Candida albicans Hap43 Is a Repressor Induced under Low-Iron Conditions and Is Essential for Iron-Responsive Transcriptional Regulation and Virulence

Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue EC About EC Subscribers Authors Reviewers Advertisers Inquiries from the Pr...

Full description

Saved in:
Bibliographic Details
Published inEukaryotic Cell Vol. 10; no. 2; pp. 207 - 225
Main Authors Hsu, Po-Chen, Yang, Cheng-Yao, Lan, Chung-Yu
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.02.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue EC About EC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy EC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 1535-9778 Online ISSN: 1535-9786 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to EC .asm.org, visit: EC       
AbstractList Candida albicans is an opportunistic fungal pathogen that exists as normal flora in healthy human bodies but causes life-threatening infections in immunocompromised patients. In addition to innate and adaptive immunities, hosts also resist microbial infections by developing a mechanism of "natural resistance" that maintains a low level of free iron to restrict the growth of invading pathogens. C. albicans must overcome this iron-deprived environment to cause infections. There are three types of iron-responsive transcriptional regulators in fungi; Aft1/Aft2 activators in yeast, GATA-type repressors in many fungi, and HapX/Php4 in Schizosaccharomyces pombe and Aspergillus species. In this study, we characterized the iron-responsive regulator Hap43, which is the C. albicans homolog of HapX/Php4 and is repressed by the GATA-type repressor Sfu1 under iron-sufficient conditions. We provide evidence that Hap43 is essential for the growth of C. albicans under low-iron conditions and for C. albicans virulence in a mouse model of infection. Hap43 was not required for iron acquisition under low-iron conditions. Instead, it was responsible for repression of genes that encode iron-dependent proteins involved in mitochondrial respiration and iron-sulfur cluster assembly. We also demonstrated that Hap43 executes its function by becoming a transcriptional repressor and accumulating in the nucleus in response to iron deprivation. Finally, we found a connection between Hap43 and the global corepressor Tup1 in low-iron-induced flavinogenesis. Taken together, our data suggest a complex interplay among Hap43, Sfu1, and Tup1 to coordinately regulate iron acquisition, iron utilization, and other iron-responsive metabolic activities.
Candida albicans is an opportunistic fungal pathogen that exists as normal flora in healthy human bodies but causes life-threatening infections in immunocompromised patients. In addition to innate and adaptive immunities, hosts also resist microbial infections by developing a mechanism of “natural resistance” that maintains a low level of free iron to restrict the growth of invading pathogens. C. albicans must overcome this iron-deprived environment to cause infections. There are three types of iron-responsive transcriptional regulators in fungi; Aft1/Aft2 activators in yeast, GATA-type repressors in many fungi, and HapX/Php4 in Schizosaccharomyces pombe and Aspergillus species. In this study, we characterized the iron-responsive regulator Hap43, which is the C. albicans homolog of HapX/Php4 and is repressed by the GATA-type repressor Sfu1 under iron-sufficient conditions. We provide evidence that Hap43 is essential for the growth of C. albicans under low-iron conditions and for C. albicans virulence in a mouse model of infection. Hap43 was not required for iron acquisition under low-iron conditions. Instead, it was responsible for repression of genes that encode iron-dependent proteins involved in mitochondrial respiration and iron-sulfur cluster assembly. We also demonstrated that Hap43 executes its function by becoming a transcriptional repressor and accumulating in the nucleus in response to iron deprivation. Finally, we found a connection between Hap43 and the global corepressor Tup1 in low-iron-induced flavinogenesis. Taken together, our data suggest a complex interplay among Hap43, Sfu1, and Tup1 to coordinately regulate iron acquisition, iron utilization, and other iron-responsive metabolic activities.
Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue EC About EC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy EC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 1535-9778 Online ISSN: 1535-9786 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to EC .asm.org, visit: EC       
Candida albicans is an opportunistic fungal pathogen that exists as normal flora in healthy human bodies but causes life-threatening infections in immunocompromised patients. In addition to innate and adaptive immunities, hosts also resist microbial infections by developing a mechanism of "natural resistance" that maintains a low level of free iron to restrict the growth of invading pathogens. C. albicans must overcome this iron-deprived environment to cause infections. There are three types of iron-responsive transcriptional regulators in fungi; Aft1/Aft2 activators in yeast, GATA-type repressors in many fungi, and HapX/Php4 in Schizosaccharomyces pombe and Aspergillus species. In this study, we characterized the iron-responsive regulator Hap43, which is the C. albicans homolog of HapX/Php4 and is repressed by the GATA-type repressor Sfu1 under iron-sufficient conditions. We provide evidence that Hap43 is essential for the growth of C. albicans under low-iron conditions and for C. albicans virulence in a mouse model of infection. Hap43 was not required for iron acquisition under low-iron conditions. Instead, it was responsible for repression of genes that encode iron-dependent proteins involved in mitochondrial respiration and iron-sulfur cluster assembly. We also demonstrated that Hap43 executes its function by becoming a transcriptional repressor and accumulating in the nucleus in response to iron deprivation. Finally, we found a connection between Hap43 and the global corepressor Tup1 in low-iron-induced flavinogenesis. Taken together, our data suggest a complex interplay among Hap43, Sfu1, and Tup1 to coordinately regulate iron acquisition, iron utilization, and other iron-responsive metabolic activities.Candida albicans is an opportunistic fungal pathogen that exists as normal flora in healthy human bodies but causes life-threatening infections in immunocompromised patients. In addition to innate and adaptive immunities, hosts also resist microbial infections by developing a mechanism of "natural resistance" that maintains a low level of free iron to restrict the growth of invading pathogens. C. albicans must overcome this iron-deprived environment to cause infections. There are three types of iron-responsive transcriptional regulators in fungi; Aft1/Aft2 activators in yeast, GATA-type repressors in many fungi, and HapX/Php4 in Schizosaccharomyces pombe and Aspergillus species. In this study, we characterized the iron-responsive regulator Hap43, which is the C. albicans homolog of HapX/Php4 and is repressed by the GATA-type repressor Sfu1 under iron-sufficient conditions. We provide evidence that Hap43 is essential for the growth of C. albicans under low-iron conditions and for C. albicans virulence in a mouse model of infection. Hap43 was not required for iron acquisition under low-iron conditions. Instead, it was responsible for repression of genes that encode iron-dependent proteins involved in mitochondrial respiration and iron-sulfur cluster assembly. We also demonstrated that Hap43 executes its function by becoming a transcriptional repressor and accumulating in the nucleus in response to iron deprivation. Finally, we found a connection between Hap43 and the global corepressor Tup1 in low-iron-induced flavinogenesis. Taken together, our data suggest a complex interplay among Hap43, Sfu1, and Tup1 to coordinately regulate iron acquisition, iron utilization, and other iron-responsive metabolic activities.
Author Chung-Yu Lan
Cheng-Yao Yang
Po-Chen Hsu
Author_xml – sequence: 1
  givenname: Po-Chen
  surname: Hsu
  fullname: Hsu, Po-Chen
  organization: Institute of Molecular and Cellular Biology, No. 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
– sequence: 2
  givenname: Cheng-Yao
  surname: Yang
  fullname: Yang, Cheng-Yao
  organization: Division of Animal Medicine, Animal Technology Institute Taiwan, Chunan, Miaoli 35053, Taiwan, Republic of China
– sequence: 3
  givenname: Chung-Yu
  surname: Lan
  fullname: Lan, Chung-Yu
  organization: Institute of Molecular and Cellular Biology, No. 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China, Department of Life Science, National Tsing Hua University, No. 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21131439$$D View this record in MEDLINE/PubMed
BookMark eNqNks2LEzEYhwdZcT_05F1yEDwssyaTySRzEZah6xYKQlm9hjR500anyZh0dvEP8f81065FBdFTvp7nzS-8OS9OfPBQFC8JviKkEm9n3RXGhImS4CfFGWGUlS0XzclxzsVpcZ7S54lqOX1WnFaEUFLT9qz43ilvnFFI9SunlU_oVg01RfOEFFrCECGlENHcm1GDQaM3ENEiPJTzGDzqQpZ3LmQtl5mkWUrgd071yE5ahsolpCET7h7QXcw36OiGycnMEtZjr6bF3v_k4tiD1_C8eGpVn-DF43hRfLyZ3XW35eLD-3l3vSg1o-2urHhjgVeCmJayFeVY1GYFFTS2oVRQS2uojRWatJbaihqBmWrAKmqZsbQR9KJ4d6g7jKstGJ2jR9XLIbqtit9kUE7-fuLdRq7DvaS44TVmucCbxwIxfB0h7eTWJQ19rzyEMckWc8KwIPy_yLrldf1PUjDMmkqIKf6rX-Mfc_9sbwYuD4COIaUI9ogQLKfPI2ed3H-evJFp8get3W7fnfx21__FeX1wNm69eXARpEpbCeOXKfBkVLLCnP4AiqPU5w
CitedBy_id crossref_primary_10_1128_aem_00116_22
crossref_primary_10_1128_msphere_00372_24
crossref_primary_10_1002_mbo3_970
crossref_primary_10_1371_journal_pone_0051403
crossref_primary_10_1534_g3_116_031898
crossref_primary_10_1016_j_mib_2013_07_008
crossref_primary_10_3389_fmicb_2021_708267
crossref_primary_10_1016_j_mib_2013_07_007
crossref_primary_10_3389_fcimb_2024_1367656
crossref_primary_10_1105_tpc_112_098624
crossref_primary_10_1042_BSR20240689
crossref_primary_10_1038_s41467_022_32107_4
crossref_primary_10_3389_fmicb_2016_00645
crossref_primary_10_1186_1752_0509_8_S5_S6
crossref_primary_10_1534_genetics_120_303270
crossref_primary_10_1186_1471_2180_13_16
crossref_primary_10_1128_mbio_01171_23
crossref_primary_10_1016_j_bbamcr_2012_05_009
crossref_primary_10_1128_EC_00134_12
crossref_primary_10_1016_j_chom_2011_07_005
crossref_primary_10_1371_journal_pbio_3000433
crossref_primary_10_1128_EC_00103_12
crossref_primary_10_1080_19490976_2022_2105610
crossref_primary_10_1099_mic_0_000807
crossref_primary_10_1016_j_cbpa_2020_02_008
crossref_primary_10_1371_journal_pone_0062367
crossref_primary_10_1016_j_resmic_2014_03_001
crossref_primary_10_1093_mmy_myw120
crossref_primary_10_1371_journal_pgen_1008881
crossref_primary_10_3390_ijms221910633
crossref_primary_10_1074_jbc_M114_628677
crossref_primary_10_1371_journal_pone_0070425
crossref_primary_10_1128_EC_00014_13
crossref_primary_10_1099_mic_0_001451
crossref_primary_10_3389_fcimb_2016_00131
crossref_primary_10_3389_fcimb_2021_731988
crossref_primary_10_3390_jof8111196
crossref_primary_10_15252_embr_202256019
crossref_primary_10_3390_cells11233718
crossref_primary_10_1128_EC_05200_11
crossref_primary_10_1371_journal_pone_0072483
crossref_primary_10_1093_nar_gkaa109
crossref_primary_10_1007_s00253_012_4615_x
crossref_primary_10_1186_s12864_017_4097_4
crossref_primary_10_1007_s12281_012_0108_8
crossref_primary_10_1016_j_fbr_2025_100427
crossref_primary_10_1371_journal_pone_0129903
crossref_primary_10_1093_femsre_fux050
crossref_primary_10_1016_j_bbamcr_2013_12_009
crossref_primary_10_1111_mmi_12983
crossref_primary_10_3389_fmicb_2024_1476087
crossref_primary_10_1021_acsinfecdis_3c00113
crossref_primary_10_1099_mic_0_065268_0
crossref_primary_10_1371_journal_ppat_1005775
crossref_primary_10_3389_fmicb_2018_01478
crossref_primary_10_3389_fcimb_2020_605711
crossref_primary_10_1128_mBio_01782_16
crossref_primary_10_1007_s00294_021_01172_5
crossref_primary_10_1080_20002297_2023_2278937
crossref_primary_10_1016_j_bbamcr_2020_118885
crossref_primary_10_1371_journal_pone_0028151
crossref_primary_10_3389_fmicb_2019_01843
crossref_primary_10_1016_j_jmii_2016_03_001
crossref_primary_10_1128_EC_00060_12
crossref_primary_10_1016_j_mib_2013_09_006
crossref_primary_10_1371_journal_pbio_2006450
crossref_primary_10_1371_journal_pone_0150701
crossref_primary_10_1534_g3_114_015941
crossref_primary_10_1016_j_jmii_2018_04_002
crossref_primary_10_1074_jbc_M111_233569
crossref_primary_10_1186_1471_2180_14_119
crossref_primary_10_15252_embj_201489468
crossref_primary_10_1016_j_cub_2021_06_026
crossref_primary_10_1128_spectrum_04095_23
crossref_primary_10_1371_journal_pone_0110721
crossref_primary_10_1371_journal_pone_0035750
crossref_primary_10_1016_j_biomed_2012_12_004
crossref_primary_10_1186_s42483_023_00215_8
crossref_primary_10_1002_iub_1441
crossref_primary_10_1007_s00438_014_0846_0
crossref_primary_10_1016_j_jprot_2013_07_031
crossref_primary_10_1016_j_isci_2023_106635
crossref_primary_10_3103_S0095452720050072
crossref_primary_10_3389_fmicb_2015_00367
crossref_primary_10_1128_mSphere_00370_18
crossref_primary_10_1016_j_bbamcr_2015_08_005
crossref_primary_10_1128_mBio_02377_18
crossref_primary_10_1371_journal_ppat_1002525
crossref_primary_10_2217_fmb_2017_0098
crossref_primary_10_3390_pathogens3030549
crossref_primary_10_1371_journal_ppat_1003332
crossref_primary_10_1016_j_chom_2011_08_001
crossref_primary_10_1016_j_mib_2019_04_002
crossref_primary_10_1038_ismej_2014_53
crossref_primary_10_1371_journal_pone_0170649
crossref_primary_10_3390_toxins15010050
crossref_primary_10_3390_antiox13050527
crossref_primary_10_1080_21505594_2017_1414133
crossref_primary_10_3390_jof10010016
crossref_primary_10_5941_MYCO_2014_42_4_427
crossref_primary_10_1007_s00284_012_0242_0
crossref_primary_10_1093_nar_gkae1147
crossref_primary_10_1038_s41598_017_03750_5
crossref_primary_10_1242_jcs_220202
crossref_primary_10_1016_j_mib_2011_06_002
crossref_primary_10_3389_fmicb_2017_01055
crossref_primary_10_3389_fmicb_2017_02388
crossref_primary_10_1016_j_jbc_2021_100727
crossref_primary_10_1128_mSphere_00400_18
crossref_primary_10_1016_j_bbagrm_2016_11_008
crossref_primary_10_3389_fcimb_2022_960884
crossref_primary_10_1093_femsyr_foz005
crossref_primary_10_1128_msphere_00779_21
crossref_primary_10_7554_eLife_86075
crossref_primary_10_3390_ijms22147739
crossref_primary_10_1002_yea_3550
crossref_primary_10_3389_fmicb_2019_01645
crossref_primary_10_1128_EC_05274_11
crossref_primary_10_4161_psb_23012
crossref_primary_10_1093_nar_gkad708
crossref_primary_10_1128_mSphere_00917_19
crossref_primary_10_1111_mmi_12659
Cites_doi 10.1172/JCI32338
10.1046/j.1365-2958.1999.01263.x
10.1101/gad.3.8.1166
10.1038/nrm1620
10.1128/EC.1.3.353-365.2002
10.1534/genetics.109.104364
10.1128/EC.4.10.1662-1676.2005
10.1016/j.gene.2004.06.021
10.1111/j.1365-2958.2004.04214.x
10.1074/jbc.M202682200
10.1128/CMR.12.3.394
10.1016/j.tibs.2005.01.006
10.1016/0014-5793(92)80911-Y
10.1146/annurev.cellbio.22.010305.104538
10.1016/j.fgb.2005.04.008
10.1126/science.277.5322.105
10.1093/jac/dkp426
10.1093/emboj/cdf507
10.1371/journal.pbio.0040410
10.1093/nar/gkn160
10.1128/mcb.13.11.7091-7100.1993
10.1074/jbc.274.8.4613
10.1016/j.bbamcr.2006.03.008
10.1146/annurev.mi.26.100172.002101
10.1128/EC.00199-06
10.1016/j.cell.2004.11.032
10.1099/mic.0.28843-0
10.1007/PL00012493
10.1093/nar/gkp509
10.1038/nrmicro1930
10.1042/bst0300781
10.1016/j.abb.2007.05.020
10.1128/IAI.73.9.5493-5503.2005
10.1128/EC.00446-07
10.1093/genetics/155.1.57
10.1007/BF00328721
10.1093/nar/gkn328
10.1023/A:1009298530145
10.1099/jmm.0.46386-0
10.1093/jac/dkl350
10.1084/jem.20041242
10.1111/j.1432-1033.1993.tb17591.x
10.1128/jb.174.21.6992-6996.1992
10.1074/jbc.M602165200
10.1111/j.1365-2958.1994.tb01269.x
10.1186/1471-2105-4-29
10.1016/S0167-4781(02)00286-5
10.1128/IAI.70.9.5246-5255.2002
10.1097/QCO.0b013e3283165fd1
10.1242/jcs.03229
10.1111/j.1365-2958.2005.04898.x
10.1021/bi800066s
10.1016/j.ab.2005.12.001
10.1016/j.femsyr.2005.03.007
10.1128/MCB.17.12.7008
10.1128/AEM.01387-07
10.1126/science.288.5471.1651
10.1042/bj2190001
10.1128/EC.00354-07
10.1111/j.1365-2958.2008.06376.x
10.1007/s004380050845
10.1128/EC.00108-08
10.1016/S0378-1119(96)00570-7
10.1128/MCB.25.15.6760-6771.2005
10.1016/j.micres.2007.12.001
10.1046/j.1365-2958.2001.02713.x
10.1371/journal.ppat.1001124
10.1128/IAI.66.5.1953-1961.1998
10.1093/genetics/134.3.717
10.1038/sj.emboj.7601752
10.1016/j.ymben.2009.01.004
10.1371/journal.pgen.1000783
10.1016/S0092-8674(04)00343-5
10.1016/j.tim.2008.03.005
10.1128/EC.4.8.1328-1342.2005
10.1146/annurev.phyto.45.062806.094338
10.1016/j.mib.2009.05.005
10.1038/emboj.2008.212
10.1126/science.288.5468.1062
10.1111/j.1574-6968.1983.tb00504.x
10.1016/S0928-8244(03)00301-8
10.1007/s10534-009-9256-x
10.1046/j.1365-2958.1998.00957.x
10.1093/bioinformatics/btm404
10.1371/journal.pbio.0040427
10.1073/pnas.261381198
10.1074/jbc.M104987200
10.1099/00221287-148-1-29
10.1074/jbc.M109.009563
10.1016/S0076-6879(02)50959-9
10.1002/j.1460-2075.1995.tb07106.x
ContentType Journal Article
Copyright Copyright © 2011, American Society for Microbiology 2011 American Society for Microbiology
Copyright_xml – notice: Copyright © 2011, American Society for Microbiology 2011 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
M7N
5PM
DOI 10.1128/EC.00158-10
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
DatabaseTitleList MEDLINE
CrossRef


Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Biology
EISSN 1535-9786
EndPage 225
ExternalDocumentID PMC3067405
21131439
10_1128_EC_00158_10
eukcell_10_2_207
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
18M
29G
2WC
4.4
53G
5GY
5VS
AAFWJ
AAGFI
AAYXX
ACGFO
ADBBV
ADXHL
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
KQ8
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
W8F
WHG
WOQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
M7N
5PM
ID FETCH-LOGICAL-c539t-276fe7281d935b37084dbe2e6f63383f34e4df8c19f3f23d805a6efa3f5df3683
ISSN 1535-9778
1535-9786
IngestDate Thu Aug 21 18:17:24 EDT 2025
Fri Jul 11 01:26:27 EDT 2025
Fri Jul 11 05:42:24 EDT 2025
Fri Jul 11 15:23:42 EDT 2025
Mon Jul 21 06:02:47 EDT 2025
Thu Apr 24 23:01:23 EDT 2025
Tue Jul 01 00:51:33 EDT 2025
Wed May 18 15:27:29 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c539t-276fe7281d935b37084dbe2e6f63383f34e4df8c19f3f23d805a6efa3f5df3683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://journals.asm.org/doi/pdf/10.1128/EC.00158-10
PMID 21131439
PQID 850562888
PQPubID 23462
PageCount 19
ParticipantIDs crossref_primary_10_1128_EC_00158_10
crossref_citationtrail_10_1128_EC_00158_10
proquest_miscellaneous_907149744
pubmed_primary_21131439
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3067405
highwire_asm_eukcell_10_2_207
proquest_miscellaneous_907150817
proquest_miscellaneous_850562888
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-02-01
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Eukaryotic Cell
PublicationTitleAlternate Eukaryot Cell
PublicationYear 2011
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_81_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_73_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_79_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_77_2
e_1_3_2_92_2
e_1_3_2_94_2
e_1_3_2_50_2
e_1_3_2_71_2
e_1_3_2_90_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
Sambrook J. (e_1_3_2_78_2) 2001
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_86_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_88_2
e_1_3_2_61_2
e_1_3_2_82_2
e_1_3_2_80_2
Macheroux P (e_1_3_2_54_2) 1999; 131
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
e_1_3_2_91_2
e_1_3_2_93_2
e_1_3_2_72_2
e_1_3_2_70_2
12455984 - Eukaryot Cell. 2002 Jun;1(3):353-65
15504822 - J Exp Med. 2004 Nov 1;200(9):1213-9
12183576 - Infect Immun. 2002 Sep;70(9):5246-55
16215174 - Eukaryot Cell. 2005 Oct;4(10):1662-76
16476787 - J Med Microbiol. 2006 Mar;55(Pt 3):251-8
6394964 - Mol Gen Genet. 1984;198(2):179-82
9204892 - Science. 1997 Jul 4;277(5322):105-9
7830564 - Mol Microbiol. 1994 Oct;14(1):87-99
19581449 - Genetics. 2009 Sep;183(1):93-106
12475176 - Cell Mol Life Sci. 2002 Oct;59(10):1658-65
18223116 - Eukaryot Cell. 2008 Mar;7(3):493-508
18978530 - Curr Opin Infect Dis. 2008 Dec;21(6):620-5
20041210 - PLoS Genet. 2009 Dec;5(12):e1000783
16024809 - Mol Cell Biol. 2005 Aug;25(15):6760-71
16963626 - Eukaryot Cell. 2006 Nov;5(11):1866-81
10834845 - Science. 2000 Jun 2;288(5471):1651-3
15387822 - Mol Microbiol. 2004 Sep;53(5):1451-69
12031499 - Biochim Biophys Acta. 2002 Jun 7;1576(1-2):176-82
17568774 - EMBO J. 2007 Jul 11;26(13):3157-68
16697062 - Biochim Biophys Acta. 2006 Jul;1763(7):646-51
17786247 - J Clin Invest. 2007 Sep;117(9):2649-57
19942619 - J Antimicrob Chemother. 2010 Feb;65(2):289-92
10398672 - Clin Microbiol Rev. 1999 Jul;12(3):394-404
18262398 - Microbiol Res. 2008;163(3):255-66
16849796 - Microbiology. 2006 Aug;152(Pt 8):2301-8
18552864 - Nat Rev Microbiol. 2008 Jul;6(7):541-52
11734641 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14322-7
1400249 - J Bacteriol. 1992 Nov;174(21):6992-6
11448968 - J Biol Chem. 2001 Sep 7;276(36):34221-6
15925311 - FEMS Yeast Res. 2005 Jun;5(9):829-37
18467097 - Trends Microbiol. 2008 Jun;16(6):261-8
18549241 - Biochemistry. 2008 Jul 8;47(27):7274-83
10790384 - Genetics. 2000 May;155(1):57-67
15803140 - Nat Rev Mol Cell Biol. 2005 Apr;6(4):345-51
9573075 - Infect Immun. 1998 May;66(5):1953-61
18503007 - Eukaryot Cell. 2008 Jul;7(7):1168-79
18400782 - Nucleic Acids Res. 2008 May;36(9):3075-84
17121456 - PLoS Biol. 2006 Nov;4(12):e410
11956219 - J Biol Chem. 2002 Jun 21;277(25):22950-8
2676721 - Genes Dev. 1989 Aug;3(8):1166-78
9790585 - Mol Gen Genet. 1998 Sep;259(5):532-40
16648636 - J Biol Chem. 2006 Jun 30;281(26):17661-9
19502236 - J Biol Chem. 2009 Jul 24;284(30):20249-62
18680426 - Annu Rev Phytopathol. 2008;46:149-87
6326753 - Biochem J. 1984 Apr 1;219(1):1-14
12196195 - Biochem Soc Trans. 2002 Aug;30(4):781-3
20076512 - PLoS Biol. 2006 Dec;4(12):e427
10096087 - Mol Microbiol. 1999 Feb;31(4):1205-15
12854978 - BMC Bioinformatics. 2003 Jul 10;4:29
11782496 - Microbiology. 2002 Jan;148(Pt 1):29-40
15752985 - Trends Biochem Sci. 2005 Mar;30(3):133-41
15474295 - Gene. 2004 Oct 27;341:119-27
17993568 - Eukaryot Cell. 2008 Jan;7(1):20-7
16928702 - J Antimicrob Chemother. 2006 Nov;58(5):1070-3
9016950 - Gene. 1997 Jan 3;184(1):33-7
19558965 - Metab Eng. 2009 May;11(3):163-7
9720876 - Mol Microbiol. 1998 Jul;29(2):605-15
16087738 - Eukaryot Cell. 2005 Aug;4(8):1328-42
8349105 - Genetics. 1993 Jul;134(3):717-28
18923425 - EMBO J. 2008 Nov 19;27(22):2966-76
4567521 - Annu Rev Microbiol. 1972;26:369-88
11737641 - Mol Microbiol. 2001 Nov;42(4):981-93
16113265 - Infect Immun. 2005 Sep;73(9):5493-503
15652485 - Cell. 2005 Jan 14;120(1):99-110
18065612 - Appl Environ Microbiol. 2008 Feb;74(3):615-23
16403430 - Anal Biochem. 2006 Apr 1;351(1):149-51
16824008 - Annu Rev Cell Dev Biol. 2006;22:457-86
15946869 - Fungal Genet Biol. 2005 Aug;42(8):676-83
10816728 - Biometals. 1999 Dec;12(4):295-300
9988696 - J Biol Chem. 1999 Feb 19;274(8):4613-9
10494538 - Methods Mol Biol. 1999;131:1-7
20941352 - PLoS Pathog. 2010;6(9):e1001124
19540796 - Curr Opin Microbiol. 2009 Aug;12(4):377-83
8436123 - Eur J Biochem. 1993 Feb 1;211(3):635-41
19520766 - Nucleic Acids Res. 2009 Aug;37(14):4812-25
16313617 - Mol Microbiol. 2005 Dec;58(5):1288-302
18586823 - Nucleic Acids Res. 2008 Aug;36(13):4295-309
19649569 - Biometals. 2009 Dec;22(6):1051-61
15109490 - Cell. 2004 Apr 30;117(3):285-97
17592720 - Arch Biochem Biophys. 2007 Sep 1;465(1):172-9
12374745 - EMBO J. 2002 Oct 15;21(20):5448-56
8413298 - Mol Cell Biol. 1993 Nov;13(11):7091-100
12073308 - Methods Enzymol. 2002;350:112-31
18721228 - Mol Microbiol. 2008 Oct;70(1):27-43
9372932 - Mol Cell Biol. 1997 Dec;17(12):7008-18
1322323 - FEBS Lett. 1992 Jul 27;307(1):108-12
7720713 - EMBO J. 1995 Mar 15;14(6):1231-9
17074835 - J Cell Sci. 2006 Nov 1;119(Pt 21):4554-64
15040387 - FEMS Immunol Med Microbiol. 2004 Mar 8;40(2):95-100
10807578 - Science. 2000 May 12;288(5468):1062-4
17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8
References_xml – ident: e_1_3_2_41_2
  doi: 10.1172/JCI32338
– ident: e_1_3_2_6_2
  doi: 10.1046/j.1365-2958.1999.01263.x
– ident: e_1_3_2_22_2
  doi: 10.1101/gad.3.8.1166
– ident: e_1_3_2_74_2
  doi: 10.1038/nrm1620
– ident: e_1_3_2_93_2
  doi: 10.1128/EC.1.3.353-365.2002
– ident: e_1_3_2_13_2
  doi: 10.1534/genetics.109.104364
– ident: e_1_3_2_44_2
  doi: 10.1128/EC.4.10.1662-1676.2005
– ident: e_1_3_2_73_2
  doi: 10.1016/j.gene.2004.06.021
– ident: e_1_3_2_50_2
  doi: 10.1111/j.1365-2958.2004.04214.x
– ident: e_1_3_2_65_2
  doi: 10.1074/jbc.M202682200
– ident: e_1_3_2_36_2
  doi: 10.1128/CMR.12.3.394
– ident: e_1_3_2_52_2
  doi: 10.1016/j.tibs.2005.01.006
– ident: e_1_3_2_30_2
  doi: 10.1016/0014-5793(92)80911-Y
– ident: e_1_3_2_53_2
  doi: 10.1146/annurev.cellbio.22.010305.104538
– ident: e_1_3_2_76_2
  doi: 10.1016/j.fgb.2005.04.008
– ident: e_1_3_2_7_2
  doi: 10.1126/science.277.5322.105
– ident: e_1_3_2_42_2
  doi: 10.1093/jac/dkp426
– ident: e_1_3_2_86_2
  doi: 10.1093/emboj/cdf507
– ident: e_1_3_2_45_2
  doi: 10.1371/journal.pbio.0040410
– ident: e_1_3_2_12_2
  doi: 10.1093/nar/gkn160
– ident: e_1_3_2_87_2
  doi: 10.1128/mcb.13.11.7091-7100.1993
– ident: e_1_3_2_28_2
  doi: 10.1074/jbc.274.8.4613
– ident: e_1_3_2_46_2
  doi: 10.1016/j.bbamcr.2006.03.008
– ident: e_1_3_2_18_2
  doi: 10.1146/annurev.mi.26.100172.002101
– ident: e_1_3_2_57_2
  doi: 10.1128/EC.00199-06
– ident: e_1_3_2_69_2
  doi: 10.1016/j.cell.2004.11.032
– ident: e_1_3_2_47_2
  doi: 10.1099/mic.0.28843-0
– ident: e_1_3_2_16_2
  doi: 10.1007/PL00012493
– ident: e_1_3_2_17_2
  doi: 10.1093/nar/gkp509
– ident: e_1_3_2_19_2
  doi: 10.1038/nrmicro1930
– ident: e_1_3_2_61_2
  doi: 10.1042/bst0300781
– ident: e_1_3_2_59_2
  doi: 10.1016/j.abb.2007.05.020
– ident: e_1_3_2_33_2
  doi: 10.1128/IAI.73.9.5493-5503.2005
– ident: e_1_3_2_58_2
  doi: 10.1128/EC.00446-07
– volume-title: Molecular cloning: a laboratory manual
  year: 2001
  ident: e_1_3_2_78_2
– ident: e_1_3_2_8_2
  doi: 10.1093/genetics/155.1.57
– ident: e_1_3_2_24_2
  doi: 10.1007/BF00328721
– ident: e_1_3_2_38_2
  doi: 10.1093/nar/gkn328
– ident: e_1_3_2_20_2
  doi: 10.1023/A:1009298530145
– ident: e_1_3_2_9_2
  doi: 10.1099/jmm.0.46386-0
– ident: e_1_3_2_40_2
  doi: 10.1093/jac/dkl350
– ident: e_1_3_2_81_2
  doi: 10.1084/jem.20041242
– ident: e_1_3_2_15_2
  doi: 10.1111/j.1432-1033.1993.tb17591.x
– ident: e_1_3_2_23_2
  doi: 10.1128/jb.174.21.6992-6996.1992
– ident: e_1_3_2_62_2
  doi: 10.1074/jbc.M602165200
– ident: e_1_3_2_39_2
  doi: 10.1111/j.1365-2958.1994.tb01269.x
– ident: e_1_3_2_10_2
  doi: 10.1186/1471-2105-4-29
– ident: e_1_3_2_85_2
  doi: 10.1016/S0167-4781(02)00286-5
– ident: e_1_3_2_32_2
  doi: 10.1128/IAI.70.9.5246-5255.2002
– ident: e_1_3_2_43_2
  doi: 10.1097/QCO.0b013e3283165fd1
– ident: e_1_3_2_70_2
  doi: 10.1242/jcs.03229
– ident: e_1_3_2_64_2
  doi: 10.1111/j.1365-2958.2005.04898.x
– ident: e_1_3_2_11_2
  doi: 10.1021/bi800066s
– ident: e_1_3_2_84_2
  doi: 10.1016/j.ab.2005.12.001
– ident: e_1_3_2_5_2
  doi: 10.1016/j.femsyr.2005.03.007
– ident: e_1_3_2_55_2
  doi: 10.1128/MCB.17.12.7008
– ident: e_1_3_2_88_2
  doi: 10.1128/AEM.01387-07
– ident: e_1_3_2_67_2
  doi: 10.1126/science.288.5471.1651
– ident: e_1_3_2_29_2
  doi: 10.1042/bj2190001
– ident: e_1_3_2_66_2
  doi: 10.1128/EC.00354-07
– ident: e_1_3_2_82_2
  doi: 10.1111/j.1365-2958.2008.06376.x
– ident: e_1_3_2_94_2
  doi: 10.1007/s004380050845
– ident: e_1_3_2_3_2
  doi: 10.1128/EC.00108-08
– ident: e_1_3_2_26_2
  doi: 10.1016/S0378-1119(96)00570-7
– ident: e_1_3_2_14_2
  doi: 10.1128/MCB.25.15.6760-6771.2005
– ident: e_1_3_2_89_2
  doi: 10.1016/j.micres.2007.12.001
– ident: e_1_3_2_60_2
  doi: 10.1046/j.1365-2958.2001.02713.x
– ident: e_1_3_2_80_2
  doi: 10.1371/journal.ppat.1001124
– ident: e_1_3_2_90_2
  doi: 10.1128/IAI.66.5.1953-1961.1998
– ident: e_1_3_2_21_2
  doi: 10.1093/genetics/134.3.717
– ident: e_1_3_2_35_2
  doi: 10.1038/sj.emboj.7601752
– ident: e_1_3_2_92_2
  doi: 10.1016/j.ymben.2009.01.004
– ident: e_1_3_2_34_2
  doi: 10.1371/journal.pgen.1000783
– ident: e_1_3_2_31_2
  doi: 10.1016/S0092-8674(04)00343-5
– ident: e_1_3_2_83_2
  doi: 10.1016/j.tim.2008.03.005
– ident: e_1_3_2_63_2
  doi: 10.1128/EC.4.8.1328-1342.2005
– ident: e_1_3_2_27_2
  doi: 10.1146/annurev.phyto.45.062806.094338
– ident: e_1_3_2_49_2
  doi: 10.1016/j.mib.2009.05.005
– volume: 131
  start-page: 1
  year: 1999
  ident: e_1_3_2_54_2
  article-title: UV-Visible spectroscopy as a tool to study flavoproteins
  publication-title: Methods Mol Biol.
– ident: e_1_3_2_68_2
  doi: 10.1038/emboj.2008.212
– ident: e_1_3_2_72_2
  doi: 10.1126/science.288.5468.1062
– ident: e_1_3_2_2_2
  doi: 10.1111/j.1574-6968.1983.tb00504.x
– ident: e_1_3_2_37_2
  doi: 10.1016/S0928-8244(03)00301-8
– ident: e_1_3_2_71_2
  doi: 10.1007/s10534-009-9256-x
– ident: e_1_3_2_79_2
  doi: 10.1046/j.1365-2958.1998.00957.x
– ident: e_1_3_2_51_2
  doi: 10.1093/bioinformatics/btm404
– ident: e_1_3_2_25_2
  doi: 10.1371/journal.pbio.0040427
– ident: e_1_3_2_77_2
  doi: 10.1073/pnas.261381198
– ident: e_1_3_2_4_2
  doi: 10.1074/jbc.M104987200
– ident: e_1_3_2_48_2
  doi: 10.1099/00221287-148-1-29
– ident: e_1_3_2_56_2
  doi: 10.1074/jbc.M109.009563
– ident: e_1_3_2_75_2
  doi: 10.1016/S0076-6879(02)50959-9
– ident: e_1_3_2_91_2
  doi: 10.1002/j.1460-2075.1995.tb07106.x
– reference: 17121456 - PLoS Biol. 2006 Nov;4(12):e410
– reference: 10834845 - Science. 2000 Jun 2;288(5471):1651-3
– reference: 15803140 - Nat Rev Mol Cell Biol. 2005 Apr;6(4):345-51
– reference: 18680426 - Annu Rev Phytopathol. 2008;46:149-87
– reference: 11734641 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14322-7
– reference: 1322323 - FEBS Lett. 1992 Jul 27;307(1):108-12
– reference: 19540796 - Curr Opin Microbiol. 2009 Aug;12(4):377-83
– reference: 9790585 - Mol Gen Genet. 1998 Sep;259(5):532-40
– reference: 9573075 - Infect Immun. 1998 May;66(5):1953-61
– reference: 10790384 - Genetics. 2000 May;155(1):57-67
– reference: 19502236 - J Biol Chem. 2009 Jul 24;284(30):20249-62
– reference: 17786247 - J Clin Invest. 2007 Sep;117(9):2649-57
– reference: 11448968 - J Biol Chem. 2001 Sep 7;276(36):34221-6
– reference: 16113265 - Infect Immun. 2005 Sep;73(9):5493-503
– reference: 11956219 - J Biol Chem. 2002 Jun 21;277(25):22950-8
– reference: 12854978 - BMC Bioinformatics. 2003 Jul 10;4:29
– reference: 10398672 - Clin Microbiol Rev. 1999 Jul;12(3):394-404
– reference: 18467097 - Trends Microbiol. 2008 Jun;16(6):261-8
– reference: 15109490 - Cell. 2004 Apr 30;117(3):285-97
– reference: 15040387 - FEMS Immunol Med Microbiol. 2004 Mar 8;40(2):95-100
– reference: 19581449 - Genetics. 2009 Sep;183(1):93-106
– reference: 8413298 - Mol Cell Biol. 1993 Nov;13(11):7091-100
– reference: 7830564 - Mol Microbiol. 1994 Oct;14(1):87-99
– reference: 12073308 - Methods Enzymol. 2002;350:112-31
– reference: 10494538 - Methods Mol Biol. 1999;131:1-7
– reference: 15752985 - Trends Biochem Sci. 2005 Mar;30(3):133-41
– reference: 11782496 - Microbiology. 2002 Jan;148(Pt 1):29-40
– reference: 16648636 - J Biol Chem. 2006 Jun 30;281(26):17661-9
– reference: 9988696 - J Biol Chem. 1999 Feb 19;274(8):4613-9
– reference: 1400249 - J Bacteriol. 1992 Nov;174(21):6992-6
– reference: 17993568 - Eukaryot Cell. 2008 Jan;7(1):20-7
– reference: 11737641 - Mol Microbiol. 2001 Nov;42(4):981-93
– reference: 18223116 - Eukaryot Cell. 2008 Mar;7(3):493-508
– reference: 6394964 - Mol Gen Genet. 1984;198(2):179-82
– reference: 15504822 - J Exp Med. 2004 Nov 1;200(9):1213-9
– reference: 16476787 - J Med Microbiol. 2006 Mar;55(Pt 3):251-8
– reference: 10096087 - Mol Microbiol. 1999 Feb;31(4):1205-15
– reference: 2676721 - Genes Dev. 1989 Aug;3(8):1166-78
– reference: 9720876 - Mol Microbiol. 1998 Jul;29(2):605-15
– reference: 20041210 - PLoS Genet. 2009 Dec;5(12):e1000783
– reference: 16697062 - Biochim Biophys Acta. 2006 Jul;1763(7):646-51
– reference: 18549241 - Biochemistry. 2008 Jul 8;47(27):7274-83
– reference: 16087738 - Eukaryot Cell. 2005 Aug;4(8):1328-42
– reference: 15925311 - FEMS Yeast Res. 2005 Jun;5(9):829-37
– reference: 8349105 - Genetics. 1993 Jul;134(3):717-28
– reference: 16849796 - Microbiology. 2006 Aug;152(Pt 8):2301-8
– reference: 18503007 - Eukaryot Cell. 2008 Jul;7(7):1168-79
– reference: 18923425 - EMBO J. 2008 Nov 19;27(22):2966-76
– reference: 8436123 - Eur J Biochem. 1993 Feb 1;211(3):635-41
– reference: 6326753 - Biochem J. 1984 Apr 1;219(1):1-14
– reference: 16215174 - Eukaryot Cell. 2005 Oct;4(10):1662-76
– reference: 12455984 - Eukaryot Cell. 2002 Jun;1(3):353-65
– reference: 17568774 - EMBO J. 2007 Jul 11;26(13):3157-68
– reference: 12374745 - EMBO J. 2002 Oct 15;21(20):5448-56
– reference: 9016950 - Gene. 1997 Jan 3;184(1):33-7
– reference: 12031499 - Biochim Biophys Acta. 2002 Jun 7;1576(1-2):176-82
– reference: 7720713 - EMBO J. 1995 Mar 15;14(6):1231-9
– reference: 18552864 - Nat Rev Microbiol. 2008 Jul;6(7):541-52
– reference: 12196195 - Biochem Soc Trans. 2002 Aug;30(4):781-3
– reference: 18721228 - Mol Microbiol. 2008 Oct;70(1):27-43
– reference: 15946869 - Fungal Genet Biol. 2005 Aug;42(8):676-83
– reference: 12183576 - Infect Immun. 2002 Sep;70(9):5246-55
– reference: 20076512 - PLoS Biol. 2006 Dec;4(12):e427
– reference: 18586823 - Nucleic Acids Res. 2008 Aug;36(13):4295-309
– reference: 18065612 - Appl Environ Microbiol. 2008 Feb;74(3):615-23
– reference: 16824008 - Annu Rev Cell Dev Biol. 2006;22:457-86
– reference: 19942619 - J Antimicrob Chemother. 2010 Feb;65(2):289-92
– reference: 15387822 - Mol Microbiol. 2004 Sep;53(5):1451-69
– reference: 19649569 - Biometals. 2009 Dec;22(6):1051-61
– reference: 10807578 - Science. 2000 May 12;288(5468):1062-4
– reference: 10816728 - Biometals. 1999 Dec;12(4):295-300
– reference: 20941352 - PLoS Pathog. 2010;6(9):e1001124
– reference: 15474295 - Gene. 2004 Oct 27;341:119-27
– reference: 16403430 - Anal Biochem. 2006 Apr 1;351(1):149-51
– reference: 19520766 - Nucleic Acids Res. 2009 Aug;37(14):4812-25
– reference: 12475176 - Cell Mol Life Sci. 2002 Oct;59(10):1658-65
– reference: 9372932 - Mol Cell Biol. 1997 Dec;17(12):7008-18
– reference: 16024809 - Mol Cell Biol. 2005 Aug;25(15):6760-71
– reference: 16963626 - Eukaryot Cell. 2006 Nov;5(11):1866-81
– reference: 4567521 - Annu Rev Microbiol. 1972;26:369-88
– reference: 18978530 - Curr Opin Infect Dis. 2008 Dec;21(6):620-5
– reference: 19558965 - Metab Eng. 2009 May;11(3):163-7
– reference: 16928702 - J Antimicrob Chemother. 2006 Nov;58(5):1070-3
– reference: 18400782 - Nucleic Acids Res. 2008 May;36(9):3075-84
– reference: 17592720 - Arch Biochem Biophys. 2007 Sep 1;465(1):172-9
– reference: 18262398 - Microbiol Res. 2008;163(3):255-66
– reference: 16313617 - Mol Microbiol. 2005 Dec;58(5):1288-302
– reference: 15652485 - Cell. 2005 Jan 14;120(1):99-110
– reference: 9204892 - Science. 1997 Jul 4;277(5322):105-9
– reference: 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8
– reference: 17074835 - J Cell Sci. 2006 Nov 1;119(Pt 21):4554-64
SSID ssj0015973
Score 2.3618827
Snippet Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit...
Candida albicans is an opportunistic fungal pathogen that exists as normal flora in healthy human bodies but causes life-threatening infections in...
Candida albicans is an opportunistic fungal pathogen that exists as normal flora in healthy human bodies but causes life-threatening infections in...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 207
SubjectTerms Amino Acid Sequence
Animals
Aspergillus
Candida albicans
Candida albicans - pathogenicity
Candida albicans - physiology
Candidiasis - pathology
Cell Nucleus - metabolism
Cell Proliferation
Female
Flavins - biosynthesis
Fungal Proteins - genetics
Fungal Proteins - metabolism
Gene Deletion
Gene Expression Regulation, Fungal
Humans
Iron - deficiency
Iron - metabolism
Kidney - pathology
Mice
Mice, Inbred BALB C
Molecular Sequence Data
Repressor Proteins - genetics
Repressor Proteins - metabolism
Schizosaccharomyces pombe
Sequence Alignment
Sequence Homology, Amino Acid
Two-Hybrid System Techniques
Virulence
Title Candida albicans Hap43 Is a Repressor Induced under Low-Iron Conditions and Is Essential for Iron-Responsive Transcriptional Regulation and Virulence
URI http://ec.asm.org/content/10/2/207.abstract
https://www.ncbi.nlm.nih.gov/pubmed/21131439
https://www.proquest.com/docview/850562888
https://www.proquest.com/docview/907149744
https://www.proquest.com/docview/907150817
https://pubmed.ncbi.nlm.nih.gov/PMC3067405
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiQuiPcWWOTDnogCje28jqjqqkVlkVCLdrlEeTi71UKzShrQ8j_4v8zYTpos5XmJImfsRJrPE894vjEhh5nPEsHyxHaEDG0RyBSmVJbYfuamrueLZCSQO_z22JsuxZsT92QwyDtZS_UmeZl-28kr-R-tQhvoFVmy_6DZdlBogHvQL1xBw3D9Kx2PkZOSxZhjjNassqbxpeDWrLJiXFmjJ12UFp7Ogbv8SBcrrXnx1Z6VheL6ZTpfS-cEV9akQibSSlMaLRSy35sU2i9Sl0FvbIwqyX9mjv5S_T-syloRmPqx_ou4vCqwKCzuELQYqmq1ei3s8fmWinZqQtfYdmafxkWbLBSbzIAa2-tuoAIjr23SR2NbXRuWm0HP-I46IGNdS6oPwzU_ZabZ0T_be4YcBpnihpKLdWq3v7VmK__4XXS0nM-jxeRkcYPcZOBO8CaqY3abwKniuq6u_kDD44TBX3WG7q9cmmrSuzyT6wm2nRXL4i65Y1wN-lrj5h4ZyPV9cksfPnoFdx8LdfeAfDc4og2OqMIRnVU0pi2OqMERVTiiDY7oFkcUhsFOLY5ojt36OKLXcES3OFL9Wxw9JMujyWI8tc1xHXbq8nBjM9_Lpc_AAQq5m3B_FIgskUx6uYdxkJwLKbI8SJ0w5znjWTByY0_mMc_dLOdewB-RvXWxlvuE8tRPMomcbD8RSZjG4Ne4I-kEfurC-lYMyYtGFVFqatnjkSqfIuXTsiCajCOlN2gYksNW-FKXcNktdtDoNIqrz5GsL3BmoCiLAI1DQhtFR2CC8Vm8lkVdRYHyIoIg-LVIiDxBcN3F70XAW3LgRY81etqvZY7Dwa8Jh8Tv4aoVwBrx_Sfr1bmqFY8RAfDJnvz5y56S29tZ-4zsbcpaHsCCe5M8V7PlB6S63BM
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Candida+albicans+Hap43+Is+a+Repressor+Induced+under+Low-Iron+Conditions+and+Is+Essential+for+Iron-Responsive+Transcriptional+Regulation+and+Virulence&rft.jtitle=Eukaryotic+cell&rft.au=Hsu%2C+Po-Chen&rft.au=Yang%2C+Cheng-Yao&rft.au=Lan%2C+Chung-Yu&rft.date=2011-02-01&rft.issn=1535-9778&rft.volume=10&rft.issue=2&rft.spage=207&rft.epage=225&rft_id=info:doi/10.1128%2Fec.00158-10&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-9778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-9778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-9778&client=summon