Systematic evaluation of differential splicing tools for RNA-seq studies

Abstract Differential splicing (DS) is a post-transcriptional biological process with critical, wide-ranging effects on a plethora of cellular activities and disease processes. To date, a number of computational approaches have been developed to identify and quantify differentially spliced genes fro...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 21; no. 6; pp. 2052 - 2065
Main Authors Mehmood, Arfa, Laiho, Asta, Venäläinen, Mikko S, McGlinchey, Aidan J, Wang, Ning, Elo, Laura L
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.12.2020
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Differential splicing (DS) is a post-transcriptional biological process with critical, wide-ranging effects on a plethora of cellular activities and disease processes. To date, a number of computational approaches have been developed to identify and quantify differentially spliced genes from RNA-seq data, but a comprehensive intercomparison and appraisal of these approaches is currently lacking. In this study, we systematically evaluated 10 DS analysis tools for consistency and reproducibility, precision, recall and false discovery rate, agreement upon reported differentially spliced genes and functional enrichment. The tools were selected to represent the three different methodological categories: exon-based (DEXSeq, edgeR, JunctionSeq, limma), isoform-based (cuffdiff2, DiffSplice) and event-based methods (dSpliceType, MAJIQ, rMATS, SUPPA). Overall, all the exon-based methods and two event-based methods (MAJIQ and rMATS) scored well on the selected measures. Of the 10 tools tested, the exon-based methods performed generally better than the isoform-based and event-based methods. However, overall, the different data analysis tools performed strikingly differently across different data sets or numbers of samples.
AbstractList Differential splicing (DS) is a post-transcriptional biological process with critical, wide-ranging effects on a plethora of cellular activities and disease processes. To date, a number of computational approaches have been developed to identify and quantify differentially spliced genes from RNA-seq data, but a comprehensive intercomparison and appraisal of these approaches is currently lacking. In this study, we systematically evaluated 10 DS analysis tools for consistency and reproducibility, precision, recall and false discovery rate, agreement upon reported differentially spliced genes and functional enrichment. The tools were selected to represent the three different methodological categories: exon-based (DEXSeq, edgeR, JunctionSeq, limma), isoform-based (cuffdiff2, DiffSplice) and event-based methods (dSpliceType, MAJIQ, rMATS, SUPPA). Overall, all the exon-based methods and two event-based methods (MAJIQ and rMATS) scored well on the selected measures. Of the 10 tools tested, the exon-based methods performed generally better than the isoform-based and event-based methods. However, overall, the different data analysis tools performed strikingly differently across different data sets or numbers of samples.
Abstract Differential splicing (DS) is a post-transcriptional biological process with critical, wide-ranging effects on a plethora of cellular activities and disease processes. To date, a number of computational approaches have been developed to identify and quantify differentially spliced genes from RNA-seq data, but a comprehensive intercomparison and appraisal of these approaches is currently lacking. In this study, we systematically evaluated 10 DS analysis tools for consistency and reproducibility, precision, recall and false discovery rate, agreement upon reported differentially spliced genes and functional enrichment. The tools were selected to represent the three different methodological categories: exon-based (DEXSeq, edgeR, JunctionSeq, limma), isoform-based (cuffdiff2, DiffSplice) and event-based methods (dSpliceType, MAJIQ, rMATS, SUPPA). Overall, all the exon-based methods and two event-based methods (MAJIQ and rMATS) scored well on the selected measures. Of the 10 tools tested, the exon-based methods performed generally better than the isoform-based and event-based methods. However, overall, the different data analysis tools performed strikingly differently across different data sets or numbers of samples.
Differential splicing (DS) is a post-transcriptional biological process with critical, wide-ranging effects on a plethora of cellular activities and disease processes. To date, a number of computational approaches have been developed to identify and quantify differentially spliced genes from RNA-seq data, but a comprehensive intercomparison and appraisal of these approaches is currently lacking. In this study, we systematically evaluated 10 DS analysis tools for consistency and reproducibility, precision, recall and false discovery rate, agreement upon reported differentially spliced genes and functional enrichment. The tools were selected to represent the three different methodological categories: exon-based (DEXSeq, edgeR, JunctionSeq, limma), isoform-based (cuffdiff2, DiffSplice) and event-based methods (dSpliceType, MAJIQ, rMATS, SUPPA). Overall, all the exon-based methods and two event-based methods (MAJIQ and rMATS) scored well on the selected measures. Of the 10 tools tested, the exon-based methods performed generally better than the isoform-based and event-based methods. However, overall, the different data analysis tools performed strikingly differently across different data sets or numbers of samples.Differential splicing (DS) is a post-transcriptional biological process with critical, wide-ranging effects on a plethora of cellular activities and disease processes. To date, a number of computational approaches have been developed to identify and quantify differentially spliced genes from RNA-seq data, but a comprehensive intercomparison and appraisal of these approaches is currently lacking. In this study, we systematically evaluated 10 DS analysis tools for consistency and reproducibility, precision, recall and false discovery rate, agreement upon reported differentially spliced genes and functional enrichment. The tools were selected to represent the three different methodological categories: exon-based (DEXSeq, edgeR, JunctionSeq, limma), isoform-based (cuffdiff2, DiffSplice) and event-based methods (dSpliceType, MAJIQ, rMATS, SUPPA). Overall, all the exon-based methods and two event-based methods (MAJIQ and rMATS) scored well on the selected measures. Of the 10 tools tested, the exon-based methods performed generally better than the isoform-based and event-based methods. However, overall, the different data analysis tools performed strikingly differently across different data sets or numbers of samples.
Author Wang, Ning
Laiho, Asta
McGlinchey, Aidan J
Elo, Laura L
Mehmood, Arfa
Venäläinen, Mikko S
AuthorAffiliation 2 Department of Physiology , University of Turku, Turku, Finland
1 Turku Bioscience Centre , University of Turku and Åbo Akademi University, Turku, Finland
3 School of Medical Sciences , Örebro University, Örebro, Sweden
AuthorAffiliation_xml – name: 3 School of Medical Sciences , Örebro University, Örebro, Sweden
– name: 2 Department of Physiology , University of Turku, Turku, Finland
– name: 1 Turku Bioscience Centre , University of Turku and Åbo Akademi University, Turku, Finland
Author_xml – sequence: 1
  givenname: Arfa
  surname: Mehmood
  fullname: Mehmood, Arfa
  email: arfa.mehmood@utu.fi
  organization: Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
– sequence: 2
  givenname: Asta
  surname: Laiho
  fullname: Laiho, Asta
  email: asta.laiho@btk.fi
  organization: Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
– sequence: 3
  givenname: Mikko S
  surname: Venäläinen
  fullname: Venäläinen, Mikko S
  email: mikko.venalainen@utu.fi
  organization: Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
– sequence: 4
  givenname: Aidan J
  surname: McGlinchey
  fullname: McGlinchey, Aidan J
  email: aidan.mcglinchey@oru.se
  organization: Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
– sequence: 5
  givenname: Ning
  surname: Wang
  fullname: Wang, Ning
  email: ning.wang@utu.fi
  organization: Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
– sequence: 6
  givenname: Laura L
  surname: Elo
  fullname: Elo, Laura L
  email: laura.elo@utu.fi
  organization: Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31802105$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-78549$$DView record from Swedish Publication Index
BookMark eNp9kVtrFTEUhYNU7EVf_AEyIIKUjs11MvNSONRehKLg7TUkmZ1jSs7kNJmp1F9vTqcVW8SHkA3724u199pFW0McAKGXBL8juGOHxptDY34R2jxBO4RLWXMs-NambmQteMO20W7OlxhTLFvyDG0z0mJKsNhB519u8ggrPXpbwbUOU6niUEVX9d45SDCMXocqr4O3flhWY4whVy6m6vPHRZ3hqsrj1HvIz9FTp0OGF3f_Hvp2evL1-Ly--HT24XhxUVvBurEmnHUMa2Ghsw04IR2zbXHVtsLwjpO-eORd2wnjuMFUAmHc9gyIlsxITNkeOph1809YT0atk1_pdKOi9uq9_75QMS3Lm5RsBe8KfjTjhV1Bb8s-SYcHUw87g_-hlvFaSUnKQUUReHsnkOLVBHlUK58thKAHiFNWlFFalhICF_T1I_QyTmko11CUy6ZlnJHNAq_-dvTHyn0mBcAzYFPMOYFT1o-3sRSDPiiC1SZ2VWJXc-xlZP_RyL3qP-E3Mxyn9f-432XMu0c
CitedBy_id crossref_primary_10_1111_nph_17189
crossref_primary_10_1016_j_jmb_2023_168156
crossref_primary_10_1016_j_compbiomed_2024_108789
crossref_primary_10_1093_nargab_lqad098
crossref_primary_10_1093_bioinformatics_btad224
crossref_primary_10_3390_genes14112051
crossref_primary_10_3389_fmolb_2021_727614
crossref_primary_10_1111_1755_0998_13409
crossref_primary_10_1093_bioinformatics_btab050
crossref_primary_10_1007_s13258_023_01365_x
crossref_primary_10_1038_s41598_020_78997_6
crossref_primary_10_1007_s00018_022_04497_7
crossref_primary_10_7554_eLife_55500
crossref_primary_10_1186_s12859_021_04263_9
crossref_primary_10_1002_humu_24394
crossref_primary_10_1111_nph_19995
crossref_primary_10_1016_j_semcdb_2023_01_013
crossref_primary_10_3390_ijms22168451
crossref_primary_10_3892_ijmm_2022_5094
crossref_primary_10_1038_s42003_024_05941_z
crossref_primary_10_1002_ggn2_202200024
crossref_primary_10_1177_0271678X221110679
crossref_primary_10_1371_journal_pcbi_1011576
crossref_primary_10_2174_0115748936279561231214072041
crossref_primary_10_1016_j_tree_2021_11_010
crossref_primary_10_3389_fcell_2023_1232146
crossref_primary_10_3389_fgene_2021_774240
crossref_primary_10_1038_s41375_024_02509_y
crossref_primary_10_1016_j_marenvres_2024_106549
crossref_primary_10_1093_bib_bbab553
crossref_primary_10_1016_j_ijbiomac_2025_139941
crossref_primary_10_1038_s41596_023_00944_2
crossref_primary_10_1371_journal_pone_0284357
crossref_primary_10_1038_s41437_024_00669_2
crossref_primary_10_1038_s41437_023_00665_y
crossref_primary_10_1016_j_ccell_2022_10_013
crossref_primary_10_1038_s41568_024_00750_2
crossref_primary_10_3389_fpls_2021_774829
crossref_primary_10_3390_genes12040541
crossref_primary_10_1093_hmg_ddac196
crossref_primary_10_1186_s40246_023_00545_w
crossref_primary_10_3389_fcell_2022_1021785
crossref_primary_10_3389_fcell_2023_1021920
crossref_primary_10_1093_bioinformatics_btab873
crossref_primary_10_1093_nar_gkaf098
crossref_primary_10_1016_j_psj_2023_102484
crossref_primary_10_1093_bib_bbab259
crossref_primary_10_1093_nar_gkad1043
crossref_primary_10_1093_gbe_evac171
crossref_primary_10_3390_ijms231710131
crossref_primary_10_3389_fimmu_2024_1490035
crossref_primary_10_1007_s12035_021_02700_7
crossref_primary_10_1016_j_neuroscience_2022_08_009
crossref_primary_10_3389_fimmu_2022_1060114
crossref_primary_10_1016_j_cbpb_2024_110941
crossref_primary_10_1098_rsob_220206
crossref_primary_10_1111_1365_2656_14157
crossref_primary_10_1016_j_heliyon_2023_e22377
crossref_primary_10_1186_s12915_023_01645_8
crossref_primary_10_1002_wrna_1760
crossref_primary_10_15252_embj_2021110496
crossref_primary_10_1093_nargab_lqad044
crossref_primary_10_3390_biom12070993
crossref_primary_10_1093_bib_bbad067
crossref_primary_10_1007_s13562_024_00909_w
crossref_primary_10_1016_j_molcel_2023_06_003
crossref_primary_10_1007_s10126_023_10196_6
crossref_primary_10_1016_j_iotech_2021_100052
crossref_primary_10_1089_neu_2022_0503
crossref_primary_10_1016_j_celrep_2024_114893
crossref_primary_10_3389_fpls_2023_1301164
crossref_primary_10_1038_s41467_024_47107_9
crossref_primary_10_3390_mps4040068
crossref_primary_10_1016_j_celrep_2022_110341
crossref_primary_10_1038_s41598_021_84693_w
crossref_primary_10_1093_hmg_ddab178
crossref_primary_10_1038_s41598_022_14231_9
crossref_primary_10_3390_ijms24108666
crossref_primary_10_1093_nar_gkab357
crossref_primary_10_1038_s42003_022_03253_8
crossref_primary_10_1093_bioinformatics_btab141
crossref_primary_10_1093_nargab_lqae165
crossref_primary_10_12688_f1000research_155223_1
crossref_primary_10_1261_rna_079764_123
crossref_primary_10_3389_fpls_2023_1135455
crossref_primary_10_1007_s00018_021_03865_z
crossref_primary_10_1038_s41568_022_00541_7
crossref_primary_10_3389_fmolb_2021_726902
crossref_primary_10_3389_fgene_2021_689892
crossref_primary_10_1007_s00439_023_02539_z
crossref_primary_10_1038_s41598_023_47348_6
crossref_primary_10_3390_genes11070784
crossref_primary_10_1016_j_bbrc_2023_02_053
crossref_primary_10_1016_j_ymgmr_2024_101176
crossref_primary_10_1016_j_cbd_2024_101195
crossref_primary_10_1016_j_smim_2023_101758
crossref_primary_10_1038_s41598_023_32273_5
crossref_primary_10_1093_bib_bbad121
crossref_primary_10_1111_mec_17303
crossref_primary_10_1101_cshperspect_a041313
crossref_primary_10_1186_s13073_024_01381_w
crossref_primary_10_3390_ijms242015205
crossref_primary_10_1093_bioadv_vbae080
crossref_primary_10_1021_acssuschemeng_3c07046
crossref_primary_10_3390_biomedinformatics3040053
crossref_primary_10_3390_genes13030497
Cites_doi 10.1186/1471-2105-12-323
10.1186/1479-7364-8-3
10.1186/s13059-018-1417-1
10.1038/nmeth.1503
10.1038/ng.259
10.1109/TNB.2015.2388593
10.1093/bib/bbt086
10.1261/rna.325107
10.1261/rna.051557.115
10.3892/br.2014.407
10.1093/nar/gks1026
10.1371/journal.pone.0079448
10.1186/gb-2010-11-3-r25
10.1038/nmeth.4106
10.1038/cr.2013.61
10.1093/bioinformatics/bts635
10.1038/nmeth.1528
10.1093/bioinformatics/bts452
10.1093/bioinformatics/btp616
10.7554/eLife.08954
10.1016/j.canlet.2012.11.010
10.1073/pnas.1419161111
10.1093/bioinformatics/btp120
10.1101/gr.133744.111
10.1038/nbt.3172
10.1038/s41588-017-0004-9
10.1093/nar/gkv007
10.1038/nbt.2450
10.1214/aos/1176344136
10.1007/s12561-012-9064-7
10.1093/bioinformatics/btp352
10.1093/bioinformatics/btt656
10.1002/bies.20692
10.1038/nrg2776
10.1038/aps.2015.43
10.1093/nar/gky325
10.7554/eLife.11752
10.1186/s12859-014-0364-4
10.1105/tpc.113.117523
10.1186/s13059-015-0862-3
10.1186/s13059-015-0702-5
10.1038/onc.2015.318
10.1093/bioinformatics/bty097
10.1038/nbt.1621
10.18632/oncotarget.8927
10.1093/nar/gkr1291
10.1038/75556
10.1038/nature07509
10.1038/nmeth.1923
10.1186/s13059-015-0697-y
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019
– notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
AABEP
ADTPV
AOWAS
D8T
D91
ZZAVC
DOI 10.1093/bib/bbz126
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Örebro universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Örebro universitet
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
Genetics Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
EndPage 2065
ExternalDocumentID oai_DiVA_org_oru_78549
PMC7711265
31802105
10_1093_bib_bbz126
10.1093/bib/bbz126
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Research Council
  grantid: 677943
– fundername: ;
  grantid: 677943
– fundername: ;
  grantid: 1877/31/2016
– fundername: ;
  grantid: 675395
– fundername: ;
  grantid: 310561; 314443; 304995; 296801
– fundername: ;
  grantid: 2-2013-32
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAVLN
ABDBF
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
ABEJV
ABGNP
ABPQP
ABXZS
ACUHS
ACUXJ
AHGBF
AHQJS
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
AABEP
AAGQS
ADTPV
AOWAS
D8T
D91
GROUPED_DOAJ
ZZAVC
ID FETCH-LOGICAL-c539t-143930a5ce9c6ef57f3c8078885b4941d02049895bf4b027e134cd3e1a73b7023
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Thu Aug 21 06:58:18 EDT 2025
Thu Aug 21 14:11:58 EDT 2025
Fri Jul 11 00:14:55 EDT 2025
Mon Jun 30 08:56:53 EDT 2025
Mon Jul 21 06:05:02 EDT 2025
Tue Jul 01 03:39:28 EDT 2025
Thu Apr 24 23:10:20 EDT 2025
Wed Aug 28 03:19:54 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords isoform-based methods
RNA-seq
differential splicing
splicing events
event-based methods
exon-based methods
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c539t-143930a5ce9c6ef57f3c8078885b4941d02049895bf4b027e134cd3e1a73b7023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://dx.doi.org/10.1093/bib/bbz126
PMID 31802105
PQID 2476834312
PQPubID 26846
PageCount 14
ParticipantIDs swepub_primary_oai_DiVA_org_oru_78549
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7711265
proquest_miscellaneous_2322143550
proquest_journals_2476834312
pubmed_primary_31802105
crossref_citationtrail_10_1093_bib_bbz126
crossref_primary_10_1093_bib_bbz126
oup_primary_10_1093_bib_bbz126
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2020
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Kim (2020120303471745300_ref10) 2008; 30
Shi (2020120303471745300_ref29) 2013; 8
Keren (2020120303471745300_ref1) 2010; 11
Schwarz (2020120303471745300_ref36) 1978; 6
Seyednasrollah (2020120303471745300_ref50) 2013; 16
Ren (2020120303471745300_ref33) 2013; 23
Soneson (2020120303471745300_ref53) 2016; 17
Hartley (2020120303471745300_ref20) 2016; 44
Langmead (2020120303471745300_ref39) 2012; 9
Hooper (2020120303471745300_ref15) 2014; 8
Liao (2020120303471745300_ref45) 2014; 30
Sveen (2020120303471745300_ref5) 2016; 35
Alexa (2020120303471745300_ref47) 2013
Ritchie (2020120303471745300_ref21) 2015; 43
Trapnell (2020120303471745300_ref54) 2009; 25
Alekseyenko (2020120303471745300_ref8) 2007; 13
Reddy (2020120303471745300_ref31) 2013; 25
(2020120303471745300_ref40) 2011
Pan (2020120303471745300_ref2) 2008; 40
Zhu (2020120303471745300_ref22) 2015; 14
Kanitz (2020120303471745300_ref12) 2015; 16
Bebee (2020120303471745300_ref35) 2015; 4
Wang (2020120303471745300_ref3) 2008; 456
Robinson (2020120303471745300_ref19) 2010; 26
Griffith (2020120303471745300_ref28) 2010; 7
Wang (2020120303471745300_ref14) 2015
Liu (2020120303471745300_ref17) 2014; 15
Ryan (2020120303471745300_ref30) 2012; 28
Andrews (2020120303471745300_ref41)
Liu (2020120303471745300_ref34) 2014; 7
Katz (2020120303471745300_ref27) 2010; 7
Sugnet (2020120303471745300_ref9) 2004; 77
Shen (2020120303471745300_ref37) 2012; 40
Li (2020120303471745300_ref38) 2011; 12
Trapnell (2020120303471745300_ref16) 2012; 31
Andrews (2020120303471745300_ref42) 2015
Wang (2020120303471745300_ref7) 2015; 3
Li (2020120303471745300_ref44) 2009; 25
Trapnell (2020120303471745300_ref32) 2010; 28
Li (2020120303471745300_ref51) 2018; 50
Anders (2020120303471745300_ref18) 2012; 22
Robinson (2020120303471745300_ref46) 2010; 11
Chen (2020120303471745300_ref4) 2013; 5
Frazee (2020120303471745300_ref52) 2015; 33
Chhangawala (2020120303471745300_ref57) 2015; 16
Shen (2020120303471745300_ref24) 2014; 111
Alamancos (2020120303471745300_ref25) 2015; 21
Dobin (2020120303471745300_ref43) 2013; 29
Vaquero-Garcia (2020120303471745300_ref23) 2016; 5
Li (2020120303471745300_ref49) 2013
Baruzzo (2020120303471745300_ref55) 2017; 14
Le (2020120303471745300_ref6) 2015; 36
Trincado (2020120303471745300_ref26) 2018; 19
Ballouz (2020120303471745300_ref56) 2018; 46
Hu (2020120303471745300_ref11) 2013; 41
Feng (2020120303471745300_ref13) 2013; 340
Hu (2020120303471745300_ref58) 2018; 34
Ashburner (2020120303471745300_ref48) 2000; 25
References_xml – volume: 12
  start-page: 323
  year: 2011
  ident: 2020120303471745300_ref38
  article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-12-323
– volume: 8
  start-page: 3
  year: 2014
  ident: 2020120303471745300_ref15
  article-title: A survey of software for genome-wide discovery of differential splicing in RNA-Seq data
  publication-title: Hum Genomics
  doi: 10.1186/1479-7364-8-3
– volume: 19
  start-page: 40
  year: 2018
  ident: 2020120303471745300_ref26
  article-title: SUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions
  publication-title: Genome Biol
  doi: 10.1186/s13059-018-1417-1
– volume: 7
  start-page: 843
  year: 2010
  ident: 2020120303471745300_ref28
  article-title: Alternative expression analysis by RNA sequencing
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1503
– volume: 40
  start-page: 1413
  year: 2008
  ident: 2020120303471745300_ref2
  article-title: Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing
  publication-title: Nat Genet
  doi: 10.1038/ng.259
– volume: 14
  start-page: 192
  year: 2015
  ident: 2020120303471745300_ref22
  article-title: A generalized dSpliceType framework to detect differential splicing and differential expression events using RNA-Seq
  publication-title: IEEE Trans Nanobioscience
  doi: 10.1109/TNB.2015.2388593
– volume: 16
  start-page: 59
  year: 2013
  ident: 2020120303471745300_ref50
  article-title: Comparison of software packages for detecting differential expression in RNA-seq studies
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbt086
– volume: 13
  start-page: 661
  year: 2007
  ident: 2020120303471745300_ref8
  article-title: Global analysis of exon creation versus loss and the role of alternative splicing in 17 vertebrate genomes
  publication-title: RNA
  doi: 10.1261/rna.325107
– volume: 21
  start-page: 1521
  year: 2015
  ident: 2020120303471745300_ref25
  article-title: Leveraging transcript quantification for fast computation of alternative splicing profiles
  publication-title: RNA New York, NY
  doi: 10.1261/rna.051557.115
– volume: 3
  start-page: 152
  year: 2015
  ident: 2020120303471745300_ref7
  article-title: Mechanism of alternative splicing and its regulation
  publication-title: Biomed Rep
  doi: 10.3892/br.2014.407
– volume: 41
  start-page: e39
  year: 2013
  ident: 2020120303471745300_ref11
  article-title: DiffSplice: the genome-wide detection of differential splicing events with RNA-seq
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1026
– volume: 8
  start-page: e79448
  year: 2013
  ident: 2020120303471745300_ref29
  article-title: rSeqDiff: detecting differential isoform expression from RNA-Seq data using hierarchical likelihood ratio test
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0079448
– volume: 11
  start-page: R25
  year: 2010
  ident: 2020120303471745300_ref46
  article-title: A scaling normalization method for differential expression analysis of RNA-seq data
  publication-title: Genome Biol
  doi: 10.1186/gb-2010-11-3-r25
– volume: 14
  start-page: 135
  year: 2017
  ident: 2020120303471745300_ref55
  article-title: Simulation-based comprehensive benchmarking of RNA-seq aligners
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4106
– volume: 23
  start-page: 732
  year: 2013
  ident: 2020120303471745300_ref33
  article-title: RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings
  publication-title: Cell Res
  doi: 10.1038/cr.2013.61
– ident: 2020120303471745300_ref41
– volume: 29
  start-page: 15
  year: 2013
  ident: 2020120303471745300_ref43
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 7
  start-page: 1009
  year: 2010
  ident: 2020120303471745300_ref27
  article-title: Analysis and design of RNA sequencing experiments for identifying isoform regulation
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1528
– volume: 28
  start-page: 2385
  year: 2012
  ident: 2020120303471745300_ref30
  article-title: SpliceSeq: a resource for analysis and visualization of RNA-Seq data on alternative splicing and its functional impacts
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts452
– volume: 26
  start-page: 139
  year: 2010
  ident: 2020120303471745300_ref19
  article-title: edgeR: a bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics (Oxford, England)
  doi: 10.1093/bioinformatics/btp616
– volume: 4
  start-page: e08954
  year: 2015
  ident: 2020120303471745300_ref35
  article-title: The splicing regulators Esrp1 and Esrp2 direct an epithelial splicing program essential for mammalian development
  publication-title: Elife
  doi: 10.7554/eLife.08954
– volume: 340
  start-page: 179
  year: 2013
  ident: 2020120303471745300_ref13
  article-title: Opportunities and methods for studying alternative splicing in cancer with RNA-Seq
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2012.11.010
– volume: 111
  start-page: E5593
  year: 2014
  ident: 2020120303471745300_ref24
  article-title: rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1419161111
– volume: 25
  start-page: 1105
  year: 2009
  ident: 2020120303471745300_ref54
  article-title: TopHat: discovering splice junctions with RNA-Seq
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp120
– volume: 77
  start-page: 66
  year: 2004
  ident: 2020120303471745300_ref9
  article-title: Transcriptome and genome conservation of alternative splicing events in humans and mice
  publication-title: Pac Symp Biocomput
– volume: 44
  start-page: e127
  year: 2016
  ident: 2020120303471745300_ref20
  article-title: Detection and visualization of differential splicing in RNA-Seq data with JunctionSeq
  publication-title: Nucleic Acids Res
– volume: 22
  start-page: 2008
  year: 2012
  ident: 2020120303471745300_ref18
  article-title: Detecting differential usage of exons from RNA-seq data
  publication-title: Genome Res
  doi: 10.1101/gr.133744.111
– volume: 33
  start-page: 243
  year: 2015
  ident: 2020120303471745300_ref52
  article-title: Ballgown bridges the gap between transcriptome assembly and expression analysis
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3172
– volume: 50
  start-page: 151
  year: 2018
  ident: 2020120303471745300_ref51
  article-title: Annotation-free quantification of RNA splicing using LeafCutter
  publication-title: Nat Genet
  doi: 10.1038/s41588-017-0004-9
– volume: 43
  start-page: e47
  year: 2015
  ident: 2020120303471745300_ref21
  article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv007
– volume: 31
  start-page: 46
  year: 2012
  ident: 2020120303471745300_ref16
  article-title: Differential analysis of gene regulation at transcript resolution with RNA-seq
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2450
– volume: 6
  start-page: 461
  year: 1978
  ident: 2020120303471745300_ref36
  article-title: Estimating the dimension of a model
  publication-title: Ann Stat
  doi: 10.1214/aos/1176344136
– volume: 5
  start-page: 138
  year: 2013
  ident: 2020120303471745300_ref4
  article-title: Statistical and computational methods for high-throughput sequencing data analysis of alternative splicing
  publication-title: Stat Biosci
  doi: 10.1007/s12561-012-9064-7
– volume: 25
  start-page: 2078
  year: 2009
  ident: 2020120303471745300_ref44
  article-title: The sequence alignment/map format and SAMtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 30
  start-page: 923
  year: 2014
  ident: 2020120303471745300_ref45
  article-title: FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt656
– volume: 30
  start-page: 38
  year: 2008
  ident: 2020120303471745300_ref10
  article-title: Alternative splicing: current perspectives
  publication-title: Bioessays
  doi: 10.1002/bies.20692
– start-page: 1
  year: 2011
  ident: 2020120303471745300_ref40
  publication-title: Archives
– volume: 11
  start-page: 345
  year: 2010
  ident: 2020120303471745300_ref1
  article-title: Alternative splicing and evolution: diversification, exon definition and function
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2776
– year: 2015
  ident: 2020120303471745300_ref42
– volume: 36
  start-page: 1212
  year: 2015
  ident: 2020120303471745300_ref6
  article-title: Alternative splicing as a biomarker and potential target for drug discovery
  publication-title: Acta Pharmacol Sin
  doi: 10.1038/aps.2015.43
– volume: 46
  start-page: 5125
  year: 2018
  ident: 2020120303471745300_ref56
  article-title: The fractured landscape of RNA-seq alignment: the default in our STARs
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky325
– start-page: 59
  year: 2015
  ident: 2020120303471745300_ref14
  article-title: A survey of computational methods in transcriptome-wide alternative splicing analysis
– volume: 5
  start-page: e11752
  year: 2016
  ident: 2020120303471745300_ref23
  article-title: A new view of transcriptome complexity and regulation through the lens of local splicing variations
  publication-title: Elife
  doi: 10.7554/eLife.11752
– volume: 15
  start-page: 364
  year: 2014
  ident: 2020120303471745300_ref17
  article-title: Comparisons of computational methods for differential alternative splicing detection using RNA-seq in plant systems
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-014-0364-4
– volume: 25
  start-page: 3657
  year: 2013
  ident: 2020120303471745300_ref31
  article-title: Complexity of the alternative splicing landscape in plants
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.117523
– volume: 17
  start-page: 12
  year: 2016
  ident: 2020120303471745300_ref53
  article-title: Isoform prefiltering improves performance of count-based methods for analysis of differential transcript usage
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0862-3
– volume: 16
  start-page: 150
  year: 2015
  ident: 2020120303471745300_ref12
  article-title: Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0702-5
– year: 2013
  ident: 2020120303471745300_ref49
  article-title: Seqtk: toolkit for processing sequences in FASTA/Q formats
  publication-title: GitHub Repository
– volume: 35
  start-page: 2413
  year: 2016
  ident: 2020120303471745300_ref5
  article-title: Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes
  publication-title: Oncogene
  doi: 10.1038/onc.2015.318
– volume: 34
  start-page: 2384
  year: 2018
  ident: 2020120303471745300_ref58
  article-title: PennDiff: detecting differential alternative splicing and transcription by RNA sequencing
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty097
– volume: 28
  start-page: 511
  year: 2010
  ident: 2020120303471745300_ref32
  article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1621
– volume: 7
  start-page: 32607
  year: 2014
  ident: 2020120303471745300_ref34
  article-title: Potential diagnostic and prognostic marker dimethylglycine dehydrogenase (DMGDH) suppresses hepatocellular carcinoma metastasis in vitro and in vivo
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.8927
– volume: 40
  start-page: e61
  year: 2012
  ident: 2020120303471745300_ref37
  article-title: MATS: a Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr1291
– volume: 25
  start-page: 25
  year: 2000
  ident: 2020120303471745300_ref48
  article-title: Gene ontology: tool for the unification of biology
  publication-title: Nat Genet
  doi: 10.1038/75556
– year: 2013
  ident: 2020120303471745300_ref47
  article-title: topGO: Enrichment analysis for gene ontology
  publication-title: Bioconductor
– volume: 456
  start-page: 470
  year: 2008
  ident: 2020120303471745300_ref3
  article-title: Alternative isoform regulation in human tissue transcriptomes
  publication-title: Nature
  doi: 10.1038/nature07509
– volume: 9
  start-page: 357
  year: 2012
  ident: 2020120303471745300_ref39
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1923
– volume: 16
  start-page: 131
  year: 2015
  ident: 2020120303471745300_ref57
  article-title: The impact of read length on quantification of differentially expressed genes and splice junction detection
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0697-y
SSID ssj0020781
Score 2.5872939
Snippet Abstract Differential splicing (DS) is a post-transcriptional biological process with critical, wide-ranging effects on a plethora of cellular activities and...
Differential splicing (DS) is a post-transcriptional biological process with critical, wide-ranging effects on a plethora of cellular activities and disease...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2052
SubjectTerms Biological activity
Computer applications
Data analysis
differential splicing
Evaluation
event-based methods
exon-based methods
Exons
Genes
isoform-based methods
Post-transcription
Protein Isoforms
Reproducibility of Results
Review
Ribonucleic acid
RNA
RNA Splicing
RNA-Seq
Sequence Analysis, RNA - methods
Splicing
splicing events
Title Systematic evaluation of differential splicing tools for RNA-seq studies
URI https://www.ncbi.nlm.nih.gov/pubmed/31802105
https://www.proquest.com/docview/2476834312
https://www.proquest.com/docview/2322143550
https://pubmed.ncbi.nlm.nih.gov/PMC7711265
https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-78549
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwEA4iCL6Iv63OEVEffAhbm7ZpHoc6huAE3WRvpUlTHIxWbfegf72Xpq0Whz70KRdK75Led9zddwhdBH6fxUwkJHZ8QQCBJySg0iUANXzOJYTQJdnz_dgfTd27mTerimjyFSl8TntiLnpCfNqOJtYG76sZ8icPsyas0nQ1poeIEU3uXpOQtra23E6rle0HovxdGNmiDy1dznAbbVVYEQ-McXfQmkp30YaZHvmxh0ZPDQsz_ibtxlmC66kncHsXONcZanBQuMiyRY4BpOLH8YDk6g3npohwH02Ht5PrEakGIxDpUV4QwDic9iNPKi59lXgsoVLzxgeBJ1zu2rHueOUB90TiCog7lU1dGVNlR4wKBl76AK2nWaqOEI7sRChAObGKNFOgLWwlPD9SzIkllzSx0FWtt1BWrOF6eMUiNNlrGoKOQ6NjC503sq-GK2OlVBfU_6dAp7ZMWF2oPHRciIsooB3HQmfNMlwFnd-IUpUtQQZ-Thr-eX0LHRpDNq-hmukOsKSFWMvEjYCm2W6vpPOXkm6bMd1mBTsvzWFobbmZPw9COK3wLEMWQLR9_N_3naBNRwftZU1MB60X70t1CsimEN3yYH8BMaD3Ww
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+evaluation+of+differential+splicing+tools+for+RNA-seq+studies&rft.jtitle=Briefings+in+bioinformatics&rft.au=Mehmood%2C+Arfa&rft.au=Laiho%2C+Asta&rft.au=Ven%C3%A4l%C3%A4inen%2C+Mikko+S.&rft.au=McGlinchey%2C+Aidan+J.&rft.date=2020-12-01&rft.issn=1477-4054&rft.volume=21&rft.issue=6&rft.spage=2052&rft_id=info:doi/10.1093%2Fbib%2Fbbz126&rft.externalDocID=oai_DiVA_org_oru_78549
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon