MSC-derived sEVs enhance patency and inhibit calcification of synthetic vascular grafts by immunomodulation in a rat model of hyperlipidemia
Vascular grafts often exhibit low patency rates in clinical settings due to the pathological environment within the patients requiring the surgery. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have attracted increasing attention. These sEVs contain many potent signaling mo...
Saved in:
Published in | Biomaterials Vol. 204; pp. 13 - 24 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.06.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0142-9612 1878-5905 1878-5905 |
DOI | 10.1016/j.biomaterials.2019.01.049 |
Cover
Loading…
Abstract | Vascular grafts often exhibit low patency rates in clinical settings due to the pathological environment within the patients requiring the surgery. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have attracted increasing attention. These sEVs contain many potent signaling molecules that play important roles in tissue regeneration, such as microRNA and cytokines. In this study, a sEVs-functionalized vascular graft was developed, and in vivo performance was systematically evaluated in a rat model of hyperlipidemia. Electrospun poly (ε-caprolactone) (PCL) vascular grafts were first modified with heparin, to enhance the anti-thrombogenicity. MSC-derived sEVs were loaded onto the heparinized PCL grafts to obtain functional vascular grafts. As-prepared vascular grafts were implanted to replace a segment of rat abdominal artery (1 cm) for up to 3 months. Results showed that the incorporation of MSC-derived sEVs effectively inhibited thrombosis and calcification, thus enhancing the patency of vascular grafts. Furthermore, regeneration of the endothelium and vascular smooth muscle was markedly enhanced, as attributed to the bioactive molecules within the sEVs, including vascular endothelial growth factor (VEGF), miRNA126, and miRNA145. More importantly, MSC-derived sEVs demonstrated a robust immunomodulatory effect, that is, they induced the transition of macrophages from a pro-inflammatory and atherogenic (M1) phenotype to an anti-inflammatory and anti-osteogenic (M2c) phenotype. This phenotypic switch was confirmed in both in vitro and in vivo analyses. Taken together, these results suggest that fabrication of vascular grafts with immunomodulatory function can provide an effective approach to improve vascular performance and functionality, with translational implication in cardiovascular regenerative medicine. |
---|---|
AbstractList | Vascular grafts often exhibit low patency rates in clinical settings due to the pathological environment within the patients requiring the surgery. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have attracted increasing attention. These sEVs contain many potent signaling molecules that play important roles in tissue regeneration, such as microRNA and cytokines. In this study, a sEVs-functionalized vascular graft was developed, and in vivo performance was systematically evaluated in a rat model of hyperlipidemia. Electrospun poly (ε-caprolactone) (PCL) vascular grafts were first modified with heparin, to enhance the anti-thrombogenicity. MSC-derived sEVs were loaded onto the heparinized PCL grafts to obtain functional vascular grafts. As-prepared vascular grafts were implanted to replace a segment of rat abdominal artery (1 cm) for up to 3 months. Results showed that the incorporation of MSC-derived sEVs effectively inhibited thrombosis and calcification, thus enhancing the patency of vascular grafts. Furthermore, regeneration of the endothelium and vascular smooth muscle was markedly enhanced, as attributed to the bioactive molecules within the sEVs, including vascular endothelial growth factor (VEGF), miRNA126, and miRNA145. More importantly, MSC-derived sEVs demonstrated a robust immunomodulatory effect, that is, they induced the transition of macrophages from a pro-inflammatory and atherogenic (M1) phenotype to an anti-inflammatory and anti-osteogenic (M2c) phenotype. This phenotypic switch was confirmed in both in vitro and in vivo analyses. Taken together, these results suggest that fabrication of vascular grafts with immunomodulatory function can provide an effective approach to improve vascular performance and functionality, with translational implication in cardiovascular regenerative medicine. Vascular grafts often exhibit low patency rates in clinical settings due to the pathological environment within the patients requiring the surgery. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have attracted increasing attention. These sEVs contain many potent signaling molecules that play important roles in tissue regeneration, such as microRNA and cytokines. In this study, a sEVs-functionalized vascular graft was developed, and in vivo performance was systematically evaluated in a rat model of hyperlipidemia. Electrospun poly (ε-caprolactone) (PCL) vascular grafts were first modified with heparin, to enhance the anti-thrombogenicity. MSC-derived sEVs were loaded onto the heparinized PCL grafts to obtain functional vascular grafts. As-prepared vascular grafts were implanted to replace a segment of rat abdominal artery (1 cm) for up to 3 months. Results showed that the incorporation of MSC-derived sEVs effectively inhibited thrombosis and calcification, thus enhancing the patency of vascular grafts. Furthermore, regeneration of the endothelium and vascular smooth muscle was markedly enhanced, as attributed to the bioactive molecules within the sEVs, including vascular endothelial growth factor (VEGF), miRNA126, and miRNA145. More importantly, MSC-derived sEVs demonstrated a robust immunomodulatory effect, that is, they induced the transition of macrophages from a pro-inflammatory and atherogenic (M1) phenotype to an anti-inflammatory and anti-osteogenic (M2c) phenotype. This phenotypic switch was confirmed in both in vitro and in vivo analyses. Taken together, these results suggest that fabrication of vascular grafts with immunomodulatory function can provide an effective approach to improve vascular performance and functionality, with translational implication in cardiovascular regenerative medicine.Vascular grafts often exhibit low patency rates in clinical settings due to the pathological environment within the patients requiring the surgery. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have attracted increasing attention. These sEVs contain many potent signaling molecules that play important roles in tissue regeneration, such as microRNA and cytokines. In this study, a sEVs-functionalized vascular graft was developed, and in vivo performance was systematically evaluated in a rat model of hyperlipidemia. Electrospun poly (ε-caprolactone) (PCL) vascular grafts were first modified with heparin, to enhance the anti-thrombogenicity. MSC-derived sEVs were loaded onto the heparinized PCL grafts to obtain functional vascular grafts. As-prepared vascular grafts were implanted to replace a segment of rat abdominal artery (1 cm) for up to 3 months. Results showed that the incorporation of MSC-derived sEVs effectively inhibited thrombosis and calcification, thus enhancing the patency of vascular grafts. Furthermore, regeneration of the endothelium and vascular smooth muscle was markedly enhanced, as attributed to the bioactive molecules within the sEVs, including vascular endothelial growth factor (VEGF), miRNA126, and miRNA145. More importantly, MSC-derived sEVs demonstrated a robust immunomodulatory effect, that is, they induced the transition of macrophages from a pro-inflammatory and atherogenic (M1) phenotype to an anti-inflammatory and anti-osteogenic (M2c) phenotype. This phenotypic switch was confirmed in both in vitro and in vivo analyses. Taken together, these results suggest that fabrication of vascular grafts with immunomodulatory function can provide an effective approach to improve vascular performance and functionality, with translational implication in cardiovascular regenerative medicine. |
Author | Midgley, Adam C. Zhao, Qiang Li, Zongjin Wei, Yongzhen Kong, Deling Zhao, Runxia Wu, Yifan Zhang, Kaiyue |
Author_xml | – sequence: 1 givenname: Yongzhen surname: Wei fullname: Wei, Yongzhen organization: State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China – sequence: 2 givenname: Yifan surname: Wu fullname: Wu, Yifan organization: State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China – sequence: 3 givenname: Runxia surname: Zhao fullname: Zhao, Runxia organization: State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China – sequence: 4 givenname: Kaiyue surname: Zhang fullname: Zhang, Kaiyue organization: Nankai University School of Medicine, Tianjin 300071, PR China – sequence: 5 givenname: Adam C. surname: Midgley fullname: Midgley, Adam C. organization: State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China – sequence: 6 givenname: Deling surname: Kong fullname: Kong, Deling organization: State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China – sequence: 7 givenname: Zongjin surname: Li fullname: Li, Zongjin email: zongjinli@nankai.edu.cn organization: Nankai University School of Medicine, Tianjin 300071, PR China – sequence: 8 givenname: Qiang surname: Zhao fullname: Zhao, Qiang email: qiangzhao@nankai.edu.cn organization: State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30875515$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhS1URKeFv4AsVmwS_MjLrIChLUhFLHhsLce5Ye6QOIPtjJT_wI_G0ykIdTUry1fnfNY9xxfkzE0OCHnBWc4Zr15t8xan0UTwaIaQC8ZVznjOCvWIrHhTN1mpWHlGVowXIlMVF-fkIoQtS3dWiCfkXLKmLktersjvT1_WWZdIe-houPoeKLiNcRboLj3g7EKN6yi6DbYYqTWDxR6tiTg5OvU0LC5uIKKlexPsPBhPf3jTx0DbheI4zm4apy7N7wzoqKHeRJpmMBz8m2UHfsAddjCieUoe92kjeHZ_XpJv11df1x-y2883H9dvbzNbyiZmxlaFVMCZ6BvZ1KzrhRC1MDVURrWqFRJ61bWilk0veVEqXluoWFNy2fYATF6Sl0fuzk-_ZghRjxgsDINxMM1BJxxnsmrkCVKuJK94o3iSPr-Xzu0Ind55HI1f9N-wk-D1UWD9FIKH_p-EM31oVm_1_83qQ7OacZ2aTeY3D8wW412s0RscTkO8PyIgZbtH8DpYTB1Dhx5s1N2Ep2HePcDYAV36FMNPWE6F_AFppuGu |
CitedBy_id | crossref_primary_10_1155_2021_8827212 crossref_primary_10_1016_j_actbio_2025_03_033 crossref_primary_10_3389_fbioe_2021_808614 crossref_primary_10_1016_j_bioactmat_2020_10_028 crossref_primary_10_1016_j_actbio_2022_06_004 crossref_primary_10_1016_j_jconrel_2023_06_039 crossref_primary_10_1002_adhm_202100750 crossref_primary_10_4252_wjsc_v13_i1_49 crossref_primary_10_1002_adfm_202100027 crossref_primary_10_1016_j_compositesb_2023_110504 crossref_primary_10_1021_acs_analchem_3c01421 crossref_primary_10_1186_s12951_022_01529_z crossref_primary_10_1016_j_bbadis_2023_166806 crossref_primary_10_3390_polym15234563 crossref_primary_10_1002_adfm_201909125 crossref_primary_10_1016_j_actbio_2021_01_010 crossref_primary_10_1021_acsnano_2c05847 crossref_primary_10_1016_j_yjmcc_2021_12_010 crossref_primary_10_3390_biology10030172 crossref_primary_10_1186_s43556_023_00146_y crossref_primary_10_1002_bit_28316 crossref_primary_10_1016_j_bbrc_2024_149863 crossref_primary_10_1016_j_ccr_2020_213506 crossref_primary_10_1002_adhm_202402292 crossref_primary_10_1021_acsabm_2c00659 crossref_primary_10_1021_acsabm_3c00516 crossref_primary_10_1016_j_mtbio_2023_100832 crossref_primary_10_1016_j_bioactmat_2024_07_006 crossref_primary_10_3390_biomedicines9091257 crossref_primary_10_1016_j_vesic_2022_100018 crossref_primary_10_1007_s13770_023_00615_z crossref_primary_10_1016_j_addr_2021_113913 crossref_primary_10_1074_jbc_RA120_012732 crossref_primary_10_2174_1389201022666210907115126 crossref_primary_10_3390_cells11182851 crossref_primary_10_1002_adhm_202100334 crossref_primary_10_3390_ijms21072466 crossref_primary_10_1016_j_vesic_2024_100061 crossref_primary_10_14336_AD_2021_1110 crossref_primary_10_3390_biom13071109 crossref_primary_10_1016_j_nantod_2022_101481 crossref_primary_10_3389_fbioe_2021_637737 crossref_primary_10_1002_pat_6080 crossref_primary_10_3390_ijms23073792 crossref_primary_10_1016_j_addr_2021_04_013 crossref_primary_10_1155_2019_5738510 crossref_primary_10_1089_scd_2021_0006 crossref_primary_10_1002_advs_202408992 crossref_primary_10_1186_s13287_022_02922_z crossref_primary_10_1089_ars_2019_7965 crossref_primary_10_1021_acsami_0c06609 crossref_primary_10_1016_j_bioactmat_2020_11_028 crossref_primary_10_1186_s13287_021_02262_4 crossref_primary_10_1021_acsbiomaterials_4c01273 crossref_primary_10_1016_j_smaim_2023_04_002 crossref_primary_10_1002_adbi_202200087 crossref_primary_10_1021_acsami_3c00489 crossref_primary_10_1021_acsami_2c07981 crossref_primary_10_1039_D2BM01338J crossref_primary_10_1088_1748_605X_ac9266 crossref_primary_10_1039_D3NA00666B crossref_primary_10_3389_fcvm_2022_912358 crossref_primary_10_1016_j_biomaterials_2023_122124 crossref_primary_10_1016_j_jare_2022_09_005 crossref_primary_10_1016_j_biomaterials_2021_120746 crossref_primary_10_1016_j_colsurfb_2023_113449 crossref_primary_10_1016_j_actbio_2021_02_028 crossref_primary_10_3389_fbioe_2021_770121 crossref_primary_10_1016_j_ijbiomac_2022_11_116 crossref_primary_10_1088_1748_605X_ac68bc crossref_primary_10_1016_j_cej_2024_150549 crossref_primary_10_1016_j_isci_2025_111830 crossref_primary_10_1021_acsbiomaterials_3c00535 crossref_primary_10_1021_acsnano_0c05681 crossref_primary_10_3389_fmed_2023_1193660 crossref_primary_10_1002_adhm_202304387 crossref_primary_10_1152_ajpheart_00674_2021 crossref_primary_10_1016_j_cytogfr_2023_12_004 crossref_primary_10_1002_ird3_77 crossref_primary_10_3390_biomimetics9070377 crossref_primary_10_1186_s40824_022_00321_2 crossref_primary_10_1016_j_gendis_2024_101388 crossref_primary_10_1016_j_biomaterials_2024_122877 crossref_primary_10_1039_D2TB00478J crossref_primary_10_1002_adhm_202200045 crossref_primary_10_1016_j_actbio_2019_07_057 crossref_primary_10_1016_j_apsb_2022_08_020 crossref_primary_10_1007_s12015_020_10053_2 crossref_primary_10_1039_D1TB01398J crossref_primary_10_3390_cells11060939 crossref_primary_10_1039_D1BM01653A crossref_primary_10_1002_adhm_202101103 crossref_primary_10_1016_j_jconrel_2020_01_043 crossref_primary_10_1002_adhm_202201384 crossref_primary_10_1007_s42242_020_00107_2 crossref_primary_10_3389_fbioe_2024_1385032 crossref_primary_10_1126_sciadv_adf7858 crossref_primary_10_1021_acsnano_4c12064 crossref_primary_10_1016_j_ejpb_2021_11_002 crossref_primary_10_3390_cells9040991 crossref_primary_10_3389_fbioe_2024_1410863 crossref_primary_10_1016_j_jacbts_2022_12_009 crossref_primary_10_1016_j_addr_2021_113960 crossref_primary_10_1016_j_bioactmat_2022_07_022 crossref_primary_10_3389_fbioe_2020_00083 crossref_primary_10_1007_s13770_022_00448_2 crossref_primary_10_1080_09205063_2021_1909413 |
Cites_doi | 10.1126/scitranslmed.aaa4549 10.1016/j.jvs.2016.05.096 10.1155/2015/659890 10.1016/j.biomaterials.2017.08.014 10.1152/physrev.00024.2005 10.1089/scd.2012.0395 10.1038/nrcardio.2010.115 10.1038/srep35319 10.1038/nm0196-90 10.1159/000082013 10.1038/nm1364 10.1161/CIRCIMAGING.113.000382 10.1073/pnas.86.6.2018 10.1161/01.RES.0000249379.55535.21 10.1016/j.febslet.2015.03.031 10.1111/micc.12324 10.1172/JCI117205 10.1038/ncomms7676 10.1161/CIRCRESAHA.118.312945 10.1161/CIRCULATIONAHA.117.027597 10.1146/annurev-physiol-021014-071641 10.1016/j.jacc.2017.05.061 10.1242/jcs.111.19.2977 10.1039/C6BM00178E 10.1016/j.jconrel.2007.04.002 10.1038/nature10146 10.1161/ATVBAHA.113.302070 10.1093/cvr/cvp182 10.1073/pnas.0704581104 10.1007/s12195-016-0458-3 10.1016/j.biomaterials.2017.04.030 10.1002/stem.2575 10.1161/CIRCRESAHA.115.308021 10.1177/1074248412453875 10.1016/j.biomaterials.2012.09.046 10.1002/cbic.201400043 10.1038/nrcardio.2013.77 10.1002/advs.201800006 10.1016/j.biomaterials.2006.10.029 10.1007/s00395-011-0221-9 10.1016/j.biomaterials.2011.09.024 10.1016/j.stem.2011.06.008 10.1007/s13105-014-0373-9 10.1038/s41598-017-03851-1 10.1016/j.ijpharm.2016.09.045 10.1161/hc0502.102969 10.1161/CIRCULATIONAHA.107.732867 10.1371/journal.pone.0033115 10.1016/j.biomaterials.2014.03.078 10.3727/096368913X667709 10.1016/j.actbio.2014.02.042 10.1016/j.biomaterials.2011.10.037 10.1038/nature01323 10.1007/s00018-015-1876-4 10.1016/j.cell.2016.01.043 10.1177/0883911512469707 10.1007/s00223-013-9712-z 10.1073/pnas.0805133106 10.1021/am401706w 10.1016/j.jvs.2007.12.038 10.1359/jbmr.070810 10.1161/CIRCRESAHA.113.301036 |
ContentType | Journal Article |
Copyright | 2019 Copyright © 2019. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2019 – notice: Copyright © 2019. Published by Elsevier Ltd. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biomaterials.2019.01.049 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1878-5905 |
EndPage | 24 |
ExternalDocumentID | 30875515 10_1016_j_biomaterials_2019_01_049 S014296121930047X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAIAV AAYOK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG RIG AAYXX AGRNS BNPGV CITATION SSH NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c538t-ac6439e102f83870df22272a7e6a9b9b23ef9db2738f3145917ce608513bfee03 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 1878-5905 |
IngestDate | Fri Sep 05 10:05:33 EDT 2025 Fri Sep 05 03:26:57 EDT 2025 Thu Apr 03 07:05:55 EDT 2025 Thu Apr 24 23:12:42 EDT 2025 Tue Jul 01 01:19:37 EDT 2025 Fri Feb 23 02:34:47 EST 2024 Tue Aug 26 20:00:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Calcification Small extracellular vesicles (sEVs) Tissue regeneration Hyperlipidemia Immunomodulation Vascular grafts |
Language | English |
License | Copyright © 2019. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c538t-ac6439e102f83870df22272a7e6a9b9b23ef9db2738f3145917ce608513bfee03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 30875515 |
PQID | 2193161891 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2221036830 proquest_miscellaneous_2193161891 pubmed_primary_30875515 crossref_primary_10_1016_j_biomaterials_2019_01_049 crossref_citationtrail_10_1016_j_biomaterials_2019_01_049 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2019_01_049 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2019_01_049 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2019 2019-06-00 20190601 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: June 2019 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Lu, Zhang, Sun, Gong, Yang, Li (bib51) 2013; 5 Reiner (bib5) 1999; 105 Wang, Sun, Zhang, Ou, Che, Zhang (bib33) 2013; 28 Feng, Zhang, Wei, Bo, Xu, Xian (bib4) 2009; 84 Noishiki, Tomizawa, Yamane, Matsumoto (bib19) 1996; 2 Gaudino, Antoniades, Benedetto, Deb, Di, Di (bib3) 2017; 136 Chen, Liu, Ma, Wong, Guo, Chacko (bib35) 2016; 9 Tedgui, Mallat (bib46) 2006; 86 Hashi, Zhu, Yang, Young, Hsiao, Wang (bib15) 2007; 104 Danon, Kowatch, Roth (bib31) 1989; 86 Guan, Stankus, Wagner (bib55) 2007; 120 Aikawa, Nahrendorf, Figueiredo, Swirski, Shtatland, Kohler (bib58) 2007; 116 Sugiura, Tara, Nakayama, Yi, Lee, Shoji (bib1) 2016; 66 Dan, Jie, Rui, Ma, Chen, Feng (bib36) 2016; 6 Issa Bhaloo, Wu, A LEB, Yu, Gu, Xie (bib37) 2018; 123 Lu, Zhang, Geng, Peng, Jayaraman, Chen (bib11) 2015; 6 Tkach, Théry (bib56) 2016; 164 Chávezgalán, Olleros, Vesin, Garcia (bib10) 2015; 6 Gu, Hong, Potter, Qu, Xu (bib14) 2017; 24 Dr, Prof (bib39) 2002; 41 Grainger, Metcalfe, Grace, Mosedale (bib71) 1998; 111 Yao, Wang, Cui, Xu, Wang, Zhang (bib34) 2014; 10 Demer, Tintut (bib57) 2014; 34 L'Heureux, Dusserre, Konig, Victor, Keire, Wight (bib38) 2006; 12 Juncos, Textor (bib44) 2015; 9 Merinogonzález, Zuñiga, Escudero, Ormazabal, Reyes, Novalamperti (bib18) 2016; 7 Kastelowitz, Yin (bib64) 2014; 15 Bessueille, Magne (bib8) 2015; 72 Adutlerlieber, Benmordechai, Naftalishani, Asher, Dan, Raanani (bib24) 2013; 18 Wu, Rementer, Giachelli (bib9) 2013; 93 Watson, Boström, Ravindranath, Lam, Norton, Demer (bib70) 1994; 93 Seifu, Purnama, Mequanint, Mantovani (bib50) 2013; 10 Hoshi, Lith, Jen, Allen, Lapidos, Ameer (bib41) 2013; 34 Li, Yan, Wang, Qian, Zhang, Shen (bib67) 2013; 22 Bonafè, Guarnieri, Muscari (bib23) 2015; 71 New, Goettsch, Aikawa, Marchini, Shibasaki, Yabusaki (bib13) 2013; 113 Kanki-Horimoto, Horimoto, Mieno, Kishida, Watanabe, Furuya (bib17) 2006; 114 De, Tille, Mugnai, Mrowczynski, Gurny, Möller (bib2) 2012; 33 Du, Zhang, Zhang, Wang, Nie, Tao (bib26) 2017; 133 Johnson, Leopold, Loscalzo (bib47) 2006; 99 Wang, Cui, Wang, Yang, Wu, Wang (bib32) 2014; 35 Fu, Gao, Liang, Wang, Huang, Ma (bib12) 2016; 119 Dayan, Yannarelli, Billia, Filomeno, Wang, Davies (bib25) 2011; 106 Caplan, Correa (bib21) 2011; 9 Moe, Chen (bib60) 2005; 23 Jiang, Suen, Wang, Zhang, Wertheim, Ameer (bib52) 2017; 144 Pederson, Ruan, Westendorf, Khosla, Oursler (bib63) 2008; 105 Raza, Blackstone, Houghtaling, Rajeswaran, Riaz, Bakaeen (bib49) 2017; 70 Phinney, Pittenger (bib28) 2017; 35 Evans, Hocking, Osgood, Voskresensky, Dmowska, Kilchrist (bib43) 2015; 7 Du, Wang, Zhao, Li, Kong, Yang (bib53) 2012; 33 Bennett, Ouyang, Ma, Zeng, Gerin, Sousa (bib69) 2010; 22 Erez, Zhang, Witwer Kenneth, Mattson Mark (bib29) 2015; 264 Pan, Yang, Wei, Wang, Jiao, Moraga (bib40) 2018 Vilas, Cecilia, Yong Song, Jan (bib30) 2014; 31 Nakamura, Miyaki, Ishitobi, Matsuyama, Nakasa, Kamei (bib66) 2015; 589 Pan, Zhou, Wei, Zhang, Wang, Zhu (bib42) 2017; 7 Bruno, Grange, Collino, Deregibus, Cantaluppi, Biancone (bib68) 2012; 7 Kourembanas (bib27) 2015; 77 Wang, Zheng, Wu, Wang, Zhang, Wang (bib45) 2016; 4 Alexandre, Amorim, Caseiro, Pereira, Alvites, Rêma (bib22) 2016; 513 Abdelbaky, Corsini, Figueroa, Fontanez, Subramanian, Ferencik (bib59) 2013; 6 Sage, Yin, Demer (bib48) 2010; 7 Horwood (bib62) 2015; 51 Liang, Ding, Zhang, Tse, Lian (bib20) 2014; 23 Libby (bib6) 2002; 420 Nillesen, Geutjes, Wismans, Schalkwijk, Daamen, van Kuppevelt (bib54) 2007; 28 Yin, Patel, Territo, Saini, Parhami, Demer (bib61) 2002; 105 Libby, Ridker, Hansson (bib7) 2011; 473 Kang, Ma, Cai, Huang, Paul, Liang (bib65) 2015; 2015 Mirza, Hyvelin, Rochefort, Lermusiaux, Antier, Awede (bib16) 2008; 47 Bessueille (10.1016/j.biomaterials.2019.01.049_bib8) 2015; 72 Gu (10.1016/j.biomaterials.2019.01.049_bib14) 2017; 24 Feng (10.1016/j.biomaterials.2019.01.049_bib4) 2009; 84 Pan (10.1016/j.biomaterials.2019.01.049_bib42) 2017; 7 Moe (10.1016/j.biomaterials.2019.01.049_bib60) 2005; 23 Yin (10.1016/j.biomaterials.2019.01.049_bib61) 2002; 105 Fu (10.1016/j.biomaterials.2019.01.049_bib12) 2016; 119 Juncos (10.1016/j.biomaterials.2019.01.049_bib44) 2015; 9 Gaudino (10.1016/j.biomaterials.2019.01.049_bib3) 2017; 136 New (10.1016/j.biomaterials.2019.01.049_bib13) 2013; 113 Mirza (10.1016/j.biomaterials.2019.01.049_bib16) 2008; 47 Evans (10.1016/j.biomaterials.2019.01.049_bib43) 2015; 7 Issa Bhaloo (10.1016/j.biomaterials.2019.01.049_bib37) 2018; 123 Kourembanas (10.1016/j.biomaterials.2019.01.049_bib27) 2015; 77 Li (10.1016/j.biomaterials.2019.01.049_bib67) 2013; 22 Hoshi (10.1016/j.biomaterials.2019.01.049_bib41) 2013; 34 Demer (10.1016/j.biomaterials.2019.01.049_bib57) 2014; 34 Pan (10.1016/j.biomaterials.2019.01.049_bib40) 2018 Jiang (10.1016/j.biomaterials.2019.01.049_bib52) 2017; 144 Lu (10.1016/j.biomaterials.2019.01.049_bib11) 2015; 6 Phinney (10.1016/j.biomaterials.2019.01.049_bib28) 2017; 35 Chávezgalán (10.1016/j.biomaterials.2019.01.049_bib10) 2015; 6 Grainger (10.1016/j.biomaterials.2019.01.049_bib71) 1998; 111 Aikawa (10.1016/j.biomaterials.2019.01.049_bib58) 2007; 116 Nillesen (10.1016/j.biomaterials.2019.01.049_bib54) 2007; 28 Dr (10.1016/j.biomaterials.2019.01.049_bib39) 2002; 41 Du (10.1016/j.biomaterials.2019.01.049_bib26) 2017; 133 Johnson (10.1016/j.biomaterials.2019.01.049_bib47) 2006; 99 Dan (10.1016/j.biomaterials.2019.01.049_bib36) 2016; 6 Wu (10.1016/j.biomaterials.2019.01.049_bib9) 2013; 93 Caplan (10.1016/j.biomaterials.2019.01.049_bib21) 2011; 9 Liang (10.1016/j.biomaterials.2019.01.049_bib20) 2014; 23 Abdelbaky (10.1016/j.biomaterials.2019.01.049_bib59) 2013; 6 Tkach (10.1016/j.biomaterials.2019.01.049_bib56) 2016; 164 Adutlerlieber (10.1016/j.biomaterials.2019.01.049_bib24) 2013; 18 De (10.1016/j.biomaterials.2019.01.049_bib2) 2012; 33 Watson (10.1016/j.biomaterials.2019.01.049_bib70) 1994; 93 Guan (10.1016/j.biomaterials.2019.01.049_bib55) 2007; 120 Hashi (10.1016/j.biomaterials.2019.01.049_bib15) 2007; 104 Erez (10.1016/j.biomaterials.2019.01.049_bib29) 2015; 264 Kanki-Horimoto (10.1016/j.biomaterials.2019.01.049_bib17) 2006; 114 Merinogonzález (10.1016/j.biomaterials.2019.01.049_bib18) 2016; 7 Raza (10.1016/j.biomaterials.2019.01.049_bib49) 2017; 70 Seifu (10.1016/j.biomaterials.2019.01.049_bib50) 2013; 10 L'Heureux (10.1016/j.biomaterials.2019.01.049_bib38) 2006; 12 Horwood (10.1016/j.biomaterials.2019.01.049_bib62) 2015; 51 Wang (10.1016/j.biomaterials.2019.01.049_bib45) 2016; 4 Chen (10.1016/j.biomaterials.2019.01.049_bib35) 2016; 9 Sugiura (10.1016/j.biomaterials.2019.01.049_bib1) 2016; 66 Vilas (10.1016/j.biomaterials.2019.01.049_bib30) 2014; 31 Pederson (10.1016/j.biomaterials.2019.01.049_bib63) 2008; 105 Dayan (10.1016/j.biomaterials.2019.01.049_bib25) 2011; 106 Wang (10.1016/j.biomaterials.2019.01.049_bib33) 2013; 28 Libby (10.1016/j.biomaterials.2019.01.049_bib6) 2002; 420 Bennett (10.1016/j.biomaterials.2019.01.049_bib69) 2010; 22 Alexandre (10.1016/j.biomaterials.2019.01.049_bib22) 2016; 513 Tedgui (10.1016/j.biomaterials.2019.01.049_bib46) 2006; 86 Du (10.1016/j.biomaterials.2019.01.049_bib53) 2012; 33 Nakamura (10.1016/j.biomaterials.2019.01.049_bib66) 2015; 589 Reiner (10.1016/j.biomaterials.2019.01.049_bib5) 1999; 105 Noishiki (10.1016/j.biomaterials.2019.01.049_bib19) 1996; 2 Libby (10.1016/j.biomaterials.2019.01.049_bib7) 2011; 473 Danon (10.1016/j.biomaterials.2019.01.049_bib31) 1989; 86 Lu (10.1016/j.biomaterials.2019.01.049_bib51) 2013; 5 Wang (10.1016/j.biomaterials.2019.01.049_bib32) 2014; 35 Kang (10.1016/j.biomaterials.2019.01.049_bib65) 2015; 2015 Bruno (10.1016/j.biomaterials.2019.01.049_bib68) 2012; 7 Yao (10.1016/j.biomaterials.2019.01.049_bib34) 2014; 10 Sage (10.1016/j.biomaterials.2019.01.049_bib48) 2010; 7 Kastelowitz (10.1016/j.biomaterials.2019.01.049_bib64) 2014; 15 Bonafè (10.1016/j.biomaterials.2019.01.049_bib23) 2015; 71 |
References_xml | – volume: 6 start-page: 6676 year: 2015 ident: bib11 article-title: Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization publication-title: Nat. Commun. – volume: 23 start-page: 64 year: 2005 end-page: 71 ident: bib60 article-title: Inflammation and vascular calcification publication-title: Blood Purif. – volume: 84 start-page: 155 year: 2009 end-page: 163 ident: bib4 article-title: Regulatory T cells ameliorate hyperhomocysteinaemia-accelerated atherosclerosis in apoE-/- mice publication-title: Cardiovasc. Res. – volume: 111 start-page: 2977 year: 1998 end-page: 2988 ident: bib71 article-title: Transforming growth factor-beta dynamically regulates vascular smooth muscle differentiation in vivo publication-title: J. Cell Sci. – volume: 18 start-page: 78 year: 2013 end-page: 86 ident: bib24 article-title: Human macrophage regulation via interaction with cardiac adipose tissue-derived mesenchymal stromal cells publication-title: J. Cardiovasc. Pharmacol. Ther. – volume: 164 start-page: 1226 year: 2016 end-page: 1232 ident: bib56 article-title: Communication by extracellular vesicles: where we are and where we need to go publication-title: Cell – volume: 119 start-page: 261 year: 2016 ident: bib12 article-title: Shift of macrophage phenotype due to cartilage oligomeric matrix protein deficiency drives atherosclerotic calcification publication-title: Circ. Res. – volume: 86 start-page: 515 year: 2006 end-page: 581 ident: bib46 article-title: Cytokines in atherosclerosis: pathogenic and regulatory pathways publication-title: Physiol. Rev. – volume: 113 start-page: 72 year: 2013 end-page: 77 ident: bib13 article-title: Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques publication-title: Circ. Res. – volume: 12 start-page: 361 year: 2006 end-page: 365 ident: bib38 article-title: Human tissue-engineered blood vessels for adult arterial revascularization publication-title: Nat. Med. – volume: 120 start-page: 70 year: 2007 end-page: 78 ident: bib55 article-title: Biodegradable elastomeric scaffolds with basic fibroblast growth factor release publication-title: J. Contr. Release Off. J. Contr. Release Soc. – volume: 10 start-page: 410 year: 2013 end-page: 421 ident: bib50 article-title: Small-diameter vascular tissue engineering publication-title: Nat. Rev. Cardiol. – volume: 513 start-page: 332 year: 2016 end-page: 346 ident: bib22 article-title: Long term performance evaluation of small-diameter vascular grafts based on polyvinyl alcohol hydrogel and dextran and MSCs-based therapies using the ovine pre-clinical animal model publication-title: Int. J. Pharm. – volume: 35 start-page: 851 year: 2017 ident: bib28 article-title: Concise review: MSC-derived exosomes for cell-free therapy publication-title: Stem Cell. – volume: 144 start-page: 166 year: 2017 ident: bib52 article-title: Vascular scaffolds with enhanced antioxidant activity inhibit graft calcification publication-title: Biomaterials – volume: 420 start-page: 868 year: 2002 end-page: 874 ident: bib6 article-title: Atherosclerosis in inflammation publication-title: Nature – volume: 33 start-page: 762 year: 2012 end-page: 770 ident: bib53 article-title: Gradient nanofibrous chitosan/poly ɛ-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering publication-title: Biomaterials – volume: 15 start-page: 923 year: 2014 end-page: 928 ident: bib64 article-title: Exosomes and microvesicles: identification and targeting by particle size and lipid chemical probes publication-title: Chembiochem – volume: 9 start-page: 11 year: 2011 end-page: 15 ident: bib21 article-title: The MSC: an injury drugstore publication-title: Cell Stem Cell – volume: 22 start-page: 845 year: 2013 end-page: 854 ident: bib67 article-title: Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis publication-title: Stem Cell. Dev. – volume: 35 start-page: 5700 year: 2014 end-page: 5710 ident: bib32 article-title: The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration publication-title: Biomaterials – volume: 123 start-page: 451 year: 2018 end-page: 466 ident: bib37 article-title: Binding of dickkopf-3 to CXCR7 enhances vascular progenitor cell migration and degradable graft regeneration publication-title: Circ. Res. – volume: 86 start-page: 2018 year: 1989 end-page: 2020 ident: bib31 article-title: Promotion of wound repair in old mice by local injection of macrophages publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 9 start-page: 509 year: 2016 end-page: 529 ident: bib35 article-title: Elucidation of exosome migration across the blood-brain barrier model in vitro publication-title: Cell. Mol. Bioeng. – volume: 31 start-page: 24783 year: 2014 ident: bib30 article-title: Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum publication-title: J. Extracell. Vesicles – volume: 7 year: 2010 ident: bib48 article-title: Regulatory mechanisms in atherosclerotic calcification publication-title: Nat. Rev. Cardiol. – volume: 6 start-page: 747 year: 2013 end-page: 754 ident: bib59 article-title: Focal arterial inflammation precedes subsequent calcification in the same location: a longitudinal FDG-PET/CT study publication-title: Circ. Cardiovasc. Imag. – volume: 24 year: 2017 ident: bib14 article-title: Mesenchymal stem cells and vascular regeneration publication-title: Microcirculation – volume: 589 start-page: 1257 year: 2015 end-page: 1265 ident: bib66 article-title: Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration publication-title: FEBS Lett. – volume: 72 start-page: 2475 year: 2015 end-page: 2489 ident: bib8 article-title: Inflammation: a culprit for vascular calcification in atherosclerosis and diabetes publication-title: Cell. Mol. Life Sci. – volume: 114 start-page: I327 year: 2006 ident: bib17 article-title: Synthetic vascular prosthesis impregnated with mesenchymal stem cells overexpressing endothelial nitric oxide synthase publication-title: Circulation – volume: 28 start-page: 154 year: 2013 end-page: 166 ident: bib33 article-title: Functionalization of electrospun poly( -caprolactone) scaffold with heparin and vascular endothelial growth factors for potential application as vascular grafts publication-title: J. Bioact. Compat Polym. – volume: 70 start-page: 515 year: 2017 end-page: 524 ident: bib49 article-title: Influence of diabetes on long-term coronary artery bypass graft patency publication-title: J. Am. Coll. Cardiol. – volume: 105 start-page: 650 year: 2002 end-page: 655 ident: bib61 article-title: Monocyte/macrophage regulation of vascular calcification in vitro publication-title: Circulation – volume: 28 start-page: 1123 year: 2007 end-page: 1131 ident: bib54 article-title: Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF publication-title: Biomaterials – volume: 7 start-page: 3615 year: 2017 ident: bib42 article-title: Small-diameter hybrid vascular grafts composed of polycaprolactone and polydioxanone fibers publication-title: Sci. Rep. – volume: 34 start-page: 30 year: 2013 end-page: 41 ident: bib41 article-title: The blood and vascular cell compatibility of heparin-modified ePTFE vascular grafts publication-title: Biomaterials – volume: 7 year: 2015 ident: bib43 article-title: MK2 inhibitory peptide delivered in nanopolyplexes prevents vascular graft intimal hyperplasia publication-title: Sci. Transl. Med. – volume: 10 start-page: 2739 year: 2014 end-page: 2749 ident: bib34 article-title: Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization publication-title: Acta Biomater. – volume: 71 start-page: 141 year: 2015 end-page: 153 ident: bib23 article-title: Nitric oxide regulates multiple functions and fate of adult progenitor and stem cells publication-title: J. Physiol. Biochem. – volume: 51 start-page: 1 year: 2015 end-page: 8 ident: bib62 article-title: Macrophage polarization and bone formation: a review publication-title: Clin. Rev. Allergy Immunol. – volume: 99 start-page: 1044 year: 2006 end-page: 1059 ident: bib47 article-title: Vascular calcification: pathobiological mechanisms and clinical implications publication-title: Circ. Res. – volume: 116 start-page: 2841 year: 2007 ident: bib58 article-title: Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo publication-title: Circulation – volume: 2015 start-page: 1 year: 2015 end-page: 14 ident: bib65 article-title: Exosomes secreted from CXCR4 overexpressing mesenchymal stem cells promote cardioprotection via akt signaling pathway following myocardial infarction publication-title: Stem Cell. Int. – volume: 93 start-page: 2106 year: 1994 end-page: 2113 ident: bib70 article-title: TGF-beta 1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify publication-title: J. Clin. Investig. – volume: 473 start-page: 317 year: 2011 ident: bib7 article-title: Progress and challenges in translating the biology of atherosclerosis publication-title: Nature – volume: 34 start-page: 715 year: 2014 end-page: 723 ident: bib57 article-title: Inflammatory, metabolic, and genetic mechanisms of vascular calcification publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 133 start-page: 70 year: 2017 end-page: 81 ident: bib26 article-title: Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer publication-title: Biomaterials – volume: 264 start-page: 26373 year: 2015 ident: bib29 article-title: Extracellular vesicle–depleted fetal bovine and human sera have reduced capacity to support cell growth publication-title: J. Extracell. Vesicles – volume: 2 start-page: 90 year: 1996 end-page: 93 ident: bib19 article-title: Autocrine angiogenic vascular prosthesis with bone marrow transplantation publication-title: Nat. Med. – volume: 47 start-page: 1313 year: 2008 end-page: 1321 ident: bib16 article-title: Undifferentiated mesenchymal stem cells seeded on a vascular prosthesis contribute to the restoration of a physiologic vascular wall publication-title: J. Vasc. Surg. – volume: 9 year: 2015 ident: bib44 article-title: Current approaches to atherosclerotic obstructive renal artery stenosis publication-title: Therap. Adv. Cardiovasc. Dis. – year: 2018 ident: bib40 article-title: Histone deacetylase 7‐derived peptides play a vital role in vascular repair and regeneration publication-title: Adv. Sci. – volume: 6 start-page: 263 year: 2015 ident: bib10 article-title: Much more than M1 and M2 macrophages, there are also CD169+ and TCR+ macrophages publication-title: Front. Immunol. – volume: 66 start-page: 243 year: 2016 ident: bib1 article-title: Fast-degrading bioresorbable arterial vascular graft with high cellular infiltration inhibits calcification of the graft publication-title: J. Vasc. Surg. – volume: 4 start-page: 1485 year: 2016 end-page: 1492 ident: bib45 article-title: Differences in the performance of PCL-based vascular grafts as abdominal aorta substitutes in healthy and diabetic rats publication-title: Biomater. Sci. – volume: 5 start-page: 7360 year: 2013 end-page: 7369 ident: bib51 article-title: Synthetic ePTFE grafts coated with an anti-CD133 antibody-functionalized heparin/collagen multilayer with rapid in vivo endothelialization properties publication-title: ACS Appl. Mater. Interfaces – volume: 105 start-page: 20764 year: 2008 end-page: 20769 ident: bib63 article-title: Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 23 start-page: 1045 year: 2014 ident: bib20 article-title: Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives publication-title: Cell Transplant. – volume: 33 start-page: 38 year: 2012 end-page: 47 ident: bib2 article-title: Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model publication-title: Biomaterials – volume: 105 start-page: 1135 year: 1999 ident: bib5 article-title: Inflammation and atherosclerosis publication-title: Circulation – volume: 93 start-page: 365 year: 2013 end-page: 373 ident: bib9 article-title: Vascular calcification: an update on mechanisms and challenges in treatment publication-title: Calcif. Tissue Int. – volume: 22 start-page: 1924 year: 2010 end-page: 1932 ident: bib69 article-title: Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation publication-title: J. Bone Miner. Res. – volume: 7 year: 2012 ident: bib68 article-title: Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury publication-title: PLoS One – volume: 136 start-page: 1749 year: 2017 end-page: 1764 ident: bib3 article-title: Mechanisms, consequences, and prevention of coronary graft failure publication-title: Circulation – volume: 7 start-page: 24 year: 2016 ident: bib18 article-title: Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potential clinical application publication-title: Front. Physiol. – volume: 106 start-page: 1299 year: 2011 ident: bib25 article-title: Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction publication-title: Basic Res. Cardiol. – volume: 41 start-page: 391 year: 2002 end-page: 412 ident: bib39 article-title: Heparin–protein interactions publication-title: Angew Chem. Int. Ed. Engl. – volume: 104 start-page: 11915 year: 2007 end-page: 11920 ident: bib15 article-title: Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 77 start-page: 13 year: 2015 end-page: 27 ident: bib27 article-title: Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy publication-title: Annu. Rev. Physiol. – volume: 6 start-page: 35319 year: 2016 ident: bib36 article-title: Hydroxysafflor yellow A alleviates myocardial ischemia/reperfusion in hyperlipidemic animals through the suppression of TLR4 signaling publication-title: Sci. Rep. – volume: 7 year: 2015 ident: 10.1016/j.biomaterials.2019.01.049_bib43 article-title: MK2 inhibitory peptide delivered in nanopolyplexes prevents vascular graft intimal hyperplasia publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaa4549 – volume: 66 start-page: 243 year: 2016 ident: 10.1016/j.biomaterials.2019.01.049_bib1 article-title: Fast-degrading bioresorbable arterial vascular graft with high cellular infiltration inhibits calcification of the graft publication-title: J. Vasc. Surg. doi: 10.1016/j.jvs.2016.05.096 – volume: 2015 start-page: 1 year: 2015 ident: 10.1016/j.biomaterials.2019.01.049_bib65 article-title: Exosomes secreted from CXCR4 overexpressing mesenchymal stem cells promote cardioprotection via akt signaling pathway following myocardial infarction publication-title: Stem Cell. Int. doi: 10.1155/2015/659890 – volume: 144 start-page: 166 year: 2017 ident: 10.1016/j.biomaterials.2019.01.049_bib52 article-title: Vascular scaffolds with enhanced antioxidant activity inhibit graft calcification publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.08.014 – volume: 86 start-page: 515 year: 2006 ident: 10.1016/j.biomaterials.2019.01.049_bib46 article-title: Cytokines in atherosclerosis: pathogenic and regulatory pathways publication-title: Physiol. Rev. doi: 10.1152/physrev.00024.2005 – volume: 22 start-page: 845 year: 2013 ident: 10.1016/j.biomaterials.2019.01.049_bib67 article-title: Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis publication-title: Stem Cell. Dev. doi: 10.1089/scd.2012.0395 – volume: 7 year: 2010 ident: 10.1016/j.biomaterials.2019.01.049_bib48 article-title: Regulatory mechanisms in atherosclerotic calcification publication-title: Nat. Rev. Cardiol. doi: 10.1038/nrcardio.2010.115 – volume: 6 start-page: 35319 year: 2016 ident: 10.1016/j.biomaterials.2019.01.049_bib36 article-title: Hydroxysafflor yellow A alleviates myocardial ischemia/reperfusion in hyperlipidemic animals through the suppression of TLR4 signaling publication-title: Sci. Rep. doi: 10.1038/srep35319 – volume: 105 start-page: 1135 year: 1999 ident: 10.1016/j.biomaterials.2019.01.049_bib5 article-title: Inflammation and atherosclerosis publication-title: Circulation – volume: 31 start-page: 24783 year: 2014 ident: 10.1016/j.biomaterials.2019.01.049_bib30 article-title: Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum publication-title: J. Extracell. Vesicles – volume: 2 start-page: 90 year: 1996 ident: 10.1016/j.biomaterials.2019.01.049_bib19 article-title: Autocrine angiogenic vascular prosthesis with bone marrow transplantation publication-title: Nat. Med. doi: 10.1038/nm0196-90 – volume: 23 start-page: 64 year: 2005 ident: 10.1016/j.biomaterials.2019.01.049_bib60 article-title: Inflammation and vascular calcification publication-title: Blood Purif. doi: 10.1159/000082013 – volume: 51 start-page: 1 year: 2015 ident: 10.1016/j.biomaterials.2019.01.049_bib62 article-title: Macrophage polarization and bone formation: a review publication-title: Clin. Rev. Allergy Immunol. – volume: 12 start-page: 361 year: 2006 ident: 10.1016/j.biomaterials.2019.01.049_bib38 article-title: Human tissue-engineered blood vessels for adult arterial revascularization publication-title: Nat. Med. doi: 10.1038/nm1364 – volume: 6 start-page: 747 year: 2013 ident: 10.1016/j.biomaterials.2019.01.049_bib59 article-title: Focal arterial inflammation precedes subsequent calcification in the same location: a longitudinal FDG-PET/CT study publication-title: Circ. Cardiovasc. Imag. doi: 10.1161/CIRCIMAGING.113.000382 – volume: 86 start-page: 2018 year: 1989 ident: 10.1016/j.biomaterials.2019.01.049_bib31 article-title: Promotion of wound repair in old mice by local injection of macrophages publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.86.6.2018 – volume: 99 start-page: 1044 year: 2006 ident: 10.1016/j.biomaterials.2019.01.049_bib47 article-title: Vascular calcification: pathobiological mechanisms and clinical implications publication-title: Circ. Res. doi: 10.1161/01.RES.0000249379.55535.21 – volume: 589 start-page: 1257 year: 2015 ident: 10.1016/j.biomaterials.2019.01.049_bib66 article-title: Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration publication-title: FEBS Lett. doi: 10.1016/j.febslet.2015.03.031 – volume: 24 year: 2017 ident: 10.1016/j.biomaterials.2019.01.049_bib14 article-title: Mesenchymal stem cells and vascular regeneration publication-title: Microcirculation doi: 10.1111/micc.12324 – volume: 93 start-page: 2106 year: 1994 ident: 10.1016/j.biomaterials.2019.01.049_bib70 article-title: TGF-beta 1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify publication-title: J. Clin. Investig. doi: 10.1172/JCI117205 – volume: 6 start-page: 6676 year: 2015 ident: 10.1016/j.biomaterials.2019.01.049_bib11 article-title: Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization publication-title: Nat. Commun. doi: 10.1038/ncomms7676 – volume: 123 start-page: 451 year: 2018 ident: 10.1016/j.biomaterials.2019.01.049_bib37 article-title: Binding of dickkopf-3 to CXCR7 enhances vascular progenitor cell migration and degradable graft regeneration publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.118.312945 – volume: 136 start-page: 1749 year: 2017 ident: 10.1016/j.biomaterials.2019.01.049_bib3 article-title: Mechanisms, consequences, and prevention of coronary graft failure publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.117.027597 – volume: 77 start-page: 13 year: 2015 ident: 10.1016/j.biomaterials.2019.01.049_bib27 article-title: Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-021014-071641 – volume: 70 start-page: 515 year: 2017 ident: 10.1016/j.biomaterials.2019.01.049_bib49 article-title: Influence of diabetes on long-term coronary artery bypass graft patency publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2017.05.061 – volume: 111 start-page: 2977 issue: Pt 19 year: 1998 ident: 10.1016/j.biomaterials.2019.01.049_bib71 article-title: Transforming growth factor-beta dynamically regulates vascular smooth muscle differentiation in vivo publication-title: J. Cell Sci. doi: 10.1242/jcs.111.19.2977 – volume: 4 start-page: 1485 year: 2016 ident: 10.1016/j.biomaterials.2019.01.049_bib45 article-title: Differences in the performance of PCL-based vascular grafts as abdominal aorta substitutes in healthy and diabetic rats publication-title: Biomater. Sci. doi: 10.1039/C6BM00178E – volume: 120 start-page: 70 year: 2007 ident: 10.1016/j.biomaterials.2019.01.049_bib55 article-title: Biodegradable elastomeric scaffolds with basic fibroblast growth factor release publication-title: J. Contr. Release Off. J. Contr. Release Soc. doi: 10.1016/j.jconrel.2007.04.002 – volume: 473 start-page: 317 year: 2011 ident: 10.1016/j.biomaterials.2019.01.049_bib7 article-title: Progress and challenges in translating the biology of atherosclerosis publication-title: Nature doi: 10.1038/nature10146 – volume: 34 start-page: 715 year: 2014 ident: 10.1016/j.biomaterials.2019.01.049_bib57 article-title: Inflammatory, metabolic, and genetic mechanisms of vascular calcification publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.113.302070 – volume: 84 start-page: 155 year: 2009 ident: 10.1016/j.biomaterials.2019.01.049_bib4 article-title: Regulatory T cells ameliorate hyperhomocysteinaemia-accelerated atherosclerosis in apoE-/- mice publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvp182 – volume: 104 start-page: 11915 year: 2007 ident: 10.1016/j.biomaterials.2019.01.049_bib15 article-title: Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0704581104 – volume: 9 start-page: 509 year: 2016 ident: 10.1016/j.biomaterials.2019.01.049_bib35 article-title: Elucidation of exosome migration across the blood-brain barrier model in vitro publication-title: Cell. Mol. Bioeng. doi: 10.1007/s12195-016-0458-3 – volume: 133 start-page: 70 year: 2017 ident: 10.1016/j.biomaterials.2019.01.049_bib26 article-title: Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.04.030 – volume: 35 start-page: 851 year: 2017 ident: 10.1016/j.biomaterials.2019.01.049_bib28 article-title: Concise review: MSC-derived exosomes for cell-free therapy publication-title: Stem Cell. doi: 10.1002/stem.2575 – volume: 119 start-page: 261 year: 2016 ident: 10.1016/j.biomaterials.2019.01.049_bib12 article-title: Shift of macrophage phenotype due to cartilage oligomeric matrix protein deficiency drives atherosclerotic calcification publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.115.308021 – volume: 18 start-page: 78 year: 2013 ident: 10.1016/j.biomaterials.2019.01.049_bib24 article-title: Human macrophage regulation via interaction with cardiac adipose tissue-derived mesenchymal stromal cells publication-title: J. Cardiovasc. Pharmacol. Ther. doi: 10.1177/1074248412453875 – volume: 34 start-page: 30 year: 2013 ident: 10.1016/j.biomaterials.2019.01.049_bib41 article-title: The blood and vascular cell compatibility of heparin-modified ePTFE vascular grafts publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.09.046 – volume: 15 start-page: 923 year: 2014 ident: 10.1016/j.biomaterials.2019.01.049_bib64 article-title: Exosomes and microvesicles: identification and targeting by particle size and lipid chemical probes publication-title: Chembiochem doi: 10.1002/cbic.201400043 – volume: 10 start-page: 410 year: 2013 ident: 10.1016/j.biomaterials.2019.01.049_bib50 article-title: Small-diameter vascular tissue engineering publication-title: Nat. Rev. Cardiol. doi: 10.1038/nrcardio.2013.77 – year: 2018 ident: 10.1016/j.biomaterials.2019.01.049_bib40 article-title: Histone deacetylase 7‐derived peptides play a vital role in vascular repair and regeneration publication-title: Adv. Sci. doi: 10.1002/advs.201800006 – volume: 28 start-page: 1123 year: 2007 ident: 10.1016/j.biomaterials.2019.01.049_bib54 article-title: Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.10.029 – volume: 6 start-page: 263 year: 2015 ident: 10.1016/j.biomaterials.2019.01.049_bib10 article-title: Much more than M1 and M2 macrophages, there are also CD169+ and TCR+ macrophages publication-title: Front. Immunol. – volume: 264 start-page: 26373 year: 2015 ident: 10.1016/j.biomaterials.2019.01.049_bib29 article-title: Extracellular vesicle–depleted fetal bovine and human sera have reduced capacity to support cell growth publication-title: J. Extracell. Vesicles – volume: 106 start-page: 1299 year: 2011 ident: 10.1016/j.biomaterials.2019.01.049_bib25 article-title: Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction publication-title: Basic Res. Cardiol. doi: 10.1007/s00395-011-0221-9 – volume: 33 start-page: 38 year: 2012 ident: 10.1016/j.biomaterials.2019.01.049_bib2 article-title: Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.09.024 – volume: 114 start-page: I327 year: 2006 ident: 10.1016/j.biomaterials.2019.01.049_bib17 article-title: Synthetic vascular prosthesis impregnated with mesenchymal stem cells overexpressing endothelial nitric oxide synthase publication-title: Circulation – volume: 9 start-page: 11 year: 2011 ident: 10.1016/j.biomaterials.2019.01.049_bib21 article-title: The MSC: an injury drugstore publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.06.008 – volume: 71 start-page: 141 year: 2015 ident: 10.1016/j.biomaterials.2019.01.049_bib23 article-title: Nitric oxide regulates multiple functions and fate of adult progenitor and stem cells publication-title: J. Physiol. Biochem. doi: 10.1007/s13105-014-0373-9 – volume: 9 year: 2015 ident: 10.1016/j.biomaterials.2019.01.049_bib44 article-title: Current approaches to atherosclerotic obstructive renal artery stenosis publication-title: Therap. Adv. Cardiovasc. Dis. – volume: 7 start-page: 3615 year: 2017 ident: 10.1016/j.biomaterials.2019.01.049_bib42 article-title: Small-diameter hybrid vascular grafts composed of polycaprolactone and polydioxanone fibers publication-title: Sci. Rep. doi: 10.1038/s41598-017-03851-1 – volume: 513 start-page: 332 year: 2016 ident: 10.1016/j.biomaterials.2019.01.049_bib22 article-title: Long term performance evaluation of small-diameter vascular grafts based on polyvinyl alcohol hydrogel and dextran and MSCs-based therapies using the ovine pre-clinical animal model publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2016.09.045 – volume: 105 start-page: 650 year: 2002 ident: 10.1016/j.biomaterials.2019.01.049_bib61 article-title: Monocyte/macrophage regulation of vascular calcification in vitro publication-title: Circulation doi: 10.1161/hc0502.102969 – volume: 116 start-page: 2841 year: 2007 ident: 10.1016/j.biomaterials.2019.01.049_bib58 article-title: Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.732867 – volume: 7 year: 2012 ident: 10.1016/j.biomaterials.2019.01.049_bib68 article-title: Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury publication-title: PLoS One doi: 10.1371/journal.pone.0033115 – volume: 7 start-page: 24 year: 2016 ident: 10.1016/j.biomaterials.2019.01.049_bib18 article-title: Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potential clinical application publication-title: Front. Physiol. – volume: 41 start-page: 391 year: 2002 ident: 10.1016/j.biomaterials.2019.01.049_bib39 article-title: Heparin–protein interactions publication-title: Angew Chem. Int. Ed. Engl. – volume: 35 start-page: 5700 year: 2014 ident: 10.1016/j.biomaterials.2019.01.049_bib32 article-title: The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.03.078 – volume: 23 start-page: 1045 year: 2014 ident: 10.1016/j.biomaterials.2019.01.049_bib20 article-title: Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives publication-title: Cell Transplant. doi: 10.3727/096368913X667709 – volume: 10 start-page: 2739 year: 2014 ident: 10.1016/j.biomaterials.2019.01.049_bib34 article-title: Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.02.042 – volume: 33 start-page: 762 year: 2012 ident: 10.1016/j.biomaterials.2019.01.049_bib53 article-title: Gradient nanofibrous chitosan/poly ɛ-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.10.037 – volume: 420 start-page: 868 year: 2002 ident: 10.1016/j.biomaterials.2019.01.049_bib6 article-title: Atherosclerosis in inflammation publication-title: Nature doi: 10.1038/nature01323 – volume: 72 start-page: 2475 year: 2015 ident: 10.1016/j.biomaterials.2019.01.049_bib8 article-title: Inflammation: a culprit for vascular calcification in atherosclerosis and diabetes publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-015-1876-4 – volume: 164 start-page: 1226 year: 2016 ident: 10.1016/j.biomaterials.2019.01.049_bib56 article-title: Communication by extracellular vesicles: where we are and where we need to go publication-title: Cell doi: 10.1016/j.cell.2016.01.043 – volume: 28 start-page: 154 year: 2013 ident: 10.1016/j.biomaterials.2019.01.049_bib33 article-title: Functionalization of electrospun poly( -caprolactone) scaffold with heparin and vascular endothelial growth factors for potential application as vascular grafts publication-title: J. Bioact. Compat Polym. doi: 10.1177/0883911512469707 – volume: 93 start-page: 365 year: 2013 ident: 10.1016/j.biomaterials.2019.01.049_bib9 article-title: Vascular calcification: an update on mechanisms and challenges in treatment publication-title: Calcif. Tissue Int. doi: 10.1007/s00223-013-9712-z – volume: 105 start-page: 20764 year: 2008 ident: 10.1016/j.biomaterials.2019.01.049_bib63 article-title: Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0805133106 – volume: 5 start-page: 7360 year: 2013 ident: 10.1016/j.biomaterials.2019.01.049_bib51 article-title: Synthetic ePTFE grafts coated with an anti-CD133 antibody-functionalized heparin/collagen multilayer with rapid in vivo endothelialization properties publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am401706w – volume: 47 start-page: 1313 year: 2008 ident: 10.1016/j.biomaterials.2019.01.049_bib16 article-title: Undifferentiated mesenchymal stem cells seeded on a vascular prosthesis contribute to the restoration of a physiologic vascular wall publication-title: J. Vasc. Surg. doi: 10.1016/j.jvs.2007.12.038 – volume: 22 start-page: 1924 year: 2010 ident: 10.1016/j.biomaterials.2019.01.049_bib69 article-title: Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.070810 – volume: 113 start-page: 72 year: 2013 ident: 10.1016/j.biomaterials.2019.01.049_bib13 article-title: Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.113.301036 |
SSID | ssj0014042 |
Score | 2.5913255 |
Snippet | Vascular grafts often exhibit low patency rates in clinical settings due to the pathological environment within the patients requiring the surgery. Mesenchymal... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13 |
SubjectTerms | animal models bioactive compounds bone formation Calcification cytokines endothelium heparin Hyperlipidemia Immunomodulation macrophages medicine mesenchymal stromal cells microRNA patients phenotype rats Small extracellular vesicles (sEVs) smooth muscle surgery thrombosis Tissue regeneration tissue repair vascular endothelial growth factors Vascular grafts |
Title | MSC-derived sEVs enhance patency and inhibit calcification of synthetic vascular grafts by immunomodulation in a rat model of hyperlipidemia |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S014296121930047X https://dx.doi.org/10.1016/j.biomaterials.2019.01.049 https://www.ncbi.nlm.nih.gov/pubmed/30875515 https://www.proquest.com/docview/2193161891 https://www.proquest.com/docview/2221036830 |
Volume | 204 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZWi4TggGB5lcdqkLiGJnGSxkIcVtWuCqh7gUW9WXY8plktSdVmkXrhF_CjmcmjWiRAlTg28rRpZjz-HH_zjRCvEWmRxDgNMJEySJxUQR7zeyuVpalXockLPtGdn2ezi-TDIl0ciOlQC8O0yj73dzm9zdb9lXH_NMershwzLSlWLIClWDVqsuAK9mTC-vlvfuxoHqweE3c0xjjg0YPwaMvx4hJ303SuZpqXaiU8WVfzz4vU30Bouxid3Rf3ehQJJ92NPhAHWB2Juze0BY_E7Xl_av5Q_Jx_mgaOrn9HB5vTLxvAasnehpVhyLwFUzkoq2VpywbIaS1Pr3UZ1B4224pQIv0SDLRV-Lo2vtmA3ULJ9SX1t9r1bcDoa8AAhRW0PXbYfklb3fVV2bWiNY_Exdnp5-ks6LswBAUlwyYwBYMWJCDic0mz23kun43NBDOjrLKxRK-c5RIfL6Mkpf1fgRkjOWk9Yigfi8OqrvCpAB-mPpwYn7rIJNY6lcvERpmTkYwws3Yk1PDYddFLlHOnjCs9cNEu9U2XaXaZDiNNLhsJubNddUIde1m9Hbyrh1JUSp6a1pO9rN_trH8L2r3tXw0BpWlW81GNqbC-pkEU1NzKQEX_GBPTdl1muQxH4kkXjbt_zjqPhIXTZ_95h8_FHf7UceNeiMNmfY0vCYU19ridZsfi1sn7j7PzX2G5NbE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTeLjAcH4Kp9G4jVqEidpLMTDVG3q2NoXNtQ3y47tNWgkVZsh9X_gj-YucaohAarEa-JLHN_5_HN89zuAD9biImnjNLAJ50FiuAjymP5biSxNnQhVXtCJ7nSWTS6Tz_N0vgfjPheGwiq97-98euut_ZWhH83hsiyHFJYUCyLAEsQaNZrfgQNip0JjPzg6PZvMtocJSdjW0KH2AQn03KNtmBdluaum0zZFeomWxZOoNf-8Tv0Nh7br0ckjeOiBJDvq-voY9mx1CA9u0Qsewt2pPzh_Aj-nX8aBwes_rGHr469rZqsFKZwtFaHmDVOVYWW1KHXZMNRbG6rXao3Vjq03FQJFfBPrI1fZ1Uq5Zs30hpWUYlJ_r42vBIaPYYqhZbG2zA7JL3C3u7ouu2q06ilcnhxfjCeBL8QQFOgPm0AVhFssYhGXc5zgxlEGbaxGNlNCCx1z64TRlOXjeJSkuAUsbEZgjmtnbcifwX5VV_YFMBemLhwpl5pIJVobkfNER5nhEY9spvUARD_ssvAs5VQs41r24Wjf5G2VSVKZDCOJKhsA38ouO66OnaQ-9tqVfTYq-k-JS8pO0p-20r_Z7c7y73uDkjix6bRGVba-wUZo11TNQET_aBPjjp1nOQ8H8Lyzxu2XE9UjwuH05X_28B3cm1xMz-X56ezsFdynO12o3GvYb1Y39g2Cska_9ZPuF9SiOGI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSC-derived+sEVs+enhance+patency+and+inhibit+calcification+of+synthetic+vascular+grafts+by+immunomodulation+in+a+rat+model+of+hyperlipidemia&rft.jtitle=Biomaterials&rft.au=Wei%2C+Yongzhen&rft.au=Wu%2C+Yifan&rft.au=Zhao%2C+Runxia&rft.au=Zhang%2C+Kaiyue&rft.date=2019-06-01&rft.pub=Elsevier+Ltd&rft.issn=0142-9612&rft.eissn=1878-5905&rft.volume=204&rft.spage=13&rft.epage=24&rft_id=info:doi/10.1016%2Fj.biomaterials.2019.01.049&rft.externalDocID=S014296121930047X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |