Characterizing Regulatory and Functional Differentiation between Maize Mesophyll and Bundle Sheath Cells by Transcriptomic Analysis

To study the regulatory and functional differentiation between the mesophyll (M) and bundle sheath (BS) cells of maize (Zea mays), we isolated large quantities of highly homogeneous M and BS cells from newly matured second leaves for transcriptome profiling by RNA sequencing. A total of 52,421 annot...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 160; no. 1; pp. 165 - 177
Main Authors Chang, Yao-Ming, Liu, Wen-Yu, Shih, Arthur Chun-Chieh, Shen, Meng-Ni, Lu, Chen-Hua, Lu, Mei-Yeh Jade, Yang, Hui-Wen, Wang, Tzi-Yuan, Chen, Sean C.-C., Chen, Stella Maris, Li, Wen-Hsiung, Ku, Maurice S.B.
Format Journal Article
LanguageEnglish
Published Rockville, MD American Society of Plant Biologists 01.09.2012
Subjects
RNA
Online AccessGet full text

Cover

Loading…
Abstract To study the regulatory and functional differentiation between the mesophyll (M) and bundle sheath (BS) cells of maize (Zea mays), we isolated large quantities of highly homogeneous M and BS cells from newly matured second leaves for transcriptome profiling by RNA sequencing. A total of 52,421 annotated genes with at least one read were found in the two transcriptomes. Defining a gene with more than one read per kilobase per million mapped reads as expressed, we identified 18,482 expressed genes; 14,972 were expressed in M cells, including 53 M-enriched transcription factor (TF) genes, whereas 17,269 were expressed in BS cells, including 214 BS-enriched TF genes. Interestingly, many TF gene families show a conspicuous BS preference in expression. Pathway analyses reveal differentiation between the two cell types in various functional categories, with the M cells playing more important roles in light reaction, protein synthesis and folding, tetrapyrrole synthesis, and RNA binding, while the BS cells specialize in transport, signaling, protein degradation and posttranslational modification, major carbon, hydrogen, and oxygen metabolism, cell division and organization, and development. Genes coding for several transporters involved in the shuttle of C 4 metabolites and BS cell wall development have been identified, to our knowledge, for the first time. This comprehensive data set will be useful for studying M/BS differentiation in regulation and function.
AbstractList To study the regulatory and functional differentiation between the mesophyll (M) and bundle sheath (BS) cells of maize (Zea mays), we isolated large quantities of highly homogeneous M and BS cells from newly matured second leaves for transcriptome profiling by RNA sequencing. A total of 52,421 annotated genes with at least one read were found in the two transcriptomes. Defining a gene with more than one read per kilobase per million mapped reads as expressed, we identified 18,482 expressed genes; 14,972 were expressed in M cells, including 53 M-enriched transcription factor (TF) genes, whereas 17,269 were expressed in BS cells, including 214 BS-enriched TF genes. Interestingly, many TF gene families show a conspicuous BS preference in expression. Pathway analyses reveal differentiation between the two cell types in various functional categories, with the M cells playing more important roles in light reaction, protein synthesis and folding, tetrapyrrole synthesis, and RNA binding, while the BS cells specialize in transport, signaling, protein degradation and posttranslational modification, major carbon, hydrogen, and oxygen metabolism, cell division and organization, and development. Genes coding for several transporters involved in the shuttle of C ₄ metabolites and BS cell wall development have been identified, to our knowledge, for the first time. This comprehensive data set will be useful for studying M/BS differentiation in regulation and function.
To study the regulatory and functional differentiation between the mesophyll (M) and bundle sheath (BS) cells of maize (Zea mays), we isolated large quantities of highly homogeneous M and BS cells from newly matured second leaves for transcriptome profiling by RNA sequencing. A total of 52,421 annotated genes with at least one read were found in the two transcriptomes. Defining a gene with more than one read per kilobase per million mapped reads as expressed, we identified 18,482 expressed genes; 14,972 were expressed in M cells, including 53 M-enriched transcription factor (TF) genes, whereas 17,269 were expressed in BS cells, including 214 BS-enriched TF genes. Interestingly, many TF gene families show a conspicuous BS preference in expression. Pathway analyses reveal differentiation between the two cell types in various functional categories, with the M cells playing more important roles in light reaction, protein synthesis and folding, tetrapyrrole synthesis, and RNA binding, while the BS cells specialize in transport, signaling, protein degradation and posttranslational modification, major carbon, hydrogen, and oxygen metabolism, cell division and organization, and development. Genes coding for several transporters involved in the shuttle of C(4) metabolites and BS cell wall development have been identified, to our knowledge, for the first time. This comprehensive data set will be useful for studying M/BS differentiation in regulation and function.
To study the regulatory and functional differentiation between the mesophyll (M) and bundle sheath (BS) cells of maize (Zea mays), we isolated large quantities of highly homogeneous M and BS cells from newly matured second leaves for transcriptome profiling by RNA sequencing. A total of 52,421 annotated genes with at least one read were found in the two transcriptomes. Defining a gene with more than one read per kilobase per million mapped reads as expressed, we identified 18,482 expressed genes; 14,972 were expressed in M cells, including 53 M-enriched transcription factor (TF) genes, whereas 17,269 were expressed in BS cells, including 214 BS-enriched TF genes. Interestingly, many TF gene families show a conspicuous BS preference in expression. Pathway analyses reveal differentiation between the two cell types in various functional categories, with the M cells playing more important roles in light reaction, protein synthesis and folding, tetrapyrrole synthesis, and RNA binding, while the BS cells specialize in transport, signaling, protein degradation and posttranslational modification, major carbon, hydrogen, and oxygen metabolism, cell division and organization, and development. Genes coding for several transporters involved in the shuttle of C 4 metabolites and BS cell wall development have been identified, to our knowledge, for the first time. This comprehensive data set will be useful for studying M/BS differentiation in regulation and function.
To study the regulatory and functional differentiation between the mesophyll (M) and bundle sheath (BS) cells of maize (Zea mays), we isolated large quantities of highly homogeneous M and BS cells from newly matured second leaves for transcriptome profiling by RNA sequencing. A total of 52,421 annotated genes with at least one read were found in the two transcriptomes. Defining a gene with more than one read per kilobase per million mapped reads as expressed, we identified 18,482 expressed genes; 14,972 were expressed in M cells, including 53 M-enriched transcription factor (TF) genes, whereas 17,269 were expressed in BS cells, including 214 BS-enriched TF genes. Interestingly, many TF gene families show a conspicuous BS preference in expression. Pathway analyses reveal differentiation between the two cell types in various functional categories, with the M cells playing more important roles in light reaction, protein synthesis and folding, tetrapyrrole synthesis, and RNA binding, while the BS cells specialize in transport, signaling, protein degradation and posttranslational modification, major carbon, hydrogen, and oxygen metabolism, cell division and organization, and development. Genes coding for several transporters involved in the shuttle of C(4) metabolites and BS cell wall development have been identified, to our knowledge, for the first time. This comprehensive data set will be useful for studying M/BS differentiation in regulation and function.To study the regulatory and functional differentiation between the mesophyll (M) and bundle sheath (BS) cells of maize (Zea mays), we isolated large quantities of highly homogeneous M and BS cells from newly matured second leaves for transcriptome profiling by RNA sequencing. A total of 52,421 annotated genes with at least one read were found in the two transcriptomes. Defining a gene with more than one read per kilobase per million mapped reads as expressed, we identified 18,482 expressed genes; 14,972 were expressed in M cells, including 53 M-enriched transcription factor (TF) genes, whereas 17,269 were expressed in BS cells, including 214 BS-enriched TF genes. Interestingly, many TF gene families show a conspicuous BS preference in expression. Pathway analyses reveal differentiation between the two cell types in various functional categories, with the M cells playing more important roles in light reaction, protein synthesis and folding, tetrapyrrole synthesis, and RNA binding, while the BS cells specialize in transport, signaling, protein degradation and posttranslational modification, major carbon, hydrogen, and oxygen metabolism, cell division and organization, and development. Genes coding for several transporters involved in the shuttle of C(4) metabolites and BS cell wall development have been identified, to our knowledge, for the first time. This comprehensive data set will be useful for studying M/BS differentiation in regulation and function.
To study the regulatory and functional differentiation between the mesophyll (M) and bundle sheath (BS) cells of maize (Zea mays), we isolated large quantities of highly homogeneous M and BS cells from newly matured second leaves for transcriptome profiling by RNA sequencing. A total of 52,421 annotated genes with at least one read were found in the two transcriptomes. Defining a gene with more than one read per kilobase per million mapped reads as expressed, we identified 18,482 expressed genes; 14,972 were expressed in M cells, including 53 M-enriched transcription factor (TF) genes, whereas 17,269 were expressed in BS cells, including 214 BS-enriched TF genes. Interestingly, many TF gene families show a conspicuous BS preference in expression. Pathway analyses reveal differentiation between the two cell types in various functional categories, with the M cells playing more important roles in light reaction, protein synthesis and folding, tetrapyrrole synthesis, and RNA binding, while the BS cells specialize in transport, signaling, protein degradation and posttranslational modification, major carbon, hydrogen, and oxygen metabolism, cell division and organization, and development. Genes coding for several transporters involved in the shuttle of C4 metabolites and BS cell wall development have been identified, to our knowledge, for the first time. This comprehensive data set will be useful for studying M/BS differentiation in regulation and function.
To study the regulatory and functional differentiation between the mesophyll ( M ) and bundle sheath ( BS ) cells of maize ( Zea mays ), we isolated large quantities of highly homogeneous M and BS cells from newly matured second leaves for transcriptome profiling by RNA sequencing. A total of 52,421 annotated genes with at least one read were found in the two transcriptomes. Defining a gene with more than one read per kilobase per million mapped reads as expressed, we identified 18,482 expressed genes; 14,972 were expressed in M cells, including 53 M -enriched transcription factor ( TF ) genes, whereas 17,269 were expressed in BS cells, including 214 BS -enriched TF genes. Interestingly, many TF gene families show a conspicuous BS preference in expression. Pathway analyses reveal differentiation between the two cell types in various functional categories, with the M cells playing more important roles in light reaction, protein synthesis and folding, tetrapyrrole synthesis, and RNA binding, while the BS cells specialize in transport, signaling, protein degradation and posttranslational modification, major carbon, hydrogen, and oxygen metabolism, cell division and organization, and development. Genes coding for several transporters involved in the shuttle of C 4 metabolites and BS cell wall development have been identified, to our knowledge, for the first time. This comprehensive data set will be useful for studying M / BS differentiation in regulation and function.
Author Chen, Stella Maris
Ku, Maurice S.B.
Chen, Sean C.-C.
Chang, Yao-Ming
Lu, Mei-Yeh Jade
Lu, Chen-Hua
Yang, Hui-Wen
Liu, Wen-Yu
Li, Wen-Hsiung
Shen, Meng-Ni
Wang, Tzi-Yuan
Shih, Arthur Chun-Chieh
Author_xml – sequence: 1
  givenname: Yao-Ming
  surname: Chang
  fullname: Chang, Yao-Ming
– sequence: 2
  givenname: Wen-Yu
  surname: Liu
  fullname: Liu, Wen-Yu
– sequence: 3
  givenname: Arthur Chun-Chieh
  surname: Shih
  fullname: Shih, Arthur Chun-Chieh
– sequence: 4
  givenname: Meng-Ni
  surname: Shen
  fullname: Shen, Meng-Ni
– sequence: 5
  givenname: Chen-Hua
  surname: Lu
  fullname: Lu, Chen-Hua
– sequence: 6
  givenname: Mei-Yeh Jade
  surname: Lu
  fullname: Lu, Mei-Yeh Jade
– sequence: 7
  givenname: Hui-Wen
  surname: Yang
  fullname: Yang, Hui-Wen
– sequence: 8
  givenname: Tzi-Yuan
  surname: Wang
  fullname: Wang, Tzi-Yuan
– sequence: 9
  givenname: Sean C.-C.
  surname: Chen
  fullname: Chen, Sean C.-C.
– sequence: 10
  givenname: Stella Maris
  surname: Chen
  fullname: Chen, Stella Maris
– sequence: 11
  givenname: Wen-Hsiung
  surname: Li
  fullname: Li, Wen-Hsiung
– sequence: 12
  givenname: Maurice S.B.
  surname: Ku
  fullname: Ku, Maurice S.B.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26324926$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22829318$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1URLeFI0eQL0i9pPgjSZ0LUtlSQGqFBOVsTZzJxpXXSe0ElF7543i7WwpIiNNY9jPvzOuZA7Lne4-EPOfsmHOWvx6GFMWxYFJx9ogseCFFJopc7ZEFY-nMlKr2yUGM14wxLnn-hOwLoUQluVqQH8sOApgRg721fkU_42pyMPZhpuAbej55M9reg6Nntm0xoB8tbG5ojeN3RE8vwd4ivcTYD93s3F3a28k3DumXDmHs6BKdi7Se6VUAH02ww9ivraGnSXaONj4lj1twEZ_t4iH5ev7uavkhu_j0_uPy9CIzhVRjVpdMFMAhN6Zs81IgqEo1TAA3lTBQYguSn3AQXFaNNCVrGbaNZE3VKFNXQh6SN1vdYarX2JjkJYDTQ7BrCLPuweo_X7zt9Kr_pmWeM14VSeBoJxD6mwnjqNc2muQOPPZT1GLzw6wsVPlflKd5sVIVJU_oy9_b-tXP_ZAS8GoHQDTg2vSLxsYHrpQir8SmptxyJvQxBmy1sePdsJIb61JNvVkZPQwpCr1dmZSV_ZV1L_wv_sWWv45pTR66kOIkT4bkT7OOzrI
CODEN PPHYA5
CitedBy_id crossref_primary_10_1073_pnas_1817621116
crossref_primary_10_1093_jxb_erw463
crossref_primary_10_1186_1471_2229_13_138
crossref_primary_10_3390_genes13020374
crossref_primary_10_1007_s00425_024_04390_6
crossref_primary_10_1111_pbi_14519
crossref_primary_10_7717_peerj_12484
crossref_primary_10_1073_pnas_1720576115
crossref_primary_10_1093_molbev_msw057
crossref_primary_10_1002_pld3_373
crossref_primary_10_1016_j_tplants_2017_07_007
crossref_primary_10_3389_fpls_2020_570436
crossref_primary_10_2478_s11756_013_0191_5
crossref_primary_10_1016_j_pbi_2015_05_017
crossref_primary_10_1007_s11120_013_9872_8
crossref_primary_10_1016_j_pbi_2016_03_007
crossref_primary_10_1111_nph_13549
crossref_primary_10_1371_journal_pone_0130262
crossref_primary_10_1111_tpj_16498
crossref_primary_10_3389_fpls_2014_00773
crossref_primary_10_1371_journal_pgen_1010715
crossref_primary_10_3389_fpls_2014_00370
crossref_primary_10_1186_1471_2164_15_818
crossref_primary_10_1111_pce_15374
crossref_primary_10_1111_tpj_13142
crossref_primary_10_1146_annurev_genet_120417_031217
crossref_primary_10_1007_s11120_013_9880_8
crossref_primary_10_1016_j_jbiotec_2020_05_007
crossref_primary_10_1007_s12041_015_0545_6
crossref_primary_10_1111_nph_15021
crossref_primary_10_1007_s00227_019_3482_8
crossref_primary_10_1016_j_plantsci_2013_03_003
crossref_primary_10_1071_FP20202
crossref_primary_10_1007_s00425_015_2253_0
crossref_primary_10_1093_jxb_erab381
crossref_primary_10_2525_ecb_56_81
crossref_primary_10_1016_j_molp_2017_05_010
crossref_primary_10_1007_s11120_013_9839_9
crossref_primary_10_1098_rstb_2016_0377
crossref_primary_10_1038_nbt_3019
crossref_primary_10_1111_aab_12632
crossref_primary_10_3390_horticulturae8111076
crossref_primary_10_1093_pcp_pcw034
crossref_primary_10_1093_plphys_kiab511
crossref_primary_10_1186_gb_2014_15_2_r40
crossref_primary_10_1016_j_pbi_2015_12_011
crossref_primary_10_1093_jxb_eru152
crossref_primary_10_1111_nph_19332
crossref_primary_10_3389_fpls_2021_715391
crossref_primary_10_1016_j_pbi_2016_03_011
crossref_primary_10_1093_jxb_ert189
crossref_primary_10_1093_jxb_erw179
crossref_primary_10_1186_s13104_016_2367_x
crossref_primary_10_1126_science_abj2327
crossref_primary_10_1186_s12864_019_6117_z
crossref_primary_10_1371_journal_pone_0140629
crossref_primary_10_1016_j_plgene_2023_100404
crossref_primary_10_1093_gbe_evt168
crossref_primary_10_1186_s12864_015_2024_0
crossref_primary_10_1016_j_pbi_2016_03_012
crossref_primary_10_1016_j_plaphy_2024_108426
crossref_primary_10_1093_plphys_kiae455
crossref_primary_10_1016_j_pbi_2016_03_014
crossref_primary_10_3389_fevo_2022_916762
crossref_primary_10_3389_fpls_2020_00935
crossref_primary_10_1016_j_molp_2016_09_001
crossref_primary_10_1104_pp_114_238667
crossref_primary_10_1093_jxb_erw386
crossref_primary_10_1242_dev_177543
crossref_primary_10_1371_journal_pgen_1004365
crossref_primary_10_1080_15592324_2020_1777374
crossref_primary_10_1016_j_csbj_2022_07_004
crossref_primary_10_1016_j_plgene_2025_100495
crossref_primary_10_1002_tpg2_20102
crossref_primary_10_1186_s12870_019_1745_7
crossref_primary_10_3389_fpls_2021_668736
crossref_primary_10_1111_plb_12904
crossref_primary_10_1186_s12870_015_0694_z
crossref_primary_10_1016_j_cj_2024_09_004
crossref_primary_10_1016_j_devcel_2020_12_015
crossref_primary_10_1093_jxb_eru015
crossref_primary_10_1146_annurev_arplant_042916_040915
crossref_primary_10_1093_jxb_erw438
crossref_primary_10_1007_s11120_023_01014_0
crossref_primary_10_1111_plb_13446
crossref_primary_10_1093_jxb_erw041
crossref_primary_10_1093_jxb_erv553
crossref_primary_10_1093_plcell_koaa055
crossref_primary_10_1038_nrm3702
crossref_primary_10_1093_plphys_kiab272
crossref_primary_10_3390_ijms241814165
crossref_primary_10_1016_j_cell_2021_04_014
crossref_primary_10_1111_tpj_12229
crossref_primary_10_1111_tpj_12502
crossref_primary_10_1111_tpj_13155
crossref_primary_10_1016_j_plaphy_2024_108857
crossref_primary_10_3389_fpls_2019_01205
crossref_primary_10_1111_tpj_15292
crossref_primary_10_1016_j_pbi_2023_102454
crossref_primary_10_1038_srep41187
crossref_primary_10_1073_pnas_1500605112
crossref_primary_10_1111_pbi_13931
crossref_primary_10_1007_s10535_018_0791_6
crossref_primary_10_1093_jxb_erx067
crossref_primary_10_3389_fpls_2016_01525
crossref_primary_10_1111_tpj_15586
crossref_primary_10_1093_jxb_erw256
crossref_primary_10_1093_plphys_kiad561
crossref_primary_10_1007_s11103_013_0135_z
crossref_primary_10_1093_jxb_eru238
crossref_primary_10_3390_horticulturae10090958
crossref_primary_10_1016_j_molp_2021_06_021
crossref_primary_10_1016_j_jplph_2013_12_017
crossref_primary_10_5010_JPB_2014_41_3_107
crossref_primary_10_1093_jxb_erx471
crossref_primary_10_1093_plphys_kiac116
crossref_primary_10_1104_pp_114_245787
crossref_primary_10_1093_plphys_kiad447
Cites_doi 10.1146/annurev.arplant.50.1.27
10.1104/pp.51.6.1133
10.1093/pcp/pcd047
10.1105/tpc.111.086264
10.1094/MPMI-9-0233
10.1016/S0003-9861(03)00093-6
10.1186/1471-2164-8-12
10.1093/pcp/pcp176
10.1104/pp.108.1.173
10.1104/pp.94.3.950
10.1038/nature10250
10.1093/bioinformatics/btp120
10.1104/pp.120.2.539
10.1104/pp.109.152694
10.1111/j.1365-313X.2010.04256.x
10.1038/nbt.1621
10.1093/pcp/pcl040
10.1007/BF02524263
10.1093/pcp/pch022
10.1111/j.1365-313X.2004.02016.x
10.1016/0014-5793(90)81134-A
10.1016/S0091-679X(08)61462-4
10.1111/j.1365-313X.2010.04292.x
10.1104/pp.78.3.661
10.1038/nmeth.1226
10.1016/j.pbi.2010.01.007
10.1046/j.1365-313X.1999.00444.x
10.1093/jxb/erm335
10.1104/pp.103.1.83
10.1104/pp.100.1.360
10.1093/pcp/pcp138
10.1104/pp.110.165308
10.1007/BF00387929
10.1023/A:1006317120460
10.1093/nar/gkq1141
10.1007/s11120-007-9166-0
10.1007/s00294-010-0329-8
10.1071/FP06296
10.1146/annurev.pp.41.060190.002101
10.1105/tpc.106.047399
10.1105/tpc.105.037523
10.1016/j.bbrc.2011.05.132
10.1093/genetics/159.2.787
10.1104/pp.006478
10.1104/pp.108.118026
10.1104/pp.110.2.339
10.1038/ng.703
10.1105/tpc.105.033043
10.1016/j.cub.2007.01.032
10.1093/jexbot/53.369.581
10.1126/science.1099728
10.1104/pp.103.029694
10.1104/pp.90.2.500
10.1105/tpc.10.6.925
10.1023/A:1010639225091
10.1101/gad.305504
10.1111/j.1365-313X.2006.02901.x
10.1016/j.pbi.2007.11.002
10.1105/tpc.008102
10.1073/pnas.0705639105
10.1105/tpc.105.035519
10.1093/jxb/err080
10.1105/tpc.108.061325
10.1104/pp.107.3.815
10.1016/S0014-5793(97)00590-5
ContentType Journal Article
Copyright 2012 American Society of Plant Biologists
2015 INIST-CNRS
2012 American Society of Plant Biologists. All rights reserved. 2012
Copyright_xml – notice: 2012 American Society of Plant Biologists
– notice: 2015 INIST-CNRS
– notice: 2012 American Society of Plant Biologists. All rights reserved. 2012
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1104/pp.112.203810
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1532-2548
EndPage 177
ExternalDocumentID PMC3440195
22829318
26324926
10_1104_pp_112_203810
23274685
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0R~
123
29O
2AX
2WC
2~F
4.4
5VS
5WD
7X7
85S
8CJ
8FH
8G5
8R4
8R5
AAHBH
AAHKG
AAPXW
AARHZ
AAUAY
AAVAP
AAXTN
ABBHK
ABDFA
ABEJV
ABGNP
ABJNI
ABMNT
ABPLY
ABPPZ
ABPTD
ABTLG
ABVGC
ABXSQ
ABXVV
ABXZS
ACBTR
ACGOD
ACHIC
ACNCT
ACPRK
ACUFI
ADBBV
ADGKP
ADIPN
ADIYS
ADQBN
ADULT
ADVEK
ADXHL
ADYHW
AEEJZ
AENEX
AEUPB
AFAZZ
AFFZL
AFGWE
AFRAH
AGORE
AGUYK
AHMBA
AHXOZ
AICQM
AJBYB
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
AQVQM
ATCPS
ATGXG
BAWUL
BBNVY
BCRHZ
BENPR
BEYMZ
BHPHI
BPHCQ
BTFSW
CBGCD
CS3
D1J
DATOO
DIK
DU5
E3Z
EBS
ECGQY
EJD
F5P
FLUFQ
FOEOM
FYUFA
GTFYD
GUQSH
H13
HCIFZ
HTVGU
IPSME
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KOP
KQ8
KSI
KSN
M0K
M2O
M2P
M7P
MV1
NOMLY
NU-
OBOKY
OJZSN
OK1
OWPYF
P2P
Q2X
RHI
ROX
RPB
RWL
RXW
SA0
TAE
TN5
TR2
W8F
WH7
WOQ
XSW
YBU
YKV
YNT
YSK
YZZ
ZCA
ZCN
~02
~KM
AAYXX
CITATION
53G
7X2
88E
88I
8AF
8AO
8FE
8FI
8FJ
8FW
AAWDT
AAYJJ
ABIME
ABPIB
ABUWG
ABZEO
ACFRR
ACIPB
ACUTJ
ACVCV
ACZBC
AEUYN
AFFDN
AFKRA
AFYAG
AGMDO
AHGBF
AIDAL
AIDBO
AJDVS
ANFBD
APJGH
AQDSO
AS~
AZQEC
BVXVI
C1A
CCPQU
DWQXO
GNUQQ
HMCUK
IQODW
LK8
LU7
M1P
M2Q
MVM
P0-
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
QZG
S0X
TCN
UBC
UKHRP
UKR
WHG
XOL
Y6R
ZCG
ADYWZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c538t-b6025a1a4cc6f462ea898d02a1c92ca6efa3171a2139d3c60f0efd30d9d8cb923
ISSN 0032-0889
1532-2548
IngestDate Thu Aug 21 18:31:59 EDT 2025
Thu Jul 10 19:55:58 EDT 2025
Fri Jul 11 10:52:21 EDT 2025
Thu Apr 03 07:00:58 EDT 2025
Mon Jul 21 09:16:11 EDT 2025
Tue Jul 01 03:07:56 EDT 2025
Thu Apr 24 23:04:41 EDT 2025
Fri May 30 11:58:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Monocotyledones
Zea mays
Mesophyll
Plant physiology
Gramineae
Vascular bundle
Angiospermae
Transcriptome
Spermatophyta
Plant leaf
Cereal crop
Language English
License https://creativecommons.org/licenses/by/4.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c538t-b6025a1a4cc6f462ea898d02a1c92ca6efa3171a2139d3c60f0efd30d9d8cb923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The online version of this article contains Web-only data.
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Wen-Hsiung Li (whli@sinica.edu.tw).
This work was supported by Academia Sinica and the National Science Council, Taiwan (grant nos. NSC 99–2321–B–001–041–MY2 and 99B1–114).
Open Access articles can be viewed online without a subscription.
www.plantphysiol.org/cgi/doi/10.1104/pp.112.203810
OpenAccessLink http://www.plantphysiol.org/content/plantphysiol/160/1/165.full.pdf
PMID 22829318
PQID 1038068561
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3440195
proquest_miscellaneous_2000106586
proquest_miscellaneous_1038068561
pubmed_primary_22829318
pascalfrancis_primary_26324926
crossref_citationtrail_10_1104_pp_112_203810
crossref_primary_10_1104_pp_112_203810
jstor_primary_23274685
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-09-01
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Rockville, MD
PublicationPlace_xml – name: Rockville, MD
– name: United States
PublicationTitle Plant physiology (Bethesda)
PublicationTitleAlternate Plant Physiol
PublicationYear 2012
Publisher American Society of Plant Biologists
Publisher_xml – name: American Society of Plant Biologists
References Furumoto (2021052607252226800_b19) 2011; 476
Weber (2021052607252226800_b60) 2010; 13
Collinge (2021052607252226800_b5) 2001; 46
Aoyagi (2021052607252226800_b3) 1985; 78
Zhong (2021052607252226800_b67) 2008; 20
Botha (2021052607252226800_b4) 2000; 214
Huq (2021052607252226800_b32) 2004; 305
Murphy (2021052607252226800_b42) 2007; 34
Hall (2021052607252226800_b27) 1998; 10
Cubas (2021052607252226800_b7) 1999; 18
Flugge (2021052607252226800_b14) 1999; 50
Gowik (2021052607252226800_b21) 2011; 23
Zhong (2021052607252226800_b66) 2006; 18
Aoki (2021052607252226800_b2) 1992; 33
Thimm (2021052607252226800_b56) 2004; 37
Heidstra (2021052607252226800_b30) 2004; 18
Mortazavi (2021052607252226800_b41) 2008; 5
de Veau (2021052607252226800_b10) 1989; 90
Gowik (2021052607252226800_b22) 2011; 155
Nakamura (2021052607252226800_b43) 2009; 50
Yokoyama (2021052607252226800_b63) 2007; 48
Furbank (2021052607252226800_b16) 2011; 62
Leegood (2021052607252226800_b37) 2003; 414
Dai (2021052607252226800_b8) 1993; 103
Xu (2021052607252226800_b62) 2006; 18
Aggarwal (2021052607252226800_b1) 2011; 410
Li (2021052607252226800_b38) 2010; 42
Gray (2021052607252226800_b23) 2007; 17
Evert (2021052607252226800_b12) 1977; 136
Gutierrez (2021052607252226800_b25) 1974
Gamas (2021052607252226800_b20) 1996; 9
Markelz (2021052607252226800_b40) 2003; 133
Nakazono (2021052607252226800_b44) 2003; 15
Song (2021052607252226800_b53) 2005; 17
Cribb (2021052607252226800_b6) 2001; 159
Ohnishi (2021052607252226800_b47) 1990; 269
Finet (2021052607252226800_b13) 2010; 63
Ohnishi (2021052607252226800_b46) 1990; 94
Furumoto (2021052607252226800_b17) 1999; 41
Wingler (2021052607252226800_b61) 1999; 120
Ivanov (2021052607252226800_b33) 2007; 92
Trapnell (2021052607252226800_b58) 2010; 28
Friso (2021052607252226800_b15) 2010; 152
Sharpe (2021052607252226800_b51) 2011; 57
Furumoto (2021052607252226800_b18) 2000; 41
Leegood (2021052607252226800_b35) 2002; 53
Majeran (2021052607252226800_b39) 2005; 17
Guan (2021052607252226800_b24) 2008; 147
Hibberd (2021052607252226800_b31) 2008; 11
Leegood (2021052607252226800_b36) 2008; 59
Tabata (2021052607252226800_b54) 2010; 51
Truong (2021052607252226800_b59) 1997; 410
Hatch (2021052607252226800_b29) 1995; 108
Hatch (2021052607252226800_b28) 1992; 100
Ranocha (2021052607252226800_b48) 2010; 63
Robards (2021052607252226800_b49) 1990; 41
Trapnell (2021052607252226800_b57) 2009; 25
Novillo (2021052607252226800_b45) 2007; 104
Kanai (2021052607252226800_b34) 1973; 51
Taniguchi (2021052607252226800_b55) 2004; 45
Dai (2021052607252226800_b9) 1995; 107
Evans (2021052607252226800_b11) 1996; 110
Sawers (2021052607252226800_b50) 2007; 8
Haake (2021052607252226800_b26) 2002; 130
Sheen (2021052607252226800_b52) 1995; 49
Zhang (2021052607252226800_b64) 2011; 39
Zheng (2021052607252226800_b65) 2006; 48
References_xml – volume: 50
  start-page: 27
  year: 1999
  ident: 2021052607252226800_b14
  article-title: Phosphate translocators in plastids
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
  doi: 10.1146/annurev.arplant.50.1.27
– volume: 51
  start-page: 1133
  year: 1973
  ident: 2021052607252226800_b34
  article-title: Separation of mesophyll protoplasts and bundle sheath cells from maize leaves for photosynthetic studies
  publication-title: Plant Physiol
  doi: 10.1104/pp.51.6.1133
– volume: 41
  start-page: 1200
  year: 2000
  ident: 2021052607252226800_b18
  article-title: Isolation and characterization of cDNAs for differentially accumulated transcripts between mesophyll cells and bundle sheath strands of maize leaves
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcd047
– volume: 23
  start-page: 2087
  year: 2011
  ident: 2021052607252226800_b21
  article-title: Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it take to make C4?
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.086264
– volume: 9
  start-page: 233
  year: 1996
  ident: 2021052607252226800_b20
  article-title: Use of a subtractive hybridization approach to identify new Medicago truncatula genes induced during root nodule development
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-9-0233
– volume: 414
  start-page: 204
  year: 2003
  ident: 2021052607252226800_b37
  article-title: Regulation and roles of phosphoenolpyruvate carboxykinase in plants
  publication-title: Arch Biochem Biophys
  doi: 10.1016/S0003-9861(03)00093-6
– volume: 8
  start-page: 12
  year: 2007
  ident: 2021052607252226800_b50
  article-title: A multi-treatment experimental system to examine photosynthetic differentiation in the maize leaf
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-8-12
– volume: 51
  start-page: 164
  year: 2010
  ident: 2021052607252226800_b54
  article-title: Arabidopsis auxin response factor6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcp176
– volume: 108
  start-page: 173
  year: 1995
  ident: 2021052607252226800_b29
  article-title: Measurement of the leakage of CO2 from bundle-sheath cells of leaves during C4 photosynthesis
  publication-title: Plant Physiol
  doi: 10.1104/pp.108.1.173
– volume: 94
  start-page: 950
  year: 1990
  ident: 2021052607252226800_b46
  article-title: Involvement of Na+ in active uptake of pyruvate in mesophyll chloroplasts of some C4 plants: Na+/pyruvate cotransport
  publication-title: Plant Physiol
  doi: 10.1104/pp.94.3.950
– volume: 476
  start-page: 472
  year: 2011
  ident: 2021052607252226800_b19
  article-title: A plastidial sodium-dependent pyruvate transporter
  publication-title: Nature
  doi: 10.1038/nature10250
– year: 1974
  ident: 2021052607252226800_b25
– volume: 25
  start-page: 1105
  year: 2009
  ident: 2021052607252226800_b57
  article-title: TopHat: discovering splice junctions with RNA-Seq
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp120
– volume: 120
  start-page: 539
  year: 1999
  ident: 2021052607252226800_b61
  article-title: Phosphoenolpyruvate carboxykinase is involved in the decarboxylation of aspartate in the bundle sheath of maize
  publication-title: Plant Physiol
  doi: 10.1104/pp.120.2.539
– volume: 152
  start-page: 1219
  year: 2010
  ident: 2021052607252226800_b15
  article-title: Reconstruction of metabolic pathways, protein expression, and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts: large-scale quantitative proteomics using the first maize genome assembly
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.152694
– volume: 63
  start-page: 469
  year: 2010
  ident: 2021052607252226800_b48
  article-title: Walls are thin 1 (WAT1), an Arabidopsis homolog of Medicago truncatula NODULIN21, is a tonoplast-localized protein required for secondary wall formation in fibers
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2010.04256.x
– volume: 28
  start-page: 511
  year: 2010
  ident: 2021052607252226800_b58
  article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1621
– volume: 48
  start-page: 84
  year: 2007
  ident: 2021052607252226800_b63
  article-title: Type-B ARR transcription factors, ARR10 and ARR12, are implicated in cytokinin-mediated regulation of protoxylem differentiation in roots of Arabidopsis thaliana
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcl040
– volume: 214
  start-page: 65
  year: 2000
  ident: 2021052607252226800_b4
  article-title: Phloem loading in the sucrose-export-defective (SXD-1) mutant maize is limited by callose deposition at plasmodesmata in bundle sheath-vascular parenchyma interface
  publication-title: Protoplasma
  doi: 10.1007/BF02524263
– volume: 45
  start-page: 187
  year: 2004
  ident: 2021052607252226800_b55
  article-title: Differentiation of dicarboxylate transporters in mesophyll and bundle sheath chloroplasts of maize
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pch022
– volume: 37
  start-page: 914
  year: 2004
  ident: 2021052607252226800_b56
  article-title: MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2004.02016.x
– volume: 269
  start-page: 122
  year: 1990
  ident: 2021052607252226800_b47
  article-title: Pyruvate uptake induced by a pH jump in mesophyll chloroplasts of maize and sorghum, NADP-malic enzyme type C4 species
  publication-title: FEBS Lett
  doi: 10.1016/0014-5793(90)81134-A
– volume: 49
  start-page: 305
  year: 1995
  ident: 2021052607252226800_b52
  article-title: Methods for mesophyll and bundle sheath cell separation
  publication-title: Methods Cell Biol
  doi: 10.1016/S0091-679X(08)61462-4
– volume: 63
  start-page: 952
  year: 2010
  ident: 2021052607252226800_b13
  article-title: Parallel structural evolution of auxin response factors in the angiosperms
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2010.04292.x
– volume: 78
  start-page: 661
  year: 1985
  ident: 2021052607252226800_b3
  article-title: Pyruvate, Pi dikinase in bundle sheath strands as well as in mesophyll cells in maize leaves
  publication-title: Plant Physiol
  doi: 10.1104/pp.78.3.661
– volume: 5
  start-page: 621
  year: 2008
  ident: 2021052607252226800_b41
  article-title: Mapping and quantifying mammalian transcriptomes by RNA-Seq
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1226
– volume: 13
  start-page: 257
  year: 2010
  ident: 2021052607252226800_b60
  article-title: Plastid transport and metabolism of C3 and C4 plants: comparative analysis and possible biotechnological exploitation
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2010.01.007
– volume: 18
  start-page: 215
  year: 1999
  ident: 2021052607252226800_b7
  article-title: The TCP domain: a motif found in proteins regulating plant growth and development
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1999.00444.x
– volume: 59
  start-page: 1663
  year: 2008
  ident: 2021052607252226800_b36
  article-title: Roles of the bundle sheath cells in leaves of C3 plants
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erm335
– volume: 103
  start-page: 83
  year: 1993
  ident: 2021052607252226800_b8
  article-title: C4 photosynthesis (the CO2-concentrating mechanism and photorespiration)
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.1.83
– volume: 100
  start-page: 360
  year: 1992
  ident: 2021052607252226800_b28
  article-title: Bilevel disulfide group reduction in the activation of C4 leaf nicotinamide adenine dinucleotide phosphate-malate dehydrogenase
  publication-title: Plant Physiol
  doi: 10.1104/pp.100.1.360
– volume: 50
  start-page: 1933
  year: 2009
  ident: 2021052607252226800_b43
  article-title: Ectopic overexpression of the transcription factor OsGLK1 induces chloroplast development in non-green rice cells
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcp138
– volume: 155
  start-page: 56
  year: 2011
  ident: 2021052607252226800_b22
  article-title: The path from C3 to C4 photosynthesis
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.165308
– volume: 136
  start-page: 77
  year: 1977
  ident: 2021052607252226800_b12
  article-title: Distribution and structure of the plasmodesmata in mesophyll and bundle-sheath cells of Zea mays L
  publication-title: Planta
  doi: 10.1007/BF00387929
– volume: 41
  start-page: 301
  year: 1999
  ident: 2021052607252226800_b17
  article-title: cDNA cloning and characterization of maize phosphoenolpyruvate carboxykinase, a bundle sheath cell-specific enzyme
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1006317120460
– volume: 39
  start-page: D1114
  year: 2011
  ident: 2021052607252226800_b64
  article-title: PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq1141
– volume: 92
  start-page: 65
  year: 2007
  ident: 2021052607252226800_b33
  article-title: Analysis of donors of electrons to photosystem I and cyclic electron flow by redox kinetics of P700 in chloroplasts of isolated bundle sheath strands of maize
  publication-title: Photosynth Res
  doi: 10.1007/s11120-007-9166-0
– volume: 57
  start-page: 89
  year: 2011
  ident: 2021052607252226800_b51
  article-title: Developmental and cell type characterization of bundle sheath and mesophyll chloroplast transcript abundance in maize
  publication-title: Curr Genet
  doi: 10.1007/s00294-010-0329-8
– volume: 33
  start-page: 805
  year: 1992
  ident: 2021052607252226800_b2
  article-title: Two different mechanisms for transport of pyruvate into mesophyll chloroplasts of C4 plants: a comparative study
  publication-title: Plant Cell Physiol
– volume: 34
  start-page: 571
  year: 2007
  ident: 2021052607252226800_b42
  article-title: Diversity and plasticity of C4 photosynthesis in Eleocharis (Cyperaceae)
  publication-title: Funct Plant Biol
  doi: 10.1071/FP06296
– volume: 41
  start-page: 369
  year: 1990
  ident: 2021052607252226800_b49
  article-title: Plasmodesmata
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
  doi: 10.1146/annurev.pp.41.060190.002101
– volume: 18
  start-page: 3158
  year: 2006
  ident: 2021052607252226800_b66
  article-title: SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.047399
– volume: 18
  start-page: 1310
  year: 2006
  ident: 2021052607252226800_b62
  article-title: Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.037523
– volume: 410
  start-page: 276
  year: 2011
  ident: 2021052607252226800_b1
  article-title: The TCP4 transcription factor of Arabidopsis blocks cell division in yeast at G1→S transition
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2011.05.132
– volume: 159
  start-page: 787
  year: 2001
  ident: 2021052607252226800_b6
  article-title: Four mutant alleles elucidate the role of the G2 protein in the development of C(4) and C(3) photosynthesizing maize tissues
  publication-title: Genetics
  doi: 10.1093/genetics/159.2.787
– volume: 130
  start-page: 639
  year: 2002
  ident: 2021052607252226800_b26
  article-title: Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.006478
– volume: 147
  start-page: 852
  year: 2008
  ident: 2021052607252226800_b24
  article-title: RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.108.118026
– volume: 110
  start-page: 339
  year: 1996
  ident: 2021052607252226800_b11
  article-title: Carbon dioxide diffusion inside leaves
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.2.339
– volume: 42
  start-page: 1060
  year: 2010
  ident: 2021052607252226800_b38
  article-title: The developmental dynamics of the maize leaf transcriptome
  publication-title: Nat Genet
  doi: 10.1038/ng.703
– volume: 17
  start-page: 2384
  year: 2005
  ident: 2021052607252226800_b53
  article-title: Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.033043
– volume: 17
  start-page: R213
  year: 2007
  ident: 2021052607252226800_b23
  article-title: Plant development: three steps for stomata
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2007.01.032
– volume: 53
  start-page: 581
  year: 2002
  ident: 2021052607252226800_b35
  article-title: C(4) photosynthesis: principles of CO(2) concentration and prospects for its introduction into C(3) plants
  publication-title: J Exp Bot
  doi: 10.1093/jexbot/53.369.581
– volume: 305
  start-page: 1937
  year: 2004
  ident: 2021052607252226800_b32
  article-title: Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis
  publication-title: Science
  doi: 10.1126/science.1099728
– volume: 133
  start-page: 1578
  year: 2003
  ident: 2021052607252226800_b40
  article-title: Photomorphogenic responses in maize seedling development
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.029694
– volume: 90
  start-page: 500
  year: 1989
  ident: 2021052607252226800_b10
  article-title: Photorespiratory rates in wheat and maize as determined by o-labeling
  publication-title: Plant Physiol
  doi: 10.1104/pp.90.2.500
– volume: 10
  start-page: 925
  year: 1998
  ident: 2021052607252226800_b27
  article-title: GOLDEN 2: a novel transcriptional regulator of cellular differentiation in the maize leaf
  publication-title: Plant Cell
  doi: 10.1105/tpc.10.6.925
– volume: 46
  start-page: 521
  year: 2001
  ident: 2021052607252226800_b5
  article-title: Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1010639225091
– volume: 18
  start-page: 1964
  year: 2004
  ident: 2021052607252226800_b30
  article-title: Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division
  publication-title: Genes Dev
  doi: 10.1101/gad.305504
– volume: 48
  start-page: 592
  year: 2006
  ident: 2021052607252226800_b65
  article-title: Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2006.02901.x
– volume: 11
  start-page: 228
  year: 2008
  ident: 2021052607252226800_b31
  article-title: Using C4 photosynthesis to increase the yield of rice: rationale and feasibility
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2007.11.002
– volume: 15
  start-page: 583
  year: 2003
  ident: 2021052607252226800_b44
  article-title: Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize
  publication-title: Plant Cell
  doi: 10.1105/tpc.008102
– volume: 104
  start-page: 21002
  year: 2007
  ident: 2021052607252226800_b45
  article-title: Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0705639105
– volume: 17
  start-page: 3111
  year: 2005
  ident: 2021052607252226800_b39
  article-title: Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.035519
– volume: 62
  start-page: 3103
  year: 2011
  ident: 2021052607252226800_b16
  article-title: Evolution of the C(4) photosynthetic mechanism: are there really three C(4) acid decarboxylation types?
  publication-title: J Exp Bot
  doi: 10.1093/jxb/err080
– volume: 20
  start-page: 2763
  year: 2008
  ident: 2021052607252226800_b67
  article-title: A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.061325
– volume: 107
  start-page: 815
  year: 1995
  ident: 2021052607252226800_b9
  article-title: C4 photosynthesis (the effects of leaf development on the CO2-concentrating mechanism and photorespiration in maize)
  publication-title: Plant Physiol
  doi: 10.1104/pp.107.3.815
– volume: 410
  start-page: 213
  year: 1997
  ident: 2021052607252226800_b59
  article-title: Sequence and characterization of two Arabidopsis thaliana cDNAs isolated by functional complementation of a yeast gln3 gdh1 mutant
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(97)00590-5
SSID ssj0001314
Score 2.4343743
Snippet To study the regulatory and functional differentiation between the mesophyll (M) and bundle sheath (BS) cells of maize (Zea mays), we isolated large quantities...
To study the regulatory and functional differentiation between the mesophyll ( M ) and bundle sheath ( BS ) cells of maize ( Zea mays ), we isolated large...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 165
SubjectTerms Biological and medical sciences
bundle sheath cells
C4 plants
carbon
Cell Differentiation
cell division
Cell Wall - genetics
Cell Wall - metabolism
Cell walls
Cells
Chloroplasts
Chromosome Mapping
Corn
data collection
Fundamental and applied biological sciences. Psychology
gene expression
Gene Expression Profiling
Gene Expression Regulation, Plant
Genes
Genes, Plant
Genome Analysis
hydrogen
leaves
mesophyll
Mesophyll Cells - cytology
Mesophyll Cells - metabolism
metabolites
oxygen
Photosynthesis
Plant cells
Plant Cells - metabolism
Plant Epidermis - genetics
Plant Epidermis - metabolism
Plant Leaves - cytology
Plant Leaves - genetics
Plant Leaves - metabolism
Plant physiology and development
Plant Proteins - metabolism
Plant Vascular Bundle - cytology
Plant Vascular Bundle - genetics
Plant Vascular Bundle - metabolism
Plants
Plasmodesmata - genetics
Plasmodesmata - metabolism
post-translational modification
Protein Biosynthesis
protein degradation
Protein Transport
Protoplasts - cytology
Protoplasts - metabolism
RNA
RNA, Plant - analysis
RNA, Plant - genetics
sequence analysis
Signal Transduction
transcription (genetics)
transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
Transcriptome
Transcriptomes
transcriptomics
transporters
Zea mays
Zea mays - cytology
Zea mays - genetics
Zea mays - metabolism
Title Characterizing Regulatory and Functional Differentiation between Maize Mesophyll and Bundle Sheath Cells by Transcriptomic Analysis
URI https://www.jstor.org/stable/23274685
https://www.ncbi.nlm.nih.gov/pubmed/22829318
https://www.proquest.com/docview/1038068561
https://www.proquest.com/docview/2000106586
https://pubmed.ncbi.nlm.nih.gov/PMC3440195
Volume 160
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FwoEL4lUaHtUiIS7FxV47W_vYuFQFlIpDK7Una71ey5aCEyX2IbnyW_kfzOz6WVoJenEiZ9ZOMp93dmZn5iPkgwtOgrBdBuB1JDgoMbOEcLk14a5KHFsKW2JAf3bOzy69b1eTq9Hody9rqSrjQ7m9ta7kPlqFc6BXrJL9D822F4UT8B70C0fQMBz_Scdh2215a7LoNK887ppjOPwUTFYd6TupaVBKo4g2O2sm8i081wq5DDZz0zVgWmHfhQOkusb6JDWfr3GNqo2anmKwjrltZtJf3CIBUmliJaazE6xep1hQvE5EL-IQNjHqa7GwZo3pxKSgvNIpf6qwrqs29JPlOvJzvCqzanUQZlVhhVmusk7AzJyYn2ud5_0wBuaDBIOUkGZ_qklWxQxA_a0NJydgvh-8RHRhgpaxYs3UzSxwd_3B3G7ICgYgNjO1YygqaqPvGC6Zv-2J7SEJ8hIrrQ4Z7qrafTmAw_KnBhfDHWm3NiXDBt4_ZqHreViY-YA8ZODNINHGydfv7YLBcU0L-uZHta1gvc-DO2Pj6vo2g1WUSaTFrF6xhgc7NYwst7lMNzN_e0upi6fkSe0D0WMD6GdkpIrn5NF0AX7K5gX5NUQ17VBNAZ60QzW9gWpao5pqVNMW1XqYQTU1qKYa1TTe0CGqaYPql-Ty9MtFeGbVVCGWBItdWjGHtbtwhCclTz3OlPADP7GZcGTApOAqFbBQdgQDhydxJbdTW6WJaydB4ssYnJxdslMsCrVH6ITD0NgFw8ZxIuMB-OyxDyOVdFIRyzH51Pz1kaz76COdyzzS_rTtRcslvLLIKG1MPrbiS9NA5i7BXa3HVgp8nSOP-5Mx2R8othNAqoWA8TF532g6AuOAO36iUItqHSH7gQ2X4M7dMlir56AjAtd5ZdDR3aGG25gcDXDTCmBz-uEnRZ7pJvU15F_fe-Qb8ribJ96SnXJVqXfgAJTxvn58_gCSBAtd
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+Regulatory+and+Functional+Differentiation+between+Maize+Mesophyll+and+Bundle+Sheath+Cells+by+Transcriptomic+Analysis&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Chang%2C+Yao-Ming&rft.au=Liu%2C+Wen-Yu&rft.au=Shih%2C+Arthur+Chun-Chieh&rft.au=Shen%2C+Meng-Ni&rft.date=2012-09-01&rft.pub=American+Society+of+Plant+Biologists&rft.issn=0032-0889&rft.eissn=1532-2548&rft.volume=160&rft.issue=1&rft.spage=165&rft.epage=177&rft_id=info:doi/10.1104%2Fpp.112.203810&rft_id=info%3Apmid%2F22829318&rft.externalDocID=PMC3440195
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon