.08.005
– volume: 38
  start-page: 348
  year: 2008
  ident: ref_45
  article-title: A comparative study of automatic techniques for ocular artifact reduction in spontaneous EEG signals based on clinical target variables: A simulation case
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2007.12.001
– volume: 283
  start-page: R789
  year: 2002
  ident: ref_83
  article-title: Sample entropy analysis of neonatal heart rate variability
  publication-title: Am. J. Physiol.-Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00069.2002
– ident: ref_92
  doi: 10.1214/aos/1176345632
– volume: 12
  start-page: 189
  year: 1975
  ident: ref_57
  article-title: “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/0022-3956(75)90026-6
– volume: 111
  start-page: 1745
  year: 2000
  ident: ref_25
  article-title: Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(00)00386-2
– volume: 7
  start-page: 138
  year: 2013
  ident: ref_74
  article-title: High-frequency brain activity and muscle artifacts in MEG/EEG: A review and recommendations
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00138
– volume: 79
  start-page: 61
  year: 1998
  ident: ref_48
  article-title: A practical guide to wavelet analysis
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
– ident: ref_91
  doi: 10.1016/B978-012466606-1/50008-8
– ident: ref_47
– ident: ref_94
  doi: 10.1109/CONIELECOMP.2011.5749325
– ident: ref_86
– volume: 19
  start-page: 297
  year: 2009
  ident: ref_52
  article-title: Combined neural network model employing wavelet coefficients for EEG signals classification
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2008.07.004
– ident: ref_23
  doi: 10.5772/31609
– ident: ref_14
  doi: 10.1109/IECBES.2012.6498190
– volume: 7
  start-page: 389
  year: 2012
  ident: ref_40
  article-title: Blind source separation, wavelet denoising and discriminant analysis for EEG artefacts and noise cancelling
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2011.06.005
– volume: 13
  start-page: 14839
  year: 2013
  ident: ref_73
  article-title: EOG artifact correction from EEG recording using stationary subspace analysis and empirical mode decomposition
  publication-title: Sensors
  doi: 10.3390/s131114839
– volume: 115
  start-page: 1220
  year: 2004
  ident: ref_64
  article-title: Optimization of an independent component analysis approach for artifact identification and removal in magnetoencephalographic signals
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2003.12.015
– ident: ref_95
  doi: 10.1109/IECBES.2014.7047488
– volume: 46
  start-page: 409
  year: 2005
  ident: ref_43
  article-title: Removing Eye-movement Artifacts from the EEG during the Intracarotid Amobarbital Procedure
  publication-title: Epilepsia
  doi: 10.1111/j.0013-9580.2005.50704.x
– volume: 15
  start-page: 70
  year: 1967
  ident: ref_99
  article-title: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
  publication-title: IEEE Trans. Audio Electroacoust.
  doi: 10.1109/TAU.1967.1161901
– volume: 87
  start-page: 527
  year: 1929
  ident: ref_2
  article-title: Über das Elektrenkephalogramm des Menschen
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
– volume: 29
  start-page: 169
  year: 1999
  ident: ref_5
  article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis
  publication-title: Brain Res. Rev.
  doi: 10.1016/S0165-0173(98)00056-3
– volume: 22
  start-page: 111
  year: 2015
  ident: ref_49
  article-title: Artifacts-matched blind source separation and wavelet transform for multichannel EEG denoising
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2015.06.009
– volume: 15
  start-page: 29015
  year: 2015
  ident: ref_59
  article-title: Selection of Mother Wavelet Functions for Multi-Channel EEG Signal Analysis during a Working Memory Task
  publication-title: Sensors
  doi: 10.3390/s151129015
– volume: 309
  start-page: 92
  year: 2011
  ident: ref_62
  article-title: Frontal subcortical ischemia is crucial for post stroke cognitive impairment
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2011.07.013
– volume: 118
  start-page: 1906
  year: 2007
  ident: ref_30
  article-title: Monitoring sleepiness with on-board electrophysiological recordings for preventing sleep-deprived traffic accidents
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2007.04.031
– volume: 13
  start-page: 891
  year: 2000
  ident: ref_65
  article-title: Independence: A new criterion for the analysis of the electromagnetic fields in the global brain?
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(00)00073-3
– volume: 322
  start-page: 41
  year: 2012
  ident: ref_60
  article-title: Suitability of neuropsychological tests in patients with vascular dementia (VaD)
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2012.05.045
– volume: 32
  start-page: 931
  year: 2001
  ident: ref_84
  article-title: Optimal wavelet denoising for phonocardiograms
  publication-title: Microelectron. J.
  doi: 10.1016/S0026-2692(01)00095-7
– ident: ref_93
  doi: 10.1109/IEMBS.2007.4353577
– volume: 299
  start-page: 168
  year: 2010
  ident: ref_10
  article-title: Clinical trials for preventing post stroke cognitive impairment
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2010.08.052
– volume: 125
  start-page: 1276
  year: 2013
  ident: ref_61
  article-title: Cognitive impairments in patients with cerebrovascular risk factors: A comparison of Mini Mental Status Exam and Montreal Cognitive Assessment
  publication-title: Clin. Neurol. Neurosurg.
  doi: 10.1016/j.clineuro.2012.11.026
– ident: ref_71
  doi: 10.1049/ip-f-2.1993.0054
– volume: 10
  start-page: 1677
  year: 2014
  ident: ref_12
  article-title: Cognitive impairment and memory dysfunction after a stroke diagnosis: A post-stroke memory assessment
  publication-title: Neuropsychiatr. Dis. Treatm.
– volume: 52
  start-page: 329
  year: 2007
  ident: ref_58
  article-title: The Montreal Cognitive Assessment: Validity and utility in a memory clinic setting
  publication-title: Can. J. Psychiatry
  doi: 10.1177/070674370705200508
– volume: 26
  start-page: R15
  year: 2005
  ident: ref_28
  article-title: Independent component analysis for biomedical signals
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/26/1/R02
– volume: 9
  start-page: 151
  year: 2013
  ident: ref_8
  article-title: Improving dementia care: The role of screening and detection of cognitive impairment
  publication-title: Alzheimer Dement.
  doi: 10.1016/j.jalz.2012.08.008
– volume: 120
  start-page: 295
  year: 2009
  ident: ref_101
  article-title: Increase of theta/gamma ratio is associated with memory impairment
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2008.11.012
– volume: 58
  start-page: 598
  year: 2011
  ident: ref_34
  article-title: Fully automated reduction of ocular artifacts in high-dimensional neural data
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2093932
– volume: 14
  start-page: 13046
  year: 2014
  ident: ref_4
  article-title: Reduction of the Dimensionality of the EEG Channels during Scoliosis Correction Surgeries Using a Wavelet Decomposition Technique
  publication-title: Sensors
  doi: 10.3390/s140713046
– volume: 11
  start-page: 674
  year: 1989
  ident: ref_89
  article-title: A theory for multiresolution signal decomposition: The wavelet representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.192463
– volume: 27
  start-page: 341
  year: 2005
  ident: ref_22
  article-title: Frontal midline EEG dynamics during working memory
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.04.014
– volume: 14
  start-page: 237
  year: 2014
  ident: ref_98
  article-title: Spectral EEG features of a Short Psycho-physiological Relaxation
  publication-title: Meas. Sci. Rev.
  doi: 10.2478/msr-2014-0032
– volume: 42
  start-page: 7157
  year: 2015
  ident: ref_97
  article-title: An Automatic Mobile-Health based Approach for EEG Epileptic Seizures Detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.04.068
– volume: 8
  start-page: 38
  year: 2013
  ident: ref_9
  article-title: Stroke, cognitive deficits, and rehabilitation: Still an incomplete picture
  publication-title: Int. J. Stroke
  doi: 10.1111/j.1747-4949.2012.00972.x
– volume: 225
  start-page: 97
  year: 2014
  ident: ref_42
  article-title: An iterative subspace denoising algorithm for removing electroencephalogram ocular artifacts
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2014.01.024
– ident: ref_81
  doi: 10.1109/NER.2013.6696203
– volume: 256
  start-page: 183
  year: 2004
  ident: ref_7
  article-title: Mild cognitive impairment as a diagnostic entity
  publication-title: J. Intern. Med.
  doi: 10.1111/j.1365-2796.2004.01388.x
– volume: 6
  start-page: 291
  year: 2011
  ident: ref_55
  article-title: REG-ICA: A hybrid methodology combining Blind Source Separation and regression techniques for the rejection of ocular artifacts
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2011.02.001
– volume: 31
  start-page: 872
  year: 2009
  ident: ref_63
  article-title: Blind source separation to enhance spectral and non-linear features of magnetoencephalogram recordings. Application to Alzheimer’s disease
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2009.04.003
– volume: 313
  start-page: 587
  year: 2002
  ident: ref_88
  article-title: Brain electrical activity analysis using wavelet-based informational tools
  publication-title: Phys. A Stat. Mech. Appl.
  doi: 10.1016/S0378-4371(02)00958-5
– volume: 21
  start-page: 1029
  year: 2008
  ident: ref_78
  article-title: Enhanced automatic artifact detection based on independent component analysis and Renyi’s entropy
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2007.09.020
– volume: 78
  start-page: 790
  year: 2007
  ident: ref_11
  article-title: A review of screening tests for cognitive impairment
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2006.095414
– volume: 12
  start-page: 1211
  year: 2012
  ident: ref_33
  article-title: Brain computer interfaces, a review
  publication-title: Sensors
  doi: 10.3390/s120201211
– volume: 2014
  start-page: 906038
  year: 2014
  ident: ref_1
  article-title: Role of EEG as Biomarker in the Early Detection and Classification of Dementia
  publication-title: Sci. World J.
– volume: 19
  start-page: 158
  year: 2015
  ident: ref_80
  article-title: Unsupervised Eye Blink Artifact Denoising of EEG Data with Modified Multiscale Sample Entropy, Kurtosis, and Wavelet-ICA
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2014.2333010
– volume: 255
  start-page: 556
  year: 1992
  ident: ref_13
  article-title: Working memory
  publication-title: Science
  doi: 10.1126/science.1736359
– volume: 2011
  start-page: 927573
  year: 2011
  ident: ref_19
  article-title: Electroencephalographic rhythms in Alzheimer’s disease
  publication-title: Int. J. Alzheimer Dis.
  doi: 10.4061/2011/927573
– ident: ref_24
– volume: 7
  start-page: 374
  year: 1997
  ident: ref_20
  article-title: High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/7.4.374
– volume: 10
  start-page: 626
  year: 1999
  ident: ref_70
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.761722
– ident: ref_50
  doi: 10.1007/978-1-4419-5913-3_65
– volume: 2
  start-page: 136
  year: 2010
  ident: ref_90
  article-title: Nonlinear filtering in ECG signal denoising
  publication-title: Acta Univ. Sapientiae Electr. Mech. Eng.
– volume: 243
  start-page: 84
  year: 2015
  ident: ref_41
  article-title: EEG artifact elimination by extraction of ICA-component features using image processing algorithms
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.01.030
– volume: 115
  start-page: 1490
  year: 2004
  ident: ref_16
  article-title: EEG dynamics in patients with Alzheimer’s disease
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2004.01.001
– volume: 13
  start-page: 411
  year: 2000
  ident: ref_37
  article-title: Independent component analysis: Algorithms and applications
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(00)00026-5
– volume: 117
  start-page: 752
  year: 2006
  ident: ref_31
  article-title: Quantitative multichannel EEG measure predicting the optimal weaning from ventilator in ICU patients with acute respiratory failure
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2005.12.009
– volume: 2014
  start-page: 259121
  year: 2014
  ident: ref_77
  article-title: Removal of EOG artifacts from EEG recordings using stationary subspace analysis
  publication-title: Sci. World J.
  doi: 10.1155/2014/259121
– volume: 278
  start-page: H2039
  year: 2000
  ident: ref_82
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: Am. J. Physiol. Heart Circul. Physiol.
  doi: 10.1152/ajpheart.2000.278.6.H2039
– volume: 158
  start-page: 300
  year: 2006
  ident: ref_53
  article-title: Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2006.05.033
– volume: 3
  start-page: 299
  year: 2007
  ident: ref_6
  article-title: Neuropsychological testing and assessment for dementia
  publication-title: Alzheimer Dement.
  doi: 10.1016/j.jalz.2007.07.011
– volume: 54
  start-page: 1965
  year: 2007
  ident: ref_66
  article-title: Artifact removal in magnetoencephalogram background activity with independent component analysis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.894968
– ident: ref_85
– volume: 1
  start-page: 50
  year: 2008
  ident: ref_29
  article-title: BSS and ICA in neuroinformatics: From current practices to open challenges
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2008.2008244
– volume: 86
  start-page: 395
  year: 2002
  ident: ref_69
  article-title: Nonlinear dynamics of the EEG separated by independent component analysis after sound and light stimulation
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-001-0304-z
– volume: 23
  start-page: 3008
  year: 2011
  ident: ref_21
  article-title: Theta and gamma power increases and alpha/beta power decreases with memory load in an attractor network model
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn_a_00029
– volume: 123
  start-page: 69
  year: 2003
  ident: ref_51
  article-title: Analysis of EEG records in an epileptic patient using wavelet transform
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(02)00340-0
– volume: Volume 88
  start-page: 237
  year: 2008
  ident: ref_15
  article-title: Chapter 11 Working memory
  publication-title: Handbook of Clinical Neurology
  doi: 10.1016/S0072-9752(07)88011-0
– volume: 98
  start-page: 102
  year: 2014
  ident: ref_26
  article-title: Comparative evaluation of existing and new methods for correcting ocular artifacts in electroencephalographic recordings
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2013.11.015
– volume: 7
  start-page: 865
  year: 2009
  ident: ref_100
  article-title: Emotion recognition using EEG signals with relative power values and Bayesian network
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-009-0521-0
– volume: 55
  start-page: 2353
  year: 2008
  ident: ref_32
  article-title: Integration of amplitude and phase statistics for complete artifact removal in independent components of neuromagnetic recordings
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.926677
– volume: 17
  start-page: 1370
  year: 2006
  ident: ref_72
  article-title: The FastICA algorithm revisited: Convergence analysis
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.880980
– volume: 79
  start-page: 203
  year: 2011
  ident: ref_27
  article-title: A test of four EOG correction methods using an improved validation technique (Published Conference Proceedings style)
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2010.10.008
– volume: 12
  start-page: 533
  year: 2012
  ident: ref_39
  article-title: Automatic artifact rejection from multichannel scalp EEG by wavelet ICA
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2011.2115236
– ident: ref_75
  doi: 10.1109/IJCNN.2007.4371184
– reference: 20855090 - J Neurol Sci. 2010 Dec 15;299(1-2):168-74
– reference: 24189330 - Sensors (Basel). 2013 Nov 01;13(11):14839-59
– reference: 18430547 - Neural Netw. 2008 Sep;21(7):1029-40
– reference: 21097374 - IEEE Trans Biomed Eng. 2011 Mar;58(3):598-606
– reference: 18018691 - IEEE Trans Biomed Eng. 2007 Nov;54(11):1965-73
– reference: 23280268 - Int J Stroke. 2013 Jan;8(1):38-45
– reference: 17542384 - Can J Psychiatry. 2007 May;52(5):329-32
– reference: 26593918 - Sensors (Basel). 2015 Nov 17;15(11):29015-35
– reference: 17178826 - J Neurol Neurosurg Psychiatry. 2007 Aug;78(8):790-9
– reference: 15324362 - J Intern Med. 2004 Sep;256(3):183-94
– reference: 18985453 - Ann Biomed Eng. 2009 Jan;37(1):176-91
– reference: 21452933 - J Cogn Neurosci. 2011 Oct;23(10):3008-20
– reference: 24486874 - J Neurosci Methods. 2014 Mar 30;225:97-105
– reference: 17652020 - Clin Neurophysiol. 2007 Sep;118(9):1906-22
– reference: 7508371 - Electroencephalogr Clin Neurophysiol. 1993 Dec;87(6):385-93
– reference: 16828877 - J Neurosci Methods. 2006 Dec 15;158(2):300-12
– reference: 21807379 - J Neurol Sci. 2011 Oct 15;309(1-2):92-5
– reference: 2749846 - Stroke. 1989 Jul;20(7):864-70
– reference: 22438708 - Sensors (Basel). 2012;12 (2):1211-79
– reference: 18329868 - Artif Intell Med. 2008 May;43(1):75-85
– reference: 15066548 - Clin Neurophysiol. 2004 May;115(5):1220-32
– reference: 10209231 - Brain Res Brain Res Rev. 1999 Apr;29(2-3):169-95
– reference: 22694976 - J Neurol Sci. 2012 Nov 15;322(1-2):41-5
– reference: 11984653 - Biol Cybern. 2002 May;86(5):395-401
– reference: 1202204 - J Psychiatr Res. 1975 Nov;12(3):189-98
– reference: 23596409 - Front Hum Neurosci. 2013 Apr 15;7:138
– reference: 23290422 - Clin Neurol Neurosurg. 2013 Aug;115(8):1276-80
– reference: 18222418 - Comput Biol Med. 2008 Mar;38(3):348-60
– reference: 10731767 - Psychophysiology. 2000 Mar;37(2):163-78
– reference: 19595951 - Alzheimers Dement. 2007 Oct;3(4):299-317
– reference: 16495143 - Clin Neurophysiol. 2006 Apr;117(4):752-70
– reference: 18631694 - Handb Clin Neurol. 2008;88:237-47
– reference: 15742873 - Physiol Meas. 2005 Feb;26(1):R15-39
– reference: 25666892 - J Neurosci Methods. 2015 Mar 30;243:84-93
– reference: 20466582 - Med Eng Phys. 2010 Sep;32(7):720-9
– reference: 20865544 - Adv Exp Med Biol. 2010;680:593-9
– reference: 25051031 - Sensors (Basel). 2014 Jul 21;14(7):13046-69
– reference: 18003243 - Conf Proc IEEE Eng Med Biol Soc. 2007;2007:5445-8
– reference: 3336779 - Science. 1988 Jan 8;239(4836):162-9
– reference: 12185014 - Am J Physiol Regul Integr Comp Physiol. 2002 Sep;283(3):R789-97
– reference: 15721088 - Clin Neurophysiol. 2005 Mar;116(3):729-37
– reference: 21509634 - Ann Biomed Eng. 2011 Aug;39(8):2274-86
– reference: 11156200 - Neural Netw. 2000 Oct-Nov;13(8-9):891-907
– reference: 19482539 - Med Eng Phys. 2009 Sep;31(7):872-9
– reference: 23375564 - Alzheimers Dement. 2013 Mar;9(2):151-9
– reference: 24550696 - ScientificWorldJournal. 2014 Jan 12;2014:259121
– reference: 25093211 - ScientificWorldJournal. 2014;2014:906038
– reference: 22274899 - IEEE Rev Biomed Eng. 2008;1:50-61
– reference: 15927487 - Neuroimage. 2005 Aug 15;27(2):341-56
– reference: 19121602 - Clin Neurophysiol. 2009 Feb;120(2):295-303
– reference: 17131654 - IEEE Trans Neural Netw. 2006 Nov;17(6):1370-81
– reference: 12581851 - J Neurosci Methods. 2003 Feb 15;123(1):69-87
– reference: 15730538 - Epilepsia. 2005 Mar;46(3):409-14
– reference: 11166367 - J Neurosci Methods. 2001 Jan 30;105(1):65-75
– reference: 7584893 - Neural Comput. 1995 Nov;7(6):1129-59
– reference: 1736359 - Science. 1992 Jan 31;255(5044):556-9
– reference: 11018488 - Clin Neurophysiol. 2000 Oct;111(10):1745-58
– reference: 25228808 - Neuropsychiatr Dis Treat. 2014 Sep 09;10:1677-91
– reference: 9177767 - Cereb Cortex. 1997 Jun;7(4):374-85
– reference: 15203050 - Clin Neurophysiol. 2004 Jul;115(7):1490-505
– reference: 21629714 - Int J Alzheimers Dis. 2011;2011:927573
– reference: 10946390 - Neural Netw. 2000 May-Jun;13(4-5):411-30
– reference: 24968340 - IEEE J Biomed Health Inform. 2015 Jan;19(1):158-65
– reference: 18252563 - IEEE Trans Neural Netw. 1999;10(3):626-34
– reference: 21034784 - Int J Psychophysiol. 2011 Feb;79(2):203-10
– reference: 18838360 - IEEE Trans Biomed Eng. 2008 Oct;55(10):2353-62
– reference: 10843903 - Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H2039-49
SSID ssj0023338
Score 2.4463537
Snippet Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG) is a promising tool to support the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1326
SubjectTerms Algorithms
Brain
Dementia
Electroencephalography
Humans
independent component analysis
Memory, Short-Term
mild cognitive impairment
Signal processing
Signal Processing, Computer-Assisted
spectral analysis
Stroke
vascular dementia
wavelet
Wavelet Analysis
SummonAdditionalLinks – databaseName: DOAJ - Directory of Open Access Journals (Some content may be blocked by TCTC IT security protocols)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hTuVQFUrb8KgM4tBLBIkTP45burwkOKBFcIsc21ERkFTN7qG3_of-w_6SzjjZaBch9cIhh8Q-OJ6x_X32zGeAg7xKtanoyD_XOs5MIuLSlHms3ZFWpcc5M2SlXV6Js5vs4i6_W7jqi2LCOnngruMORWJSXenSGmQKmREIs7STWiEwtta6kLqHa96cTPVUiyPz6nSEOJL6w5ZEYpB3iaXVJ4j0v4QsnwdILqw4J-_gbQ8V2ahr4jqs-HoD1hYEBN9DM5pNmyC6GqpRlgK79k8Nug-7r9l4fMqail0RLn1kpnbsW9gN9I6dD4lYLQthA-z8ePT395_bCesyF1m_jc4uKRb3F5uY9qHdhJuT8eT4LO6vUIhtzvU05tYRR1Gku45PmSjsO1-lqRNoB8d5agKFKZWUJTdHiUuEk15ZnjpjccR_gNW6qf0nYKYyssosd17nmZVW5d4mWqJ1Db5zEcGXedcWttcXp2suHgvkGWSFYrBCBPtD1R-dqMZLlb6SfYYKpIMdPqB3FL13FP_zjgh25tYt-sHZFshycZbiKpcR7A3FOKzorMTUvpm1BeIkyXE25zyCj50zDC0hzT9EmWkEcslNlpq6XFLffw_S3aSHpwTfeo1_24Y3KWEM2hJSO7A6_Tnzu4iQpuXnMBj-ARNsD6I
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BucCh4ptAQQZx4BK1iRN_nNBSdtsitQe0Fb1Fju2UipK0ze6BG_-Bf8gvYcbxhi6qOOSQxAcnM7bfG888A7wtm1ybhrb8S63TwmQirU1dptrtaFV7nDNDVdrhkdg_Lj6dlCcx4NbHtMrVnBgmatdZipFvIzVB1-KqlO8vLlM6NYp2V-MRGrfhToYrDXm4mu2NhIsj_xrUhDhS--2epGKQfYm1NShI9d-EL_9Nk7y27szuw2YEjGwyWPgB3PLtQ7h3TUbwEXST5aIL0quhGdUqsM_-e4dOxM5aNp3usa5hR4ROz5lpHfsYYoLesYOxHKtnIXmAHexOfv_89WXOhvpFFoPp7JAycn-wuem_9Y_heDad7-6n8SCF1JZcL1JuHTEVRerreNWZclL7Js-dQGs4znMTiEytpKy52clcJpz0yvLcGYvj_glstF3rnwEzjZFNYbnzuiystKr0NtMSbWzwnosE3q1-bWWjyjgddnFeIdsgK1SjFRJ4Mza9GKQ1bmr0gewzNiA17PCguzqt4uCqRGZy3ejaGmSThREIxTV-oULyZK11OoGtlXWrOET76q9DJfB6fI2Di3ZMTOu7ZV8hWpIc53TOE3g6OMPYE1L-Q6yZJyDX3GStq-tv2rOvQcCbVPGU4M__360XcDcnDEEhH7UFG4urpX-JCGhRvwpu_gfjQQbm
  priority: 102
  providerName: ProQuest
Title Automatic Artifact Removal in EEG of Normal and Demented Individuals Using ICA–WT during Working Memory Tasks
URI https://www.ncbi.nlm.nih.gov/pubmed/28594352
https://www.proquest.com/docview/2108703857
https://www.proquest.com/docview/1907321933
https://pubmed.ncbi.nlm.nih.gov/PMC5492863
https://doaj.org/article/61a29f9bca9244a681b9d798118cccd9
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Pb9MwFH_anwscEP8XGJVBHLgEmjiJ7cM0daPdhtQKTa3oLXJsByZKAk0rbTe-A99wn4RnJ40W1AOHRErsSI6f_d772X6_B_A2zkMhc7vlHwvhRzJI_ExmsS90X_DMoM50UWnjSXI-iz7N4_kObHJsNh1YbYV2Np_UbLl4f_3r5hgn_JFFnAjZP1SWAgZRVbIL-2iQmM3gMI7azYSQUpfQ2sZ0-WgP-zXBUPfTjlly7P3bXM5_T07eMUWjh_Cg8SHJoBb6I9gxxWO4f4dZ8AmUg_WqdGysrpoNXyCX5keJ44pcFWQ4PCNlTibWYV0QWWjy0S0TGk0u2gitirjzBOTidHD7-8-XKalDGkmzvk7G9pDuDZnK6nv1FGaj4fT03G9yK_gqpmLlU6UteOGWkB2vLOCaCZOHoU5QQJrSUDpsk3HGMir7gQ4SzQxXNNRSoSp4BntFWZgDIDKXLI8U1UbEkWKKx0YFgqHYJT7TxIN3m65NVUM8bvNfLFIEIFYKaSsFD960VX_WbBvbKp1Y-bQVLEG2e1Euv6bNfEuTQIYiF5mSCDAjmaB3LvAPOeIppZQWHhxupJtuBl2K8BfVF-Ux8-B1W4zzzW6iyMKU6ypFB4pRVPOUevC8HgxtSywZILqfoQesM0w6Te2WFFffHKe3JcrjCX3xPx3wEu6F1rmwa0H8EPZWy7V5ha7RKuvBLpszvPPRWQ_2T4aTz5c9t8zQc1PiLynKD-8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOiH8CBQwCiUvUTZzE8QGhQrfs0u4e0FbsLTi2AxUlKc2uUG-8A-_BQ_EkzDg_7aKKWw972I21cjyf7W_smW8AnsdFKFVBV_6xlH6kgsTPVR770gxkmltcM11W2mSajPaj9_N4vga_u1wYCqvs1kS3UJtK0xn5JromCC2exuL10XefqkbR7WpXQqOBxa49-YEuW_1qvI32fRGGO8PZ25HfVhXwdczlwufaEG1PSYocP3mQGiFtEYYmwa4ZzkPlWH2eCpFzNQhMkBhhU81DozROAvzfS3AZN94BhRCK-amDx9Hfa9SLOJeDzZqkadDbS1b2PFca4Dw--29Y5pl9bucGXG8JKttqEHUT1mx5C66dkS28DdXWclE5qVfXjHIj2Af7rULQsoOSDYfvWFWwKbHhQ6ZKw7bdGaQ1bNynf9XMBSswHLI_P399nLEmX5K1h_dsQhHAJ2ym6q_1Hdi_kCG-C-tlVdr7wFShRBFpbqyMIy10GlsdSIGYUvidJx687IY2062qORXXOMzQuyErZL0VPHjWNz1qpDzOa_SG7NM3IPVt90N1_DlrJ3OWBCqUhcy1Qu81UglSf4lvmKKzprU20oONzrpZuyTU2SmAPXjaP8bJTDc0qrTVss6QnQmOewjnHtxrwND3hJQGkduGHogVmKx0dfVJefDFCYaTCl-a8Af_79YTuDKaTfayvfF09yFcDYm_0HFTugHri-OlfYTsa5E_dpBn8Omi59hf_39B8Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIiE4IP4JFDAIJC5RN3YS2weECrtLl9IVQluxt-DYDlSUpDS7Qr3xDrwNj8OTMHZ-2kUVtx5ySGJFjmfGns-e-QbgaVJQqQp35J9IGcYqSsNc5UkozUCK3OKc6bPSdqfp9l78dp7M1-B3lwvjwiq7OdFP1KbSbo98E6EJqhYTCOCLNizi_XD88vB76CpIuZPWrpxGoyI79vgHwrf6xWSIsn5G6Xg0e70dthUGQp0wuQiZNs6FF46WHK88EoZLW1BqUuymYYwq7-HngvOcqUFkotRwKzSjRmk0CPzuBbjIGS6baEt8fgL2GGK_hsmIMTnYrB1NDSK_dGX982UCzvJt_w3RPLXmja_B1dZZJVuNdl2HNVvegCunKAxvQrW1XFSe9tU3c3kS5IP9VqECk_2SjEZvSFWQqfOMD4gqDRn6_UhryKRPBauJD1wgOGR_fv76OCNN7iRpN_LJrosGPiYzVX-tb8HeuQzxbVgvq9LeBaIKxYtYM2NlEmuuRWJ1JDnql8J7lgbwvBvaTLcM567QxkGGSMdJIeulEMCTvulhQ-txVqNXTj59A8fE7R9UR5-z1rCzNFJUFjLXCpFsrFKEARL_UCBw01obGcBGJ92snR7q7ESZA3jcv0bDdqc1qrTVss7QU-MM1xPGArjTKEPfE8c6iH4uDYCvqMlKV1fflPtfPHm4Y-QTKbv3_249gktoXdm7yXTnPlymzpVxO09iA9YXR0v7AB2xRf7QazyBT-dtYn8B5wBGJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Artifact+Removal+in+EEG+of+Normal+and+Demented+Individuals+Using+ICA%E2%80%93WT+during+Working+Memory+Tasks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Al-Qazzaz%2C+Noor&rft.au=Hamid+Bin+Mohd+Ali%2C+Sawal&rft.au=Ahmad%2C+Siti&rft.au=Islam%2C+Mohd&rft.date=2017-06-08&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=17&rft.issue=6&rft.spage=1326&rft_id=info:doi/10.3390%2Fs17061326&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s17061326
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon