Gait-Based Person Identification Robust to Changes in Appearance

The identification of a person from gait images is generally sensitive to appearance changes, such as variations of clothes and belongings. One possibility to deal with this problem is to collect possible subjects’ appearance changes in a database. However, it is almost impossible to predict all app...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 13; no. 6; pp. 7884 - 7901
Main Authors Iwashita, Yumi, Uchino, Koji, Kurazume, Ryo
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 19.06.2013
Molecular Diversity Preservation International (MDPI)
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s130607884

Cover

Loading…
Abstract The identification of a person from gait images is generally sensitive to appearance changes, such as variations of clothes and belongings. One possibility to deal with this problem is to collect possible subjects’ appearance changes in a database. However, it is almost impossible to predict all appearance changes in advance. In this paper, we propose a novel method, which allows robustly identifying people in spite of changes in appearance, without using a database of predicted appearance changes. In the proposed method, firstly, the human body image is divided into multiple areas, and features for each area are extracted. Next, a matching weight for each area is estimated based on the similarity between the extracted features and those in the database for standard clothes. Finally, the subject is identified by weighted integration of similarities in all areas. Experiments using the gait database CASIA show the best correct classification rate compared with conventional methods experiments.
AbstractList The identification of a person from gait images is generally sensitive to appearance changes, such as variations of clothes and belongings. One possibility to deal with this problem is to collect possible subjects’ appearance changes in a database. However, it is almost impossible to predict all appearance changes in advance. In this paper, we propose a novel method, which allows robustly identifying people in spite of changes in appearance, without using a database of predicted appearance changes. In the proposed method, firstly, the human body image is divided into multiple areas, and features for each area are extracted. Next, a matching weight for each area is estimated based on the similarity between the extracted features and those in the database for standard clothes. Finally, the subject is identified by weighted integration of similarities in all areas. Experiments using the gait database CASIA show the best correct classification rate compared with conventional methods experiments.
The identification of a person from gait images is generally sensitive to appearance changes, such as variations of clothes and belongings. One possibility to deal with this problem is to collect possible subjects' appearance changes in a database. However, it is almost impossible to predict all appearance changes in advance. In this paper, we propose a novel method, which allows robustly identifying people in spite of changes in appearance, without using a database of predicted appearance changes. In the proposed method, firstly, the human body image is divided into multiple areas, and features for each area are extracted. Next, a matching weight for each area is estimated based on the similarity between the extracted features and those in the database for standard clothes. Finally, the subject is identified by weighted integration of similarities in all areas. Experiments using the gait database CASIA show the best correct classification rate compared with conventional methods experiments.The identification of a person from gait images is generally sensitive to appearance changes, such as variations of clothes and belongings. One possibility to deal with this problem is to collect possible subjects' appearance changes in a database. However, it is almost impossible to predict all appearance changes in advance. In this paper, we propose a novel method, which allows robustly identifying people in spite of changes in appearance, without using a database of predicted appearance changes. In the proposed method, firstly, the human body image is divided into multiple areas, and features for each area are extracted. Next, a matching weight for each area is estimated based on the similarity between the extracted features and those in the database for standard clothes. Finally, the subject is identified by weighted integration of similarities in all areas. Experiments using the gait database CASIA show the best correct classification rate compared with conventional methods experiments.
Author Kurazume, Ryo
Uchino, Koji
Iwashita, Yumi
Author_xml – sequence: 1
  givenname: Yumi
  surname: Iwashita
  fullname: Iwashita, Yumi
– sequence: 2
  givenname: Koji
  surname: Uchino
  fullname: Uchino, Koji
– sequence: 3
  givenname: Ryo
  surname: Kurazume
  fullname: Kurazume, Ryo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23783739$$D View this record in MEDLINE/PubMed
BookMark eNptkl1vFCEUhompsR964w8wk3hjmowFDjMwN6Z1o-0mTTRGr8lhBrZsZmGFGRP_fbFb-5VeAYeHN-flPYdkL8RgCXnL6EeAjp5kBrSlUinxghwwwUWtOKd7D_b75DDnNaUcANQrss9BKpDQHZDTc_RT_RmzHarvNuUYquVgw-Sd73Hy5fgjmjlP1RSrxRWGlc2VD9XZdmsxYejta_LS4Zjtm9v1iPz6-uXn4qK-_Ha-XJxd1n0DaqpNIwVDp7BF61zLjXFGAFLjZENb11Ium0GAHJjkyglFFRdghJFGOoTOwhFZ7nSHiGu9TX6D6a-O6PVNIaaVxjT5frTamM5ZNUjTF_-dkoYDdsYo5Eoxg65ofdppbWezsUNf_CYcH4k-vgn-Sq_iHw2SNVzSIvDhViDF37PNk9743NtxxGDjnDUDSVsQivGCvn-CruOcQvkqzRqQTYmON4V697Cju1b-B1WA4x3Qp5hzsu4OYVT_mwJ9PwUFpk_g3k83aRY3fnzuyTVnW7J7
CitedBy_id crossref_primary_10_4018_IJSSCI_2017100102
crossref_primary_10_1007_s10044_019_00793_4
crossref_primary_10_1016_j_imavis_2018_05_002
crossref_primary_10_3390_s17030605
crossref_primary_10_1142_S0218126624502086
crossref_primary_10_3390_app8081380
crossref_primary_10_1016_j_eswa_2022_118363
crossref_primary_10_1016_j_matpr_2020_03_168
crossref_primary_10_3390_app9245529
crossref_primary_10_1016_j_patcog_2014_06_010
crossref_primary_10_1016_j_matpr_2022_03_505
crossref_primary_10_1109_TIFS_2019_2912577
crossref_primary_10_1049_iet_bmt_2018_5063
crossref_primary_10_1080_01691864_2020_1793812
crossref_primary_10_1016_j_procs_2018_08_010
crossref_primary_10_1109_TIFS_2023_3236181
crossref_primary_10_1142_S0218126623501645
crossref_primary_10_1016_j_cosrev_2021_100432
crossref_primary_10_1016_j_patcog_2020_107376
crossref_primary_10_3390_s20051358
crossref_primary_10_1016_j_procs_2015_08_291
crossref_primary_10_3390_s20144001
crossref_primary_10_1142_S0218126620502667
crossref_primary_10_1142_S0218126620501017
crossref_primary_10_3390_jcp1030024
crossref_primary_10_1080_08839514_2022_2043525
Cites_doi 10.1016/S1077-3142(03)00008-0
10.1016/j.patrec.2012.07.022
10.1007/3-540-47967-8_44
10.1049/iet-cvi.2009.0009
10.1016/j.patrec.2009.04.012
10.1109/ICPR.2004.1333879
10.1016/S0167-8655(03)00086-2
10.1016/j.patcog.2009.12.020
10.1016/j.patcog.2003.09.012
10.1016/j.patrec.2010.05.027
10.1109/TELFOR.2012.6419460
10.1109/TPAMI.2011.260
10.1016/j.patcog.2010.10.011
10.1109/TPAMI.2005.39
10.1109/TIFS.2012.2204253
10.1109/TPAMI.2006.38
10.1016/j.engappai.2010.07.004
10.1016/j.sigpro.2010.01.024
10.1007/3-540-45344-X_42
10.1007/978-3-642-36669-7_13
10.1007/978-3-642-33885-4_10
10.1109/ROBOT.2009.5152485
10.1002/9780470684757
ContentType Journal Article
Copyright Copyright MDPI AG 2013
2013 by the authors; licensee MDPI, Basel, Switzerland. 2013
Copyright_xml – notice: Copyright MDPI AG 2013
– notice: 2013 by the authors; licensee MDPI, Basel, Switzerland. 2013
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s130607884
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (New) (NC LIVE)
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Proquest Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central (New) (NC LIVE)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
EndPage 7901
ExternalDocumentID oai_doaj_org_article_bb9fe8d7bc424987b23a9bb8a2881baf
PMC3715270
3340166891
23783739
10_3390_s130607884
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c538t-b5741af8a6aeff62bbfb43a0bf7506f60275d437d1728f4808243b4b7b7fa39e3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:29:20 EDT 2025
Thu Aug 21 13:52:44 EDT 2025
Thu Sep 04 23:26:31 EDT 2025
Fri Jul 25 05:30:31 EDT 2025
Mon Jul 21 06:05:04 EDT 2025
Tue Jul 01 00:40:05 EDT 2025
Thu Apr 24 22:57:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/3.0
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c538t-b5741af8a6aeff62bbfb43a0bf7506f60275d437d1728f4808243b4b7b7fa39e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1537530625?pq-origsite=%requestingapplication%
PMID 23783739
PQID 1537530625
PQPubID 2032333
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_bb9fe8d7bc424987b23a9bb8a2881baf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3715270
proquest_miscellaneous_1370634812
proquest_journals_1537530625
pubmed_primary_23783739
crossref_primary_10_3390_s130607884
crossref_citationtrail_10_3390_s130607884
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130619
PublicationDateYYYYMMDD 2013-06-19
PublicationDate_xml – month: 6
  year: 2013
  text: 20130619
  day: 19
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2013
Publisher MDPI AG
Molecular Diversity Preservation International (MDPI)
Publisher_xml – name: MDPI AG
– name: Molecular Diversity Preservation International (MDPI)
References Sarkar (ref_12) 2005; 27
Hossain (ref_23) 2010; 43
ref_35
Zhang (ref_26) 2010; 90
ref_34
ref_11
ref_33
ref_10
ref_32
ref_31
Milovanovic (ref_29) 2012; 1
ref_30
ref_19
ref_17
ref_15
Chen (ref_16) 2009; 30
Han (ref_7) 2006; 28
Lam (ref_14) 2011; 44
Iwashita (ref_22) 2012; 33
Cunado (ref_2) 2003; 90
Yam (ref_3) 2004; 37
ref_1
Lee (ref_27) 2007; 1
Kim (ref_18) 2010; 4
Iwashita (ref_28) 2011; 110
Tafazzoli (ref_4) 2010; 23
ref_9
Katiyar (ref_13) 2010; I
Bashir (ref_25) 2010; 31
ref_5
Wang (ref_20) 2012; 34
Li (ref_24) 2013; 7751
Acquah (ref_8) 2003; 24
ref_6
Iwama (ref_21) 2012; 7
15688555 - IEEE Trans Pattern Anal Mach Intell. 2005 Feb;27(2):162-77
22201053 - IEEE Trans Pattern Anal Mach Intell. 2012 Nov;34(11):2164-76
16468626 - IEEE Trans Pattern Anal Mach Intell. 2006 Feb;28(2):316-22
References_xml – volume: I
  start-page: 207
  year: 2010
  ident: ref_13
  article-title: Human gait recognition by using motion silhouette contour templates and static silhouette templates
  publication-title: VSRD-TNTJ
– ident: ref_9
– ident: ref_30
– volume: 90
  start-page: 1
  year: 2003
  ident: ref_2
  article-title: Automatic extraction and description of human gait models for recognition purposes
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/S1077-3142(03)00008-0
– volume: 33
  start-page: 2148
  year: 2012
  ident: ref_22
  article-title: Gait identification using shadow biometrics
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2012.07.022
– ident: ref_34
– ident: ref_6
  doi: 10.1007/3-540-47967-8_44
– volume: 1
  start-page: 1
  year: 2007
  ident: ref_27
  article-title: Shape variation-based frieze pattern for robust gait recognition
  publication-title: Comput. Vision Pattern Recognit.
– volume: 4
  start-page: 25
  year: 2010
  ident: ref_18
  article-title: Gait recognition using active shape model and motion prediction
  publication-title: IET Comput. Vision
  doi: 10.1049/iet-cvi.2009.0009
– volume: 30
  start-page: 977
  year: 2009
  ident: ref_16
  article-title: Frame difference energy image for gait recognition with incomplete silhouettes
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.04.012
– ident: ref_11
  doi: 10.1109/ICPR.2004.1333879
– volume: 24
  start-page: 2175
  year: 2003
  ident: ref_8
  article-title: Automatic gait recognition by symmetry analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(03)00086-2
– ident: ref_1
– ident: ref_35
– volume: 43
  start-page: 2281
  year: 2010
  ident: ref_23
  article-title: Clothing-invariant gait identification using part-based clothing categorization and adaptive weight control
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.12.020
– volume: 37
  start-page: 1057
  year: 2004
  ident: ref_3
  article-title: Automated person recognition by walking and running via model-based approaches
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2003.09.012
– volume: 31
  start-page: 2052
  year: 2010
  ident: ref_25
  article-title: Gait recognition without subject cooperation
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2010.05.027
– volume: 1
  start-page: 1323
  year: 2012
  ident: ref_29
  article-title: New gait recognition method using Kinect stick figure and CBIR
  publication-title: Telecommun. Forum (TELFOR)
  doi: 10.1109/TELFOR.2012.6419460
– volume: 34
  start-page: 2164
  year: 2012
  ident: ref_20
  article-title: Human identification using temporal information preserving gait template
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.260
– volume: 44
  start-page: 973
  year: 2011
  ident: ref_14
  article-title: Gait flow image: A silhouette-based gait representation for human identification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2010.10.011
– volume: 27
  start-page: 162
  year: 2005
  ident: ref_12
  article-title: The humanID gait challenge problem: Data sets, performance, and analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.39
– ident: ref_33
– volume: 7
  start-page: 1511
  year: 2012
  ident: ref_21
  article-title: The OU-ISIR gait database comprising the large population dataset and performance evaluation of gait recognition
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2012.2204253
– volume: 28
  start-page: 316
  year: 2006
  ident: ref_7
  article-title: Individual recognition using gait energy image
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.38
– volume: 110
  start-page: 259
  year: 2011
  ident: ref_28
  article-title: Person identification robust to changes in appearance (in Japanese)
  publication-title: IEICE Tech. Rep.
– ident: ref_15
– volume: 23
  start-page: 1237
  year: 2010
  ident: ref_4
  article-title: Model-based human gait recognition using leg and arm movements
  publication-title: Eng. Appl. Articial Intell.
  doi: 10.1016/j.engappai.2010.07.004
– ident: ref_17
– volume: 90
  start-page: 2295
  year: 2010
  ident: ref_26
  article-title: Active energy image plus 2DLPP for gait recognition
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2010.01.024
– ident: ref_19
– ident: ref_5
  doi: 10.1007/3-540-45344-X_42
– volume: 7751
  start-page: 98
  year: 2013
  ident: ref_24
  article-title: Gait recognition based on partitioned weighting gait energy image
  publication-title: Lecture Notes Comput. Sci.
  doi: 10.1007/978-3-642-36669-7_13
– ident: ref_31
  doi: 10.1007/978-3-642-33885-4_10
– ident: ref_10
  doi: 10.1109/ROBOT.2009.5152485
– ident: ref_32
  doi: 10.1002/9780470684757
– reference: 16468626 - IEEE Trans Pattern Anal Mach Intell. 2006 Feb;28(2):316-22
– reference: 22201053 - IEEE Trans Pattern Anal Mach Intell. 2012 Nov;34(11):2164-76
– reference: 15688555 - IEEE Trans Pattern Anal Mach Intell. 2005 Feb;27(2):162-77
SSID ssj0023338
Score 2.2996383
Snippet The identification of a person from gait images is generally sensitive to appearance changes, such as variations of clothes and belongings. One possibility to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 7884
SubjectTerms affine moment invariants
Body image
Energy
Fourier transforms
gait
Human body
local features
Methods
person identification
Self image
Sensors
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1CTs2h9CNpnaZFIb3kIOLVaCX5lqQ0CYWGUBrIzWhsiS4Ub-l6_39Glne7WwK99GrpIM9IM-_ZmjcAH0ukqamS8nHptNSNbST5aOUkYNRqEhqyqVD46625uddfHqYPG62-0p2wLA-cDXdGVMXgWkuNZqbgLCn0FZHzyjHi8jFFX855KzI1Ui3EoYd1KuOSnALLLEyKTPDPFhy1DSdGp7dS0aDY_xTM_Pu25Eb6uXoBz0fcKC7yel_CTuhewd6GmuBrOL_2s15eclpqxd0ApEUuw43jdznxbU7LRS_6uchFBQsx6wTjUN7tyfn7cH_1-funGzk2SJANx6le0pTxgI_OGx9iNIookkZfUmQcYKJJvyRbjbZNTaiidpzuNZImSzZ6rAIewG4378JbEMo6YmhURcM-so0hRdiqltopBut0LOB0Zau6GdXDUxOLnzWziGTX-o9dCzhZz_2VNTOenHWZTL6ekXSuhwfs_Xr0fv0v7xdwtHJYPR6-Rc1BnElYycyugOP1MB-b9C_Ed2G-5DloGZxphjcFvMn-Xa9EoWXajlUBdsvzW0vdHulmPwZpbrSpTXB5-D_e7R08U7n3hpxUR7Db_16G94yAevowbPZHzvIDUw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central (New) (NC LIVE)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9UwDLbg7QIHxG8KAwXBhUO0viRN0hPw0MaExDRNTNqtitsEnoTasfb9_zhtXreHJq6ND5Yd25-T5jPA-1xiocvIfJxbxVVtao4uGL70Miix9DWa-FD4-4k-PlffLoqLdODWp98qtzlxTNRNV8cz8gOKTELWOcH1j5d_eJwaFW9X0wiNu7BHKdgWC9hbHZ6cns0tl6QObCIlldTcH_SUsTUVRat2ytDI1n8bxPz3T8kbpefoITxImJF9npz8CO749jHcv8Ek-AQ-fXXrga-oJDXsdATRbHqCG9KZHDvrcNMPbOjY9KCgZ-uWEQalnR4d_xTOjw5_fDnmaTgCrylHDRwLwgIuWKedD0ELxIBKuhwDYQAddLyObJQ0TRxAFZSlUq8kKjRogpOll89g0XatfwFMGIsEi8qgyT-m1ihQNqLBppDeWBUy-LC1VVUn5vA4wOJ3RR1EtGt1bdcM3s2ylxNfxq1Sq2jyWSJyXI8fuqufVQqZCrEM3jYGa0U9ojUopCsRrROWsLYjtfa3DqtS4PXV9TbJ4O28TCET70Fc67sNyUhDwEwRtMng-eTfWRMhDbXssszA7Hh-R9XdlXb9a6TlliaOCM5f_l-tV3BPTBM1-LLch8VwtfGvCdcM-CZt3r-UgPj-
  priority: 102
  providerName: ProQuest
Title Gait-Based Person Identification Robust to Changes in Appearance
URI https://www.ncbi.nlm.nih.gov/pubmed/23783739
https://www.proquest.com/docview/1537530625
https://www.proquest.com/docview/1370634812
https://pubmed.ncbi.nlm.nih.gov/PMC3715270
https://doaj.org/article/bb9fe8d7bc424987b23a9bb8a2881baf
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCb6uGyHYe-57QIN22UHb46kSPKh6JahaTGgRVEsQG6GaEtbgMLeEgdo__0o2_GaIoddfLBoQCAp8aNk8gP4kAgcqTR0Pk6MjGWu8xit1_HQCS_50OWoQ6HwxaU6n8rvs9FsB9b8nZ0Cl1tTu8AnNV3cfLr9c3dCC_44ZJyUsn9e0j6sKNQZuQv7FJFU8O4L2d8mcCEaRutQ1BVTQEzaNqUPvt0ITE3__m2g8-G_k_eC0eQpPOlQJPvamv0Z7LjyOTy-11vwBXw5s_M6HlOQKthVA6tZW5Tru1M6dl3halmzumJticGSzUtGqJR8P7jCS5hOTn98O487uoQ4p12rjnFE6MB6Y5V13iuO6FEKm6AnVKC8CheUhRS6CJRUXhoK_lKgRI3aW5E68Qr2yqp0b4BxbZCAUuoVWUznCjmKghdYjITTRvoIPq51leVdL_FAaXGTUU4R9Jr902sE73vZ320Hja1S46DyXiJ0vW5eVIufWbeIMsTUO1NozMmSqdHIhU0RjeWG0LelaR2tDZatPSmjLZ1SsoTyvAje9cO0iMLNiC1dtSIZoQmqSQI7Ebxu7dvPhAtNSbxII9Ablt-Y6uZIOf_VNOoWOpAGJwf_pYFDeMRbqo14mB7BXr1YubcEeGocwK6eaXqaydkA9senl1fXg-bwYND4-V9ICgE5
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeKt6kFDACDhyiZm1v7BxQS4Htlj6EUCv1lnoSu6yEktJkhfhT_EbGebWLKm69xqNoNA_PN7ZnBuBNJHAcJ77zcaRlKDOVhWicCkdWOMlHNkPlC4UPDuPpsfxyMj5Zgj99LYx_Vtnvic1GnZeZPyPfIM8kZB0RXN88_xn6qVH-drUfodGaxZ79_YtStur97ifS71vOJ5-PPk7DbqpAmJFz1yGOKYgap01srHMxR3QohYnQUfCMXezv8XIpVO4nNzmpKUZKgRIVKmdEYgX99xbclkIkvle_nuwMCZ6gfK9tgUqL0UZF8SGmEKzlQtBrZgNcB2j_fZd5JdBN7sFqh1DZh9ak7sOSLR7AypW-hQ9ha8fM6nCbAmDOvjaQnbUFv647AWTfSpxXNatL1pYvVGxWMEK8JEBvZo_g-EaE9hiWi7KwT4FxpZFAWOJisgaVxchR5DzHfCys0tIF8K6XVZp1fcr9uIwfKeUrXq7ppVwDeD3QnrfdOa6l2vYiHyh8R-3mQ3lxlnYOmiImzupcYSYpI9UKuTAJojZcE7I3xNZ6r7C0c_MqvTTKAF4Ny-Sg_tbFFLacE41QBAMlAakAnrT6HTjhQmmhRBKAWtD8AquLK8Xse9MEXCg_kDha-z9bL-HO9OhgP93fPdx7Bnd5O8sjHCXrsFxfzO1zQlQ1vmjMmMHpTfvNX5hRNL0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHgTKGAEHDhEm7W9sXNAwNIuLYXVqqJSb8GT2O1KKClNVoi_xq9jnMe2iypuvcajyJqHv2_8mAF4FQkcx4mvfBxpGcpMZSEap8KRFU7ykc1Q-YfCX2fx7qH8fDQ-2oA__VsYf62yXxObhTovM79HPqTIJGYdEV0fuu5axHx7-u70Z-g7SPmT1r6dRusi-_b3L0rfqrd722Tr15xPd7593A27DgNhRoFehzgmQDVOm9hY52KO6FAKE6EjII1d7M_0cilU7rs4OakJL6VAiQqVMyKxgv57DTYVoaIewOZkZzY_WKV7grK_tiCqEEk0rAgtYgJkLdcgsOkUcBm9_feW5gXYm96GWx1fZR9aB7sDG7a4CzcvVDG8B-8_mUUdTggOczZvCDxrn_-6bj-QHZS4rGpWl6x9zFCxRcGI_5IKvdPdh8MrUdsDGBRlYR8B40ojUbLExeQbKouRo8h5jvlYWKWlC-BNr6s066qW--YZP1LKXrxe03O9BvByJXva1uq4VGriVb6S8PW1mw_l2XHahWuKmDirc4WZpPxUK-TCJIjacE0839C0tnqDpV3QV-m5iwbwYjVM4erPYExhyyXJCEWkUBKtCuBha9_VTLhQWiiRBKDWLL821fWRYnHSlAQXyrcnjh7_f1rP4TrFTPplb7b_BG7wtrFHOEq2YFCfLe1Tolc1Puv8mMH3qw6dvxI2Olg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gait-Based+Person+Identification+Robust+to+Changes+in+Appearance&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Iwashita%2C+Yumi&rft.au=Uchino%2C+Koji&rft.au=Kurazume%2C+Ryo&rft.date=2013-06-19&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=13&rft.issue=6&rft.spage=7884&rft.epage=7901&rft_id=info:doi/10.3390%2Fs130607884&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s130607884
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon