Performance evaluation of an Inveon PET preclinical scanner

We evaluated the performance of an Inveon preclinical PET scanner (Siemens Medical Solutions), the latest MicroPET system. Spatial resolution was measured with a glass capillary tube (0.26 mm inside diameter, 0.29 mm wall thickness) filled with (18)F solution. Transaxial and axial resolutions were m...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 54; no. 9; pp. 2885 - 2899
Main Authors Constantinescu, Cristian C, Mukherjee, Jogeshwar
Format Journal Article
LanguageEnglish
Published England IOP Publishing 07.05.2009
Subjects
Online AccessGet full text
ISSN0031-9155
1361-6560
DOI10.1088/0031-9155/54/9/020

Cover

Loading…
Abstract We evaluated the performance of an Inveon preclinical PET scanner (Siemens Medical Solutions), the latest MicroPET system. Spatial resolution was measured with a glass capillary tube (0.26 mm inside diameter, 0.29 mm wall thickness) filled with (18)F solution. Transaxial and axial resolutions were measured with the source placed parallel and perpendicular to the axis of the scanner. The sensitivity of the scanner was measured with a (22)Na point source, placed on the animal bed and positioned at different offsets from the center of the field of view (FOV), as well as at different energy and coincidence windows. The noise equivalent count rates (NECR) and the system scatter fraction were measured using rat-like (Phi = 60, L = 150 mm) and mouse-like (Phi = 25 mm, L = 70 mm) cylindrical phantoms. Line sources filled with high activity (18)F (>250 MBq) were inserted parallel to the axes of the phantoms (13.5 and 10 mm offset). For each phantom, list-mode data were collected over 24 h at 350-650 keV and 250-750 keV energy windows and 3.4 ns coincidence window. System scatter fraction was measured when the random event rates were below 1%. Performance phantoms consisting of cylinders with hot rod inserts filled with (18)F were imaged. In addition, we performed imaging studies that show the suitability of the Inveon scanner for imaging small structures such as those in mice with a variety of tracers. The radial, tangential and axial resolutions at the center of FOV were 1.46 mm, 1.49 and 1.15 mm, respectively. At a radial offset of 2 cm, the FWHM values were 1.73, 2.20 and 1.47 mm, respectively. At a coincidence window of 3.4 ns, the sensitivity was 5.75% for EW = 350-650 keV and 7.4% for EW = 250-750 keV. For an energy window of 350-650 keV, the peak NECR was 538 kcps at 131.4 MBq for the rat-like phantom, and 1734 kcps at 147.4 MBq for the mouse-like phantom. The system scatter fraction values were 0.22 for the rat phantom and 0.06 for the mouse phantom. The Inveon system presents high image resolution, low scatter fraction values and improved sensitivity and count rate performance.
AbstractList We evaluated the performance of an Inveon preclinical PET scanner (Siemens Medical Solutions), the latest MicroPET system. Spatial resolution was measured with a glass capillary tube (0.26 mm inside diameter, 0.29 mm wall thickness) filled with 18 F solution. Transaxial and axial resolutions were measured with the source placed parallel and perpendicular to the axis of the scanner. The sensitivity of the scanner was measured with a 22 Na point source, placed on the animal bed and positioned at different offsets from the center of the field of view (FOV), as well as at different energy and coincidence windows. The noise equivalent count rates (NECR) and the system scatter fraction were measured using rat-like (Φ = 60, L = 150 mm) and mouse-like (Φ = 25 mm, L = 70 mm) cylindrical phantoms. Line sources filled with high activity 18 F (>250 MBq) were inserted parallel to the axes of the phantoms (13.5 and 10 mm offset). For each phantom, list-mode data were collected over 24 h at 350–650 keV and 250–750 keV energy windows and 3.4 ns coincidence window. System scatter fraction was measured when the random event rates were below 1%. Performance phantoms consisting of cylinders with hot rod inserts filled with 18 F were imaged. In addition, we performed imaging studies that show the suitability of the Inveon scanner for imaging small structures such as those in mice with a variety of tracers. The radial, tangential and axial resolutions at the center of FOV were 1.46 mm, 1.49 and 1.15 mm, respectively. At a radial offset of 2 cm, the FWHM values were 1.73, 2.20 and 1.47 mm, respectively. At a coincidence window of 3.4 ns, the sensitivity was 5.75% for EW = 350–650 keV and 7.4% for EW = 250–750 keV. For an energy window of 350–650 keV, the peak NECR was 538 kcps at 131.4 MBq for the rat-like phantom, and 1734 kcps at 147.4 MBq for the mouse-like phantom. The system scatter fraction values were 0.22 for the rat phantom and 0.06 for the mouse phantom. The Inveon system presents high image resolution, low scatter fraction values and improved sensitivity and count rate performance.
We evaluated the performance of an Inveon preclinical PET scanner (Siemens Medical Solutions), the latest MicroPET system. Spatial resolution was measured with a glass capillary tube (0.26 mm inside diameter, 0.29 mm wall thickness) filled with (18)F solution. Transaxial and axial resolutions were measured with the source placed parallel and perpendicular to the axis of the scanner. The sensitivity of the scanner was measured with a (22)Na point source, placed on the animal bed and positioned at different offsets from the center of the field of view (FOV), as well as at different energy and coincidence windows. The noise equivalent count rates (NECR) and the system scatter fraction were measured using rat-like (Phi = 60, L = 150 mm) and mouse-like (Phi = 25 mm, L = 70 mm) cylindrical phantoms. Line sources filled with high activity (18)F (>250 MBq) were inserted parallel to the axes of the phantoms (13.5 and 10 mm offset). For each phantom, list-mode data were collected over 24 h at 350-650 keV and 250-750 keV energy windows and 3.4 ns coincidence window. System scatter fraction was measured when the random event rates were below 1%. Performance phantoms consisting of cylinders with hot rod inserts filled with (18)F were imaged. In addition, we performed imaging studies that show the suitability of the Inveon scanner for imaging small structures such as those in mice with a variety of tracers. The radial, tangential and axial resolutions at the center of FOV were 1.46 mm, 1.49 and 1.15 mm, respectively. At a radial offset of 2 cm, the FWHM values were 1.73, 2.20 and 1.47 mm, respectively. At a coincidence window of 3.4 ns, the sensitivity was 5.75% for EW = 350-650 keV and 7.4% for EW = 250-750 keV. For an energy window of 350-650 keV, the peak NECR was 538 kcps at 131.4 MBq for the rat-like phantom, and 1734 kcps at 147.4 MBq for the mouse-like phantom. The system scatter fraction values were 0.22 for the rat phantom and 0.06 for the mouse phantom. The Inveon system presents high image resolution, low scatter fraction values and improved sensitivity and count rate performance.We evaluated the performance of an Inveon preclinical PET scanner (Siemens Medical Solutions), the latest MicroPET system. Spatial resolution was measured with a glass capillary tube (0.26 mm inside diameter, 0.29 mm wall thickness) filled with (18)F solution. Transaxial and axial resolutions were measured with the source placed parallel and perpendicular to the axis of the scanner. The sensitivity of the scanner was measured with a (22)Na point source, placed on the animal bed and positioned at different offsets from the center of the field of view (FOV), as well as at different energy and coincidence windows. The noise equivalent count rates (NECR) and the system scatter fraction were measured using rat-like (Phi = 60, L = 150 mm) and mouse-like (Phi = 25 mm, L = 70 mm) cylindrical phantoms. Line sources filled with high activity (18)F (>250 MBq) were inserted parallel to the axes of the phantoms (13.5 and 10 mm offset). For each phantom, list-mode data were collected over 24 h at 350-650 keV and 250-750 keV energy windows and 3.4 ns coincidence window. System scatter fraction was measured when the random event rates were below 1%. Performance phantoms consisting of cylinders with hot rod inserts filled with (18)F were imaged. In addition, we performed imaging studies that show the suitability of the Inveon scanner for imaging small structures such as those in mice with a variety of tracers. The radial, tangential and axial resolutions at the center of FOV were 1.46 mm, 1.49 and 1.15 mm, respectively. At a radial offset of 2 cm, the FWHM values were 1.73, 2.20 and 1.47 mm, respectively. At a coincidence window of 3.4 ns, the sensitivity was 5.75% for EW = 350-650 keV and 7.4% for EW = 250-750 keV. For an energy window of 350-650 keV, the peak NECR was 538 kcps at 131.4 MBq for the rat-like phantom, and 1734 kcps at 147.4 MBq for the mouse-like phantom. The system scatter fraction values were 0.22 for the rat phantom and 0.06 for the mouse phantom. The Inveon system presents high image resolution, low scatter fraction values and improved sensitivity and count rate performance.
We evaluated the performance of an Inveon preclinical PET scanner (Siemens Medical Solutions), the latest MicroPET system. Spatial resolution was measured with a glass capillary tube (0.26 mm inside diameter, 0.29 mm wall thickness) filled with (18)F solution. Transaxial and axial resolutions were measured with the source placed parallel and perpendicular to the axis of the scanner. The sensitivity of the scanner was measured with a (22)Na point source, placed on the animal bed and positioned at different offsets from the center of the field of view (FOV), as well as at different energy and coincidence windows. The noise equivalent count rates (NECR) and the system scatter fraction were measured using rat-like (Phi = 60, L = 150 mm) and mouse-like (Phi = 25 mm, L = 70 mm) cylindrical phantoms. Line sources filled with high activity (18)F (>250 MBq) were inserted parallel to the axes of the phantoms (13.5 and 10 mm offset). For each phantom, list-mode data were collected over 24 h at 350-650 keV and 250-750 keV energy windows and 3.4 ns coincidence window. System scatter fraction was measured when the random event rates were below 1%. Performance phantoms consisting of cylinders with hot rod inserts filled with (18)F were imaged. In addition, we performed imaging studies that show the suitability of the Inveon scanner for imaging small structures such as those in mice with a variety of tracers. The radial, tangential and axial resolutions at the center of FOV were 1.46 mm, 1.49 and 1.15 mm, respectively. At a radial offset of 2 cm, the FWHM values were 1.73, 2.20 and 1.47 mm, respectively. At a coincidence window of 3.4 ns, the sensitivity was 5.75% for EW = 350-650 keV and 7.4% for EW = 250-750 keV. For an energy window of 350-650 keV, the peak NECR was 538 kcps at 131.4 MBq for the rat-like phantom, and 1734 kcps at 147.4 MBq for the mouse-like phantom. The system scatter fraction values were 0.22 for the rat phantom and 0.06 for the mouse phantom. The Inveon system presents high image resolution, low scatter fraction values and improved sensitivity and count rate performance.
Author Constantinescu, Cristian C
Mukherjee, Jogeshwar
Author_xml – sequence: 1
  fullname: Constantinescu, Cristian C
– sequence: 2
  fullname: Mukherjee, Jogeshwar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19384008$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtLAzEUhYMoWh9_wIXMSnAx9mbymARBkOILBF3oOqRpopFpMibTgv_eqfUtiKtLuN85J5y7iVZDDBahXQyHGIQYAhBcSszYkNGhHEIFK2iACcclZxxW0eAD2ECbOT8CYCwquo42sCSCAogBOrqxycU01cHYws51M9Odj6GIrtChuAxz2z9uTm-LNlnT-OCNbopsdAg2baM1p5tsd97mFro7O70dXZRX1-eXo5Or0jAiutJJSYBbW1HCgYzBacyknNRywg0WtDZaMqOpc444BmNTYUNYTaHCxFGOa7KFjpe-7Ww8tRNjQ5d0o9rkpzo9q6i9-r4J_kHdx7mqBBE1Xxjsvxmk-DSzuVNTn41tGh1snGXFa0wlk6wH974mfUS899UD1RIwKeacrPtEQC2Oohadq0XnilElVX-UXiR-iIzvXmvuf-ubv6XlUupj-7-og9_8b061E0deADdTqmk
CitedBy_id crossref_primary_10_1088_1361_6560_ad4082
crossref_primary_10_2967_jnumed_112_103507
crossref_primary_10_2967_jnumed_115_167858
crossref_primary_10_1088_1361_6560_ab7502
crossref_primary_10_2967_jnumed_115_160820
crossref_primary_10_1016_j_neurobiolaging_2011_12_024
crossref_primary_10_1016_j_nucmedbio_2013_02_011
crossref_primary_10_1016_j_nima_2010_02_073
crossref_primary_10_3390_molecules26237360
crossref_primary_10_1002_syn_21698
crossref_primary_10_1038_s41388_019_0882_7
crossref_primary_10_1155_2016_3067123
crossref_primary_10_1002_syn_21617
crossref_primary_10_1109_TNS_2009_2026647
crossref_primary_10_1002_wsbm_71
crossref_primary_10_1021_jm500416f
crossref_primary_10_1002_syn_21572
crossref_primary_10_1016_j_apradiso_2015_09_012
crossref_primary_10_1016_j_neuroimage_2024_120748
crossref_primary_10_1517_14712598_2016_1100162
crossref_primary_10_1111_j_1460_9568_2011_07733_x
crossref_primary_10_2967_jnumed_115_163493
crossref_primary_10_3938_jkps_74_1129
crossref_primary_10_1002_cne_24320
crossref_primary_10_1109_TNS_2017_2664921
crossref_primary_10_1007_s12149_014_0892_z
crossref_primary_10_1016_j_bmcl_2016_03_018
crossref_primary_10_1088_1748_0221_6_08_P08012
crossref_primary_10_2967_jnumed_112_106740
crossref_primary_10_1002_cne_23919
crossref_primary_10_2310_7290_2014_00005
crossref_primary_10_1002_syn_21867
crossref_primary_10_1016_j_nima_2010_10_089
crossref_primary_10_1007_s00259_009_1352_1
crossref_primary_10_1186_2191_219X_1_6
crossref_primary_10_3390_electronics11142194
crossref_primary_10_1007_s12194_016_0386_x
crossref_primary_10_3390_jcm8040512
crossref_primary_10_1016_j_neuroimage_2012_06_051
crossref_primary_10_1016_j_phpro_2012_04_105
crossref_primary_10_1016_j_neurobiolaging_2011_09_026
crossref_primary_10_2967_jnumed_112_114660
crossref_primary_10_1016_j_neuroscience_2011_05_032
crossref_primary_10_1007_s11307_020_01512_w
crossref_primary_10_1016_j_apradiso_2011_02_040
crossref_primary_10_2967_jnumed_110_086942
crossref_primary_10_1007_s11307_015_0906_9
crossref_primary_10_1016_j_ejrad_2013_01_028
crossref_primary_10_2967_jnumed_110_086702
crossref_primary_10_3389_fmed_2021_745064
crossref_primary_10_1007_s00259_010_1683_y
crossref_primary_10_1088_0031_9155_58_19_6749
crossref_primary_10_5812_iranjradiol_26806
crossref_primary_10_1002_syn_21950
crossref_primary_10_1007_s11307_017_1126_2
crossref_primary_10_1109_TNS_2011_2160202
crossref_primary_10_1002_syn_20904
crossref_primary_10_1007_s11307_012_0577_8
crossref_primary_10_3892_etm_2017_4283
crossref_primary_10_1016_j_nucmedbio_2014_05_143
crossref_primary_10_1186_s13550_018_0467_4
crossref_primary_10_1097_MNM_0b013e32833dc61d
crossref_primary_10_1002_aic_16223
crossref_primary_10_2967_jnumed_118_221994
crossref_primary_10_1088_1748_0221_10_10_P10026
crossref_primary_10_1016_j_apradiso_2012_08_005
crossref_primary_10_1088_1748_0221_10_04_P04001
crossref_primary_10_1007_s11307_018_1202_2
crossref_primary_10_1016_j_neuroimage_2011_12_065
crossref_primary_10_1371_journal_pone_0109113
crossref_primary_10_1016_j_nucmedbio_2015_08_005
crossref_primary_10_1016_j_ejmp_2014_06_003
crossref_primary_10_2967_jnumed_111_088583
crossref_primary_10_1016_j_nucmedbio_2014_08_002
crossref_primary_10_1371_journal_pone_0205044
crossref_primary_10_1088_0031_9155_59_13_3517
crossref_primary_10_1016_j_neurobiolaging_2010_08_005
crossref_primary_10_1002_mp_14729
crossref_primary_10_1016_j_radonc_2013_12_017
crossref_primary_10_1186_2191_219X_1_30
crossref_primary_10_3390_app11010266
crossref_primary_10_1016_j_jneumeth_2013_01_018
crossref_primary_10_1002_syn_21530
crossref_primary_10_1002_syn_21893
crossref_primary_10_1109_TNS_2010_2065240
crossref_primary_10_1088_2057_1976_aa881c
crossref_primary_10_2967_jnumed_110_076125
crossref_primary_10_3390_ijms19113684
crossref_primary_10_1016_j_legalmed_2015_02_002
crossref_primary_10_3390_ijms25147890
crossref_primary_10_1007_s00429_018_1743_9
crossref_primary_10_1177_0271678X15613525
crossref_primary_10_1039_C8OB00499D
crossref_primary_10_2967_jnumed_113_126318
crossref_primary_10_1097_WNR_0000000000000327
crossref_primary_10_1371_journal_pone_0065286
crossref_primary_10_1016_j_neuroimage_2025_121092
crossref_primary_10_1002_syn_21665
crossref_primary_10_1118_1_4937784
crossref_primary_10_2478_pjmpe_2019_0013
crossref_primary_10_2967_jnumed_123_266526
crossref_primary_10_3389_fmed_2020_00529
crossref_primary_10_1109_TNS_2011_2160998
crossref_primary_10_3233_JAD_170115
crossref_primary_10_1088_1361_6560_ab63ef
crossref_primary_10_3390_molecules27144552
crossref_primary_10_3390_s140814654
crossref_primary_10_1021_acs_inorgchem_0c03492
crossref_primary_10_1002_mp_17469
crossref_primary_10_2310_7290_2012_00042
crossref_primary_10_1016_j_nima_2015_01_093
crossref_primary_10_2310_7290_2014_00037
crossref_primary_10_1016_j_cpc_2023_109008
crossref_primary_10_1186_ar4670
crossref_primary_10_1088_0031_9155_61_5_N193
crossref_primary_10_1016_j_neuroimage_2011_08_109
crossref_primary_10_1088_1361_6560_aaff73
crossref_primary_10_1088_0031_9155_55_14_011
crossref_primary_10_1109_TNS_2012_2201958
crossref_primary_10_2967_jnumed_113_121608
crossref_primary_10_1109_TNS_2013_2294011
crossref_primary_10_2967_jnumed_109_068858
crossref_primary_10_1007_s12350_019_01713_z
crossref_primary_10_1038_s41598_019_54781_z
crossref_primary_10_3389_fnins_2021_676257
crossref_primary_10_1088_0031_9155_61_5_1904
crossref_primary_10_1088_1748_0221_10_03_P03006
crossref_primary_10_1109_ACCESS_2021_3079514
crossref_primary_10_1186_ar3176
crossref_primary_10_1111_j_1475_097X_2010_00939_x
crossref_primary_10_1016_j_nucmedbio_2012_09_009
crossref_primary_10_1088_1361_6560_ab1614
crossref_primary_10_1109_TNS_2012_2205402
Cites_doi 10.1109/42.774167
10.1109/42.563660
10.1109/NSSMIC.2006.354381
10.1088/0031-9155/46/7/308
10.1109/TNS.2006.889312
10.1038/sj.neo.7900083
10.1109/23.34585
10.1157/13079288
10.1088/0031-9155/48/4/302
10.1007/s00259-002-1052-6
10.2967/jnumed.107.040550
10.1007/BF02258426
10.2174/156802605774297056
10.1007/s00259-004-1683-x
10.1109/42.876305
10.1088/0031-9155/48/11/303
10.1055/s-0038-1623898
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1088/0031-9155/54/9/020
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Physics
EISSN 1361-6560
EndPage 2899
ExternalDocumentID PMC2838767
19384008
10_1088_0031_9155_54_9_020
Genre Evaluation Study
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: S10RR019269-01A2
– fundername: NIBIB NIH HHS
  grantid: R01 EB006110-01A2
– fundername: NCRR NIH HHS
  grantid: S10 RR019269
– fundername: NIBIB NIH HHS
  grantid: R01 EB006110
GroupedDBID -
02O
123
1JI
1PV
1WK
4.4
5B3
5RE
5VS
5ZH
7.M
7.Q
8RP
9BW
AAGCD
AAJIO
AALHV
AAPBV
ABFLS
ABHWH
ABPTK
ABQJV
ABUFD
ACGFS
ADCOW
AEFHF
AENEX
AFYNE
AHSEE
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CJUJL
CS3
DU5
DZ
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HAK
HVGLF
IHE
IOP
IZVLO
KNG
KOT
LAP
M45
MGA
N5L
N9A
NT-
NT.
P2P
Q02
R4D
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
TN5
UCJ
UNR
W28
X
XPP
ZA5
---
-DZ
-~X
AAJKP
AATNI
AAYXX
ABJNI
ABLJU
ABVAM
ACAFW
ACARI
ACHIP
ADEQX
AERVB
AGQPQ
AKPSB
AOAED
ARNYC
CITATION
CRLBU
IJHAN
JCGBZ
PJBAE
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AEINN
5PM
ID FETCH-LOGICAL-c538t-f99306ee243603b0fa1599d79d6c1847ca95ca4fff3f50bc21c35740213f46173
IEDL.DBID IOP
ISSN 0031-9155
IngestDate Thu Aug 21 18:22:54 EDT 2025
Fri Sep 05 10:43:48 EDT 2025
Fri May 30 11:02:00 EDT 2025
Thu Apr 24 23:11:40 EDT 2025
Tue Jul 01 00:24:49 EDT 2025
Mon May 13 15:47:06 EDT 2019
Tue Nov 10 14:16:59 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c538t-f99306ee243603b0fa1599d79d6c1847ca95ca4fff3f50bc21c35740213f46173
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink http://doi.org/10.1088/0031-9155/54/9/020
PMID 19384008
PQID 67149595
PQPubID 23479
PageCount 15
ParticipantIDs crossref_primary_10_1088_0031_9155_54_9_020
iop_primary_10_1088_0031_9155_54_9_020
proquest_miscellaneous_67149595
crossref_citationtrail_10_1088_0031_9155_54_9_020
pubmed_primary_19384008
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2838767
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-05-07
PublicationDateYYYYMMDD 2009-05-07
PublicationDate_xml – month: 05
  year: 2009
  text: 2009-05-07
  day: 07
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physics in medicine & biology
PublicationTitleAlternate Phys Med Biol
PublicationYear 2009
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 23
Daube-Witherspoon M E (3) 1987; 28
National Electrical Manufacturers Association (12) 2008
24
14
Knoess C (8) 2003; 30
Seidel J Vaquero J J Lee I J Green M V (16) 2000
Vaquero J J (20) 2005; 24
National Electrical Manufacturers Association (11) 2007
1
Watson C C (22) 2004; 45
Boellaard R (2) 2003; 48
Tai Y C (18) 2003; 48
4
5
Tai Y C (19) 2005; 46
6
7
9
Tai Y C (17) 2001; 46
Mintzer R A Siegel S B (10) 2007
Schafers K P (15) 2003; 42
Newport D F (13) 2006
21
References_xml – ident: 14
  doi: 10.1109/42.774167
– ident: 4
  doi: 10.1109/42.563660
– start-page: 2333
  year: 2006
  ident: 13
  publication-title: IEEE Nuclear Science Symp. Conf. Record
  doi: 10.1109/NSSMIC.2006.354381
– year: 2008
  ident: 12
– volume: 46
  start-page: 1845
  issn: 0031-9155
  year: 2001
  ident: 17
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/46/7/308
– ident: 9
  doi: 10.1109/TNS.2006.889312
– ident: 5
  doi: 10.1038/sj.neo.7900083
– ident: 7
  doi: 10.1109/23.34585
– volume: 24
  start-page: 334
  year: 2005
  ident: 20
  publication-title: Rev. Esp. Med. Nucl.
  doi: 10.1157/13079288
– volume: 28
  start-page: 1717
  issn: 0161-5505
  year: 1987
  ident: 3
  publication-title: J. Nucl. Med.
– volume: 48
  start-page: 429
  issn: 0031-9155
  year: 2003
  ident: 2
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/48/4/302
– volume: 30
  start-page: 737
  year: 2003
  ident: 8
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-002-1052-6
– year: 2007
  ident: 11
– ident: 6
  doi: 10.2967/jnumed.107.040550
– volume: 45
  start-page: 822
  year: 2004
  ident: 22
  publication-title: J. Nucl. Med.
– ident: 1
  doi: 10.1007/BF02258426
– ident: 21
  doi: 10.2174/156802605774297056
– ident: 23
  doi: 10.1007/s00259-004-1683-x
– start-page: 3418
  year: 2007
  ident: 10
  publication-title: IEEE Nuclear Science Symp. Conf. Record IEEE
– ident: 24
  doi: 10.1109/42.876305
– year: 2000
  ident: 16
  publication-title: IEEE Nuclear Science Symp. and Medical Imaging
– volume: 48
  start-page: 1519
  issn: 0031-9155
  year: 2003
  ident: 18
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/48/11/303
– volume: 42
  start-page: 86
  issn: 0029-5566
  year: 2003
  ident: 15
  publication-title: Nuklearmedizin
  doi: 10.1055/s-0038-1623898
– volume: 46
  start-page: 455
  issn: 0161-5505
  year: 2005
  ident: 19
  publication-title: J. Nucl. Med.
SSID ssj0011824
Score 2.3500028
Snippet We evaluated the performance of an Inveon preclinical PET scanner (Siemens Medical Solutions), the latest MicroPET system. Spatial resolution was measured with...
SourceID pubmedcentral
proquest
pubmed
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2885
SubjectTerms Animals
Image Processing, Computer-Assisted
Mice
Positron-Emission Tomography - instrumentation
Positron-Emission Tomography - methods
Rats
Scattering, Radiation
Sensitivity and Specificity
Universities
Title Performance evaluation of an Inveon PET preclinical scanner
URI http://iopscience.iop.org/0031-9155/54/9/020
https://www.ncbi.nlm.nih.gov/pubmed/19384008
https://www.proquest.com/docview/67149595
https://pubmed.ncbi.nlm.nih.gov/PMC2838767
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0BEogLS9nKGiHEBaVNYzuuxQmhVoBU6AGk3qzEsUUFSiraHuDrGWfpAgj1lmXixM54_EbjeQNwwSiJQ8vZGgjCXGpsIXfeyMOFLGbKj2KbO9x5DO5e6EOP9ZagLCXXTweF5a_hYRbJt2rnWhbzOqN1UUd4gwYXF37rad0_dSchAwTKOeVyIV5kyOAs-qOJuVVoGV_1F8D8uU9yZuFpb0KnTN_J95u81cajqKa-frM5LtSnLdgoEKhzk6vMNizppAKreU3KzwqsdYpoO17Mtoeq4Q5cd6f5Bc6UINxJjRMmjuXqwJNu69kZoAEtci2dIf61RH_swku79Xx75xZlF1yF1m_kGoQsXqC1T0ngkcgzIUIeEXMRBwr9Qa5CwVRIjTHEMC9SfkMRxtEPbRBDERCRPVhJ0kQfgKNDzg2hfqzQK8M20aIFWiAq8lmkjN-sQqP8DVIVnOS2NMa7zGLjzWZGXSrtSElGpZA4UlW4mjwzyBk5_pU-x0GfCP4WkIPYVOFyVui_1s5KLZE4DW1sJUx0Oh7KgFtXU7Aq7Oc6M21NEHSiPewrn9OmiYAl-J6_k_RfM6JvhH44YPxw0c87gvU82MVcjx_DyuhjrE8QM42i02yufAPNOQbX
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxEB0VKhAXKKFAWtqsEOJSbbJZ2-tYnFBLlNIm5AASN2vXawsE2kQkOcCvZ7x2EgIRqtRbPsaTeOy132hm3gAcMUry1HK2JoKwkBrbyJ03XbiQ5UzFWW5rh7u9pHNFz6_ZNJuwrIUZDP3RX8eXjijYmdAnxLVs-zFUiPdgg9GGaCDeaQxzswIfme1NZ2v4LvqzQALCZ0fE7Mf4upnlehbuphX8_WWw83X25IvrqL0F2XQiLgvlrj4ZZ3X19Irj8b9m-gk2PVgNTt2AbfigiwqsufaVjxVY7_rAPH5YZpKq0Q6c9OelCMGcSzwYmCAtAkvrgW_6Z5fBEM9aX5YZjHCBC_3wGa7aZ5c_O6Hv0BAqPCjHoUF0EyVax5QkEckikyI6EjkXeaLQdeQqFUyl1BhDDIsyFTcVYRxd1iYxFLET2YXVYlDofQh0yrkhNM4VOnCoEw-_RAsEUDHLlIlbVWhO10YqT19uu2jcyzKM3mqVLKfSWksyKoVEa1Xhx2zM0JF3vCt9iAsxE3wrINH4VTh-KfSettp060h8Ym0YJi30YDKSCbdeqWBV2HMbaa5NEPS3I5wrX9hiMwHLBb74TXF7U3KCI0pEg_Ev__r3arDe_9WWf3_3_nyFDRciY2HED2B1_DDR3xBpjbPv5bP0DKb1Fsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+evaluation+of+an+Inveon+PET+preclinical+scanner&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Constantinescu%2C+Cristian+C&rft.au=Mukherjee%2C+Jogeshwar&rft.date=2009-05-07&rft.issn=0031-9155&rft.eissn=1361-6560&rft.volume=54&rft.issue=9&rft.spage=2885&rft.epage=2899&rft_id=info:doi/10.1088%2F0031-9155%2F54%2F9%2F020&rft_id=info%3Apmid%2F19384008&rft.externalDocID=PMC2838767
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon