Systematic evaluation of differential splicing tools for RNA-seq studies
Abstract Differential splicing (DS) is a post-transcriptional biological process with critical, wide-ranging effects on a plethora of cellular activities and disease processes. To date, a number of computational approaches have been developed to identify and quantify differentially spliced genes fro...
Saved in:
Published in | Briefings in bioinformatics Vol. 21; no. 6; pp. 2052 - 2065 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.12.2020
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Differential splicing (DS) is a post-transcriptional biological process with critical, wide-ranging effects on a plethora of cellular activities and disease processes. To date, a number of computational approaches have been developed to identify and quantify differentially spliced genes from RNA-seq data, but a comprehensive intercomparison and appraisal of these approaches is currently lacking. In this study, we systematically evaluated 10 DS analysis tools for consistency and reproducibility, precision, recall and false discovery rate, agreement upon reported differentially spliced genes and functional enrichment. The tools were selected to represent the three different methodological categories: exon-based (DEXSeq, edgeR, JunctionSeq, limma), isoform-based (cuffdiff2, DiffSplice) and event-based methods (dSpliceType, MAJIQ, rMATS, SUPPA). Overall, all the exon-based methods and two event-based methods (MAJIQ and rMATS) scored well on the selected measures. Of the 10 tools tested, the exon-based methods performed generally better than the isoform-based and event-based methods. However, overall, the different data analysis tools performed strikingly differently across different data sets or numbers of samples. |
---|---|
AbstractList | Differential splicing (DS) is a post-transcriptional biological process with critical, wide-ranging effects on a plethora of cellular activities and disease processes. To date, a number of computational approaches have been developed to identify and quantify differentially spliced genes from RNA-seq data, but a comprehensive intercomparison and appraisal of these approaches is currently lacking. In this study, we systematically evaluated 10 DS analysis tools for consistency and reproducibility, precision, recall and false discovery rate, agreement upon reported differentially spliced genes and functional enrichment. The tools were selected to represent the three different methodological categories: exon-based (DEXSeq, edgeR, JunctionSeq, limma), isoform-based (cuffdiff2, DiffSplice) and event-based methods (dSpliceType, MAJIQ, rMATS, SUPPA). Overall, all the exon-based methods and two event-based methods (MAJIQ and rMATS) scored well on the selected measures. Of the 10 tools tested, the exon-based methods performed generally better than the isoform-based and event-based methods. However, overall, the different data analysis tools performed strikingly differently across different data sets or numbers of samples. Abstract Differential splicing (DS) is a post-transcriptional biological process with critical, wide-ranging effects on a plethora of cellular activities and disease processes. To date, a number of computational approaches have been developed to identify and quantify differentially spliced genes from RNA-seq data, but a comprehensive intercomparison and appraisal of these approaches is currently lacking. In this study, we systematically evaluated 10 DS analysis tools for consistency and reproducibility, precision, recall and false discovery rate, agreement upon reported differentially spliced genes and functional enrichment. The tools were selected to represent the three different methodological categories: exon-based (DEXSeq, edgeR, JunctionSeq, limma), isoform-based (cuffdiff2, DiffSplice) and event-based methods (dSpliceType, MAJIQ, rMATS, SUPPA). Overall, all the exon-based methods and two event-based methods (MAJIQ and rMATS) scored well on the selected measures. Of the 10 tools tested, the exon-based methods performed generally better than the isoform-based and event-based methods. However, overall, the different data analysis tools performed strikingly differently across different data sets or numbers of samples. Differential splicing (DS) is a post-transcriptional biological process with critical, wide-ranging effects on a plethora of cellular activities and disease processes. To date, a number of computational approaches have been developed to identify and quantify differentially spliced genes from RNA-seq data, but a comprehensive intercomparison and appraisal of these approaches is currently lacking. In this study, we systematically evaluated 10 DS analysis tools for consistency and reproducibility, precision, recall and false discovery rate, agreement upon reported differentially spliced genes and functional enrichment. The tools were selected to represent the three different methodological categories: exon-based (DEXSeq, edgeR, JunctionSeq, limma), isoform-based (cuffdiff2, DiffSplice) and event-based methods (dSpliceType, MAJIQ, rMATS, SUPPA). Overall, all the exon-based methods and two event-based methods (MAJIQ and rMATS) scored well on the selected measures. Of the 10 tools tested, the exon-based methods performed generally better than the isoform-based and event-based methods. However, overall, the different data analysis tools performed strikingly differently across different data sets or numbers of samples.Differential splicing (DS) is a post-transcriptional biological process with critical, wide-ranging effects on a plethora of cellular activities and disease processes. To date, a number of computational approaches have been developed to identify and quantify differentially spliced genes from RNA-seq data, but a comprehensive intercomparison and appraisal of these approaches is currently lacking. In this study, we systematically evaluated 10 DS analysis tools for consistency and reproducibility, precision, recall and false discovery rate, agreement upon reported differentially spliced genes and functional enrichment. The tools were selected to represent the three different methodological categories: exon-based (DEXSeq, edgeR, JunctionSeq, limma), isoform-based (cuffdiff2, DiffSplice) and event-based methods (dSpliceType, MAJIQ, rMATS, SUPPA). Overall, all the exon-based methods and two event-based methods (MAJIQ and rMATS) scored well on the selected measures. Of the 10 tools tested, the exon-based methods performed generally better than the isoform-based and event-based methods. However, overall, the different data analysis tools performed strikingly differently across different data sets or numbers of samples. |
Author | Wang, Ning Laiho, Asta McGlinchey, Aidan J Elo, Laura L Mehmood, Arfa Venäläinen, Mikko S |
AuthorAffiliation | 2 Department of Physiology , University of Turku, Turku, Finland 1 Turku Bioscience Centre , University of Turku and Åbo Akademi University, Turku, Finland 3 School of Medical Sciences , Örebro University, Örebro, Sweden |
AuthorAffiliation_xml | – name: 3 School of Medical Sciences , Örebro University, Örebro, Sweden – name: 2 Department of Physiology , University of Turku, Turku, Finland – name: 1 Turku Bioscience Centre , University of Turku and Åbo Akademi University, Turku, Finland |
Author_xml | – sequence: 1 givenname: Arfa surname: Mehmood fullname: Mehmood, Arfa email: arfa.mehmood@utu.fi organization: Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland – sequence: 2 givenname: Asta surname: Laiho fullname: Laiho, Asta email: asta.laiho@btk.fi organization: Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland – sequence: 3 givenname: Mikko S surname: Venäläinen fullname: Venäläinen, Mikko S email: mikko.venalainen@utu.fi organization: Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland – sequence: 4 givenname: Aidan J surname: McGlinchey fullname: McGlinchey, Aidan J email: aidan.mcglinchey@oru.se organization: Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland – sequence: 5 givenname: Ning surname: Wang fullname: Wang, Ning email: ning.wang@utu.fi organization: Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland – sequence: 6 givenname: Laura L surname: Elo fullname: Elo, Laura L email: laura.elo@utu.fi organization: Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31802105$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-78549$$DView record from Swedish Publication Index |
BookMark | eNp9kVtrFTEUhYNU7EVf_AEyIIKUjs11MvNSONRehKLg7TUkmZ1jSs7kNJmp1F9vTqcVW8SHkA3724u199pFW0McAKGXBL8juGOHxptDY34R2jxBO4RLWXMs-NambmQteMO20W7OlxhTLFvyDG0z0mJKsNhB519u8ggrPXpbwbUOU6niUEVX9d45SDCMXocqr4O3flhWY4whVy6m6vPHRZ3hqsrj1HvIz9FTp0OGF3f_Hvp2evL1-Ly--HT24XhxUVvBurEmnHUMa2Ghsw04IR2zbXHVtsLwjpO-eORd2wnjuMFUAmHc9gyIlsxITNkeOph1809YT0atk1_pdKOi9uq9_75QMS3Lm5RsBe8KfjTjhV1Bb8s-SYcHUw87g_-hlvFaSUnKQUUReHsnkOLVBHlUK58thKAHiFNWlFFalhICF_T1I_QyTmko11CUy6ZlnJHNAq_-dvTHyn0mBcAzYFPMOYFT1o-3sRSDPiiC1SZ2VWJXc-xlZP_RyL3qP-E3Mxyn9f-432XMu0c |
CitedBy_id | crossref_primary_10_1111_nph_17189 crossref_primary_10_1016_j_jmb_2023_168156 crossref_primary_10_1016_j_compbiomed_2024_108789 crossref_primary_10_1093_nargab_lqad098 crossref_primary_10_1093_bioinformatics_btad224 crossref_primary_10_3390_genes14112051 crossref_primary_10_3389_fmolb_2021_727614 crossref_primary_10_1111_1755_0998_13409 crossref_primary_10_1093_bioinformatics_btab050 crossref_primary_10_1007_s13258_023_01365_x crossref_primary_10_1038_s41598_020_78997_6 crossref_primary_10_1007_s00018_022_04497_7 crossref_primary_10_7554_eLife_55500 crossref_primary_10_1186_s12859_021_04263_9 crossref_primary_10_1002_humu_24394 crossref_primary_10_1111_nph_19995 crossref_primary_10_1016_j_semcdb_2023_01_013 crossref_primary_10_3390_ijms22168451 crossref_primary_10_3892_ijmm_2022_5094 crossref_primary_10_1038_s42003_024_05941_z crossref_primary_10_1002_ggn2_202200024 crossref_primary_10_1177_0271678X221110679 crossref_primary_10_1371_journal_pcbi_1011576 crossref_primary_10_2174_0115748936279561231214072041 crossref_primary_10_1016_j_tree_2021_11_010 crossref_primary_10_3389_fcell_2023_1232146 crossref_primary_10_3389_fgene_2021_774240 crossref_primary_10_1038_s41375_024_02509_y crossref_primary_10_1016_j_marenvres_2024_106549 crossref_primary_10_1093_bib_bbab553 crossref_primary_10_1016_j_ijbiomac_2025_139941 crossref_primary_10_1038_s41596_023_00944_2 crossref_primary_10_1371_journal_pone_0284357 crossref_primary_10_1038_s41437_024_00669_2 crossref_primary_10_1038_s41437_023_00665_y crossref_primary_10_1016_j_ccell_2022_10_013 crossref_primary_10_1038_s41568_024_00750_2 crossref_primary_10_3389_fpls_2021_774829 crossref_primary_10_3390_genes12040541 crossref_primary_10_1093_hmg_ddac196 crossref_primary_10_1186_s40246_023_00545_w crossref_primary_10_3389_fcell_2022_1021785 crossref_primary_10_3389_fcell_2023_1021920 crossref_primary_10_1093_bioinformatics_btab873 crossref_primary_10_1093_nar_gkaf098 crossref_primary_10_1016_j_psj_2023_102484 crossref_primary_10_1093_bib_bbab259 crossref_primary_10_1093_nar_gkad1043 crossref_primary_10_1093_gbe_evac171 crossref_primary_10_3390_ijms231710131 crossref_primary_10_3389_fimmu_2024_1490035 crossref_primary_10_1007_s12035_021_02700_7 crossref_primary_10_1016_j_neuroscience_2022_08_009 crossref_primary_10_3389_fimmu_2022_1060114 crossref_primary_10_1016_j_cbpb_2024_110941 crossref_primary_10_1098_rsob_220206 crossref_primary_10_1111_1365_2656_14157 crossref_primary_10_1016_j_heliyon_2023_e22377 crossref_primary_10_1186_s12915_023_01645_8 crossref_primary_10_1002_wrna_1760 crossref_primary_10_15252_embj_2021110496 crossref_primary_10_1093_nargab_lqad044 crossref_primary_10_3390_biom12070993 crossref_primary_10_1093_bib_bbad067 crossref_primary_10_1007_s13562_024_00909_w crossref_primary_10_1016_j_molcel_2023_06_003 crossref_primary_10_1007_s10126_023_10196_6 crossref_primary_10_1016_j_iotech_2021_100052 crossref_primary_10_1089_neu_2022_0503 crossref_primary_10_1016_j_celrep_2024_114893 crossref_primary_10_3389_fpls_2023_1301164 crossref_primary_10_1038_s41467_024_47107_9 crossref_primary_10_3390_mps4040068 crossref_primary_10_1016_j_celrep_2022_110341 crossref_primary_10_1038_s41598_021_84693_w crossref_primary_10_1093_hmg_ddab178 crossref_primary_10_1038_s41598_022_14231_9 crossref_primary_10_3390_ijms24108666 crossref_primary_10_1093_nar_gkab357 crossref_primary_10_1038_s42003_022_03253_8 crossref_primary_10_1093_bioinformatics_btab141 crossref_primary_10_1093_nargab_lqae165 crossref_primary_10_12688_f1000research_155223_1 crossref_primary_10_1261_rna_079764_123 crossref_primary_10_3389_fpls_2023_1135455 crossref_primary_10_1007_s00018_021_03865_z crossref_primary_10_1038_s41568_022_00541_7 crossref_primary_10_3389_fmolb_2021_726902 crossref_primary_10_3389_fgene_2021_689892 crossref_primary_10_1007_s00439_023_02539_z crossref_primary_10_1038_s41598_023_47348_6 crossref_primary_10_3390_genes11070784 crossref_primary_10_1016_j_bbrc_2023_02_053 crossref_primary_10_1016_j_ymgmr_2024_101176 crossref_primary_10_1016_j_cbd_2024_101195 crossref_primary_10_1016_j_smim_2023_101758 crossref_primary_10_1038_s41598_023_32273_5 crossref_primary_10_1093_bib_bbad121 crossref_primary_10_1111_mec_17303 crossref_primary_10_1101_cshperspect_a041313 crossref_primary_10_1186_s13073_024_01381_w crossref_primary_10_3390_ijms242015205 crossref_primary_10_1093_bioadv_vbae080 crossref_primary_10_1021_acssuschemeng_3c07046 crossref_primary_10_3390_biomedinformatics3040053 crossref_primary_10_3390_genes13030497 |
Cites_doi | 10.1186/1471-2105-12-323 10.1186/1479-7364-8-3 10.1186/s13059-018-1417-1 10.1038/nmeth.1503 10.1038/ng.259 10.1109/TNB.2015.2388593 10.1093/bib/bbt086 10.1261/rna.325107 10.1261/rna.051557.115 10.3892/br.2014.407 10.1093/nar/gks1026 10.1371/journal.pone.0079448 10.1186/gb-2010-11-3-r25 10.1038/nmeth.4106 10.1038/cr.2013.61 10.1093/bioinformatics/bts635 10.1038/nmeth.1528 10.1093/bioinformatics/bts452 10.1093/bioinformatics/btp616 10.7554/eLife.08954 10.1016/j.canlet.2012.11.010 10.1073/pnas.1419161111 10.1093/bioinformatics/btp120 10.1101/gr.133744.111 10.1038/nbt.3172 10.1038/s41588-017-0004-9 10.1093/nar/gkv007 10.1038/nbt.2450 10.1214/aos/1176344136 10.1007/s12561-012-9064-7 10.1093/bioinformatics/btp352 10.1093/bioinformatics/btt656 10.1002/bies.20692 10.1038/nrg2776 10.1038/aps.2015.43 10.1093/nar/gky325 10.7554/eLife.11752 10.1186/s12859-014-0364-4 10.1105/tpc.113.117523 10.1186/s13059-015-0862-3 10.1186/s13059-015-0702-5 10.1038/onc.2015.318 10.1093/bioinformatics/bty097 10.1038/nbt.1621 10.18632/oncotarget.8927 10.1093/nar/gkr1291 10.1038/75556 10.1038/nature07509 10.1038/nmeth.1923 10.1186/s13059-015-0697-y |
ContentType | Journal Article |
Copyright | The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019 The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019 – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM AABEP ADTPV AOWAS D8T D91 ZZAVC |
DOI | 10.1093/bib/bbz126 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Örebro universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Örebro universitet SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
EndPage | 2065 |
ExternalDocumentID | oai_DiVA_org_oru_78549 PMC7711265 31802105 10_1093_bib_bbz126 10.1093/bib/bbz126 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: European Research Council grantid: 677943 – fundername: ; grantid: 677943 – fundername: ; grantid: 1877/31/2016 – fundername: ; grantid: 675395 – fundername: ; grantid: 310561; 314443; 304995; 296801 – fundername: ; grantid: 2-2013-32 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP AAVLN ABDBF ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX ABEJV ABGNP ABPQP ABXZS ACUHS ACUXJ AHGBF AHQJS ALXQX AMNDL ANAKG CITATION JXSIZ CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM AABEP AAGQS ADTPV AOWAS D8T D91 GROUPED_DOAJ ZZAVC |
ID | FETCH-LOGICAL-c539t-143930a5ce9c6ef57f3c8078885b4941d02049895bf4b027e134cd3e1a73b7023 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Thu Aug 21 06:58:18 EDT 2025 Thu Aug 21 14:11:58 EDT 2025 Fri Jul 11 00:14:55 EDT 2025 Mon Jun 30 08:56:53 EDT 2025 Mon Jul 21 06:05:02 EDT 2025 Tue Jul 01 03:39:28 EDT 2025 Thu Apr 24 23:10:20 EDT 2025 Wed Aug 28 03:19:54 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | isoform-based methods RNA-seq differential splicing splicing events event-based methods exon-based methods |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c539t-143930a5ce9c6ef57f3c8078885b4941d02049895bf4b027e134cd3e1a73b7023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://dx.doi.org/10.1093/bib/bbz126 |
PMID | 31802105 |
PQID | 2476834312 |
PQPubID | 26846 |
PageCount | 14 |
ParticipantIDs | swepub_primary_oai_DiVA_org_oru_78549 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7711265 proquest_miscellaneous_2322143550 proquest_journals_2476834312 pubmed_primary_31802105 crossref_citationtrail_10_1093_bib_bbz126 crossref_primary_10_1093_bib_bbz126 oup_primary_10_1093_bib_bbz126 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2020 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Kim (2020120303471745300_ref10) 2008; 30 Shi (2020120303471745300_ref29) 2013; 8 Keren (2020120303471745300_ref1) 2010; 11 Schwarz (2020120303471745300_ref36) 1978; 6 Seyednasrollah (2020120303471745300_ref50) 2013; 16 Ren (2020120303471745300_ref33) 2013; 23 Soneson (2020120303471745300_ref53) 2016; 17 Hartley (2020120303471745300_ref20) 2016; 44 Langmead (2020120303471745300_ref39) 2012; 9 Hooper (2020120303471745300_ref15) 2014; 8 Liao (2020120303471745300_ref45) 2014; 30 Sveen (2020120303471745300_ref5) 2016; 35 Alexa (2020120303471745300_ref47) 2013 Ritchie (2020120303471745300_ref21) 2015; 43 Trapnell (2020120303471745300_ref54) 2009; 25 Alekseyenko (2020120303471745300_ref8) 2007; 13 Reddy (2020120303471745300_ref31) 2013; 25 (2020120303471745300_ref40) 2011 Pan (2020120303471745300_ref2) 2008; 40 Zhu (2020120303471745300_ref22) 2015; 14 Kanitz (2020120303471745300_ref12) 2015; 16 Bebee (2020120303471745300_ref35) 2015; 4 Wang (2020120303471745300_ref3) 2008; 456 Robinson (2020120303471745300_ref19) 2010; 26 Griffith (2020120303471745300_ref28) 2010; 7 Wang (2020120303471745300_ref14) 2015 Liu (2020120303471745300_ref17) 2014; 15 Ryan (2020120303471745300_ref30) 2012; 28 Andrews (2020120303471745300_ref41) Liu (2020120303471745300_ref34) 2014; 7 Katz (2020120303471745300_ref27) 2010; 7 Sugnet (2020120303471745300_ref9) 2004; 77 Shen (2020120303471745300_ref37) 2012; 40 Li (2020120303471745300_ref38) 2011; 12 Trapnell (2020120303471745300_ref16) 2012; 31 Andrews (2020120303471745300_ref42) 2015 Wang (2020120303471745300_ref7) 2015; 3 Li (2020120303471745300_ref44) 2009; 25 Trapnell (2020120303471745300_ref32) 2010; 28 Li (2020120303471745300_ref51) 2018; 50 Anders (2020120303471745300_ref18) 2012; 22 Robinson (2020120303471745300_ref46) 2010; 11 Chen (2020120303471745300_ref4) 2013; 5 Frazee (2020120303471745300_ref52) 2015; 33 Chhangawala (2020120303471745300_ref57) 2015; 16 Shen (2020120303471745300_ref24) 2014; 111 Alamancos (2020120303471745300_ref25) 2015; 21 Dobin (2020120303471745300_ref43) 2013; 29 Vaquero-Garcia (2020120303471745300_ref23) 2016; 5 Li (2020120303471745300_ref49) 2013 Baruzzo (2020120303471745300_ref55) 2017; 14 Le (2020120303471745300_ref6) 2015; 36 Trincado (2020120303471745300_ref26) 2018; 19 Ballouz (2020120303471745300_ref56) 2018; 46 Hu (2020120303471745300_ref11) 2013; 41 Feng (2020120303471745300_ref13) 2013; 340 Hu (2020120303471745300_ref58) 2018; 34 Ashburner (2020120303471745300_ref48) 2000; 25 |
References_xml | – volume: 12 start-page: 323 year: 2011 ident: 2020120303471745300_ref38 article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome publication-title: BMC Bioinform doi: 10.1186/1471-2105-12-323 – volume: 8 start-page: 3 year: 2014 ident: 2020120303471745300_ref15 article-title: A survey of software for genome-wide discovery of differential splicing in RNA-Seq data publication-title: Hum Genomics doi: 10.1186/1479-7364-8-3 – volume: 19 start-page: 40 year: 2018 ident: 2020120303471745300_ref26 article-title: SUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions publication-title: Genome Biol doi: 10.1186/s13059-018-1417-1 – volume: 7 start-page: 843 year: 2010 ident: 2020120303471745300_ref28 article-title: Alternative expression analysis by RNA sequencing publication-title: Nat Methods doi: 10.1038/nmeth.1503 – volume: 40 start-page: 1413 year: 2008 ident: 2020120303471745300_ref2 article-title: Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing publication-title: Nat Genet doi: 10.1038/ng.259 – volume: 14 start-page: 192 year: 2015 ident: 2020120303471745300_ref22 article-title: A generalized dSpliceType framework to detect differential splicing and differential expression events using RNA-Seq publication-title: IEEE Trans Nanobioscience doi: 10.1109/TNB.2015.2388593 – volume: 16 start-page: 59 year: 2013 ident: 2020120303471745300_ref50 article-title: Comparison of software packages for detecting differential expression in RNA-seq studies publication-title: Brief Bioinform doi: 10.1093/bib/bbt086 – volume: 13 start-page: 661 year: 2007 ident: 2020120303471745300_ref8 article-title: Global analysis of exon creation versus loss and the role of alternative splicing in 17 vertebrate genomes publication-title: RNA doi: 10.1261/rna.325107 – volume: 21 start-page: 1521 year: 2015 ident: 2020120303471745300_ref25 article-title: Leveraging transcript quantification for fast computation of alternative splicing profiles publication-title: RNA New York, NY doi: 10.1261/rna.051557.115 – volume: 3 start-page: 152 year: 2015 ident: 2020120303471745300_ref7 article-title: Mechanism of alternative splicing and its regulation publication-title: Biomed Rep doi: 10.3892/br.2014.407 – volume: 41 start-page: e39 year: 2013 ident: 2020120303471745300_ref11 article-title: DiffSplice: the genome-wide detection of differential splicing events with RNA-seq publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1026 – volume: 8 start-page: e79448 year: 2013 ident: 2020120303471745300_ref29 article-title: rSeqDiff: detecting differential isoform expression from RNA-Seq data using hierarchical likelihood ratio test publication-title: PLoS One doi: 10.1371/journal.pone.0079448 – volume: 11 start-page: R25 year: 2010 ident: 2020120303471745300_ref46 article-title: A scaling normalization method for differential expression analysis of RNA-seq data publication-title: Genome Biol doi: 10.1186/gb-2010-11-3-r25 – volume: 14 start-page: 135 year: 2017 ident: 2020120303471745300_ref55 article-title: Simulation-based comprehensive benchmarking of RNA-seq aligners publication-title: Nat Methods doi: 10.1038/nmeth.4106 – volume: 23 start-page: 732 year: 2013 ident: 2020120303471745300_ref33 article-title: RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings publication-title: Cell Res doi: 10.1038/cr.2013.61 – ident: 2020120303471745300_ref41 – volume: 29 start-page: 15 year: 2013 ident: 2020120303471745300_ref43 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 7 start-page: 1009 year: 2010 ident: 2020120303471745300_ref27 article-title: Analysis and design of RNA sequencing experiments for identifying isoform regulation publication-title: Nat Methods doi: 10.1038/nmeth.1528 – volume: 28 start-page: 2385 year: 2012 ident: 2020120303471745300_ref30 article-title: SpliceSeq: a resource for analysis and visualization of RNA-Seq data on alternative splicing and its functional impacts publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts452 – volume: 26 start-page: 139 year: 2010 ident: 2020120303471745300_ref19 article-title: edgeR: a bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics (Oxford, England) doi: 10.1093/bioinformatics/btp616 – volume: 4 start-page: e08954 year: 2015 ident: 2020120303471745300_ref35 article-title: The splicing regulators Esrp1 and Esrp2 direct an epithelial splicing program essential for mammalian development publication-title: Elife doi: 10.7554/eLife.08954 – volume: 340 start-page: 179 year: 2013 ident: 2020120303471745300_ref13 article-title: Opportunities and methods for studying alternative splicing in cancer with RNA-Seq publication-title: Cancer Lett doi: 10.1016/j.canlet.2012.11.010 – volume: 111 start-page: E5593 year: 2014 ident: 2020120303471745300_ref24 article-title: rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1419161111 – volume: 25 start-page: 1105 year: 2009 ident: 2020120303471745300_ref54 article-title: TopHat: discovering splice junctions with RNA-Seq publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp120 – volume: 77 start-page: 66 year: 2004 ident: 2020120303471745300_ref9 article-title: Transcriptome and genome conservation of alternative splicing events in humans and mice publication-title: Pac Symp Biocomput – volume: 44 start-page: e127 year: 2016 ident: 2020120303471745300_ref20 article-title: Detection and visualization of differential splicing in RNA-Seq data with JunctionSeq publication-title: Nucleic Acids Res – volume: 22 start-page: 2008 year: 2012 ident: 2020120303471745300_ref18 article-title: Detecting differential usage of exons from RNA-seq data publication-title: Genome Res doi: 10.1101/gr.133744.111 – volume: 33 start-page: 243 year: 2015 ident: 2020120303471745300_ref52 article-title: Ballgown bridges the gap between transcriptome assembly and expression analysis publication-title: Nat Biotechnol doi: 10.1038/nbt.3172 – volume: 50 start-page: 151 year: 2018 ident: 2020120303471745300_ref51 article-title: Annotation-free quantification of RNA splicing using LeafCutter publication-title: Nat Genet doi: 10.1038/s41588-017-0004-9 – volume: 43 start-page: e47 year: 2015 ident: 2020120303471745300_ref21 article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv007 – volume: 31 start-page: 46 year: 2012 ident: 2020120303471745300_ref16 article-title: Differential analysis of gene regulation at transcript resolution with RNA-seq publication-title: Nat Biotechnol doi: 10.1038/nbt.2450 – volume: 6 start-page: 461 year: 1978 ident: 2020120303471745300_ref36 article-title: Estimating the dimension of a model publication-title: Ann Stat doi: 10.1214/aos/1176344136 – volume: 5 start-page: 138 year: 2013 ident: 2020120303471745300_ref4 article-title: Statistical and computational methods for high-throughput sequencing data analysis of alternative splicing publication-title: Stat Biosci doi: 10.1007/s12561-012-9064-7 – volume: 25 start-page: 2078 year: 2009 ident: 2020120303471745300_ref44 article-title: The sequence alignment/map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 30 start-page: 923 year: 2014 ident: 2020120303471745300_ref45 article-title: FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt656 – volume: 30 start-page: 38 year: 2008 ident: 2020120303471745300_ref10 article-title: Alternative splicing: current perspectives publication-title: Bioessays doi: 10.1002/bies.20692 – start-page: 1 year: 2011 ident: 2020120303471745300_ref40 publication-title: Archives – volume: 11 start-page: 345 year: 2010 ident: 2020120303471745300_ref1 article-title: Alternative splicing and evolution: diversification, exon definition and function publication-title: Nat Rev Genet doi: 10.1038/nrg2776 – year: 2015 ident: 2020120303471745300_ref42 – volume: 36 start-page: 1212 year: 2015 ident: 2020120303471745300_ref6 article-title: Alternative splicing as a biomarker and potential target for drug discovery publication-title: Acta Pharmacol Sin doi: 10.1038/aps.2015.43 – volume: 46 start-page: 5125 year: 2018 ident: 2020120303471745300_ref56 article-title: The fractured landscape of RNA-seq alignment: the default in our STARs publication-title: Nucleic Acids Res doi: 10.1093/nar/gky325 – start-page: 59 year: 2015 ident: 2020120303471745300_ref14 article-title: A survey of computational methods in transcriptome-wide alternative splicing analysis – volume: 5 start-page: e11752 year: 2016 ident: 2020120303471745300_ref23 article-title: A new view of transcriptome complexity and regulation through the lens of local splicing variations publication-title: Elife doi: 10.7554/eLife.11752 – volume: 15 start-page: 364 year: 2014 ident: 2020120303471745300_ref17 article-title: Comparisons of computational methods for differential alternative splicing detection using RNA-seq in plant systems publication-title: BMC Bioinform doi: 10.1186/s12859-014-0364-4 – volume: 25 start-page: 3657 year: 2013 ident: 2020120303471745300_ref31 article-title: Complexity of the alternative splicing landscape in plants publication-title: Plant Cell doi: 10.1105/tpc.113.117523 – volume: 17 start-page: 12 year: 2016 ident: 2020120303471745300_ref53 article-title: Isoform prefiltering improves performance of count-based methods for analysis of differential transcript usage publication-title: Genome Biol doi: 10.1186/s13059-015-0862-3 – volume: 16 start-page: 150 year: 2015 ident: 2020120303471745300_ref12 article-title: Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data publication-title: Genome Biol doi: 10.1186/s13059-015-0702-5 – year: 2013 ident: 2020120303471745300_ref49 article-title: Seqtk: toolkit for processing sequences in FASTA/Q formats publication-title: GitHub Repository – volume: 35 start-page: 2413 year: 2016 ident: 2020120303471745300_ref5 article-title: Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes publication-title: Oncogene doi: 10.1038/onc.2015.318 – volume: 34 start-page: 2384 year: 2018 ident: 2020120303471745300_ref58 article-title: PennDiff: detecting differential alternative splicing and transcription by RNA sequencing publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty097 – volume: 28 start-page: 511 year: 2010 ident: 2020120303471745300_ref32 article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation publication-title: Nat Biotechnol doi: 10.1038/nbt.1621 – volume: 7 start-page: 32607 year: 2014 ident: 2020120303471745300_ref34 article-title: Potential diagnostic and prognostic marker dimethylglycine dehydrogenase (DMGDH) suppresses hepatocellular carcinoma metastasis in vitro and in vivo publication-title: Oncotarget doi: 10.18632/oncotarget.8927 – volume: 40 start-page: e61 year: 2012 ident: 2020120303471745300_ref37 article-title: MATS: a Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr1291 – volume: 25 start-page: 25 year: 2000 ident: 2020120303471745300_ref48 article-title: Gene ontology: tool for the unification of biology publication-title: Nat Genet doi: 10.1038/75556 – year: 2013 ident: 2020120303471745300_ref47 article-title: topGO: Enrichment analysis for gene ontology publication-title: Bioconductor – volume: 456 start-page: 470 year: 2008 ident: 2020120303471745300_ref3 article-title: Alternative isoform regulation in human tissue transcriptomes publication-title: Nature doi: 10.1038/nature07509 – volume: 9 start-page: 357 year: 2012 ident: 2020120303471745300_ref39 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat Methods doi: 10.1038/nmeth.1923 – volume: 16 start-page: 131 year: 2015 ident: 2020120303471745300_ref57 article-title: The impact of read length on quantification of differentially expressed genes and splice junction detection publication-title: Genome Biol doi: 10.1186/s13059-015-0697-y |
SSID | ssj0020781 |
Score | 2.5872939 |
Snippet | Abstract
Differential splicing (DS) is a post-transcriptional biological process with critical, wide-ranging effects on a plethora of cellular activities and... Differential splicing (DS) is a post-transcriptional biological process with critical, wide-ranging effects on a plethora of cellular activities and disease... |
SourceID | swepub pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2052 |
SubjectTerms | Biological activity Computer applications Data analysis differential splicing Evaluation event-based methods exon-based methods Exons Genes isoform-based methods Post-transcription Protein Isoforms Reproducibility of Results Review Ribonucleic acid RNA RNA Splicing RNA-Seq Sequence Analysis, RNA - methods Splicing splicing events |
Title | Systematic evaluation of differential splicing tools for RNA-seq studies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31802105 https://www.proquest.com/docview/2476834312 https://www.proquest.com/docview/2322143550 https://pubmed.ncbi.nlm.nih.gov/PMC7711265 https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-78549 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwEA4iCL6Iv63OEVEffAhbm7ZpHoc6huAE3WRvpUlTHIxWbfegf72Xpq0Whz70KRdK75Led9zddwhdBH6fxUwkJHZ8QQCBJySg0iUANXzOJYTQJdnz_dgfTd27mTerimjyFSl8TntiLnpCfNqOJtYG76sZ8icPsyas0nQ1poeIEU3uXpOQtra23E6rle0HovxdGNmiDy1dznAbbVVYEQ-McXfQmkp30YaZHvmxh0ZPDQsz_ibtxlmC66kncHsXONcZanBQuMiyRY4BpOLH8YDk6g3npohwH02Ht5PrEakGIxDpUV4QwDic9iNPKi59lXgsoVLzxgeBJ1zu2rHueOUB90TiCog7lU1dGVNlR4wKBl76AK2nWaqOEI7sRChAObGKNFOgLWwlPD9SzIkllzSx0FWtt1BWrOF6eMUiNNlrGoKOQ6NjC503sq-GK2OlVBfU_6dAp7ZMWF2oPHRciIsooB3HQmfNMlwFnd-IUpUtQQZ-Thr-eX0LHRpDNq-hmukOsKSFWMvEjYCm2W6vpPOXkm6bMd1mBTsvzWFobbmZPw9COK3wLEMWQLR9_N_3naBNRwftZU1MB60X70t1CsimEN3yYH8BMaD3Ww |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+evaluation+of+differential+splicing+tools+for+RNA-seq+studies&rft.jtitle=Briefings+in+bioinformatics&rft.au=Mehmood%2C+Arfa&rft.au=Laiho%2C+Asta&rft.au=Ven%C3%A4l%C3%A4inen%2C+Mikko+S.&rft.au=McGlinchey%2C+Aidan+J.&rft.date=2020-12-01&rft.issn=1477-4054&rft.volume=21&rft.issue=6&rft.spage=2052&rft_id=info:doi/10.1093%2Fbib%2Fbbz126&rft.externalDocID=oai_DiVA_org_oru_78549 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |