CYP3A4 drug interactions: correlation of 10 in vitro probe substrates

Aims Many substrates of cytochrome P450 (CYP) 3A4 are used for in vitro investigations of drug metabolism and potential drug–drug interactions. The aim of the present study was to determine the relationship between 10 commonly used CYP3A4 probes using modifiers with a range of inhibitory potency. Me...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of clinical pharmacology Vol. 48; no. 5; pp. 716 - 727
Main Authors KENWORTHY, K. E, BLOOMER, J. C, CLARKE, S. E, HOUSTON, J. B
Format Journal Article Conference Proceeding
LanguageEnglish
Published Oxford, UK Blackwell Science Ltd 01.11.1999
Blackwell Science
Blackwell Science Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aims Many substrates of cytochrome P450 (CYP) 3A4 are used for in vitro investigations of drug metabolism and potential drug–drug interactions. The aim of the present study was to determine the relationship between 10 commonly used CYP3A4 probes using modifiers with a range of inhibitory potency. Methods The effects of 34 compounds on CYP3A4‐mediated metabolism were investigated in a recombinant CYP3A4 expression system. Inhibition of erythromycin, dextromethorphan and diazepam N‐demethylation, testosterone 6β‐hydroxylation, midazolam 1‐hydroxylation, triazolam 4‐hydroxylation, nifedipine oxidation, cyclosporin oxidation, terfenadine C‐hydroxylation and N‐dealkylation and benzyloxyresorufin O‐dealkylation was evaluated at the apparent Km or S50 (for substrates showing sigmoidicity) value for each substrate and at an inhibitor concentration of 30 μm. Results While all CYP3A4 probe substrates demonstrate some degree of similarity, examination of the coefficients of determination, together with difference and cluster analysis highlighted that seven substrates can be categorized into two distinct substrate groups. Erythromycin, cyclosporin and testosterone form the most closely related group and dextromethorphan, diazepam, midazolam and triazolam form a second group. Terfenadine can be equally well placed in either group, while nifedipine shows a distinctly different relationship. Benzyloxyresorufin shows the weakest correlation with all the other CYP3A4 probes. Modifiers that caused negligible inhibition or potent inhibition are generally comparable in all assays, however, the greatest variability is apparent with compounds causing, on average, intermediate inhibition. Modifiers of this type may cause substantial inhibition, no effect or even activation depending on the substrate employed. Conclusions It is recommended that multiple CYP3A4 probes, representing each substrate group, are used for the in vitro assessment of CYP3A4‐mediated drug interactions.
AbstractList AIMSMany substrates of cytochrome P450 (CYP) 3A4 are used for in vitro investigations of drug metabolism and potential drug-drug interactions. The aim of the present study was to determine the relationship between 10 commonly used CYP3A4 probes using modifiers with a range of inhibitory potency.METHODSThe effects of 34 compounds on CYP3A4-mediated metabolism were investigated in a recombinant CYP3A4 expression system. Inhibition of erythromycin, dextromethorphan and diazepam N-demethylation, testosterone 6beta-hydroxylation, midazolam 1-hydroxylation, triazolam 4-hydroxylation, nifedipine oxidation, cyclosporin oxidation, terfenadine C-hydroxylation and N-dealkylation and benzyloxyresorufin O-dealkylation was evaluated at the apparent Km or S50 (for substrates showing sigmoidicity) value for each substrate and at an inhibitor concentration of 30 microM.RESULTSWhile all CYP3A4 probe substrates demonstrate some degree of similarity, examination of the coefficients of determination, together with difference and cluster analysis highlighted that seven substrates can be categorized into two distinct substrate groups. Erythromycin, cyclosporin and testosterone form the most closely related group and dextromethorphan, diazepam, midazolam and triazolam form a second group. Terfenadine can be equally well placed in either group, while nifedipine shows a distinctly different relationship. Benzyloxyresorufin shows the weakest correlation with all the other CYP3A4 probes. Modifiers that caused negligible inhibition or potent inhibition are generally comparable in all assays, however, the greatest variability is apparent with compounds causing, on average, intermediate inhibition. Modifiers of this type may cause substantial inhibition, no effect or even activation depending on the substrate employed.CONCLUSIONSIt is recommended that multiple CYP3A4 probes, representing each substrate group, are used for the in vitro assessment of CYP3A4-mediated drug interactions.
Many substrates of cytochrome P450 (CYP) 3A4 are used for in vitro investigations of drug metabolism and potential drug-drug interactions. The aim of the present study was to determine the relationship between 10 commonly used CYP3A4 probes using modifiers with a range of inhibitory potency. The effects of 34 compounds on CYP3A4-mediated metabolism were investigated in a recombinant CYP3A4 expression system. Inhibition of erythromycin, dextromethorphan and diazepam N-demethylation, testosterone 6beta-hydroxylation, midazolam 1-hydroxylation, triazolam 4-hydroxylation, nifedipine oxidation, cyclosporin oxidation, terfenadine C-hydroxylation and N-dealkylation and benzyloxyresorufin O-dealkylation was evaluated at the apparent Km or S50 (for substrates showing sigmoidicity) value for each substrate and at an inhibitor concentration of 30 microM. While all CYP3A4 probe substrates demonstrate some degree of similarity, examination of the coefficients of determination, together with difference and cluster analysis highlighted that seven substrates can be categorized into two distinct substrate groups. Erythromycin, cyclosporin and testosterone form the most closely related group and dextromethorphan, diazepam, midazolam and triazolam form a second group. Terfenadine can be equally well placed in either group, while nifedipine shows a distinctly different relationship. Benzyloxyresorufin shows the weakest correlation with all the other CYP3A4 probes. Modifiers that caused negligible inhibition or potent inhibition are generally comparable in all assays, however, the greatest variability is apparent with compounds causing, on average, intermediate inhibition. Modifiers of this type may cause substantial inhibition, no effect or even activation depending on the substrate employed. It is recommended that multiple CYP3A4 probes, representing each substrate group, are used for the in vitro assessment of CYP3A4-mediated drug interactions.
Aims Many substrates of cytochrome P450 (CYP) 3A4 are used for in vitro investigations of drug metabolism and potential drug–drug interactions. The aim of the present study was to determine the relationship between 10 commonly used CYP3A4 probes using modifiers with a range of inhibitory potency. Methods The effects of 34 compounds on CYP3A4‐mediated metabolism were investigated in a recombinant CYP3A4 expression system. Inhibition of erythromycin, dextromethorphan and diazepam N‐demethylation, testosterone 6β‐hydroxylation, midazolam 1‐hydroxylation, triazolam 4‐hydroxylation, nifedipine oxidation, cyclosporin oxidation, terfenadine C‐hydroxylation and N‐dealkylation and benzyloxyresorufin O‐dealkylation was evaluated at the apparent Km or S50 (for substrates showing sigmoidicity) value for each substrate and at an inhibitor concentration of 30 μm. Results While all CYP3A4 probe substrates demonstrate some degree of similarity, examination of the coefficients of determination, together with difference and cluster analysis highlighted that seven substrates can be categorized into two distinct substrate groups. Erythromycin, cyclosporin and testosterone form the most closely related group and dextromethorphan, diazepam, midazolam and triazolam form a second group. Terfenadine can be equally well placed in either group, while nifedipine shows a distinctly different relationship. Benzyloxyresorufin shows the weakest correlation with all the other CYP3A4 probes. Modifiers that caused negligible inhibition or potent inhibition are generally comparable in all assays, however, the greatest variability is apparent with compounds causing, on average, intermediate inhibition. Modifiers of this type may cause substantial inhibition, no effect or even activation depending on the substrate employed. Conclusions It is recommended that multiple CYP3A4 probes, representing each substrate group, are used for the in vitro assessment of CYP3A4‐mediated drug interactions.
Aims Many substrates of cytochrome P450 (CYP) 3A4 are used for in vitro investigations of drug metabolism and potential drug–drug interactions. The aim of the present study was to determine the relationship between 10 commonly used CYP3A4 probes using modifiers with a range of inhibitory potency. Methods The effects of 34 compounds on CYP3A4‐mediated metabolism were investigated in a recombinant CYP3A4 expression system. Inhibition of erythromycin, dextromethorphan and diazepam N‐demethylation, testosterone 6β‐hydroxylation, midazolam 1‐hydroxylation, triazolam 4‐hydroxylation, nifedipine oxidation, cyclosporin oxidation, terfenadine C‐hydroxylation and N‐dealkylation and benzyloxyresorufin O‐dealkylation was evaluated at the apparent K m or S 50 (for substrates showing sigmoidicity) value for each substrate and at an inhibitor concentration of 30 μm. Results  While all CYP3A4 probe substrates demonstrate some degree of similarity, examination of the coefficients of determination, together with difference and cluster analysis highlighted that seven substrates can be categorized into two distinct substrate groups. Erythromycin, cyclosporin and testosterone form the most closely related group and dextromethorphan, diazepam, midazolam and triazolam form a second group. Terfenadine can be equally well placed in either group, while nifedipine shows a distinctly different relationship. Benzyloxyresorufin shows the weakest correlation with all the other CYP3A4 probes. Modifiers that caused negligible inhibition or potent inhibition are generally comparable in all assays, however, the greatest variability is apparent with compounds causing, on average, intermediate inhibition. Modifiers of this type may cause substantial inhibition, no effect or even activation depending on the substrate employed. Conclusions It is recommended that multiple CYP3A4 probes, representing each substrate group, are used for the in vitro assessment of CYP3A4‐mediated drug interactions.
Author Clarke
Kenworthy
Bloomer
Houston
Author_xml – sequence: 1
  givenname: K. E
  surname: KENWORTHY
  fullname: KENWORTHY, K. E
  organization: School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United Kingdom
– sequence: 2
  givenname: J. C
  surname: BLOOMER
  fullname: BLOOMER, J. C
  organization: Department of Drug Metabolism and Pharmacokinetics, SmithKline Beecham Pharmaceuticals, Welwyn, United Kingdom
– sequence: 3
  givenname: S. E
  surname: CLARKE
  fullname: CLARKE, S. E
  organization: Department of Drug Metabolism and Pharmacokinetics, SmithKline Beecham Pharmaceuticals, Welwyn, United Kingdom
– sequence: 4
  givenname: J. B
  surname: HOUSTON
  fullname: HOUSTON, J. B
  organization: School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United Kingdom
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1179424$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/10594474$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtP3DAUhS0EKgPtX0BZoO4S_HZcoUow4lEJqSzaRVeW49xQjzLx1E4o_Ps6nRGlO1a2db57j3XOEdofwgAIFQRXBHN5tqoIk6KkhIqKaK0rjLFi1dMeWrwI-2iBGZaloIIcoqOUVhgTRqR4hw4JFppzxRfoavnjnl3woo3TQ-GHEaJ1ow9D-lS4ECP0dn4VocveWS8e_RhDsYmhgSJNTRqjHSG9Rwed7RN82J3H6Pv11bflbXn39ebL8uKudIJpVrYNw51qSCcst1C7RqpWdzVQUlNJ2w47IUG1XNS0sdI6IHnOCaxr1Ta1wuwYfd7u3UzNGloHQ_bvzSb6tY3PJlhv_lcG_9M8hEdDMeFMkrzg425BDL8mSKNZ--Sg7-0AYUpGapbtlMhgvQVdDClF6F5MCDZzB2Zl5qjNHLWZOzB_OzBPefTk9SdfDW5Dz8DpDrDJ2b6LdnA-_eOI0pzO2PkW--17eH6zv7lc3ucL-wOjxaQp
CODEN BCPHBM
CitedBy_id crossref_primary_10_1038_s41598_017_03146_5
crossref_primary_10_1124_dmd_111_042259
crossref_primary_10_1124_dmd_109_026716
crossref_primary_10_1016_j_thromres_2022_08_007
crossref_primary_10_5507_bp_2017_026
crossref_primary_10_1021_ci200311w
crossref_primary_10_1124_dmd_107_015016
crossref_primary_10_1142_S0192415X1250005X
crossref_primary_10_1124_dmd_111_042382
crossref_primary_10_1016_j_ijpharm_2006_10_039
crossref_primary_10_1124_dmd_30_8_883
crossref_primary_10_2217_fon_10_149
crossref_primary_10_1517_17425255_2_4_629
crossref_primary_10_1002_jps_10545
crossref_primary_10_1006_abbi_2001_2401
crossref_primary_10_1007_s13318_015_0263_8
crossref_primary_10_1124_dmd_105_005579
crossref_primary_10_1007_s40262_013_0056_7
crossref_primary_10_1124_jpet_104_078519
crossref_primary_10_1124_dmd_115_066597
crossref_primary_10_1186_s40203_016_0016_7
crossref_primary_10_1007_BF03257377
crossref_primary_10_1124_dmd_115_064717
crossref_primary_10_1016_j_apsb_2022_08_018
crossref_primary_10_1021_tx034143l
crossref_primary_10_1124_dmd_112_049965
crossref_primary_10_1016_j_pharmthera_2008_01_006
crossref_primary_10_1016_j_tiv_2009_05_024
crossref_primary_10_1016_j_fct_2013_07_030
crossref_primary_10_1124_dmd_32_7_699
crossref_primary_10_1177_0960327106071979
crossref_primary_10_1089_neu_2005_22_1444
crossref_primary_10_1046_j_0306_5251_2001_01182_x
crossref_primary_10_1080_00498250110060950
crossref_primary_10_2174_1386207322666190705143322
crossref_primary_10_1016_S0378_4274_02_00285_0
crossref_primary_10_1080_00498254_2016_1257172
crossref_primary_10_1007_s00204_015_1452_6
crossref_primary_10_1124_dmd_30_10_1143
crossref_primary_10_1007_s00228_010_0855_9
crossref_primary_10_1124_dmd_105_004903
crossref_primary_10_1177_108705710200700410
crossref_primary_10_1515_dmpt_2017_0024
crossref_primary_10_1155_2013_179643
crossref_primary_10_1124_jpet_103_054841
crossref_primary_10_1016_j_pharmthera_2019_107449
crossref_primary_10_1124_dmd_114_059626
crossref_primary_10_1111_j_2042_7158_2008_tb02172_x
crossref_primary_10_1021_acs_jcim_8b00673
crossref_primary_10_1007_s00204_003_0452_0
crossref_primary_10_1124_dmd_32_6_647
crossref_primary_10_1080_14786419_2023_2167203
crossref_primary_10_4155_bio_2020_0242
crossref_primary_10_1002_psp4_12355
crossref_primary_10_1016_j_jpba_2007_02_034
crossref_primary_10_1124_dmd_113_055913
crossref_primary_10_1111_j_1365_2125_2003_02041_x
crossref_primary_10_1016_j_abb_2007_11_020
crossref_primary_10_1080_00498250500162870
crossref_primary_10_1038_nbt_1581
crossref_primary_10_1124_dmd_110_032094
crossref_primary_10_1177_00912700122012724
crossref_primary_10_1080_00498250410001691325
crossref_primary_10_1111_j_2042_7158_2010_01202_x
crossref_primary_10_1016_j_abb_2008_01_001
crossref_primary_10_1080_00498254_2016_1208854
crossref_primary_10_1111_j_1365_2044_2005_04110_x
crossref_primary_10_2133_dmpk_18_287
crossref_primary_10_1016_S1056_8719_00_00109_X
crossref_primary_10_2165_00003088_200342110_00003
crossref_primary_10_1124_dmd_31_9_1108
crossref_primary_10_1002_prp2_652
crossref_primary_10_1111_jvp_12303
crossref_primary_10_1002_cpt_1990
crossref_primary_10_1021_ja203172c
crossref_primary_10_1016_j_dmpk_2019_11_004
crossref_primary_10_1124_dmd_113_053884
crossref_primary_10_1002_bdd_2157
crossref_primary_10_1124_jpet_103_054999
crossref_primary_10_1002_jps_10179
crossref_primary_10_1002_bdd_373
crossref_primary_10_1111_j_1471_4159_2009_05994_x
crossref_primary_10_1124_dmd_111_041541
crossref_primary_10_1002_bmc_2875
crossref_primary_10_1124_dmd_115_068163
crossref_primary_10_1124_dmd_115_064006
crossref_primary_10_1211_0022357043950
crossref_primary_10_1124_dmd_30_4_378
crossref_primary_10_1021_bi0481390
crossref_primary_10_1021_jm051035i
crossref_primary_10_1177_0091270007308617
crossref_primary_10_1080_0049825031000121617
crossref_primary_10_1002_rcm_941
crossref_primary_10_1016_j_abb_2004_07_003
crossref_primary_10_1080_00498254_2020_1756007
crossref_primary_10_1124_dmd_104_001834
crossref_primary_10_1021_ci800275k
crossref_primary_10_1124_jpet_104_082826
crossref_primary_10_1124_dmd_105_008060
crossref_primary_10_1208_s12248_009_9106_3
crossref_primary_10_1038_clpt_2011_182
crossref_primary_10_1016_j_jep_2009_07_036
crossref_primary_10_1124_jpet_104_076836
crossref_primary_10_1124_dmd_112_047134
crossref_primary_10_1080_00498254_2018_1451010
crossref_primary_10_1016_j_cbpc_2011_07_007
crossref_primary_10_1002_bdd_2019
crossref_primary_10_1124_dmd_108_021493
crossref_primary_10_1016_S0169_409X_02_00066_2
crossref_primary_10_1002_cmdc_200600300
crossref_primary_10_1139_y00_130
crossref_primary_10_1158_1078_0432_CCR_06_1752
crossref_primary_10_1211_002235703765344522
crossref_primary_10_1016_j_gene_2011_06_036
crossref_primary_10_1007_s00204_008_0332_8
crossref_primary_10_1124_dmd_112_049668
crossref_primary_10_1371_journal_pone_0087234
crossref_primary_10_1016_j_jchromb_2018_08_025
crossref_primary_10_3389_fphar_2022_899536
crossref_primary_10_2165_00003088_200746080_00005
crossref_primary_10_1016_S0264_410X_01_00403_0
crossref_primary_10_1248_bpb_b16_00449
crossref_primary_10_1016_j_lfs_2018_12_060
crossref_primary_10_1016_S1056_8719_00_00112_X
crossref_primary_10_1124_jpet_105_093229
crossref_primary_10_1124_dmd_30_4_355
crossref_primary_10_1016_S1359_6446_05_03580_4
crossref_primary_10_1002_elps_200600163
crossref_primary_10_1177_1087057108317480
crossref_primary_10_1248_yakushi_17_00135
crossref_primary_10_2133_dmpk_18_128
crossref_primary_10_1111_j_1742_7843_2008_00307_x
crossref_primary_10_1124_dmd_121_000758
crossref_primary_10_1208_s12248_014_9663_y
crossref_primary_10_2133_dmpk_19_55
crossref_primary_10_1016_j_jpba_2014_03_018
crossref_primary_10_1124_dmd_111_041210
crossref_primary_10_1080_00498250210158230
crossref_primary_10_3390_biom9110655
crossref_primary_10_1007_s00228_005_0091_x
crossref_primary_10_1146_annurev_pharmtox_010818_021909
crossref_primary_10_2165_00126839_200607060_00004
crossref_primary_10_1080_00498254_2017_1346332
crossref_primary_10_1208_s12248_008_9042_7
crossref_primary_10_1016_j_jpba_2008_05_011
crossref_primary_10_1248_bpb_35_329
crossref_primary_10_1016_j_abb_2004_09_010
crossref_primary_10_1016_j_toxlet_2008_11_009
crossref_primary_10_1177_1087057112441013
crossref_primary_10_1080_00498250110043526
crossref_primary_10_1016_j_bcp_2018_04_017
crossref_primary_10_2165_00003088_200544030_00005
crossref_primary_10_1124_mol_59_2_386
crossref_primary_10_1002_minf_201300132
crossref_primary_10_1002_bit_21772
crossref_primary_10_1111_j_1365_2125_2010_03729_x
crossref_primary_10_1016_j_pharmthera_2009_05_011
crossref_primary_10_1124_jpet_112_191577
crossref_primary_10_1016_S0928_0987_02_00002_7
crossref_primary_10_1124_dmd_123_001513
crossref_primary_10_1021_acs_molpharmaceut_8b01043
crossref_primary_10_1021_bi010758a
crossref_primary_10_1097_JCP_0000000000001427
crossref_primary_10_1038_nrd1851
crossref_primary_10_1124_dmd_104_000547
crossref_primary_10_1124_dmd_30_12_1512
crossref_primary_10_1080_00498250110052120
crossref_primary_10_2139_ssrn_4133622
crossref_primary_10_1021_acs_chemrestox_1c00178
crossref_primary_10_1128_AAC_01123_08
crossref_primary_10_1007_s00228_014_1674_1
crossref_primary_10_1078_094471103322004839
crossref_primary_10_1124_dmd_32_1_105
crossref_primary_10_1124_dmd_107_018382
crossref_primary_10_1002_bdd_2174
crossref_primary_10_1080_00498250410001691316
crossref_primary_10_1007_s00228_006_0121_3
crossref_primary_10_1124_dmd_111_044271
crossref_primary_10_1080_00498250802517714
crossref_primary_10_1124_dmd_121_000508
crossref_primary_10_3109_00498254_2013_809617
crossref_primary_10_1124_dmd_106_010926
crossref_primary_10_1177_0091270003260330
crossref_primary_10_1124_dmd_106_009977
crossref_primary_10_1111_jphp_13045
crossref_primary_10_1081_DMR_100102338
crossref_primary_10_1111_j_1365_2125_2006_02627_x
crossref_primary_10_1016_j_ejca_2011_12_026
crossref_primary_10_3109_00498254_2010_506224
crossref_primary_10_1124_dmd_107_019265
crossref_primary_10_1111_bcp_12520
crossref_primary_10_1517_17425255_3_3_321
crossref_primary_10_1517_17425255_4_6_733
crossref_primary_10_1016_j_jchromb_2007_01_006
crossref_primary_10_1124_dmd_116_073890
crossref_primary_10_1016_S1056_8719_02_00168_5
crossref_primary_10_1016_j_pharmthera_2009_10_011
crossref_primary_10_1016_S1359_6446_03_03008_3
crossref_primary_10_1080_00498254_2018_1433902
crossref_primary_10_3390_healthcare11010096
crossref_primary_10_1016_j_addr_2012_09_017
crossref_primary_10_1016_j_tiv_2012_12_014
crossref_primary_10_1081_DMR_120018245
crossref_primary_10_1016_j_bcp_2007_11_012
crossref_primary_10_1124_jpet_102_047530
crossref_primary_10_1177_1087057104269731
crossref_primary_10_1042_BJ20130398
crossref_primary_10_1080_00498250701245250
crossref_primary_10_1016_j_toxlet_2019_11_005
crossref_primary_10_1080_00498250500489968
crossref_primary_10_1016_j_tox_2006_04_024
crossref_primary_10_1016_j_fct_2008_09_052
crossref_primary_10_1124_dmd_111_039065
crossref_primary_10_1016_j_ejps_2018_04_039
crossref_primary_10_1126_science_1099736
crossref_primary_10_1016_S0165_6147_03_00049_X
crossref_primary_10_1016_j_jep_2022_115406
crossref_primary_10_1093_toxsci_kfp255
crossref_primary_10_1124_dmd_30_12_1311
crossref_primary_10_2133_dmpk_20_351
crossref_primary_10_1124_dmd_31_7_938
crossref_primary_10_1080_03602530701690374
crossref_primary_10_1124_dmd_113_052290
crossref_primary_10_1124_dmd_108_022061
crossref_primary_10_1111_bcpt_12933
crossref_primary_10_1124_dmd_114_057000
crossref_primary_10_1177_1087057104274091
crossref_primary_10_1515_dmpt_2016_0028
crossref_primary_10_1517_17425250802500028
crossref_primary_10_1124_dmd_104_000216
crossref_primary_10_1139_Y10_104
crossref_primary_10_1124_jpet_116_236158
crossref_primary_10_1248_bpb_32_688
crossref_primary_10_1517_17425250903379546
crossref_primary_10_1021_tx7000702
crossref_primary_10_1007_s13318_011_0024_2
crossref_primary_10_3109_00498254_2015_1036954
crossref_primary_10_1007_BF03256429
crossref_primary_10_1124_dmd_104_002873
crossref_primary_10_1248_yakushi_127_209
crossref_primary_10_1124_dmd_105_005884
crossref_primary_10_4236_abb_2013_45083
Cites_doi 10.1097/00000539-199603000-00015
10.1097/00008571-199408000-00001
10.1038/clpt.1992.140
10.1016/0165-6147(93)90070-Z
10.1016/0009-9236(95)90067-5
10.1016/0006-2952(94)00477-4
10.1038/clpt.1992.174
10.3109/03602539308993982
10.1016/S0021-9258(19)89213-X
10.1038/clpt.1990.126
10.1111/j.1365-2125.1994.tb04336.x
10.1038/clpt.1993.199
10.1007/BF00315475
10.1016/0003-9861(88)90655-8
10.1016/0006-2952(94)90237-2
10.1021/bi962359z
10.1021/bi00187a009
10.1006/abio.1997.2145
10.1016/0009-9236(95)90261-9
10.1021/bi9715627
10.1038/clpt.1994.185
10.1146/annurev.pharmtox.38.1.389
10.1016/0165-6147(93)90080-4
10.1073/pnas.82.18.6310
10.1016/S0009-9236(96)90023-5
10.1038/clpt.1992.3
ContentType Journal Article
Conference Proceeding
Copyright 2000 INIST-CNRS
1999 Blackwell Science Ltd 1999
Copyright_xml – notice: 2000 INIST-CNRS
– notice: 1999 Blackwell Science Ltd 1999
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1046/j.1365-2125.1999.00073.x
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1365-2125
EndPage 727
ExternalDocumentID 10_1046_j_1365_2125_1999_00073_x
10594474
1179424
BCP073
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Dutch Society for Clinical Pharmacology and Biopharmacy
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
24P
2WC
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HF~
HGLYW
HYE
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LSO
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
TEORI
TR2
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WRC
WVDHM
WXI
WXSBR
X7M
XG1
YFH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~WT
08R
AAJUZ
AAPBV
AAVGM
ABCVL
ABFLS
ABHUG
ABPTK
ABWRO
ACXME
ADAWD
ADDAD
ADGIM
AFVGU
AGJLS
IQODW
UMP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c5393-db30f7b1f5a4ae8cb67d9f8e218262df0c56e7d4582ba6ace1c53c50987db8703
IEDL.DBID RPM
ISSN 0306-5251
IngestDate Tue Sep 17 21:26:53 EDT 2024
Fri Aug 16 05:30:55 EDT 2024
Fri Aug 23 01:27:17 EDT 2024
Wed Oct 16 00:50:34 EDT 2024
Thu Nov 24 18:30:46 EST 2022
Sat Aug 24 00:51:52 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Substrate
Drug combination
Enzymatic activity
Isozyme
Cytochrome P450
Enzyme inhibitor
Drug interaction
Inhibition
Measurement method
Metabolism
Pharmacokinetics
In vitro
Language English
License CC BY 4.0
LinkModel DirectLink
MeetingName The Dutch Society for Clinical Pharmacology and Biopharmacy. Meeting
MergedId FETCHMERGED-LOGICAL-c5393-db30f7b1f5a4ae8cb67d9f8e218262df0c56e7d4582ba6ace1c53c50987db8703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Department of Drug Metabolism and Pharmacokinetics, SmithKline Beecham Pharmaceuticals, The Frythe, Welwyn, UK.
PMID 10594474
PQID 69350975
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2014361
proquest_miscellaneous_69350975
crossref_primary_10_1046_j_1365_2125_1999_00073_x
pubmed_primary_10594474
pascalfrancis_primary_1179424
wiley_primary_10_1046_j_1365_2125_1999_00073_x_BCP073
PublicationCentury 1900
PublicationDate November 1999
PublicationDateYYYYMMDD 1999-11-01
PublicationDate_xml – month: 11
  year: 1999
  text: November 1999
PublicationDecade 1990
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: London
– name: England
PublicationTitle British journal of clinical pharmacology
PublicationTitleAlternate Br J Clin Pharmacol
PublicationYear 1999
Publisher Blackwell Science Ltd
Blackwell Science
Blackwell Science Inc
Publisher_xml – name: Blackwell Science Ltd
– name: Blackwell Science
– name: Blackwell Science Inc
References 1993; 25
1990; 18
1995; 58
1995; 57
1993; 44
1997; 25
1993; 21
1994; 22
1988; 263
1985; 82
1996; 59
1992; 51
1992; 52
1998; 38
1998; 37
1993; 14
1997; 248
1990; 48
1995; 49
1994a; 48
1995; 23
1993; 54
1997; 36
1986; 261
1994; 56
1994; 33
1996; 82
1994; 38
1996; 276
1994; 37
1989; 36
1996; 277
1994; 4
Guengerich FP (e_1_2_6_4_2) 1986; 261
e_1_2_6_31_2
e_1_2_6_30_2
Newton DJ (e_1_2_6_33_2) 1995; 23
e_1_2_6_18_2
Pichard L (e_1_2_6_9_2) 1990; 18
e_1_2_6_19_2
Lown KS (e_1_2_6_21_2) 1994; 22
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_11_2
e_1_2_6_16_2
Wang RW (e_1_2_6_23_2) 1997; 25
Rodrigues AD (e_1_2_6_8_2) 1995; 23
e_1_2_6_14_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
Kronbach T (e_1_2_6_5_2) 1989; 36
Kinirons MT (e_1_2_6_17_2) 1994; 37
Yun CH (e_1_2_6_37_2) 1993; 21
e_1_2_6_7_2
e_1_2_6_29_2
e_1_2_6_3_2
Bourrie M (e_1_2_6_32_2) 1996; 277
e_1_2_6_6_2
e_1_2_6_24_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
Von Moltke LL (e_1_2_6_28_2) 1996; 276
References_xml – volume: 36
  start-page: 370
  year: 1997
  end-page: 381
  article-title: Cooperativity in oxidations catalysed by cytochrome P450 3A4.
  publication-title: Biochemistry
– volume: 38
  start-page: 389
  year: 1998
  end-page: 430
  article-title: and drug interaction involving human CYP3A.
  publication-title: Ann Rev Pharmacol Toxicol
– volume: 276
  start-page: 370
  year: 1996
  end-page: 379
  article-title: Triazolam biotransformation by human liver microsomes : Effects of metabolic inhibitors and clinical conformation of a predicted interaction with ketoconazole.
  publication-title: J Pharmacol Exp Ther
– volume: 44
  start-page: 163
  year: 1993
  end-page: 169
  article-title: Stereoselective pharmacokinetics of oral felodipine and nitrendipine in healthy subjects: Correlation with nifedipine pharmacokinetics.
  publication-title: Eur J Clin Pharmacol
– volume: 277
  start-page: 321
  year: 1996
  end-page: 332
  article-title: Cytochrome P450 inhibitors as a tool for the investigation of metabolic reactions catalysed by human liver microsomes.
  publication-title: J Pharmacol Exp Ther
– volume: 82
  start-page: 511
  year: 1996
  end-page: 516
  article-title: The effect of the systemic antimycotics, itraconazole and fluconazole on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam.
  publication-title: Anesth Analg
– volume: 38
  start-page: 131
  year: 1994
  end-page: 137
  article-title: Diazepam metabolism by human liver microsomes is mediated by both S‐mephenytoin hydroxylase and CYP3A isoforms.
  publication-title: Br J Clin Pharmacol
– volume: 57
  start-page: 16
  year: 1995
  end-page: 24
  article-title: The erythromycin breath test predicts the clearance of midazolam.
  publication-title: Clin Pharmacol Ther
– volume: 248
  start-page: 188
  year: 1997
  end-page: 190
  article-title: Microtiter plate assays for inhibition of human drug metabolising cytochromes P450.
  publication-title: Anal Biochem
– volume: 59
  start-page: 47
  year: 1996
  end-page: 51
  article-title: Comparison of the dapsone recovery ratio and the erythromycin breath test as probes of CYP3A activity in patients with rheumatoid arthritis receiving cyclosporin.
  publication-title: Clin Pharmacol Ther
– volume: 33
  start-page: 6450
  year: 1994
  end-page: 6455
  article-title: Activation of CYP3A4: Evidence for the simultaneous binding of two substrates in a cytochrome P450 active site.
  publication-title: Biochemistry
– volume: 21
  start-page: 403
  year: 1993
  end-page: 409
  article-title: Oxidation of the antihistaminic drug terfenadine in human liver microsomes: Role of cytochrome P450, 3A (4) in N–dealkylation and C–hydroxylation.
  publication-title: Drug Metab Dispos
– volume: 18
  start-page: 595
  year: 1990
  end-page: 606
  article-title: Cyclosporin A drug interactions: Screening for inducers and inhibitors of cytochrome P450 (cyclosporin A oxidase) in primary cultures of human hepatocytes and in liver microsomes.
  publication-title: Drug Metab Dispos
– volume: 48
  start-page: 120
  year: 1990
  end-page: 129
  article-title: The erythromycin breath test as a predictor of cyclosporin blood levels.
  publication-title: Clin Pharmacol Ther
– volume: 23
  start-page: 154
  year: 1995
  end-page: 158
  article-title: Cytochrome P450 inhibitors: Evaluation of specificities in the metabolism of therapeutic agents by human liver microsomes.
  publication-title: Drug Metab Dispos
– volume: 52
  start-page: 265
  year: 1992
  end-page: 273
  article-title: Comparison of urinary 6β‐cortisol and the erythromycin breath test as measures of hepatic P450IIIA (CYP3A) activity.
  publication-title: Clin Pharmacol Ther
– volume: 49
  start-page: 591
  year: 1995
  end-page: 602
  article-title: Particular ability of cytochrome P450, 3A to form inhibitory P450–iron–metabolite complexes upon metabolic oxidation of aminodrugs.
  publication-title: Biochem Pharmacol
– volume: 14
  start-page: 89
  year: 1993
  end-page: 91
  article-title: The Cheng‐Prusoff relationship: Something lost in the translation.
  publication-title: Trends Pharmacol Sci
– volume: 58
  start-page: 15
  year: 1995
  end-page: 29
  article-title: The effects of ketoconazole on the intestinal metabolism and bioavailability of cyclosporin.
  publication-title: Clin Pharmacol Ther
– volume: 263
  start-page: 424
  year: 1988
  end-page: 436
  article-title: Human liver microsomal steroid metabolism: Identification of the major microsomal steroid hormone 6β‐hydroxylase cytochrome P450 enzyme.
  publication-title: Arch Biochem Biophys
– volume: 25
  start-page: 502
  year: 1997
  end-page: 507
  article-title: Human cytochrome P450 3A4‐catalysed testosterone 6β‐hydroxylation and erythromycin N‐demethylation: Competition during catalysis.
  publication-title: Drug Metab Dispos
– volume: 51
  start-page: 18
  year: 1992
  end-page: 23
  article-title: Heterogeneity of CYP3A isoforms metabolising erythromycin and cortisol.
  publication-title: Clin Pharmacol Ther
– volume: 22
  start-page: 947
  year: 1994
  end-page: 955
  article-title: Inter‐patient heterogeneity in expression of CYP3A4 and CYP3A5 in small bowel: Lack of prediction by the erythromycin breath test.
  publication-title: Drug Metab Dispos
– volume: 48
  start-page: 173
  year: 1994a
  end-page: 182
  article-title: Characterisation of dextromethorphan N‐demethylation by human liver microsomes: Contribution of the cytochrome P450, 3A subfamily.
  publication-title: Biochem Pharmacol
– volume: 36
  start-page: 89
  year: 1989
  end-page: 96
  article-title: Oxidation of midazolam and triazolam by human liver cytochrome P450IIIA4.
  publication-title: Mol Pharmacol
– volume: 23
  start-page: 765
  year: 1995
  end-page: 775
  article-title: metabolism of terfenadine by a purified recombinant fusion protein containing cytochrome P4503A4 and NADPH‐P450 reductase.
  publication-title: Drug Metab Dispos
– volume: 82
  start-page: 6310
  year: 1985
  end-page: 6314
  article-title: Identification of an inducible form of cytochrome P450 in human liver.
  publication-title: Proc Natl Acad Sci
– volume: 54
  start-page: 621
  year: 1993
  end-page: 629
  article-title: Absence of correlations among three putative probes of human cytochrome P4503A activity in young healthy men.
  publication-title: Clin Pharmacol Ther
– volume: 56
  start-page: 608
  year: 1994
  end-page: 614
  article-title: Metabolism of cytochrome P4503A substrates administered by the same route: Lack of correlation between alfentanil clearance and erythromycin breath test.
  publication-title: Clin Pharmacol Ther
– volume: 52
  start-page: 471
  year: 1992
  end-page: 478
  article-title: Erythromycin breath test predicts oral clearance of cyclosporin in kidney transplant recipients.
  publication-title: Clin Pharmacol Ther
– volume: 261
  start-page: 5051
  year: 1986
  end-page: 5060
  article-title: Characterisation of rat and human liver microsomal cytochrome P450 forms involved in nifedipine oxidation, a prototype genetic polymorphism in oxidative drug metabolism.
  publication-title: J Biol Chem
– volume: 4
  start-page: 171
  year: 1994
  end-page: 184
  article-title: Noninvasive tests of CYP3A enzymes.
  publication-title: Pharmacogenetics
– volume: 37
  start-page: 501P
  year: 1994
  article-title: Route of administration does not explain the lack of correlation between putative probes of cytochrome P4503A.
  publication-title: Br J Clin Pharmacol
– volume: 25
  start-page: 453
  year: 1993
  end-page: 484
  article-title: methods for assessing human hepatic drug metabolism: Their use in drug development.
  publication-title: Drug Metab Rev
– volume: 14
  start-page: 110
  year: 1993
  end-page: 112
  article-title: Further concerns over Cheng‐Prusoff analysis.
  publication-title: Trends Pharm Sci
– volume: 37
  start-page: 4137
  year: 1998
  end-page: 4147
  article-title: Evaluation of atypical cytochrome P450 kinetics with two‐substrate models: Evidence that multiple substrates can simultaneously bind to cytochrome P450 active sites.
  publication-title: Biochemistry
– ident: e_1_2_6_35_2
  doi: 10.1097/00000539-199603000-00015
– ident: e_1_2_6_10_2
  doi: 10.1097/00008571-199408000-00001
– ident: e_1_2_6_15_2
  doi: 10.1038/clpt.1992.140
– volume: 18
  start-page: 595
  year: 1990
  ident: e_1_2_6_9_2
  article-title: Cyclosporin A drug interactions: Screening for inducers and inhibitors of cytochrome P450 (cyclosporin A oxidase) in primary cultures of human hepatocytes and in liver microsomes.
  publication-title: Drug Metab Dispos
  contributor:
    fullname: Pichard L
– ident: e_1_2_6_30_2
  doi: 10.1016/0165-6147(93)90070-Z
– ident: e_1_2_6_34_2
  doi: 10.1016/0009-9236(95)90067-5
– ident: e_1_2_6_24_2
  doi: 10.1016/0006-2952(94)00477-4
– ident: e_1_2_6_13_2
  doi: 10.1038/clpt.1992.174
– volume: 37
  start-page: 501P
  year: 1994
  ident: e_1_2_6_17_2
  article-title: Route of administration does not explain the lack of correlation between putative in vivo probes of cytochrome P4503A.
  publication-title: Br J Clin Pharmacol
  contributor:
    fullname: Kinirons MT
– ident: e_1_2_6_2_2
  doi: 10.3109/03602539308993982
– volume: 261
  start-page: 5051
  year: 1986
  ident: e_1_2_6_4_2
  article-title: Characterisation of rat and human liver microsomal cytochrome P450 forms involved in nifedipine oxidation, a prototype genetic polymorphism in oxidative drug metabolism.
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)89213-X
  contributor:
    fullname: Guengerich FP
– ident: e_1_2_6_12_2
  doi: 10.1038/clpt.1990.126
– ident: e_1_2_6_6_2
  doi: 10.1111/j.1365-2125.1994.tb04336.x
– ident: e_1_2_6_16_2
  doi: 10.1038/clpt.1993.199
– ident: e_1_2_6_36_2
  doi: 10.1007/BF00315475
– ident: e_1_2_6_7_2
  doi: 10.1016/0003-9861(88)90655-8
– volume: 21
  start-page: 403
  year: 1993
  ident: e_1_2_6_37_2
  article-title: Oxidation of the antihistaminic drug terfenadine in human liver microsomes: Role of cytochrome P450, 3A (4) in N–dealkylation and C–hydroxylation.
  publication-title: Drug Metab Dispos
  contributor:
    fullname: Yun CH
– ident: e_1_2_6_27_2
  doi: 10.1016/0006-2952(94)90237-2
– ident: e_1_2_6_22_2
  doi: 10.1021/bi962359z
– ident: e_1_2_6_25_2
  doi: 10.1021/bi00187a009
– volume: 36
  start-page: 89
  year: 1989
  ident: e_1_2_6_5_2
  article-title: Oxidation of midazolam and triazolam by human liver cytochrome P450IIIA4.
  publication-title: Mol Pharmacol
  contributor:
    fullname: Kronbach T
– ident: e_1_2_6_29_2
  doi: 10.1006/abio.1997.2145
– ident: e_1_2_6_19_2
  doi: 10.1016/0009-9236(95)90261-9
– ident: e_1_2_6_26_2
  doi: 10.1021/bi9715627
– ident: e_1_2_6_18_2
  doi: 10.1038/clpt.1994.185
– ident: e_1_2_6_11_2
  doi: 10.1146/annurev.pharmtox.38.1.389
– ident: e_1_2_6_31_2
  doi: 10.1016/0165-6147(93)90080-4
– ident: e_1_2_6_3_2
  doi: 10.1073/pnas.82.18.6310
– volume: 25
  start-page: 502
  year: 1997
  ident: e_1_2_6_23_2
  article-title: Human cytochrome P450 3A4‐catalysed testosterone 6β‐hydroxylation and erythromycin N‐demethylation: Competition during catalysis.
  publication-title: Drug Metab Dispos
  contributor:
    fullname: Wang RW
– volume: 23
  start-page: 154
  year: 1995
  ident: e_1_2_6_33_2
  article-title: Cytochrome P450 inhibitors: Evaluation of specificities in the in vitro metabolism of therapeutic agents by human liver microsomes.
  publication-title: Drug Metab Dispos
  contributor:
    fullname: Newton DJ
– ident: e_1_2_6_20_2
  doi: 10.1016/S0009-9236(96)90023-5
– ident: e_1_2_6_14_2
  doi: 10.1038/clpt.1992.3
– volume: 276
  start-page: 370
  year: 1996
  ident: e_1_2_6_28_2
  article-title: Triazolam biotransformation by human liver microsomes in vitro: Effects of metabolic inhibitors and clinical conformation of a predicted interaction with ketoconazole.
  publication-title: J Pharmacol Exp Ther
  contributor:
    fullname: Von Moltke LL
– volume: 277
  start-page: 321
  year: 1996
  ident: e_1_2_6_32_2
  article-title: Cytochrome P450 inhibitors as a tool for the investigation of metabolic reactions catalysed by human liver microsomes.
  publication-title: J Pharmacol Exp Ther
  contributor:
    fullname: Bourrie M
– volume: 22
  start-page: 947
  year: 1994
  ident: e_1_2_6_21_2
  article-title: Inter‐patient heterogeneity in expression of CYP3A4 and CYP3A5 in small bowel: Lack of prediction by the erythromycin breath test.
  publication-title: Drug Metab Dispos
  contributor:
    fullname: Lown KS
– volume: 23
  start-page: 765
  year: 1995
  ident: e_1_2_6_8_2
  article-title: In vitro metabolism of terfenadine by a purified recombinant fusion protein containing cytochrome P4503A4 and NADPH‐P450 reductase.
  publication-title: Drug Metab Dispos
  contributor:
    fullname: Rodrigues AD
SSID ssj0013165
Score 2.1774416
Snippet Aims Many substrates of cytochrome P450 (CYP) 3A4 are used for in vitro investigations of drug metabolism and potential drug–drug interactions. The aim of the...
Many substrates of cytochrome P450 (CYP) 3A4 are used for in vitro investigations of drug metabolism and potential drug-drug interactions. The aim of the...
Aims Many substrates of cytochrome P450 (CYP) 3A4 are used for in vitro investigations of drug metabolism and potential drug–drug interactions. The aim of the...
AIMSMany substrates of cytochrome P450 (CYP) 3A4 are used for in vitro investigations of drug metabolism and potential drug-drug interactions. The aim of the...
SourceID pubmedcentral
proquest
crossref
pubmed
pascalfrancis
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 716
SubjectTerms allostery
Biological and medical sciences
CYP3A4
Cytochrome P-450 CYP1A1 - metabolism
Cytochrome P-450 CYP3A
Cytochrome P-450 Enzyme Inhibitors
Cytochrome P-450 Enzyme System - metabolism
cytochrome P450 inhibition
Enzyme Inhibitors - pharmacology
General pharmacology
Humans
in vitro probes
Kinetics
Medical sciences
Mixed Function Oxygenases - antagonists & inhibitors
Mixed Function Oxygenases - metabolism
Original
Pharmaceutical Preparations - metabolism
Pharmacokinetics. Pharmacogenetics. Drug-receptor interactions
Pharmacology. Drug treatments
Recombinant Proteins - antagonists & inhibitors
Recombinant Proteins - metabolism
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3LT9tAEIdHFadKVR8UWkNp91BxwpFfu3Z6oxEIIVFFFUhwWu2zRUgOipMK-td3ZtchBDhUVW-RnI3t8ezuz5mZbwA-c8I2WWNSXnue4g7lU9VkAYScN5ltfBGyCU--iaOz6vicn_f5T1QLE_kQd3-40cwI6zVNcKVjF5Is0G0XGVq4Q1PJHWEn0V0HpCeJq0f66HuxDCjkoaskKWR89-J5n9TTBzif_KGVnerFterQaD52u3hKjj7OqryvdsN2dfgKrhY3GrNUrgbzmR6Y3w8YkP_HEq_hZa9q2X50wzfwzLXrsDuOWOzbPXa6rPLq9tguGy-B2bdv4WB0MS73K2an8x-M-BXTWG3RfWGGmofEdD028WhMPM5-Xc6mE0atcBzrcOELgN1uA84OD05HR2nf3iE1vByWqdVl5mude64q5RqjRW2HvnHElBeF9ZnhwtWWAntaCWVcjuMMCpymthqXmXIT1tpJ694Dy4RSijdKeFQbTmttM6KOOl4SvYZnCeSLRymvI8VDhuh7RZVqZD1J1pNkPRmsJ28S2Fl55suBtIYVVQKfFj4gcUpSnEW1bjLvpBiWeJU1T-Bd9Ih75-TDqqpxbL3iK3dfINj36pH28meAfhcEYhR5Ajy4wl_fhvw6GuOHrX8ctw3PA6giVF9-gLXZdO52UIbN9Mcwwf4AIkAkjQ
  priority: 102
  providerName: Wiley-Blackwell
Title CYP3A4 drug interactions: correlation of 10 in vitro probe substrates
URI https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1365-2125.1999.00073.x
https://www.ncbi.nlm.nih.gov/pubmed/10594474
https://search.proquest.com/docview/69350975
https://pubmed.ncbi.nlm.nih.gov/PMC2014361
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fa9swEMePtk-DMfZ73tZOD6NPdeNfkp29daFdGXSY0UL2JCRZ2gKrE-KktP_97iR7adgexl5MwDG2_JV8J-7ucwDvOWGbGmNiXjoeo4VysaoSD0JOq6SpXOazCS--iPOr4vOUT3eAD7UwPmnf6Nlx-_P6uJ398LmVi2szGvLERvXFJCMonUhHu7Bb5vmwRR9CB6nvH0m-MO6yeNqn7_ShTJ_UhUadqvSIVIkzPLCoiVtSlMWWeXq4UB2-KRdaXPzNB_0zlfK-i-tt1NljeNQ7l-wkDOIJ7Nj2KRzWgU59d8QuN8VW3RE7ZPWGW333DE4n3-r8pGDNcv2dEUZiGYoeug_MUA-PkDXH5g5HiufZzWy1nDPqSGNZh98fz7ntnsPV2enl5DzuuyzEhufjPG50nrhSp46rQtnKaFE2Y1dZQruLrHGJ4cKWDcXXtBLK2BSvM-hnVGWjcbXnL2Cvnbf2FbBEKKV4pYRDo2-11k1C8E_Lc4LI8CSCdHi5chFgGtIHwQsqGCNtJGkjSRvptZG3EexvqbC5kD4lWRHBu0EViSuDwh2qtfN1J8U4x6cseQQvg0b37hnEjqDcUu_3H4i5vX0Gp6Jnb_dTLwLudf7nYciPkxp_vP7vO76BB54Y4csg38Learm2--gPrfQB7gS-Znj8NE0P_Fr4BZ2qBkU
link.rule.ids 230,310,311,315,733,786,790,795,796,891,1382,23958,23959,25170,27955,27956,46327,46751,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Lb9NAEIdHpRxAqng_DJTuAfVUJ36t7XArUasATeVDispptU-ISp0oThDlr2dn1yYNcABultYr2_vbx1gz8w3AK4rYJiVlSAtDQ3tCmZCXkQMhx2WkSpO4aMLxaT46y96d0_MtoF0ujAval2Laq79c9urpZxdbOb-U_S5OrF-NhwlC6fK4fwNu2vWa0O4nvXMexK6CJFrD9j-Lxm0AT-vMdGFd9ljHPD1kVdo57mnUSC7JimzjgNqZ88aOlfFFLv5khf4eTHndyHWn1PFd-NB9nw9OueitlqInv_-CfvznAbgHd1q7lRz65vuwpesHsF958PXVAZms87iaA7JPqjUS--ohHA0_VulhRtRi9YkgoWLh8yma10RieRAfkEdmxg6hbSdfp8vFjGCxG00au7U5hG7zCM6OjybDUdgWcAglTQdpqEQamULEhvKM61KKvFADU2qkxueJMpGkuS4Uuu4Ez7nUse0nrQlTFkrYjSR9DNv1rNZPgUQ555yWPDfWntBCCBUhV1TTFPk0NAog7lRjc8_pYM6_nmEuGorOUHSGojMnOvsWwO6GvOuOuEslWQB7ndzMLjr0pPBaz1YNywepfcuCBvDEi3_tmX4WBVBsTIufNyDOe7PFiuyw3q2oAVA3gf76M9ibYWUvnv33E_fg1mgyPmEnb0_fP4fbDkzhsi1fwPZysdK71uxaipdukf0AYiYmUg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Lb9NAEIdHUCSEhCivgimle0A91Ylfazu9ldCoPFr50EqFy2qfEEGdKE4Q5a_vzq5NEuCAerNkW7b3N7s71sx8A_CaIrZJSRnSwtDQ7lAm5GXkQMhxGanSJC6b8OQ0Pz7P3l_Qi5VWXy5pX4pxr_5-2avHX11u5fRS9rs8sX51MkwQSpfH_aky_dtwx87ZpOh-1LsAQuy6SKJHbP-1aNwm8bQBTZfaZbd2rNVDXqW1c0-kRnpJVmRrm9T9KW_seBnf6OJfnujfCZWrjq7bqUab8Ln7Rp-g8q23mIue_PUH_vFGg_AQHrT-Kzn0lzyCW7p-DHuVB2Bf7ZOzZT1Xs0_2SLVEY189gaPhpyo9zIiaLb4QJFXMfF1Fc0AktgnxiXlkYuww2vPkx3g-mxBseqNJY5c4h9JtnsL56OhseBy2jRxCSdNBGiqRRqYQsaE847qUIi_UwJQa6fF5okwkaa4LhSE8wXMudWzvk9aVKQsl7IKSbsFGPan1cyBRzjmnJc-N9Su0EEJFyBfVNEVODY0CiDvl2NTzOpiLs2dYk4bCMxSeofDMCc9-BrCzJvHyRlytkiyA3U5yZicfRlR4rSeLhuWD1L5lQQN45g1g5ZnekgIo1kzj9wWI9V4_Y4V2eO9W2ACoM6L__gz2ZljZgxc3fuIu3K3ejtjHd6cftuGe41O4osuXsDGfLfSO9b7m4pWbZ9e2gCjS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=British+journal+of+clinical+pharmacology&rft.atitle=CYP3A4+drug+interactions+%3A+correlation+of+10+in+vitro+probe+substrates&rft.au=KENWORTHY%2C+K.+E&rft.au=BLOOMER%2C+J.+C&rft.au=CLARKE%2C+S.+E&rft.au=HOUSTON%2C+J.+B&rft.date=1999-11-01&rft.pub=Blackwell+Science&rft.issn=0306-5251&rft.eissn=1365-2125&rft.volume=48&rft.issue=5&rft.spage=716&rft.epage=727&rft_id=info:doi/10.1046%2Fj.1365-2125.1999.00073.x&rft.externalDBID=n%2Fa&rft.externalDocID=1179424
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-5251&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-5251&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-5251&client=summon