Candida albicans Hap43 Is a Repressor Induced under Low-Iron Conditions and Is Essential for Iron-Responsive Transcriptional Regulation and Virulence
Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue EC About EC Subscribers Authors Reviewers Advertisers Inquiries from the Pr...
Saved in:
Published in | Eukaryotic Cell Vol. 10; no. 2; pp. 207 - 225 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.02.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Classifications
Services
EC
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
Spotlights in the Current Issue
EC
About
EC
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
EC
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
1535-9778
Online ISSN:
1535-9786
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
EC
.asm.org, visit:
EC
|
---|---|
AbstractList | Candida albicans is an opportunistic fungal pathogen that exists as normal flora in healthy human bodies but causes life-threatening infections in immunocompromised patients. In addition to innate and adaptive immunities, hosts also resist microbial infections by developing a mechanism of "natural resistance" that maintains a low level of free iron to restrict the growth of invading pathogens. C. albicans must overcome this iron-deprived environment to cause infections. There are three types of iron-responsive transcriptional regulators in fungi; Aft1/Aft2 activators in yeast, GATA-type repressors in many fungi, and HapX/Php4 in Schizosaccharomyces pombe and Aspergillus species. In this study, we characterized the iron-responsive regulator Hap43, which is the C. albicans homolog of HapX/Php4 and is repressed by the GATA-type repressor Sfu1 under iron-sufficient conditions. We provide evidence that Hap43 is essential for the growth of C. albicans under low-iron conditions and for C. albicans virulence in a mouse model of infection. Hap43 was not required for iron acquisition under low-iron conditions. Instead, it was responsible for repression of genes that encode iron-dependent proteins involved in mitochondrial respiration and iron-sulfur cluster assembly. We also demonstrated that Hap43 executes its function by becoming a transcriptional repressor and accumulating in the nucleus in response to iron deprivation. Finally, we found a connection between Hap43 and the global corepressor Tup1 in low-iron-induced flavinogenesis. Taken together, our data suggest a complex interplay among Hap43, Sfu1, and Tup1 to coordinately regulate iron acquisition, iron utilization, and other iron-responsive metabolic activities. Candida albicans is an opportunistic fungal pathogen that exists as normal flora in healthy human bodies but causes life-threatening infections in immunocompromised patients. In addition to innate and adaptive immunities, hosts also resist microbial infections by developing a mechanism of “natural resistance” that maintains a low level of free iron to restrict the growth of invading pathogens. C. albicans must overcome this iron-deprived environment to cause infections. There are three types of iron-responsive transcriptional regulators in fungi; Aft1/Aft2 activators in yeast, GATA-type repressors in many fungi, and HapX/Php4 in Schizosaccharomyces pombe and Aspergillus species. In this study, we characterized the iron-responsive regulator Hap43, which is the C. albicans homolog of HapX/Php4 and is repressed by the GATA-type repressor Sfu1 under iron-sufficient conditions. We provide evidence that Hap43 is essential for the growth of C. albicans under low-iron conditions and for C. albicans virulence in a mouse model of infection. Hap43 was not required for iron acquisition under low-iron conditions. Instead, it was responsible for repression of genes that encode iron-dependent proteins involved in mitochondrial respiration and iron-sulfur cluster assembly. We also demonstrated that Hap43 executes its function by becoming a transcriptional repressor and accumulating in the nucleus in response to iron deprivation. Finally, we found a connection between Hap43 and the global corepressor Tup1 in low-iron-induced flavinogenesis. Taken together, our data suggest a complex interplay among Hap43, Sfu1, and Tup1 to coordinately regulate iron acquisition, iron utilization, and other iron-responsive metabolic activities. Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue EC About EC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy EC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 1535-9778 Online ISSN: 1535-9786 Copyright © 2014 by the American Society for Microbiology. For an alternate route to EC .asm.org, visit: EC Candida albicans is an opportunistic fungal pathogen that exists as normal flora in healthy human bodies but causes life-threatening infections in immunocompromised patients. In addition to innate and adaptive immunities, hosts also resist microbial infections by developing a mechanism of "natural resistance" that maintains a low level of free iron to restrict the growth of invading pathogens. C. albicans must overcome this iron-deprived environment to cause infections. There are three types of iron-responsive transcriptional regulators in fungi; Aft1/Aft2 activators in yeast, GATA-type repressors in many fungi, and HapX/Php4 in Schizosaccharomyces pombe and Aspergillus species. In this study, we characterized the iron-responsive regulator Hap43, which is the C. albicans homolog of HapX/Php4 and is repressed by the GATA-type repressor Sfu1 under iron-sufficient conditions. We provide evidence that Hap43 is essential for the growth of C. albicans under low-iron conditions and for C. albicans virulence in a mouse model of infection. Hap43 was not required for iron acquisition under low-iron conditions. Instead, it was responsible for repression of genes that encode iron-dependent proteins involved in mitochondrial respiration and iron-sulfur cluster assembly. We also demonstrated that Hap43 executes its function by becoming a transcriptional repressor and accumulating in the nucleus in response to iron deprivation. Finally, we found a connection between Hap43 and the global corepressor Tup1 in low-iron-induced flavinogenesis. Taken together, our data suggest a complex interplay among Hap43, Sfu1, and Tup1 to coordinately regulate iron acquisition, iron utilization, and other iron-responsive metabolic activities.Candida albicans is an opportunistic fungal pathogen that exists as normal flora in healthy human bodies but causes life-threatening infections in immunocompromised patients. In addition to innate and adaptive immunities, hosts also resist microbial infections by developing a mechanism of "natural resistance" that maintains a low level of free iron to restrict the growth of invading pathogens. C. albicans must overcome this iron-deprived environment to cause infections. There are three types of iron-responsive transcriptional regulators in fungi; Aft1/Aft2 activators in yeast, GATA-type repressors in many fungi, and HapX/Php4 in Schizosaccharomyces pombe and Aspergillus species. In this study, we characterized the iron-responsive regulator Hap43, which is the C. albicans homolog of HapX/Php4 and is repressed by the GATA-type repressor Sfu1 under iron-sufficient conditions. We provide evidence that Hap43 is essential for the growth of C. albicans under low-iron conditions and for C. albicans virulence in a mouse model of infection. Hap43 was not required for iron acquisition under low-iron conditions. Instead, it was responsible for repression of genes that encode iron-dependent proteins involved in mitochondrial respiration and iron-sulfur cluster assembly. We also demonstrated that Hap43 executes its function by becoming a transcriptional repressor and accumulating in the nucleus in response to iron deprivation. Finally, we found a connection between Hap43 and the global corepressor Tup1 in low-iron-induced flavinogenesis. Taken together, our data suggest a complex interplay among Hap43, Sfu1, and Tup1 to coordinately regulate iron acquisition, iron utilization, and other iron-responsive metabolic activities. |
Author | Chung-Yu Lan Cheng-Yao Yang Po-Chen Hsu |
Author_xml | – sequence: 1 givenname: Po-Chen surname: Hsu fullname: Hsu, Po-Chen organization: Institute of Molecular and Cellular Biology, No. 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China – sequence: 2 givenname: Cheng-Yao surname: Yang fullname: Yang, Cheng-Yao organization: Division of Animal Medicine, Animal Technology Institute Taiwan, Chunan, Miaoli 35053, Taiwan, Republic of China – sequence: 3 givenname: Chung-Yu surname: Lan fullname: Lan, Chung-Yu organization: Institute of Molecular and Cellular Biology, No. 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China, Department of Life Science, National Tsing Hua University, No. 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21131439$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks2LEzEYhwdZcT_05F1yEDwssyaTySRzEZah6xYKQlm9hjR500anyZh0dvEP8f81065FBdFTvp7nzS-8OS9OfPBQFC8JviKkEm9n3RXGhImS4CfFGWGUlS0XzclxzsVpcZ7S54lqOX1WnFaEUFLT9qz43ilvnFFI9SunlU_oVg01RfOEFFrCECGlENHcm1GDQaM3ENEiPJTzGDzqQpZ3LmQtl5mkWUrgd071yE5ahsolpCET7h7QXcw36OiGycnMEtZjr6bF3v_k4tiD1_C8eGpVn-DF43hRfLyZ3XW35eLD-3l3vSg1o-2urHhjgVeCmJayFeVY1GYFFTS2oVRQS2uojRWatJbaihqBmWrAKmqZsbQR9KJ4d6g7jKstGJ2jR9XLIbqtit9kUE7-fuLdRq7DvaS44TVmucCbxwIxfB0h7eTWJQ19rzyEMckWc8KwIPy_yLrldf1PUjDMmkqIKf6rX-Mfc_9sbwYuD4COIaUI9ogQLKfPI2ed3H-evJFp8get3W7fnfx21__FeX1wNm69eXARpEpbCeOXKfBkVLLCnP4AiqPU5w |
CitedBy_id | crossref_primary_10_1128_aem_00116_22 crossref_primary_10_1128_msphere_00372_24 crossref_primary_10_1002_mbo3_970 crossref_primary_10_1371_journal_pone_0051403 crossref_primary_10_1534_g3_116_031898 crossref_primary_10_1016_j_mib_2013_07_008 crossref_primary_10_3389_fmicb_2021_708267 crossref_primary_10_1016_j_mib_2013_07_007 crossref_primary_10_3389_fcimb_2024_1367656 crossref_primary_10_1105_tpc_112_098624 crossref_primary_10_1042_BSR20240689 crossref_primary_10_1038_s41467_022_32107_4 crossref_primary_10_3389_fmicb_2016_00645 crossref_primary_10_1186_1752_0509_8_S5_S6 crossref_primary_10_1534_genetics_120_303270 crossref_primary_10_1186_1471_2180_13_16 crossref_primary_10_1128_mbio_01171_23 crossref_primary_10_1016_j_bbamcr_2012_05_009 crossref_primary_10_1128_EC_00134_12 crossref_primary_10_1016_j_chom_2011_07_005 crossref_primary_10_1371_journal_pbio_3000433 crossref_primary_10_1128_EC_00103_12 crossref_primary_10_1080_19490976_2022_2105610 crossref_primary_10_1099_mic_0_000807 crossref_primary_10_1016_j_cbpa_2020_02_008 crossref_primary_10_1371_journal_pone_0062367 crossref_primary_10_1016_j_resmic_2014_03_001 crossref_primary_10_1093_mmy_myw120 crossref_primary_10_1371_journal_pgen_1008881 crossref_primary_10_3390_ijms221910633 crossref_primary_10_1074_jbc_M114_628677 crossref_primary_10_1371_journal_pone_0070425 crossref_primary_10_1128_EC_00014_13 crossref_primary_10_1099_mic_0_001451 crossref_primary_10_3389_fcimb_2016_00131 crossref_primary_10_3389_fcimb_2021_731988 crossref_primary_10_3390_jof8111196 crossref_primary_10_15252_embr_202256019 crossref_primary_10_3390_cells11233718 crossref_primary_10_1128_EC_05200_11 crossref_primary_10_1371_journal_pone_0072483 crossref_primary_10_1093_nar_gkaa109 crossref_primary_10_1007_s00253_012_4615_x crossref_primary_10_1186_s12864_017_4097_4 crossref_primary_10_1007_s12281_012_0108_8 crossref_primary_10_1016_j_fbr_2025_100427 crossref_primary_10_1371_journal_pone_0129903 crossref_primary_10_1093_femsre_fux050 crossref_primary_10_1016_j_bbamcr_2013_12_009 crossref_primary_10_1111_mmi_12983 crossref_primary_10_3389_fmicb_2024_1476087 crossref_primary_10_1021_acsinfecdis_3c00113 crossref_primary_10_1099_mic_0_065268_0 crossref_primary_10_1371_journal_ppat_1005775 crossref_primary_10_3389_fmicb_2018_01478 crossref_primary_10_3389_fcimb_2020_605711 crossref_primary_10_1128_mBio_01782_16 crossref_primary_10_1007_s00294_021_01172_5 crossref_primary_10_1080_20002297_2023_2278937 crossref_primary_10_1016_j_bbamcr_2020_118885 crossref_primary_10_1371_journal_pone_0028151 crossref_primary_10_3389_fmicb_2019_01843 crossref_primary_10_1016_j_jmii_2016_03_001 crossref_primary_10_1128_EC_00060_12 crossref_primary_10_1016_j_mib_2013_09_006 crossref_primary_10_1371_journal_pbio_2006450 crossref_primary_10_1371_journal_pone_0150701 crossref_primary_10_1534_g3_114_015941 crossref_primary_10_1016_j_jmii_2018_04_002 crossref_primary_10_1074_jbc_M111_233569 crossref_primary_10_1186_1471_2180_14_119 crossref_primary_10_15252_embj_201489468 crossref_primary_10_1016_j_cub_2021_06_026 crossref_primary_10_1128_spectrum_04095_23 crossref_primary_10_1371_journal_pone_0110721 crossref_primary_10_1371_journal_pone_0035750 crossref_primary_10_1016_j_biomed_2012_12_004 crossref_primary_10_1186_s42483_023_00215_8 crossref_primary_10_1002_iub_1441 crossref_primary_10_1007_s00438_014_0846_0 crossref_primary_10_1016_j_jprot_2013_07_031 crossref_primary_10_1016_j_isci_2023_106635 crossref_primary_10_3103_S0095452720050072 crossref_primary_10_3389_fmicb_2015_00367 crossref_primary_10_1128_mSphere_00370_18 crossref_primary_10_1016_j_bbamcr_2015_08_005 crossref_primary_10_1128_mBio_02377_18 crossref_primary_10_1371_journal_ppat_1002525 crossref_primary_10_2217_fmb_2017_0098 crossref_primary_10_3390_pathogens3030549 crossref_primary_10_1371_journal_ppat_1003332 crossref_primary_10_1016_j_chom_2011_08_001 crossref_primary_10_1016_j_mib_2019_04_002 crossref_primary_10_1038_ismej_2014_53 crossref_primary_10_1371_journal_pone_0170649 crossref_primary_10_3390_toxins15010050 crossref_primary_10_3390_antiox13050527 crossref_primary_10_1080_21505594_2017_1414133 crossref_primary_10_3390_jof10010016 crossref_primary_10_5941_MYCO_2014_42_4_427 crossref_primary_10_1007_s00284_012_0242_0 crossref_primary_10_1093_nar_gkae1147 crossref_primary_10_1038_s41598_017_03750_5 crossref_primary_10_1242_jcs_220202 crossref_primary_10_1016_j_mib_2011_06_002 crossref_primary_10_3389_fmicb_2017_01055 crossref_primary_10_3389_fmicb_2017_02388 crossref_primary_10_1016_j_jbc_2021_100727 crossref_primary_10_1128_mSphere_00400_18 crossref_primary_10_1016_j_bbagrm_2016_11_008 crossref_primary_10_3389_fcimb_2022_960884 crossref_primary_10_1093_femsyr_foz005 crossref_primary_10_1128_msphere_00779_21 crossref_primary_10_7554_eLife_86075 crossref_primary_10_3390_ijms22147739 crossref_primary_10_1002_yea_3550 crossref_primary_10_3389_fmicb_2019_01645 crossref_primary_10_1128_EC_05274_11 crossref_primary_10_4161_psb_23012 crossref_primary_10_1093_nar_gkad708 crossref_primary_10_1128_mSphere_00917_19 crossref_primary_10_1111_mmi_12659 |
Cites_doi | 10.1172/JCI32338 10.1046/j.1365-2958.1999.01263.x 10.1101/gad.3.8.1166 10.1038/nrm1620 10.1128/EC.1.3.353-365.2002 10.1534/genetics.109.104364 10.1128/EC.4.10.1662-1676.2005 10.1016/j.gene.2004.06.021 10.1111/j.1365-2958.2004.04214.x 10.1074/jbc.M202682200 10.1128/CMR.12.3.394 10.1016/j.tibs.2005.01.006 10.1016/0014-5793(92)80911-Y 10.1146/annurev.cellbio.22.010305.104538 10.1016/j.fgb.2005.04.008 10.1126/science.277.5322.105 10.1093/jac/dkp426 10.1093/emboj/cdf507 10.1371/journal.pbio.0040410 10.1093/nar/gkn160 10.1128/mcb.13.11.7091-7100.1993 10.1074/jbc.274.8.4613 10.1016/j.bbamcr.2006.03.008 10.1146/annurev.mi.26.100172.002101 10.1128/EC.00199-06 10.1016/j.cell.2004.11.032 10.1099/mic.0.28843-0 10.1007/PL00012493 10.1093/nar/gkp509 10.1038/nrmicro1930 10.1042/bst0300781 10.1016/j.abb.2007.05.020 10.1128/IAI.73.9.5493-5503.2005 10.1128/EC.00446-07 10.1093/genetics/155.1.57 10.1007/BF00328721 10.1093/nar/gkn328 10.1023/A:1009298530145 10.1099/jmm.0.46386-0 10.1093/jac/dkl350 10.1084/jem.20041242 10.1111/j.1432-1033.1993.tb17591.x 10.1128/jb.174.21.6992-6996.1992 10.1074/jbc.M602165200 10.1111/j.1365-2958.1994.tb01269.x 10.1186/1471-2105-4-29 10.1016/S0167-4781(02)00286-5 10.1128/IAI.70.9.5246-5255.2002 10.1097/QCO.0b013e3283165fd1 10.1242/jcs.03229 10.1111/j.1365-2958.2005.04898.x 10.1021/bi800066s 10.1016/j.ab.2005.12.001 10.1016/j.femsyr.2005.03.007 10.1128/MCB.17.12.7008 10.1128/AEM.01387-07 10.1126/science.288.5471.1651 10.1042/bj2190001 10.1128/EC.00354-07 10.1111/j.1365-2958.2008.06376.x 10.1007/s004380050845 10.1128/EC.00108-08 10.1016/S0378-1119(96)00570-7 10.1128/MCB.25.15.6760-6771.2005 10.1016/j.micres.2007.12.001 10.1046/j.1365-2958.2001.02713.x 10.1371/journal.ppat.1001124 10.1128/IAI.66.5.1953-1961.1998 10.1093/genetics/134.3.717 10.1038/sj.emboj.7601752 10.1016/j.ymben.2009.01.004 10.1371/journal.pgen.1000783 10.1016/S0092-8674(04)00343-5 10.1016/j.tim.2008.03.005 10.1128/EC.4.8.1328-1342.2005 10.1146/annurev.phyto.45.062806.094338 10.1016/j.mib.2009.05.005 10.1038/emboj.2008.212 10.1126/science.288.5468.1062 10.1111/j.1574-6968.1983.tb00504.x 10.1016/S0928-8244(03)00301-8 10.1007/s10534-009-9256-x 10.1046/j.1365-2958.1998.00957.x 10.1093/bioinformatics/btm404 10.1371/journal.pbio.0040427 10.1073/pnas.261381198 10.1074/jbc.M104987200 10.1099/00221287-148-1-29 10.1074/jbc.M109.009563 10.1016/S0076-6879(02)50959-9 10.1002/j.1460-2075.1995.tb07106.x |
ContentType | Journal Article |
Copyright | Copyright © 2011, American Society for Microbiology 2011 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2011, American Society for Microbiology 2011 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 M7N 5PM |
DOI | 10.1128/EC.00158-10 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) |
DatabaseTitleList | MEDLINE CrossRef Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Biology |
EISSN | 1535-9786 |
EndPage | 225 |
ExternalDocumentID | PMC3067405 21131439 10_1128_EC_00158_10 eukcell_10_2_207 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 18M 29G 2WC 4.4 53G 5GY 5VS AAFWJ AAGFI AAYXX ACGFO ADBBV ADXHL AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ KQ8 O9- OK1 P2P RHI RNS RPM RSF TR2 W8F WHG WOQ CGR CUY CVF ECM EIF NPM 7X8 M7N 5PM |
ID | FETCH-LOGICAL-c539t-276fe7281d935b37084dbe2e6f63383f34e4df8c19f3f23d805a6efa3f5df3683 |
ISSN | 1535-9778 1535-9786 |
IngestDate | Thu Aug 21 18:17:24 EDT 2025 Fri Jul 11 01:26:27 EDT 2025 Fri Jul 11 05:42:24 EDT 2025 Fri Jul 11 15:23:42 EDT 2025 Mon Jul 21 06:02:47 EDT 2025 Thu Apr 24 23:01:23 EDT 2025 Tue Jul 01 00:51:33 EDT 2025 Wed May 18 15:27:29 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c539t-276fe7281d935b37084dbe2e6f63383f34e4df8c19f3f23d805a6efa3f5df3683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://journals.asm.org/doi/pdf/10.1128/EC.00158-10 |
PMID | 21131439 |
PQID | 850562888 |
PQPubID | 23462 |
PageCount | 19 |
ParticipantIDs | crossref_primary_10_1128_EC_00158_10 crossref_citationtrail_10_1128_EC_00158_10 proquest_miscellaneous_907149744 pubmed_primary_21131439 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3067405 highwire_asm_eukcell_10_2_207 proquest_miscellaneous_907150817 proquest_miscellaneous_850562888 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-02-01 |
PublicationDateYYYYMMDD | 2011-02-01 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Eukaryotic Cell |
PublicationTitleAlternate | Eukaryot Cell |
PublicationYear | 2011 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_81_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_73_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_79_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_77_2 e_1_3_2_92_2 e_1_3_2_94_2 e_1_3_2_50_2 e_1_3_2_71_2 e_1_3_2_90_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 Sambrook J. (e_1_3_2_78_2) 2001 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_86_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_88_2 e_1_3_2_61_2 e_1_3_2_82_2 e_1_3_2_80_2 Macheroux P (e_1_3_2_54_2) 1999; 131 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 e_1_3_2_91_2 e_1_3_2_93_2 e_1_3_2_72_2 e_1_3_2_70_2 12455984 - Eukaryot Cell. 2002 Jun;1(3):353-65 15504822 - J Exp Med. 2004 Nov 1;200(9):1213-9 12183576 - Infect Immun. 2002 Sep;70(9):5246-55 16215174 - Eukaryot Cell. 2005 Oct;4(10):1662-76 16476787 - J Med Microbiol. 2006 Mar;55(Pt 3):251-8 6394964 - Mol Gen Genet. 1984;198(2):179-82 9204892 - Science. 1997 Jul 4;277(5322):105-9 7830564 - Mol Microbiol. 1994 Oct;14(1):87-99 19581449 - Genetics. 2009 Sep;183(1):93-106 12475176 - Cell Mol Life Sci. 2002 Oct;59(10):1658-65 18223116 - Eukaryot Cell. 2008 Mar;7(3):493-508 18978530 - Curr Opin Infect Dis. 2008 Dec;21(6):620-5 20041210 - PLoS Genet. 2009 Dec;5(12):e1000783 16024809 - Mol Cell Biol. 2005 Aug;25(15):6760-71 16963626 - Eukaryot Cell. 2006 Nov;5(11):1866-81 10834845 - Science. 2000 Jun 2;288(5471):1651-3 15387822 - Mol Microbiol. 2004 Sep;53(5):1451-69 12031499 - Biochim Biophys Acta. 2002 Jun 7;1576(1-2):176-82 17568774 - EMBO J. 2007 Jul 11;26(13):3157-68 16697062 - Biochim Biophys Acta. 2006 Jul;1763(7):646-51 17786247 - J Clin Invest. 2007 Sep;117(9):2649-57 19942619 - J Antimicrob Chemother. 2010 Feb;65(2):289-92 10398672 - Clin Microbiol Rev. 1999 Jul;12(3):394-404 18262398 - Microbiol Res. 2008;163(3):255-66 16849796 - Microbiology. 2006 Aug;152(Pt 8):2301-8 18552864 - Nat Rev Microbiol. 2008 Jul;6(7):541-52 11734641 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14322-7 1400249 - J Bacteriol. 1992 Nov;174(21):6992-6 11448968 - J Biol Chem. 2001 Sep 7;276(36):34221-6 15925311 - FEMS Yeast Res. 2005 Jun;5(9):829-37 18467097 - Trends Microbiol. 2008 Jun;16(6):261-8 18549241 - Biochemistry. 2008 Jul 8;47(27):7274-83 10790384 - Genetics. 2000 May;155(1):57-67 15803140 - Nat Rev Mol Cell Biol. 2005 Apr;6(4):345-51 9573075 - Infect Immun. 1998 May;66(5):1953-61 18503007 - Eukaryot Cell. 2008 Jul;7(7):1168-79 18400782 - Nucleic Acids Res. 2008 May;36(9):3075-84 17121456 - PLoS Biol. 2006 Nov;4(12):e410 11956219 - J Biol Chem. 2002 Jun 21;277(25):22950-8 2676721 - Genes Dev. 1989 Aug;3(8):1166-78 9790585 - Mol Gen Genet. 1998 Sep;259(5):532-40 16648636 - J Biol Chem. 2006 Jun 30;281(26):17661-9 19502236 - J Biol Chem. 2009 Jul 24;284(30):20249-62 18680426 - Annu Rev Phytopathol. 2008;46:149-87 6326753 - Biochem J. 1984 Apr 1;219(1):1-14 12196195 - Biochem Soc Trans. 2002 Aug;30(4):781-3 20076512 - PLoS Biol. 2006 Dec;4(12):e427 10096087 - Mol Microbiol. 1999 Feb;31(4):1205-15 12854978 - BMC Bioinformatics. 2003 Jul 10;4:29 11782496 - Microbiology. 2002 Jan;148(Pt 1):29-40 15752985 - Trends Biochem Sci. 2005 Mar;30(3):133-41 15474295 - Gene. 2004 Oct 27;341:119-27 17993568 - Eukaryot Cell. 2008 Jan;7(1):20-7 16928702 - J Antimicrob Chemother. 2006 Nov;58(5):1070-3 9016950 - Gene. 1997 Jan 3;184(1):33-7 19558965 - Metab Eng. 2009 May;11(3):163-7 9720876 - Mol Microbiol. 1998 Jul;29(2):605-15 16087738 - Eukaryot Cell. 2005 Aug;4(8):1328-42 8349105 - Genetics. 1993 Jul;134(3):717-28 18923425 - EMBO J. 2008 Nov 19;27(22):2966-76 4567521 - Annu Rev Microbiol. 1972;26:369-88 11737641 - Mol Microbiol. 2001 Nov;42(4):981-93 16113265 - Infect Immun. 2005 Sep;73(9):5493-503 15652485 - Cell. 2005 Jan 14;120(1):99-110 18065612 - Appl Environ Microbiol. 2008 Feb;74(3):615-23 16403430 - Anal Biochem. 2006 Apr 1;351(1):149-51 16824008 - Annu Rev Cell Dev Biol. 2006;22:457-86 15946869 - Fungal Genet Biol. 2005 Aug;42(8):676-83 10816728 - Biometals. 1999 Dec;12(4):295-300 9988696 - J Biol Chem. 1999 Feb 19;274(8):4613-9 10494538 - Methods Mol Biol. 1999;131:1-7 20941352 - PLoS Pathog. 2010;6(9):e1001124 19540796 - Curr Opin Microbiol. 2009 Aug;12(4):377-83 8436123 - Eur J Biochem. 1993 Feb 1;211(3):635-41 19520766 - Nucleic Acids Res. 2009 Aug;37(14):4812-25 16313617 - Mol Microbiol. 2005 Dec;58(5):1288-302 18586823 - Nucleic Acids Res. 2008 Aug;36(13):4295-309 19649569 - Biometals. 2009 Dec;22(6):1051-61 15109490 - Cell. 2004 Apr 30;117(3):285-97 17592720 - Arch Biochem Biophys. 2007 Sep 1;465(1):172-9 12374745 - EMBO J. 2002 Oct 15;21(20):5448-56 8413298 - Mol Cell Biol. 1993 Nov;13(11):7091-100 12073308 - Methods Enzymol. 2002;350:112-31 18721228 - Mol Microbiol. 2008 Oct;70(1):27-43 9372932 - Mol Cell Biol. 1997 Dec;17(12):7008-18 1322323 - FEBS Lett. 1992 Jul 27;307(1):108-12 7720713 - EMBO J. 1995 Mar 15;14(6):1231-9 17074835 - J Cell Sci. 2006 Nov 1;119(Pt 21):4554-64 15040387 - FEMS Immunol Med Microbiol. 2004 Mar 8;40(2):95-100 10807578 - Science. 2000 May 12;288(5468):1062-4 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8 |
References_xml | – ident: e_1_3_2_41_2 doi: 10.1172/JCI32338 – ident: e_1_3_2_6_2 doi: 10.1046/j.1365-2958.1999.01263.x – ident: e_1_3_2_22_2 doi: 10.1101/gad.3.8.1166 – ident: e_1_3_2_74_2 doi: 10.1038/nrm1620 – ident: e_1_3_2_93_2 doi: 10.1128/EC.1.3.353-365.2002 – ident: e_1_3_2_13_2 doi: 10.1534/genetics.109.104364 – ident: e_1_3_2_44_2 doi: 10.1128/EC.4.10.1662-1676.2005 – ident: e_1_3_2_73_2 doi: 10.1016/j.gene.2004.06.021 – ident: e_1_3_2_50_2 doi: 10.1111/j.1365-2958.2004.04214.x – ident: e_1_3_2_65_2 doi: 10.1074/jbc.M202682200 – ident: e_1_3_2_36_2 doi: 10.1128/CMR.12.3.394 – ident: e_1_3_2_52_2 doi: 10.1016/j.tibs.2005.01.006 – ident: e_1_3_2_30_2 doi: 10.1016/0014-5793(92)80911-Y – ident: e_1_3_2_53_2 doi: 10.1146/annurev.cellbio.22.010305.104538 – ident: e_1_3_2_76_2 doi: 10.1016/j.fgb.2005.04.008 – ident: e_1_3_2_7_2 doi: 10.1126/science.277.5322.105 – ident: e_1_3_2_42_2 doi: 10.1093/jac/dkp426 – ident: e_1_3_2_86_2 doi: 10.1093/emboj/cdf507 – ident: e_1_3_2_45_2 doi: 10.1371/journal.pbio.0040410 – ident: e_1_3_2_12_2 doi: 10.1093/nar/gkn160 – ident: e_1_3_2_87_2 doi: 10.1128/mcb.13.11.7091-7100.1993 – ident: e_1_3_2_28_2 doi: 10.1074/jbc.274.8.4613 – ident: e_1_3_2_46_2 doi: 10.1016/j.bbamcr.2006.03.008 – ident: e_1_3_2_18_2 doi: 10.1146/annurev.mi.26.100172.002101 – ident: e_1_3_2_57_2 doi: 10.1128/EC.00199-06 – ident: e_1_3_2_69_2 doi: 10.1016/j.cell.2004.11.032 – ident: e_1_3_2_47_2 doi: 10.1099/mic.0.28843-0 – ident: e_1_3_2_16_2 doi: 10.1007/PL00012493 – ident: e_1_3_2_17_2 doi: 10.1093/nar/gkp509 – ident: e_1_3_2_19_2 doi: 10.1038/nrmicro1930 – ident: e_1_3_2_61_2 doi: 10.1042/bst0300781 – ident: e_1_3_2_59_2 doi: 10.1016/j.abb.2007.05.020 – ident: e_1_3_2_33_2 doi: 10.1128/IAI.73.9.5493-5503.2005 – ident: e_1_3_2_58_2 doi: 10.1128/EC.00446-07 – volume-title: Molecular cloning: a laboratory manual year: 2001 ident: e_1_3_2_78_2 – ident: e_1_3_2_8_2 doi: 10.1093/genetics/155.1.57 – ident: e_1_3_2_24_2 doi: 10.1007/BF00328721 – ident: e_1_3_2_38_2 doi: 10.1093/nar/gkn328 – ident: e_1_3_2_20_2 doi: 10.1023/A:1009298530145 – ident: e_1_3_2_9_2 doi: 10.1099/jmm.0.46386-0 – ident: e_1_3_2_40_2 doi: 10.1093/jac/dkl350 – ident: e_1_3_2_81_2 doi: 10.1084/jem.20041242 – ident: e_1_3_2_15_2 doi: 10.1111/j.1432-1033.1993.tb17591.x – ident: e_1_3_2_23_2 doi: 10.1128/jb.174.21.6992-6996.1992 – ident: e_1_3_2_62_2 doi: 10.1074/jbc.M602165200 – ident: e_1_3_2_39_2 doi: 10.1111/j.1365-2958.1994.tb01269.x – ident: e_1_3_2_10_2 doi: 10.1186/1471-2105-4-29 – ident: e_1_3_2_85_2 doi: 10.1016/S0167-4781(02)00286-5 – ident: e_1_3_2_32_2 doi: 10.1128/IAI.70.9.5246-5255.2002 – ident: e_1_3_2_43_2 doi: 10.1097/QCO.0b013e3283165fd1 – ident: e_1_3_2_70_2 doi: 10.1242/jcs.03229 – ident: e_1_3_2_64_2 doi: 10.1111/j.1365-2958.2005.04898.x – ident: e_1_3_2_11_2 doi: 10.1021/bi800066s – ident: e_1_3_2_84_2 doi: 10.1016/j.ab.2005.12.001 – ident: e_1_3_2_5_2 doi: 10.1016/j.femsyr.2005.03.007 – ident: e_1_3_2_55_2 doi: 10.1128/MCB.17.12.7008 – ident: e_1_3_2_88_2 doi: 10.1128/AEM.01387-07 – ident: e_1_3_2_67_2 doi: 10.1126/science.288.5471.1651 – ident: e_1_3_2_29_2 doi: 10.1042/bj2190001 – ident: e_1_3_2_66_2 doi: 10.1128/EC.00354-07 – ident: e_1_3_2_82_2 doi: 10.1111/j.1365-2958.2008.06376.x – ident: e_1_3_2_94_2 doi: 10.1007/s004380050845 – ident: e_1_3_2_3_2 doi: 10.1128/EC.00108-08 – ident: e_1_3_2_26_2 doi: 10.1016/S0378-1119(96)00570-7 – ident: e_1_3_2_14_2 doi: 10.1128/MCB.25.15.6760-6771.2005 – ident: e_1_3_2_89_2 doi: 10.1016/j.micres.2007.12.001 – ident: e_1_3_2_60_2 doi: 10.1046/j.1365-2958.2001.02713.x – ident: e_1_3_2_80_2 doi: 10.1371/journal.ppat.1001124 – ident: e_1_3_2_90_2 doi: 10.1128/IAI.66.5.1953-1961.1998 – ident: e_1_3_2_21_2 doi: 10.1093/genetics/134.3.717 – ident: e_1_3_2_35_2 doi: 10.1038/sj.emboj.7601752 – ident: e_1_3_2_92_2 doi: 10.1016/j.ymben.2009.01.004 – ident: e_1_3_2_34_2 doi: 10.1371/journal.pgen.1000783 – ident: e_1_3_2_31_2 doi: 10.1016/S0092-8674(04)00343-5 – ident: e_1_3_2_83_2 doi: 10.1016/j.tim.2008.03.005 – ident: e_1_3_2_63_2 doi: 10.1128/EC.4.8.1328-1342.2005 – ident: e_1_3_2_27_2 doi: 10.1146/annurev.phyto.45.062806.094338 – ident: e_1_3_2_49_2 doi: 10.1016/j.mib.2009.05.005 – volume: 131 start-page: 1 year: 1999 ident: e_1_3_2_54_2 article-title: UV-Visible spectroscopy as a tool to study flavoproteins publication-title: Methods Mol Biol. – ident: e_1_3_2_68_2 doi: 10.1038/emboj.2008.212 – ident: e_1_3_2_72_2 doi: 10.1126/science.288.5468.1062 – ident: e_1_3_2_2_2 doi: 10.1111/j.1574-6968.1983.tb00504.x – ident: e_1_3_2_37_2 doi: 10.1016/S0928-8244(03)00301-8 – ident: e_1_3_2_71_2 doi: 10.1007/s10534-009-9256-x – ident: e_1_3_2_79_2 doi: 10.1046/j.1365-2958.1998.00957.x – ident: e_1_3_2_51_2 doi: 10.1093/bioinformatics/btm404 – ident: e_1_3_2_25_2 doi: 10.1371/journal.pbio.0040427 – ident: e_1_3_2_77_2 doi: 10.1073/pnas.261381198 – ident: e_1_3_2_4_2 doi: 10.1074/jbc.M104987200 – ident: e_1_3_2_48_2 doi: 10.1099/00221287-148-1-29 – ident: e_1_3_2_56_2 doi: 10.1074/jbc.M109.009563 – ident: e_1_3_2_75_2 doi: 10.1016/S0076-6879(02)50959-9 – ident: e_1_3_2_91_2 doi: 10.1002/j.1460-2075.1995.tb07106.x – reference: 17121456 - PLoS Biol. 2006 Nov;4(12):e410 – reference: 10834845 - Science. 2000 Jun 2;288(5471):1651-3 – reference: 15803140 - Nat Rev Mol Cell Biol. 2005 Apr;6(4):345-51 – reference: 18680426 - Annu Rev Phytopathol. 2008;46:149-87 – reference: 11734641 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14322-7 – reference: 1322323 - FEBS Lett. 1992 Jul 27;307(1):108-12 – reference: 19540796 - Curr Opin Microbiol. 2009 Aug;12(4):377-83 – reference: 9790585 - Mol Gen Genet. 1998 Sep;259(5):532-40 – reference: 9573075 - Infect Immun. 1998 May;66(5):1953-61 – reference: 10790384 - Genetics. 2000 May;155(1):57-67 – reference: 19502236 - J Biol Chem. 2009 Jul 24;284(30):20249-62 – reference: 17786247 - J Clin Invest. 2007 Sep;117(9):2649-57 – reference: 11448968 - J Biol Chem. 2001 Sep 7;276(36):34221-6 – reference: 16113265 - Infect Immun. 2005 Sep;73(9):5493-503 – reference: 11956219 - J Biol Chem. 2002 Jun 21;277(25):22950-8 – reference: 12854978 - BMC Bioinformatics. 2003 Jul 10;4:29 – reference: 10398672 - Clin Microbiol Rev. 1999 Jul;12(3):394-404 – reference: 18467097 - Trends Microbiol. 2008 Jun;16(6):261-8 – reference: 15109490 - Cell. 2004 Apr 30;117(3):285-97 – reference: 15040387 - FEMS Immunol Med Microbiol. 2004 Mar 8;40(2):95-100 – reference: 19581449 - Genetics. 2009 Sep;183(1):93-106 – reference: 8413298 - Mol Cell Biol. 1993 Nov;13(11):7091-100 – reference: 7830564 - Mol Microbiol. 1994 Oct;14(1):87-99 – reference: 12073308 - Methods Enzymol. 2002;350:112-31 – reference: 10494538 - Methods Mol Biol. 1999;131:1-7 – reference: 15752985 - Trends Biochem Sci. 2005 Mar;30(3):133-41 – reference: 11782496 - Microbiology. 2002 Jan;148(Pt 1):29-40 – reference: 16648636 - J Biol Chem. 2006 Jun 30;281(26):17661-9 – reference: 9988696 - J Biol Chem. 1999 Feb 19;274(8):4613-9 – reference: 1400249 - J Bacteriol. 1992 Nov;174(21):6992-6 – reference: 17993568 - Eukaryot Cell. 2008 Jan;7(1):20-7 – reference: 11737641 - Mol Microbiol. 2001 Nov;42(4):981-93 – reference: 18223116 - Eukaryot Cell. 2008 Mar;7(3):493-508 – reference: 6394964 - Mol Gen Genet. 1984;198(2):179-82 – reference: 15504822 - J Exp Med. 2004 Nov 1;200(9):1213-9 – reference: 16476787 - J Med Microbiol. 2006 Mar;55(Pt 3):251-8 – reference: 10096087 - Mol Microbiol. 1999 Feb;31(4):1205-15 – reference: 2676721 - Genes Dev. 1989 Aug;3(8):1166-78 – reference: 9720876 - Mol Microbiol. 1998 Jul;29(2):605-15 – reference: 20041210 - PLoS Genet. 2009 Dec;5(12):e1000783 – reference: 16697062 - Biochim Biophys Acta. 2006 Jul;1763(7):646-51 – reference: 18549241 - Biochemistry. 2008 Jul 8;47(27):7274-83 – reference: 16087738 - Eukaryot Cell. 2005 Aug;4(8):1328-42 – reference: 15925311 - FEMS Yeast Res. 2005 Jun;5(9):829-37 – reference: 8349105 - Genetics. 1993 Jul;134(3):717-28 – reference: 16849796 - Microbiology. 2006 Aug;152(Pt 8):2301-8 – reference: 18503007 - Eukaryot Cell. 2008 Jul;7(7):1168-79 – reference: 18923425 - EMBO J. 2008 Nov 19;27(22):2966-76 – reference: 8436123 - Eur J Biochem. 1993 Feb 1;211(3):635-41 – reference: 6326753 - Biochem J. 1984 Apr 1;219(1):1-14 – reference: 16215174 - Eukaryot Cell. 2005 Oct;4(10):1662-76 – reference: 12455984 - Eukaryot Cell. 2002 Jun;1(3):353-65 – reference: 17568774 - EMBO J. 2007 Jul 11;26(13):3157-68 – reference: 12374745 - EMBO J. 2002 Oct 15;21(20):5448-56 – reference: 9016950 - Gene. 1997 Jan 3;184(1):33-7 – reference: 12031499 - Biochim Biophys Acta. 2002 Jun 7;1576(1-2):176-82 – reference: 7720713 - EMBO J. 1995 Mar 15;14(6):1231-9 – reference: 18552864 - Nat Rev Microbiol. 2008 Jul;6(7):541-52 – reference: 12196195 - Biochem Soc Trans. 2002 Aug;30(4):781-3 – reference: 18721228 - Mol Microbiol. 2008 Oct;70(1):27-43 – reference: 15946869 - Fungal Genet Biol. 2005 Aug;42(8):676-83 – reference: 12183576 - Infect Immun. 2002 Sep;70(9):5246-55 – reference: 20076512 - PLoS Biol. 2006 Dec;4(12):e427 – reference: 18586823 - Nucleic Acids Res. 2008 Aug;36(13):4295-309 – reference: 18065612 - Appl Environ Microbiol. 2008 Feb;74(3):615-23 – reference: 16824008 - Annu Rev Cell Dev Biol. 2006;22:457-86 – reference: 19942619 - J Antimicrob Chemother. 2010 Feb;65(2):289-92 – reference: 15387822 - Mol Microbiol. 2004 Sep;53(5):1451-69 – reference: 19649569 - Biometals. 2009 Dec;22(6):1051-61 – reference: 10807578 - Science. 2000 May 12;288(5468):1062-4 – reference: 10816728 - Biometals. 1999 Dec;12(4):295-300 – reference: 20941352 - PLoS Pathog. 2010;6(9):e1001124 – reference: 15474295 - Gene. 2004 Oct 27;341:119-27 – reference: 16403430 - Anal Biochem. 2006 Apr 1;351(1):149-51 – reference: 19520766 - Nucleic Acids Res. 2009 Aug;37(14):4812-25 – reference: 12475176 - Cell Mol Life Sci. 2002 Oct;59(10):1658-65 – reference: 9372932 - Mol Cell Biol. 1997 Dec;17(12):7008-18 – reference: 16024809 - Mol Cell Biol. 2005 Aug;25(15):6760-71 – reference: 16963626 - Eukaryot Cell. 2006 Nov;5(11):1866-81 – reference: 4567521 - Annu Rev Microbiol. 1972;26:369-88 – reference: 18978530 - Curr Opin Infect Dis. 2008 Dec;21(6):620-5 – reference: 19558965 - Metab Eng. 2009 May;11(3):163-7 – reference: 16928702 - J Antimicrob Chemother. 2006 Nov;58(5):1070-3 – reference: 18400782 - Nucleic Acids Res. 2008 May;36(9):3075-84 – reference: 17592720 - Arch Biochem Biophys. 2007 Sep 1;465(1):172-9 – reference: 18262398 - Microbiol Res. 2008;163(3):255-66 – reference: 16313617 - Mol Microbiol. 2005 Dec;58(5):1288-302 – reference: 15652485 - Cell. 2005 Jan 14;120(1):99-110 – reference: 9204892 - Science. 1997 Jul 4;277(5322):105-9 – reference: 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8 – reference: 17074835 - J Cell Sci. 2006 Nov 1;119(Pt 21):4554-64 |
SSID | ssj0015973 |
Score | 2.3618827 |
Snippet | Classifications
Services
EC
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit... Candida albicans is an opportunistic fungal pathogen that exists as normal flora in healthy human bodies but causes life-threatening infections in... Candida albicans is an opportunistic fungal pathogen that exists as normal flora in healthy human bodies but causes life-threatening infections in... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 207 |
SubjectTerms | Amino Acid Sequence Animals Aspergillus Candida albicans Candida albicans - pathogenicity Candida albicans - physiology Candidiasis - pathology Cell Nucleus - metabolism Cell Proliferation Female Flavins - biosynthesis Fungal Proteins - genetics Fungal Proteins - metabolism Gene Deletion Gene Expression Regulation, Fungal Humans Iron - deficiency Iron - metabolism Kidney - pathology Mice Mice, Inbred BALB C Molecular Sequence Data Repressor Proteins - genetics Repressor Proteins - metabolism Schizosaccharomyces pombe Sequence Alignment Sequence Homology, Amino Acid Two-Hybrid System Techniques Virulence |
Title | Candida albicans Hap43 Is a Repressor Induced under Low-Iron Conditions and Is Essential for Iron-Responsive Transcriptional Regulation and Virulence |
URI | http://ec.asm.org/content/10/2/207.abstract https://www.ncbi.nlm.nih.gov/pubmed/21131439 https://www.proquest.com/docview/850562888 https://www.proquest.com/docview/907149744 https://www.proquest.com/docview/907150817 https://pubmed.ncbi.nlm.nih.gov/PMC3067405 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiQuiPcWWOTDnogCje28jqjqqkVlkVCLdrlEeTi71UKzShrQ8j_4v8zYTpos5XmJImfsRJrPE894vjEhh5nPEsHyxHaEDG0RyBSmVJbYfuamrueLZCSQO_z22JsuxZsT92QwyDtZS_UmeZl-28kr-R-tQhvoFVmy_6DZdlBogHvQL1xBw3D9Kx2PkZOSxZhjjNassqbxpeDWrLJiXFmjJ12UFp7Ogbv8SBcrrXnx1Z6VheL6ZTpfS-cEV9akQibSSlMaLRSy35sU2i9Sl0FvbIwqyX9mjv5S_T-syloRmPqx_ou4vCqwKCzuELQYqmq1ei3s8fmWinZqQtfYdmafxkWbLBSbzIAa2-tuoAIjr23SR2NbXRuWm0HP-I46IGNdS6oPwzU_ZabZ0T_be4YcBpnihpKLdWq3v7VmK__4XXS0nM-jxeRkcYPcZOBO8CaqY3abwKniuq6u_kDD44TBX3WG7q9cmmrSuzyT6wm2nRXL4i65Y1wN-lrj5h4ZyPV9cksfPnoFdx8LdfeAfDc4og2OqMIRnVU0pi2OqMERVTiiDY7oFkcUhsFOLY5ojt36OKLXcES3OFL9Wxw9JMujyWI8tc1xHXbq8nBjM9_Lpc_AAQq5m3B_FIgskUx6uYdxkJwLKbI8SJ0w5znjWTByY0_mMc_dLOdewB-RvXWxlvuE8tRPMomcbD8RSZjG4Ne4I-kEfurC-lYMyYtGFVFqatnjkSqfIuXTsiCajCOlN2gYksNW-FKXcNktdtDoNIqrz5GsL3BmoCiLAI1DQhtFR2CC8Vm8lkVdRYHyIoIg-LVIiDxBcN3F70XAW3LgRY81etqvZY7Dwa8Jh8Tv4aoVwBrx_Sfr1bmqFY8RAfDJnvz5y56S29tZ-4zsbcpaHsCCe5M8V7PlB6S63BM |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Candida+albicans+Hap43+Is+a+Repressor+Induced+under+Low-Iron+Conditions+and+Is+Essential+for+Iron-Responsive+Transcriptional+Regulation+and+Virulence&rft.jtitle=Eukaryotic+cell&rft.au=Hsu%2C+Po-Chen&rft.au=Yang%2C+Cheng-Yao&rft.au=Lan%2C+Chung-Yu&rft.date=2011-02-01&rft.issn=1535-9778&rft.volume=10&rft.issue=2&rft.spage=207&rft.epage=225&rft_id=info:doi/10.1128%2Fec.00158-10&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-9778&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-9778&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-9778&client=summon |