MSC-derived sEVs enhance patency and inhibit calcification of synthetic vascular grafts by immunomodulation in a rat model of hyperlipidemia

Vascular grafts often exhibit low patency rates in clinical settings due to the pathological environment within the patients requiring the surgery. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have attracted increasing attention. These sEVs contain many potent signaling mo...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 204; pp. 13 - 24
Main Authors Wei, Yongzhen, Wu, Yifan, Zhao, Runxia, Zhang, Kaiyue, Midgley, Adam C., Kong, Deling, Li, Zongjin, Zhao, Qiang
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.06.2019
Subjects
Online AccessGet full text
ISSN0142-9612
1878-5905
1878-5905
DOI10.1016/j.biomaterials.2019.01.049

Cover

Loading…
Abstract Vascular grafts often exhibit low patency rates in clinical settings due to the pathological environment within the patients requiring the surgery. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have attracted increasing attention. These sEVs contain many potent signaling molecules that play important roles in tissue regeneration, such as microRNA and cytokines. In this study, a sEVs-functionalized vascular graft was developed, and in vivo performance was systematically evaluated in a rat model of hyperlipidemia. Electrospun poly (ε-caprolactone) (PCL) vascular grafts were first modified with heparin, to enhance the anti-thrombogenicity. MSC-derived sEVs were loaded onto the heparinized PCL grafts to obtain functional vascular grafts. As-prepared vascular grafts were implanted to replace a segment of rat abdominal artery (1 cm) for up to 3 months. Results showed that the incorporation of MSC-derived sEVs effectively inhibited thrombosis and calcification, thus enhancing the patency of vascular grafts. Furthermore, regeneration of the endothelium and vascular smooth muscle was markedly enhanced, as attributed to the bioactive molecules within the sEVs, including vascular endothelial growth factor (VEGF), miRNA126, and miRNA145. More importantly, MSC-derived sEVs demonstrated a robust immunomodulatory effect, that is, they induced the transition of macrophages from a pro-inflammatory and atherogenic (M1) phenotype to an anti-inflammatory and anti-osteogenic (M2c) phenotype. This phenotypic switch was confirmed in both in vitro and in vivo analyses. Taken together, these results suggest that fabrication of vascular grafts with immunomodulatory function can provide an effective approach to improve vascular performance and functionality, with translational implication in cardiovascular regenerative medicine.
AbstractList Vascular grafts often exhibit low patency rates in clinical settings due to the pathological environment within the patients requiring the surgery. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have attracted increasing attention. These sEVs contain many potent signaling molecules that play important roles in tissue regeneration, such as microRNA and cytokines. In this study, a sEVs-functionalized vascular graft was developed, and in vivo performance was systematically evaluated in a rat model of hyperlipidemia. Electrospun poly (ε-caprolactone) (PCL) vascular grafts were first modified with heparin, to enhance the anti-thrombogenicity. MSC-derived sEVs were loaded onto the heparinized PCL grafts to obtain functional vascular grafts. As-prepared vascular grafts were implanted to replace a segment of rat abdominal artery (1 cm) for up to 3 months. Results showed that the incorporation of MSC-derived sEVs effectively inhibited thrombosis and calcification, thus enhancing the patency of vascular grafts. Furthermore, regeneration of the endothelium and vascular smooth muscle was markedly enhanced, as attributed to the bioactive molecules within the sEVs, including vascular endothelial growth factor (VEGF), miRNA126, and miRNA145. More importantly, MSC-derived sEVs demonstrated a robust immunomodulatory effect, that is, they induced the transition of macrophages from a pro-inflammatory and atherogenic (M1) phenotype to an anti-inflammatory and anti-osteogenic (M2c) phenotype. This phenotypic switch was confirmed in both in vitro and in vivo analyses. Taken together, these results suggest that fabrication of vascular grafts with immunomodulatory function can provide an effective approach to improve vascular performance and functionality, with translational implication in cardiovascular regenerative medicine.
Vascular grafts often exhibit low patency rates in clinical settings due to the pathological environment within the patients requiring the surgery. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have attracted increasing attention. These sEVs contain many potent signaling molecules that play important roles in tissue regeneration, such as microRNA and cytokines. In this study, a sEVs-functionalized vascular graft was developed, and in vivo performance was systematically evaluated in a rat model of hyperlipidemia. Electrospun poly (ε-caprolactone) (PCL) vascular grafts were first modified with heparin, to enhance the anti-thrombogenicity. MSC-derived sEVs were loaded onto the heparinized PCL grafts to obtain functional vascular grafts. As-prepared vascular grafts were implanted to replace a segment of rat abdominal artery (1 cm) for up to 3 months. Results showed that the incorporation of MSC-derived sEVs effectively inhibited thrombosis and calcification, thus enhancing the patency of vascular grafts. Furthermore, regeneration of the endothelium and vascular smooth muscle was markedly enhanced, as attributed to the bioactive molecules within the sEVs, including vascular endothelial growth factor (VEGF), miRNA126, and miRNA145. More importantly, MSC-derived sEVs demonstrated a robust immunomodulatory effect, that is, they induced the transition of macrophages from a pro-inflammatory and atherogenic (M1) phenotype to an anti-inflammatory and anti-osteogenic (M2c) phenotype. This phenotypic switch was confirmed in both in vitro and in vivo analyses. Taken together, these results suggest that fabrication of vascular grafts with immunomodulatory function can provide an effective approach to improve vascular performance and functionality, with translational implication in cardiovascular regenerative medicine.Vascular grafts often exhibit low patency rates in clinical settings due to the pathological environment within the patients requiring the surgery. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have attracted increasing attention. These sEVs contain many potent signaling molecules that play important roles in tissue regeneration, such as microRNA and cytokines. In this study, a sEVs-functionalized vascular graft was developed, and in vivo performance was systematically evaluated in a rat model of hyperlipidemia. Electrospun poly (ε-caprolactone) (PCL) vascular grafts were first modified with heparin, to enhance the anti-thrombogenicity. MSC-derived sEVs were loaded onto the heparinized PCL grafts to obtain functional vascular grafts. As-prepared vascular grafts were implanted to replace a segment of rat abdominal artery (1 cm) for up to 3 months. Results showed that the incorporation of MSC-derived sEVs effectively inhibited thrombosis and calcification, thus enhancing the patency of vascular grafts. Furthermore, regeneration of the endothelium and vascular smooth muscle was markedly enhanced, as attributed to the bioactive molecules within the sEVs, including vascular endothelial growth factor (VEGF), miRNA126, and miRNA145. More importantly, MSC-derived sEVs demonstrated a robust immunomodulatory effect, that is, they induced the transition of macrophages from a pro-inflammatory and atherogenic (M1) phenotype to an anti-inflammatory and anti-osteogenic (M2c) phenotype. This phenotypic switch was confirmed in both in vitro and in vivo analyses. Taken together, these results suggest that fabrication of vascular grafts with immunomodulatory function can provide an effective approach to improve vascular performance and functionality, with translational implication in cardiovascular regenerative medicine.
Author Midgley, Adam C.
Zhao, Qiang
Li, Zongjin
Wei, Yongzhen
Kong, Deling
Zhao, Runxia
Wu, Yifan
Zhang, Kaiyue
Author_xml – sequence: 1
  givenname: Yongzhen
  surname: Wei
  fullname: Wei, Yongzhen
  organization: State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
– sequence: 2
  givenname: Yifan
  surname: Wu
  fullname: Wu, Yifan
  organization: State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
– sequence: 3
  givenname: Runxia
  surname: Zhao
  fullname: Zhao, Runxia
  organization: State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
– sequence: 4
  givenname: Kaiyue
  surname: Zhang
  fullname: Zhang, Kaiyue
  organization: Nankai University School of Medicine, Tianjin 300071, PR China
– sequence: 5
  givenname: Adam C.
  surname: Midgley
  fullname: Midgley, Adam C.
  organization: State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
– sequence: 6
  givenname: Deling
  surname: Kong
  fullname: Kong, Deling
  organization: State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
– sequence: 7
  givenname: Zongjin
  surname: Li
  fullname: Li, Zongjin
  email: zongjinli@nankai.edu.cn
  organization: Nankai University School of Medicine, Tianjin 300071, PR China
– sequence: 8
  givenname: Qiang
  surname: Zhao
  fullname: Zhao, Qiang
  email: qiangzhao@nankai.edu.cn
  organization: State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30875515$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URKeFv4AsVmwS_MjLrIChLUhFLHhsLce5Ye6QOIPtjJT_wI_G0ykIdTUry1fnfNY9xxfkzE0OCHnBWc4Zr15t8xan0UTwaIaQC8ZVznjOCvWIrHhTN1mpWHlGVowXIlMVF-fkIoQtS3dWiCfkXLKmLktersjvT1_WWZdIe-houPoeKLiNcRboLj3g7EKN6yi6DbYYqTWDxR6tiTg5OvU0LC5uIKKlexPsPBhPf3jTx0DbheI4zm4apy7N7wzoqKHeRJpmMBz8m2UHfsAddjCieUoe92kjeHZ_XpJv11df1x-y2883H9dvbzNbyiZmxlaFVMCZ6BvZ1KzrhRC1MDVURrWqFRJ61bWilk0veVEqXluoWFNy2fYATF6Sl0fuzk-_ZghRjxgsDINxMM1BJxxnsmrkCVKuJK94o3iSPr-Xzu0Ind55HI1f9N-wk-D1UWD9FIKH_p-EM31oVm_1_83qQ7OacZ2aTeY3D8wW412s0RscTkO8PyIgZbtH8DpYTB1Dhx5s1N2Ep2HePcDYAV36FMNPWE6F_AFppuGu
CitedBy_id crossref_primary_10_1155_2021_8827212
crossref_primary_10_1016_j_actbio_2025_03_033
crossref_primary_10_3389_fbioe_2021_808614
crossref_primary_10_1016_j_bioactmat_2020_10_028
crossref_primary_10_1016_j_actbio_2022_06_004
crossref_primary_10_1016_j_jconrel_2023_06_039
crossref_primary_10_1002_adhm_202100750
crossref_primary_10_4252_wjsc_v13_i1_49
crossref_primary_10_1002_adfm_202100027
crossref_primary_10_1016_j_compositesb_2023_110504
crossref_primary_10_1021_acs_analchem_3c01421
crossref_primary_10_1186_s12951_022_01529_z
crossref_primary_10_1016_j_bbadis_2023_166806
crossref_primary_10_3390_polym15234563
crossref_primary_10_1002_adfm_201909125
crossref_primary_10_1016_j_actbio_2021_01_010
crossref_primary_10_1021_acsnano_2c05847
crossref_primary_10_1016_j_yjmcc_2021_12_010
crossref_primary_10_3390_biology10030172
crossref_primary_10_1186_s43556_023_00146_y
crossref_primary_10_1002_bit_28316
crossref_primary_10_1016_j_bbrc_2024_149863
crossref_primary_10_1016_j_ccr_2020_213506
crossref_primary_10_1002_adhm_202402292
crossref_primary_10_1021_acsabm_2c00659
crossref_primary_10_1021_acsabm_3c00516
crossref_primary_10_1016_j_mtbio_2023_100832
crossref_primary_10_1016_j_bioactmat_2024_07_006
crossref_primary_10_3390_biomedicines9091257
crossref_primary_10_1016_j_vesic_2022_100018
crossref_primary_10_1007_s13770_023_00615_z
crossref_primary_10_1016_j_addr_2021_113913
crossref_primary_10_1074_jbc_RA120_012732
crossref_primary_10_2174_1389201022666210907115126
crossref_primary_10_3390_cells11182851
crossref_primary_10_1002_adhm_202100334
crossref_primary_10_3390_ijms21072466
crossref_primary_10_1016_j_vesic_2024_100061
crossref_primary_10_14336_AD_2021_1110
crossref_primary_10_3390_biom13071109
crossref_primary_10_1016_j_nantod_2022_101481
crossref_primary_10_3389_fbioe_2021_637737
crossref_primary_10_1002_pat_6080
crossref_primary_10_3390_ijms23073792
crossref_primary_10_1016_j_addr_2021_04_013
crossref_primary_10_1155_2019_5738510
crossref_primary_10_1089_scd_2021_0006
crossref_primary_10_1002_advs_202408992
crossref_primary_10_1186_s13287_022_02922_z
crossref_primary_10_1089_ars_2019_7965
crossref_primary_10_1021_acsami_0c06609
crossref_primary_10_1016_j_bioactmat_2020_11_028
crossref_primary_10_1186_s13287_021_02262_4
crossref_primary_10_1021_acsbiomaterials_4c01273
crossref_primary_10_1016_j_smaim_2023_04_002
crossref_primary_10_1002_adbi_202200087
crossref_primary_10_1021_acsami_3c00489
crossref_primary_10_1021_acsami_2c07981
crossref_primary_10_1039_D2BM01338J
crossref_primary_10_1088_1748_605X_ac9266
crossref_primary_10_1039_D3NA00666B
crossref_primary_10_3389_fcvm_2022_912358
crossref_primary_10_1016_j_biomaterials_2023_122124
crossref_primary_10_1016_j_jare_2022_09_005
crossref_primary_10_1016_j_biomaterials_2021_120746
crossref_primary_10_1016_j_colsurfb_2023_113449
crossref_primary_10_1016_j_actbio_2021_02_028
crossref_primary_10_3389_fbioe_2021_770121
crossref_primary_10_1016_j_ijbiomac_2022_11_116
crossref_primary_10_1088_1748_605X_ac68bc
crossref_primary_10_1016_j_cej_2024_150549
crossref_primary_10_1016_j_isci_2025_111830
crossref_primary_10_1021_acsbiomaterials_3c00535
crossref_primary_10_1021_acsnano_0c05681
crossref_primary_10_3389_fmed_2023_1193660
crossref_primary_10_1002_adhm_202304387
crossref_primary_10_1152_ajpheart_00674_2021
crossref_primary_10_1016_j_cytogfr_2023_12_004
crossref_primary_10_1002_ird3_77
crossref_primary_10_3390_biomimetics9070377
crossref_primary_10_1186_s40824_022_00321_2
crossref_primary_10_1016_j_gendis_2024_101388
crossref_primary_10_1016_j_biomaterials_2024_122877
crossref_primary_10_1039_D2TB00478J
crossref_primary_10_1002_adhm_202200045
crossref_primary_10_1016_j_actbio_2019_07_057
crossref_primary_10_1016_j_apsb_2022_08_020
crossref_primary_10_1007_s12015_020_10053_2
crossref_primary_10_1039_D1TB01398J
crossref_primary_10_3390_cells11060939
crossref_primary_10_1039_D1BM01653A
crossref_primary_10_1002_adhm_202101103
crossref_primary_10_1016_j_jconrel_2020_01_043
crossref_primary_10_1002_adhm_202201384
crossref_primary_10_1007_s42242_020_00107_2
crossref_primary_10_3389_fbioe_2024_1385032
crossref_primary_10_1126_sciadv_adf7858
crossref_primary_10_1021_acsnano_4c12064
crossref_primary_10_1016_j_ejpb_2021_11_002
crossref_primary_10_3390_cells9040991
crossref_primary_10_3389_fbioe_2024_1410863
crossref_primary_10_1016_j_jacbts_2022_12_009
crossref_primary_10_1016_j_addr_2021_113960
crossref_primary_10_1016_j_bioactmat_2022_07_022
crossref_primary_10_3389_fbioe_2020_00083
crossref_primary_10_1007_s13770_022_00448_2
crossref_primary_10_1080_09205063_2021_1909413
Cites_doi 10.1126/scitranslmed.aaa4549
10.1016/j.jvs.2016.05.096
10.1155/2015/659890
10.1016/j.biomaterials.2017.08.014
10.1152/physrev.00024.2005
10.1089/scd.2012.0395
10.1038/nrcardio.2010.115
10.1038/srep35319
10.1038/nm0196-90
10.1159/000082013
10.1038/nm1364
10.1161/CIRCIMAGING.113.000382
10.1073/pnas.86.6.2018
10.1161/01.RES.0000249379.55535.21
10.1016/j.febslet.2015.03.031
10.1111/micc.12324
10.1172/JCI117205
10.1038/ncomms7676
10.1161/CIRCRESAHA.118.312945
10.1161/CIRCULATIONAHA.117.027597
10.1146/annurev-physiol-021014-071641
10.1016/j.jacc.2017.05.061
10.1242/jcs.111.19.2977
10.1039/C6BM00178E
10.1016/j.jconrel.2007.04.002
10.1038/nature10146
10.1161/ATVBAHA.113.302070
10.1093/cvr/cvp182
10.1073/pnas.0704581104
10.1007/s12195-016-0458-3
10.1016/j.biomaterials.2017.04.030
10.1002/stem.2575
10.1161/CIRCRESAHA.115.308021
10.1177/1074248412453875
10.1016/j.biomaterials.2012.09.046
10.1002/cbic.201400043
10.1038/nrcardio.2013.77
10.1002/advs.201800006
10.1016/j.biomaterials.2006.10.029
10.1007/s00395-011-0221-9
10.1016/j.biomaterials.2011.09.024
10.1016/j.stem.2011.06.008
10.1007/s13105-014-0373-9
10.1038/s41598-017-03851-1
10.1016/j.ijpharm.2016.09.045
10.1161/hc0502.102969
10.1161/CIRCULATIONAHA.107.732867
10.1371/journal.pone.0033115
10.1016/j.biomaterials.2014.03.078
10.3727/096368913X667709
10.1016/j.actbio.2014.02.042
10.1016/j.biomaterials.2011.10.037
10.1038/nature01323
10.1007/s00018-015-1876-4
10.1016/j.cell.2016.01.043
10.1177/0883911512469707
10.1007/s00223-013-9712-z
10.1073/pnas.0805133106
10.1021/am401706w
10.1016/j.jvs.2007.12.038
10.1359/jbmr.070810
10.1161/CIRCRESAHA.113.301036
ContentType Journal Article
Copyright 2019
Copyright © 2019. Published by Elsevier Ltd.
Copyright_xml – notice: 2019
– notice: Copyright © 2019. Published by Elsevier Ltd.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.biomaterials.2019.01.049
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1878-5905
EndPage 24
ExternalDocumentID 30875515
10_1016_j_biomaterials_2019_01_049
S014296121930047X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAIAV
AAYOK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
RIG
AAYXX
AGRNS
BNPGV
CITATION
SSH
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c538t-ac6439e102f83870df22272a7e6a9b9b23ef9db2738f3145917ce608513bfee03
IEDL.DBID .~1
ISSN 0142-9612
1878-5905
IngestDate Fri Sep 05 10:05:33 EDT 2025
Fri Sep 05 03:26:57 EDT 2025
Thu Apr 03 07:05:55 EDT 2025
Thu Apr 24 23:12:42 EDT 2025
Tue Jul 01 01:19:37 EDT 2025
Fri Feb 23 02:34:47 EST 2024
Tue Aug 26 20:00:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Calcification
Small extracellular vesicles (sEVs)
Tissue regeneration
Hyperlipidemia
Immunomodulation
Vascular grafts
Language English
License Copyright © 2019. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c538t-ac6439e102f83870df22272a7e6a9b9b23ef9db2738f3145917ce608513bfee03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30875515
PQID 2193161891
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2221036830
proquest_miscellaneous_2193161891
pubmed_primary_30875515
crossref_primary_10_1016_j_biomaterials_2019_01_049
crossref_citationtrail_10_1016_j_biomaterials_2019_01_049
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2019_01_049
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2019_01_049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2019
2019-06-00
20190601
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: June 2019
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lu, Zhang, Sun, Gong, Yang, Li (bib51) 2013; 5
Reiner (bib5) 1999; 105
Wang, Sun, Zhang, Ou, Che, Zhang (bib33) 2013; 28
Feng, Zhang, Wei, Bo, Xu, Xian (bib4) 2009; 84
Noishiki, Tomizawa, Yamane, Matsumoto (bib19) 1996; 2
Gaudino, Antoniades, Benedetto, Deb, Di, Di (bib3) 2017; 136
Chen, Liu, Ma, Wong, Guo, Chacko (bib35) 2016; 9
Tedgui, Mallat (bib46) 2006; 86
Hashi, Zhu, Yang, Young, Hsiao, Wang (bib15) 2007; 104
Danon, Kowatch, Roth (bib31) 1989; 86
Guan, Stankus, Wagner (bib55) 2007; 120
Aikawa, Nahrendorf, Figueiredo, Swirski, Shtatland, Kohler (bib58) 2007; 116
Sugiura, Tara, Nakayama, Yi, Lee, Shoji (bib1) 2016; 66
Dan, Jie, Rui, Ma, Chen, Feng (bib36) 2016; 6
Issa Bhaloo, Wu, A LEB, Yu, Gu, Xie (bib37) 2018; 123
Lu, Zhang, Geng, Peng, Jayaraman, Chen (bib11) 2015; 6
Tkach, Théry (bib56) 2016; 164
Chávezgalán, Olleros, Vesin, Garcia (bib10) 2015; 6
Gu, Hong, Potter, Qu, Xu (bib14) 2017; 24
Dr, Prof (bib39) 2002; 41
Grainger, Metcalfe, Grace, Mosedale (bib71) 1998; 111
Yao, Wang, Cui, Xu, Wang, Zhang (bib34) 2014; 10
Demer, Tintut (bib57) 2014; 34
L'Heureux, Dusserre, Konig, Victor, Keire, Wight (bib38) 2006; 12
Juncos, Textor (bib44) 2015; 9
Merinogonzález, Zuñiga, Escudero, Ormazabal, Reyes, Novalamperti (bib18) 2016; 7
Kastelowitz, Yin (bib64) 2014; 15
Bessueille, Magne (bib8) 2015; 72
Adutlerlieber, Benmordechai, Naftalishani, Asher, Dan, Raanani (bib24) 2013; 18
Wu, Rementer, Giachelli (bib9) 2013; 93
Watson, Boström, Ravindranath, Lam, Norton, Demer (bib70) 1994; 93
Seifu, Purnama, Mequanint, Mantovani (bib50) 2013; 10
Hoshi, Lith, Jen, Allen, Lapidos, Ameer (bib41) 2013; 34
Li, Yan, Wang, Qian, Zhang, Shen (bib67) 2013; 22
Bonafè, Guarnieri, Muscari (bib23) 2015; 71
New, Goettsch, Aikawa, Marchini, Shibasaki, Yabusaki (bib13) 2013; 113
Kanki-Horimoto, Horimoto, Mieno, Kishida, Watanabe, Furuya (bib17) 2006; 114
De, Tille, Mugnai, Mrowczynski, Gurny, Möller (bib2) 2012; 33
Du, Zhang, Zhang, Wang, Nie, Tao (bib26) 2017; 133
Johnson, Leopold, Loscalzo (bib47) 2006; 99
Wang, Cui, Wang, Yang, Wu, Wang (bib32) 2014; 35
Fu, Gao, Liang, Wang, Huang, Ma (bib12) 2016; 119
Dayan, Yannarelli, Billia, Filomeno, Wang, Davies (bib25) 2011; 106
Caplan, Correa (bib21) 2011; 9
Moe, Chen (bib60) 2005; 23
Jiang, Suen, Wang, Zhang, Wertheim, Ameer (bib52) 2017; 144
Pederson, Ruan, Westendorf, Khosla, Oursler (bib63) 2008; 105
Raza, Blackstone, Houghtaling, Rajeswaran, Riaz, Bakaeen (bib49) 2017; 70
Phinney, Pittenger (bib28) 2017; 35
Evans, Hocking, Osgood, Voskresensky, Dmowska, Kilchrist (bib43) 2015; 7
Du, Wang, Zhao, Li, Kong, Yang (bib53) 2012; 33
Bennett, Ouyang, Ma, Zeng, Gerin, Sousa (bib69) 2010; 22
Erez, Zhang, Witwer Kenneth, Mattson Mark (bib29) 2015; 264
Pan, Yang, Wei, Wang, Jiao, Moraga (bib40) 2018
Vilas, Cecilia, Yong Song, Jan (bib30) 2014; 31
Nakamura, Miyaki, Ishitobi, Matsuyama, Nakasa, Kamei (bib66) 2015; 589
Pan, Zhou, Wei, Zhang, Wang, Zhu (bib42) 2017; 7
Bruno, Grange, Collino, Deregibus, Cantaluppi, Biancone (bib68) 2012; 7
Kourembanas (bib27) 2015; 77
Wang, Zheng, Wu, Wang, Zhang, Wang (bib45) 2016; 4
Alexandre, Amorim, Caseiro, Pereira, Alvites, Rêma (bib22) 2016; 513
Abdelbaky, Corsini, Figueroa, Fontanez, Subramanian, Ferencik (bib59) 2013; 6
Sage, Yin, Demer (bib48) 2010; 7
Horwood (bib62) 2015; 51
Liang, Ding, Zhang, Tse, Lian (bib20) 2014; 23
Libby (bib6) 2002; 420
Nillesen, Geutjes, Wismans, Schalkwijk, Daamen, van Kuppevelt (bib54) 2007; 28
Yin, Patel, Territo, Saini, Parhami, Demer (bib61) 2002; 105
Libby, Ridker, Hansson (bib7) 2011; 473
Kang, Ma, Cai, Huang, Paul, Liang (bib65) 2015; 2015
Mirza, Hyvelin, Rochefort, Lermusiaux, Antier, Awede (bib16) 2008; 47
Bessueille (10.1016/j.biomaterials.2019.01.049_bib8) 2015; 72
Gu (10.1016/j.biomaterials.2019.01.049_bib14) 2017; 24
Feng (10.1016/j.biomaterials.2019.01.049_bib4) 2009; 84
Pan (10.1016/j.biomaterials.2019.01.049_bib42) 2017; 7
Moe (10.1016/j.biomaterials.2019.01.049_bib60) 2005; 23
Yin (10.1016/j.biomaterials.2019.01.049_bib61) 2002; 105
Fu (10.1016/j.biomaterials.2019.01.049_bib12) 2016; 119
Juncos (10.1016/j.biomaterials.2019.01.049_bib44) 2015; 9
Gaudino (10.1016/j.biomaterials.2019.01.049_bib3) 2017; 136
New (10.1016/j.biomaterials.2019.01.049_bib13) 2013; 113
Mirza (10.1016/j.biomaterials.2019.01.049_bib16) 2008; 47
Evans (10.1016/j.biomaterials.2019.01.049_bib43) 2015; 7
Issa Bhaloo (10.1016/j.biomaterials.2019.01.049_bib37) 2018; 123
Kourembanas (10.1016/j.biomaterials.2019.01.049_bib27) 2015; 77
Li (10.1016/j.biomaterials.2019.01.049_bib67) 2013; 22
Hoshi (10.1016/j.biomaterials.2019.01.049_bib41) 2013; 34
Demer (10.1016/j.biomaterials.2019.01.049_bib57) 2014; 34
Pan (10.1016/j.biomaterials.2019.01.049_bib40) 2018
Jiang (10.1016/j.biomaterials.2019.01.049_bib52) 2017; 144
Lu (10.1016/j.biomaterials.2019.01.049_bib11) 2015; 6
Phinney (10.1016/j.biomaterials.2019.01.049_bib28) 2017; 35
Chávezgalán (10.1016/j.biomaterials.2019.01.049_bib10) 2015; 6
Grainger (10.1016/j.biomaterials.2019.01.049_bib71) 1998; 111
Aikawa (10.1016/j.biomaterials.2019.01.049_bib58) 2007; 116
Nillesen (10.1016/j.biomaterials.2019.01.049_bib54) 2007; 28
Dr (10.1016/j.biomaterials.2019.01.049_bib39) 2002; 41
Du (10.1016/j.biomaterials.2019.01.049_bib26) 2017; 133
Johnson (10.1016/j.biomaterials.2019.01.049_bib47) 2006; 99
Dan (10.1016/j.biomaterials.2019.01.049_bib36) 2016; 6
Wu (10.1016/j.biomaterials.2019.01.049_bib9) 2013; 93
Caplan (10.1016/j.biomaterials.2019.01.049_bib21) 2011; 9
Liang (10.1016/j.biomaterials.2019.01.049_bib20) 2014; 23
Abdelbaky (10.1016/j.biomaterials.2019.01.049_bib59) 2013; 6
Tkach (10.1016/j.biomaterials.2019.01.049_bib56) 2016; 164
Adutlerlieber (10.1016/j.biomaterials.2019.01.049_bib24) 2013; 18
De (10.1016/j.biomaterials.2019.01.049_bib2) 2012; 33
Watson (10.1016/j.biomaterials.2019.01.049_bib70) 1994; 93
Guan (10.1016/j.biomaterials.2019.01.049_bib55) 2007; 120
Hashi (10.1016/j.biomaterials.2019.01.049_bib15) 2007; 104
Erez (10.1016/j.biomaterials.2019.01.049_bib29) 2015; 264
Kanki-Horimoto (10.1016/j.biomaterials.2019.01.049_bib17) 2006; 114
Merinogonzález (10.1016/j.biomaterials.2019.01.049_bib18) 2016; 7
Raza (10.1016/j.biomaterials.2019.01.049_bib49) 2017; 70
Seifu (10.1016/j.biomaterials.2019.01.049_bib50) 2013; 10
L'Heureux (10.1016/j.biomaterials.2019.01.049_bib38) 2006; 12
Horwood (10.1016/j.biomaterials.2019.01.049_bib62) 2015; 51
Wang (10.1016/j.biomaterials.2019.01.049_bib45) 2016; 4
Chen (10.1016/j.biomaterials.2019.01.049_bib35) 2016; 9
Sugiura (10.1016/j.biomaterials.2019.01.049_bib1) 2016; 66
Vilas (10.1016/j.biomaterials.2019.01.049_bib30) 2014; 31
Pederson (10.1016/j.biomaterials.2019.01.049_bib63) 2008; 105
Dayan (10.1016/j.biomaterials.2019.01.049_bib25) 2011; 106
Wang (10.1016/j.biomaterials.2019.01.049_bib33) 2013; 28
Libby (10.1016/j.biomaterials.2019.01.049_bib6) 2002; 420
Bennett (10.1016/j.biomaterials.2019.01.049_bib69) 2010; 22
Alexandre (10.1016/j.biomaterials.2019.01.049_bib22) 2016; 513
Tedgui (10.1016/j.biomaterials.2019.01.049_bib46) 2006; 86
Du (10.1016/j.biomaterials.2019.01.049_bib53) 2012; 33
Nakamura (10.1016/j.biomaterials.2019.01.049_bib66) 2015; 589
Reiner (10.1016/j.biomaterials.2019.01.049_bib5) 1999; 105
Noishiki (10.1016/j.biomaterials.2019.01.049_bib19) 1996; 2
Libby (10.1016/j.biomaterials.2019.01.049_bib7) 2011; 473
Danon (10.1016/j.biomaterials.2019.01.049_bib31) 1989; 86
Lu (10.1016/j.biomaterials.2019.01.049_bib51) 2013; 5
Wang (10.1016/j.biomaterials.2019.01.049_bib32) 2014; 35
Kang (10.1016/j.biomaterials.2019.01.049_bib65) 2015; 2015
Bruno (10.1016/j.biomaterials.2019.01.049_bib68) 2012; 7
Yao (10.1016/j.biomaterials.2019.01.049_bib34) 2014; 10
Sage (10.1016/j.biomaterials.2019.01.049_bib48) 2010; 7
Kastelowitz (10.1016/j.biomaterials.2019.01.049_bib64) 2014; 15
Bonafè (10.1016/j.biomaterials.2019.01.049_bib23) 2015; 71
References_xml – volume: 6
  start-page: 6676
  year: 2015
  ident: bib11
  article-title: Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization
  publication-title: Nat. Commun.
– volume: 23
  start-page: 64
  year: 2005
  end-page: 71
  ident: bib60
  article-title: Inflammation and vascular calcification
  publication-title: Blood Purif.
– volume: 84
  start-page: 155
  year: 2009
  end-page: 163
  ident: bib4
  article-title: Regulatory T cells ameliorate hyperhomocysteinaemia-accelerated atherosclerosis in apoE-/- mice
  publication-title: Cardiovasc. Res.
– volume: 111
  start-page: 2977
  year: 1998
  end-page: 2988
  ident: bib71
  article-title: Transforming growth factor-beta dynamically regulates vascular smooth muscle differentiation in vivo
  publication-title: J. Cell Sci.
– volume: 18
  start-page: 78
  year: 2013
  end-page: 86
  ident: bib24
  article-title: Human macrophage regulation via interaction with cardiac adipose tissue-derived mesenchymal stromal cells
  publication-title: J. Cardiovasc. Pharmacol. Ther.
– volume: 164
  start-page: 1226
  year: 2016
  end-page: 1232
  ident: bib56
  article-title: Communication by extracellular vesicles: where we are and where we need to go
  publication-title: Cell
– volume: 119
  start-page: 261
  year: 2016
  ident: bib12
  article-title: Shift of macrophage phenotype due to cartilage oligomeric matrix protein deficiency drives atherosclerotic calcification
  publication-title: Circ. Res.
– volume: 86
  start-page: 515
  year: 2006
  end-page: 581
  ident: bib46
  article-title: Cytokines in atherosclerosis: pathogenic and regulatory pathways
  publication-title: Physiol. Rev.
– volume: 113
  start-page: 72
  year: 2013
  end-page: 77
  ident: bib13
  article-title: Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques
  publication-title: Circ. Res.
– volume: 12
  start-page: 361
  year: 2006
  end-page: 365
  ident: bib38
  article-title: Human tissue-engineered blood vessels for adult arterial revascularization
  publication-title: Nat. Med.
– volume: 120
  start-page: 70
  year: 2007
  end-page: 78
  ident: bib55
  article-title: Biodegradable elastomeric scaffolds with basic fibroblast growth factor release
  publication-title: J. Contr. Release Off. J. Contr. Release Soc.
– volume: 10
  start-page: 410
  year: 2013
  end-page: 421
  ident: bib50
  article-title: Small-diameter vascular tissue engineering
  publication-title: Nat. Rev. Cardiol.
– volume: 513
  start-page: 332
  year: 2016
  end-page: 346
  ident: bib22
  article-title: Long term performance evaluation of small-diameter vascular grafts based on polyvinyl alcohol hydrogel and dextran and MSCs-based therapies using the ovine pre-clinical animal model
  publication-title: Int. J. Pharm.
– volume: 35
  start-page: 851
  year: 2017
  ident: bib28
  article-title: Concise review: MSC-derived exosomes for cell-free therapy
  publication-title: Stem Cell.
– volume: 144
  start-page: 166
  year: 2017
  ident: bib52
  article-title: Vascular scaffolds with enhanced antioxidant activity inhibit graft calcification
  publication-title: Biomaterials
– volume: 420
  start-page: 868
  year: 2002
  end-page: 874
  ident: bib6
  article-title: Atherosclerosis in inflammation
  publication-title: Nature
– volume: 33
  start-page: 762
  year: 2012
  end-page: 770
  ident: bib53
  article-title: Gradient nanofibrous chitosan/poly ɛ-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering
  publication-title: Biomaterials
– volume: 15
  start-page: 923
  year: 2014
  end-page: 928
  ident: bib64
  article-title: Exosomes and microvesicles: identification and targeting by particle size and lipid chemical probes
  publication-title: Chembiochem
– volume: 9
  start-page: 11
  year: 2011
  end-page: 15
  ident: bib21
  article-title: The MSC: an injury drugstore
  publication-title: Cell Stem Cell
– volume: 22
  start-page: 845
  year: 2013
  end-page: 854
  ident: bib67
  article-title: Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis
  publication-title: Stem Cell. Dev.
– volume: 35
  start-page: 5700
  year: 2014
  end-page: 5710
  ident: bib32
  article-title: The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration
  publication-title: Biomaterials
– volume: 123
  start-page: 451
  year: 2018
  end-page: 466
  ident: bib37
  article-title: Binding of dickkopf-3 to CXCR7 enhances vascular progenitor cell migration and degradable graft regeneration
  publication-title: Circ. Res.
– volume: 86
  start-page: 2018
  year: 1989
  end-page: 2020
  ident: bib31
  article-title: Promotion of wound repair in old mice by local injection of macrophages
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 9
  start-page: 509
  year: 2016
  end-page: 529
  ident: bib35
  article-title: Elucidation of exosome migration across the blood-brain barrier model in vitro
  publication-title: Cell. Mol. Bioeng.
– volume: 31
  start-page: 24783
  year: 2014
  ident: bib30
  article-title: Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum
  publication-title: J. Extracell. Vesicles
– volume: 7
  year: 2010
  ident: bib48
  article-title: Regulatory mechanisms in atherosclerotic calcification
  publication-title: Nat. Rev. Cardiol.
– volume: 6
  start-page: 747
  year: 2013
  end-page: 754
  ident: bib59
  article-title: Focal arterial inflammation precedes subsequent calcification in the same location: a longitudinal FDG-PET/CT study
  publication-title: Circ. Cardiovasc. Imag.
– volume: 24
  year: 2017
  ident: bib14
  article-title: Mesenchymal stem cells and vascular regeneration
  publication-title: Microcirculation
– volume: 589
  start-page: 1257
  year: 2015
  end-page: 1265
  ident: bib66
  article-title: Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration
  publication-title: FEBS Lett.
– volume: 72
  start-page: 2475
  year: 2015
  end-page: 2489
  ident: bib8
  article-title: Inflammation: a culprit for vascular calcification in atherosclerosis and diabetes
  publication-title: Cell. Mol. Life Sci.
– volume: 114
  start-page: I327
  year: 2006
  ident: bib17
  article-title: Synthetic vascular prosthesis impregnated with mesenchymal stem cells overexpressing endothelial nitric oxide synthase
  publication-title: Circulation
– volume: 28
  start-page: 154
  year: 2013
  end-page: 166
  ident: bib33
  article-title: Functionalization of electrospun poly( -caprolactone) scaffold with heparin and vascular endothelial growth factors for potential application as vascular grafts
  publication-title: J. Bioact. Compat Polym.
– volume: 70
  start-page: 515
  year: 2017
  end-page: 524
  ident: bib49
  article-title: Influence of diabetes on long-term coronary artery bypass graft patency
  publication-title: J. Am. Coll. Cardiol.
– volume: 105
  start-page: 650
  year: 2002
  end-page: 655
  ident: bib61
  article-title: Monocyte/macrophage regulation of vascular calcification in vitro
  publication-title: Circulation
– volume: 28
  start-page: 1123
  year: 2007
  end-page: 1131
  ident: bib54
  article-title: Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF
  publication-title: Biomaterials
– volume: 7
  start-page: 3615
  year: 2017
  ident: bib42
  article-title: Small-diameter hybrid vascular grafts composed of polycaprolactone and polydioxanone fibers
  publication-title: Sci. Rep.
– volume: 34
  start-page: 30
  year: 2013
  end-page: 41
  ident: bib41
  article-title: The blood and vascular cell compatibility of heparin-modified ePTFE vascular grafts
  publication-title: Biomaterials
– volume: 7
  year: 2015
  ident: bib43
  article-title: MK2 inhibitory peptide delivered in nanopolyplexes prevents vascular graft intimal hyperplasia
  publication-title: Sci. Transl. Med.
– volume: 10
  start-page: 2739
  year: 2014
  end-page: 2749
  ident: bib34
  article-title: Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization
  publication-title: Acta Biomater.
– volume: 71
  start-page: 141
  year: 2015
  end-page: 153
  ident: bib23
  article-title: Nitric oxide regulates multiple functions and fate of adult progenitor and stem cells
  publication-title: J. Physiol. Biochem.
– volume: 51
  start-page: 1
  year: 2015
  end-page: 8
  ident: bib62
  article-title: Macrophage polarization and bone formation: a review
  publication-title: Clin. Rev. Allergy Immunol.
– volume: 99
  start-page: 1044
  year: 2006
  end-page: 1059
  ident: bib47
  article-title: Vascular calcification: pathobiological mechanisms and clinical implications
  publication-title: Circ. Res.
– volume: 116
  start-page: 2841
  year: 2007
  ident: bib58
  article-title: Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo
  publication-title: Circulation
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 14
  ident: bib65
  article-title: Exosomes secreted from CXCR4 overexpressing mesenchymal stem cells promote cardioprotection via akt signaling pathway following myocardial infarction
  publication-title: Stem Cell. Int.
– volume: 93
  start-page: 2106
  year: 1994
  end-page: 2113
  ident: bib70
  article-title: TGF-beta 1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify
  publication-title: J. Clin. Investig.
– volume: 473
  start-page: 317
  year: 2011
  ident: bib7
  article-title: Progress and challenges in translating the biology of atherosclerosis
  publication-title: Nature
– volume: 34
  start-page: 715
  year: 2014
  end-page: 723
  ident: bib57
  article-title: Inflammatory, metabolic, and genetic mechanisms of vascular calcification
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 133
  start-page: 70
  year: 2017
  end-page: 81
  ident: bib26
  article-title: Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer
  publication-title: Biomaterials
– volume: 264
  start-page: 26373
  year: 2015
  ident: bib29
  article-title: Extracellular vesicle–depleted fetal bovine and human sera have reduced capacity to support cell growth
  publication-title: J. Extracell. Vesicles
– volume: 2
  start-page: 90
  year: 1996
  end-page: 93
  ident: bib19
  article-title: Autocrine angiogenic vascular prosthesis with bone marrow transplantation
  publication-title: Nat. Med.
– volume: 47
  start-page: 1313
  year: 2008
  end-page: 1321
  ident: bib16
  article-title: Undifferentiated mesenchymal stem cells seeded on a vascular prosthesis contribute to the restoration of a physiologic vascular wall
  publication-title: J. Vasc. Surg.
– volume: 9
  year: 2015
  ident: bib44
  article-title: Current approaches to atherosclerotic obstructive renal artery stenosis
  publication-title: Therap. Adv. Cardiovasc. Dis.
– year: 2018
  ident: bib40
  article-title: Histone deacetylase 7‐derived peptides play a vital role in vascular repair and regeneration
  publication-title: Adv. Sci.
– volume: 6
  start-page: 263
  year: 2015
  ident: bib10
  article-title: Much more than M1 and M2 macrophages, there are also CD169+ and TCR+ macrophages
  publication-title: Front. Immunol.
– volume: 66
  start-page: 243
  year: 2016
  ident: bib1
  article-title: Fast-degrading bioresorbable arterial vascular graft with high cellular infiltration inhibits calcification of the graft
  publication-title: J. Vasc. Surg.
– volume: 4
  start-page: 1485
  year: 2016
  end-page: 1492
  ident: bib45
  article-title: Differences in the performance of PCL-based vascular grafts as abdominal aorta substitutes in healthy and diabetic rats
  publication-title: Biomater. Sci.
– volume: 5
  start-page: 7360
  year: 2013
  end-page: 7369
  ident: bib51
  article-title: Synthetic ePTFE grafts coated with an anti-CD133 antibody-functionalized heparin/collagen multilayer with rapid in vivo endothelialization properties
  publication-title: ACS Appl. Mater. Interfaces
– volume: 105
  start-page: 20764
  year: 2008
  end-page: 20769
  ident: bib63
  article-title: Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 23
  start-page: 1045
  year: 2014
  ident: bib20
  article-title: Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives
  publication-title: Cell Transplant.
– volume: 33
  start-page: 38
  year: 2012
  end-page: 47
  ident: bib2
  article-title: Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model
  publication-title: Biomaterials
– volume: 105
  start-page: 1135
  year: 1999
  ident: bib5
  article-title: Inflammation and atherosclerosis
  publication-title: Circulation
– volume: 93
  start-page: 365
  year: 2013
  end-page: 373
  ident: bib9
  article-title: Vascular calcification: an update on mechanisms and challenges in treatment
  publication-title: Calcif. Tissue Int.
– volume: 22
  start-page: 1924
  year: 2010
  end-page: 1932
  ident: bib69
  article-title: Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation
  publication-title: J. Bone Miner. Res.
– volume: 7
  year: 2012
  ident: bib68
  article-title: Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury
  publication-title: PLoS One
– volume: 136
  start-page: 1749
  year: 2017
  end-page: 1764
  ident: bib3
  article-title: Mechanisms, consequences, and prevention of coronary graft failure
  publication-title: Circulation
– volume: 7
  start-page: 24
  year: 2016
  ident: bib18
  article-title: Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potential clinical application
  publication-title: Front. Physiol.
– volume: 106
  start-page: 1299
  year: 2011
  ident: bib25
  article-title: Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction
  publication-title: Basic Res. Cardiol.
– volume: 41
  start-page: 391
  year: 2002
  end-page: 412
  ident: bib39
  article-title: Heparin–protein interactions
  publication-title: Angew Chem. Int. Ed. Engl.
– volume: 104
  start-page: 11915
  year: 2007
  end-page: 11920
  ident: bib15
  article-title: Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 77
  start-page: 13
  year: 2015
  end-page: 27
  ident: bib27
  article-title: Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy
  publication-title: Annu. Rev. Physiol.
– volume: 6
  start-page: 35319
  year: 2016
  ident: bib36
  article-title: Hydroxysafflor yellow A alleviates myocardial ischemia/reperfusion in hyperlipidemic animals through the suppression of TLR4 signaling
  publication-title: Sci. Rep.
– volume: 7
  year: 2015
  ident: 10.1016/j.biomaterials.2019.01.049_bib43
  article-title: MK2 inhibitory peptide delivered in nanopolyplexes prevents vascular graft intimal hyperplasia
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaa4549
– volume: 66
  start-page: 243
  year: 2016
  ident: 10.1016/j.biomaterials.2019.01.049_bib1
  article-title: Fast-degrading bioresorbable arterial vascular graft with high cellular infiltration inhibits calcification of the graft
  publication-title: J. Vasc. Surg.
  doi: 10.1016/j.jvs.2016.05.096
– volume: 2015
  start-page: 1
  year: 2015
  ident: 10.1016/j.biomaterials.2019.01.049_bib65
  article-title: Exosomes secreted from CXCR4 overexpressing mesenchymal stem cells promote cardioprotection via akt signaling pathway following myocardial infarction
  publication-title: Stem Cell. Int.
  doi: 10.1155/2015/659890
– volume: 144
  start-page: 166
  year: 2017
  ident: 10.1016/j.biomaterials.2019.01.049_bib52
  article-title: Vascular scaffolds with enhanced antioxidant activity inhibit graft calcification
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.08.014
– volume: 86
  start-page: 515
  year: 2006
  ident: 10.1016/j.biomaterials.2019.01.049_bib46
  article-title: Cytokines in atherosclerosis: pathogenic and regulatory pathways
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00024.2005
– volume: 22
  start-page: 845
  year: 2013
  ident: 10.1016/j.biomaterials.2019.01.049_bib67
  article-title: Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis
  publication-title: Stem Cell. Dev.
  doi: 10.1089/scd.2012.0395
– volume: 7
  year: 2010
  ident: 10.1016/j.biomaterials.2019.01.049_bib48
  article-title: Regulatory mechanisms in atherosclerotic calcification
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/nrcardio.2010.115
– volume: 6
  start-page: 35319
  year: 2016
  ident: 10.1016/j.biomaterials.2019.01.049_bib36
  article-title: Hydroxysafflor yellow A alleviates myocardial ischemia/reperfusion in hyperlipidemic animals through the suppression of TLR4 signaling
  publication-title: Sci. Rep.
  doi: 10.1038/srep35319
– volume: 105
  start-page: 1135
  year: 1999
  ident: 10.1016/j.biomaterials.2019.01.049_bib5
  article-title: Inflammation and atherosclerosis
  publication-title: Circulation
– volume: 31
  start-page: 24783
  year: 2014
  ident: 10.1016/j.biomaterials.2019.01.049_bib30
  article-title: Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum
  publication-title: J. Extracell. Vesicles
– volume: 2
  start-page: 90
  year: 1996
  ident: 10.1016/j.biomaterials.2019.01.049_bib19
  article-title: Autocrine angiogenic vascular prosthesis with bone marrow transplantation
  publication-title: Nat. Med.
  doi: 10.1038/nm0196-90
– volume: 23
  start-page: 64
  year: 2005
  ident: 10.1016/j.biomaterials.2019.01.049_bib60
  article-title: Inflammation and vascular calcification
  publication-title: Blood Purif.
  doi: 10.1159/000082013
– volume: 51
  start-page: 1
  year: 2015
  ident: 10.1016/j.biomaterials.2019.01.049_bib62
  article-title: Macrophage polarization and bone formation: a review
  publication-title: Clin. Rev. Allergy Immunol.
– volume: 12
  start-page: 361
  year: 2006
  ident: 10.1016/j.biomaterials.2019.01.049_bib38
  article-title: Human tissue-engineered blood vessels for adult arterial revascularization
  publication-title: Nat. Med.
  doi: 10.1038/nm1364
– volume: 6
  start-page: 747
  year: 2013
  ident: 10.1016/j.biomaterials.2019.01.049_bib59
  article-title: Focal arterial inflammation precedes subsequent calcification in the same location: a longitudinal FDG-PET/CT study
  publication-title: Circ. Cardiovasc. Imag.
  doi: 10.1161/CIRCIMAGING.113.000382
– volume: 86
  start-page: 2018
  year: 1989
  ident: 10.1016/j.biomaterials.2019.01.049_bib31
  article-title: Promotion of wound repair in old mice by local injection of macrophages
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.86.6.2018
– volume: 99
  start-page: 1044
  year: 2006
  ident: 10.1016/j.biomaterials.2019.01.049_bib47
  article-title: Vascular calcification: pathobiological mechanisms and clinical implications
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.0000249379.55535.21
– volume: 589
  start-page: 1257
  year: 2015
  ident: 10.1016/j.biomaterials.2019.01.049_bib66
  article-title: Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2015.03.031
– volume: 24
  year: 2017
  ident: 10.1016/j.biomaterials.2019.01.049_bib14
  article-title: Mesenchymal stem cells and vascular regeneration
  publication-title: Microcirculation
  doi: 10.1111/micc.12324
– volume: 93
  start-page: 2106
  year: 1994
  ident: 10.1016/j.biomaterials.2019.01.049_bib70
  article-title: TGF-beta 1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI117205
– volume: 6
  start-page: 6676
  year: 2015
  ident: 10.1016/j.biomaterials.2019.01.049_bib11
  article-title: Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7676
– volume: 123
  start-page: 451
  year: 2018
  ident: 10.1016/j.biomaterials.2019.01.049_bib37
  article-title: Binding of dickkopf-3 to CXCR7 enhances vascular progenitor cell migration and degradable graft regeneration
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.118.312945
– volume: 136
  start-page: 1749
  year: 2017
  ident: 10.1016/j.biomaterials.2019.01.049_bib3
  article-title: Mechanisms, consequences, and prevention of coronary graft failure
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.117.027597
– volume: 77
  start-page: 13
  year: 2015
  ident: 10.1016/j.biomaterials.2019.01.049_bib27
  article-title: Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev-physiol-021014-071641
– volume: 70
  start-page: 515
  year: 2017
  ident: 10.1016/j.biomaterials.2019.01.049_bib49
  article-title: Influence of diabetes on long-term coronary artery bypass graft patency
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2017.05.061
– volume: 111
  start-page: 2977
  issue: Pt 19
  year: 1998
  ident: 10.1016/j.biomaterials.2019.01.049_bib71
  article-title: Transforming growth factor-beta dynamically regulates vascular smooth muscle differentiation in vivo
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.111.19.2977
– volume: 4
  start-page: 1485
  year: 2016
  ident: 10.1016/j.biomaterials.2019.01.049_bib45
  article-title: Differences in the performance of PCL-based vascular grafts as abdominal aorta substitutes in healthy and diabetic rats
  publication-title: Biomater. Sci.
  doi: 10.1039/C6BM00178E
– volume: 120
  start-page: 70
  year: 2007
  ident: 10.1016/j.biomaterials.2019.01.049_bib55
  article-title: Biodegradable elastomeric scaffolds with basic fibroblast growth factor release
  publication-title: J. Contr. Release Off. J. Contr. Release Soc.
  doi: 10.1016/j.jconrel.2007.04.002
– volume: 473
  start-page: 317
  year: 2011
  ident: 10.1016/j.biomaterials.2019.01.049_bib7
  article-title: Progress and challenges in translating the biology of atherosclerosis
  publication-title: Nature
  doi: 10.1038/nature10146
– volume: 34
  start-page: 715
  year: 2014
  ident: 10.1016/j.biomaterials.2019.01.049_bib57
  article-title: Inflammatory, metabolic, and genetic mechanisms of vascular calcification
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.113.302070
– volume: 84
  start-page: 155
  year: 2009
  ident: 10.1016/j.biomaterials.2019.01.049_bib4
  article-title: Regulatory T cells ameliorate hyperhomocysteinaemia-accelerated atherosclerosis in apoE-/- mice
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvp182
– volume: 104
  start-page: 11915
  year: 2007
  ident: 10.1016/j.biomaterials.2019.01.049_bib15
  article-title: Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0704581104
– volume: 9
  start-page: 509
  year: 2016
  ident: 10.1016/j.biomaterials.2019.01.049_bib35
  article-title: Elucidation of exosome migration across the blood-brain barrier model in vitro
  publication-title: Cell. Mol. Bioeng.
  doi: 10.1007/s12195-016-0458-3
– volume: 133
  start-page: 70
  year: 2017
  ident: 10.1016/j.biomaterials.2019.01.049_bib26
  article-title: Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.04.030
– volume: 35
  start-page: 851
  year: 2017
  ident: 10.1016/j.biomaterials.2019.01.049_bib28
  article-title: Concise review: MSC-derived exosomes for cell-free therapy
  publication-title: Stem Cell.
  doi: 10.1002/stem.2575
– volume: 119
  start-page: 261
  year: 2016
  ident: 10.1016/j.biomaterials.2019.01.049_bib12
  article-title: Shift of macrophage phenotype due to cartilage oligomeric matrix protein deficiency drives atherosclerotic calcification
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.115.308021
– volume: 18
  start-page: 78
  year: 2013
  ident: 10.1016/j.biomaterials.2019.01.049_bib24
  article-title: Human macrophage regulation via interaction with cardiac adipose tissue-derived mesenchymal stromal cells
  publication-title: J. Cardiovasc. Pharmacol. Ther.
  doi: 10.1177/1074248412453875
– volume: 34
  start-page: 30
  year: 2013
  ident: 10.1016/j.biomaterials.2019.01.049_bib41
  article-title: The blood and vascular cell compatibility of heparin-modified ePTFE vascular grafts
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.09.046
– volume: 15
  start-page: 923
  year: 2014
  ident: 10.1016/j.biomaterials.2019.01.049_bib64
  article-title: Exosomes and microvesicles: identification and targeting by particle size and lipid chemical probes
  publication-title: Chembiochem
  doi: 10.1002/cbic.201400043
– volume: 10
  start-page: 410
  year: 2013
  ident: 10.1016/j.biomaterials.2019.01.049_bib50
  article-title: Small-diameter vascular tissue engineering
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/nrcardio.2013.77
– year: 2018
  ident: 10.1016/j.biomaterials.2019.01.049_bib40
  article-title: Histone deacetylase 7‐derived peptides play a vital role in vascular repair and regeneration
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800006
– volume: 28
  start-page: 1123
  year: 2007
  ident: 10.1016/j.biomaterials.2019.01.049_bib54
  article-title: Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.10.029
– volume: 6
  start-page: 263
  year: 2015
  ident: 10.1016/j.biomaterials.2019.01.049_bib10
  article-title: Much more than M1 and M2 macrophages, there are also CD169+ and TCR+ macrophages
  publication-title: Front. Immunol.
– volume: 264
  start-page: 26373
  year: 2015
  ident: 10.1016/j.biomaterials.2019.01.049_bib29
  article-title: Extracellular vesicle–depleted fetal bovine and human sera have reduced capacity to support cell growth
  publication-title: J. Extracell. Vesicles
– volume: 106
  start-page: 1299
  year: 2011
  ident: 10.1016/j.biomaterials.2019.01.049_bib25
  article-title: Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction
  publication-title: Basic Res. Cardiol.
  doi: 10.1007/s00395-011-0221-9
– volume: 33
  start-page: 38
  year: 2012
  ident: 10.1016/j.biomaterials.2019.01.049_bib2
  article-title: Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.09.024
– volume: 114
  start-page: I327
  year: 2006
  ident: 10.1016/j.biomaterials.2019.01.049_bib17
  article-title: Synthetic vascular prosthesis impregnated with mesenchymal stem cells overexpressing endothelial nitric oxide synthase
  publication-title: Circulation
– volume: 9
  start-page: 11
  year: 2011
  ident: 10.1016/j.biomaterials.2019.01.049_bib21
  article-title: The MSC: an injury drugstore
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.06.008
– volume: 71
  start-page: 141
  year: 2015
  ident: 10.1016/j.biomaterials.2019.01.049_bib23
  article-title: Nitric oxide regulates multiple functions and fate of adult progenitor and stem cells
  publication-title: J. Physiol. Biochem.
  doi: 10.1007/s13105-014-0373-9
– volume: 9
  year: 2015
  ident: 10.1016/j.biomaterials.2019.01.049_bib44
  article-title: Current approaches to atherosclerotic obstructive renal artery stenosis
  publication-title: Therap. Adv. Cardiovasc. Dis.
– volume: 7
  start-page: 3615
  year: 2017
  ident: 10.1016/j.biomaterials.2019.01.049_bib42
  article-title: Small-diameter hybrid vascular grafts composed of polycaprolactone and polydioxanone fibers
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-03851-1
– volume: 513
  start-page: 332
  year: 2016
  ident: 10.1016/j.biomaterials.2019.01.049_bib22
  article-title: Long term performance evaluation of small-diameter vascular grafts based on polyvinyl alcohol hydrogel and dextran and MSCs-based therapies using the ovine pre-clinical animal model
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2016.09.045
– volume: 105
  start-page: 650
  year: 2002
  ident: 10.1016/j.biomaterials.2019.01.049_bib61
  article-title: Monocyte/macrophage regulation of vascular calcification in vitro
  publication-title: Circulation
  doi: 10.1161/hc0502.102969
– volume: 116
  start-page: 2841
  year: 2007
  ident: 10.1016/j.biomaterials.2019.01.049_bib58
  article-title: Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.107.732867
– volume: 7
  year: 2012
  ident: 10.1016/j.biomaterials.2019.01.049_bib68
  article-title: Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0033115
– volume: 7
  start-page: 24
  year: 2016
  ident: 10.1016/j.biomaterials.2019.01.049_bib18
  article-title: Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potential clinical application
  publication-title: Front. Physiol.
– volume: 41
  start-page: 391
  year: 2002
  ident: 10.1016/j.biomaterials.2019.01.049_bib39
  article-title: Heparin–protein interactions
  publication-title: Angew Chem. Int. Ed. Engl.
– volume: 35
  start-page: 5700
  year: 2014
  ident: 10.1016/j.biomaterials.2019.01.049_bib32
  article-title: The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.03.078
– volume: 23
  start-page: 1045
  year: 2014
  ident: 10.1016/j.biomaterials.2019.01.049_bib20
  article-title: Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives
  publication-title: Cell Transplant.
  doi: 10.3727/096368913X667709
– volume: 10
  start-page: 2739
  year: 2014
  ident: 10.1016/j.biomaterials.2019.01.049_bib34
  article-title: Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.02.042
– volume: 33
  start-page: 762
  year: 2012
  ident: 10.1016/j.biomaterials.2019.01.049_bib53
  article-title: Gradient nanofibrous chitosan/poly ɛ-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.10.037
– volume: 420
  start-page: 868
  year: 2002
  ident: 10.1016/j.biomaterials.2019.01.049_bib6
  article-title: Atherosclerosis in inflammation
  publication-title: Nature
  doi: 10.1038/nature01323
– volume: 72
  start-page: 2475
  year: 2015
  ident: 10.1016/j.biomaterials.2019.01.049_bib8
  article-title: Inflammation: a culprit for vascular calcification in atherosclerosis and diabetes
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-015-1876-4
– volume: 164
  start-page: 1226
  year: 2016
  ident: 10.1016/j.biomaterials.2019.01.049_bib56
  article-title: Communication by extracellular vesicles: where we are and where we need to go
  publication-title: Cell
  doi: 10.1016/j.cell.2016.01.043
– volume: 28
  start-page: 154
  year: 2013
  ident: 10.1016/j.biomaterials.2019.01.049_bib33
  article-title: Functionalization of electrospun poly( -caprolactone) scaffold with heparin and vascular endothelial growth factors for potential application as vascular grafts
  publication-title: J. Bioact. Compat Polym.
  doi: 10.1177/0883911512469707
– volume: 93
  start-page: 365
  year: 2013
  ident: 10.1016/j.biomaterials.2019.01.049_bib9
  article-title: Vascular calcification: an update on mechanisms and challenges in treatment
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/s00223-013-9712-z
– volume: 105
  start-page: 20764
  year: 2008
  ident: 10.1016/j.biomaterials.2019.01.049_bib63
  article-title: Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0805133106
– volume: 5
  start-page: 7360
  year: 2013
  ident: 10.1016/j.biomaterials.2019.01.049_bib51
  article-title: Synthetic ePTFE grafts coated with an anti-CD133 antibody-functionalized heparin/collagen multilayer with rapid in vivo endothelialization properties
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am401706w
– volume: 47
  start-page: 1313
  year: 2008
  ident: 10.1016/j.biomaterials.2019.01.049_bib16
  article-title: Undifferentiated mesenchymal stem cells seeded on a vascular prosthesis contribute to the restoration of a physiologic vascular wall
  publication-title: J. Vasc. Surg.
  doi: 10.1016/j.jvs.2007.12.038
– volume: 22
  start-page: 1924
  year: 2010
  ident: 10.1016/j.biomaterials.2019.01.049_bib69
  article-title: Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.070810
– volume: 113
  start-page: 72
  year: 2013
  ident: 10.1016/j.biomaterials.2019.01.049_bib13
  article-title: Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.113.301036
SSID ssj0014042
Score 2.5913255
Snippet Vascular grafts often exhibit low patency rates in clinical settings due to the pathological environment within the patients requiring the surgery. Mesenchymal...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13
SubjectTerms animal models
bioactive compounds
bone formation
Calcification
cytokines
endothelium
heparin
Hyperlipidemia
Immunomodulation
macrophages
medicine
mesenchymal stromal cells
microRNA
patients
phenotype
rats
Small extracellular vesicles (sEVs)
smooth muscle
surgery
thrombosis
Tissue regeneration
tissue repair
vascular endothelial growth factors
Vascular grafts
Title MSC-derived sEVs enhance patency and inhibit calcification of synthetic vascular grafts by immunomodulation in a rat model of hyperlipidemia
URI https://www.clinicalkey.com/#!/content/1-s2.0-S014296121930047X
https://dx.doi.org/10.1016/j.biomaterials.2019.01.049
https://www.ncbi.nlm.nih.gov/pubmed/30875515
https://www.proquest.com/docview/2193161891
https://www.proquest.com/docview/2221036830
Volume 204
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZWi4TggGB5lcdqkLiGJnGSxkIcVtWuCqh7gUW9WXY8plktSdVmkXrhF_CjmcmjWiRAlTg28rRpZjz-HH_zjRCvEWmRxDgNMJEySJxUQR7zeyuVpalXockLPtGdn2ezi-TDIl0ciOlQC8O0yj73dzm9zdb9lXH_NMershwzLSlWLIClWDVqsuAK9mTC-vlvfuxoHqweE3c0xjjg0YPwaMvx4hJ303SuZpqXaiU8WVfzz4vU30Bouxid3Rf3ehQJJ92NPhAHWB2Juze0BY_E7Xl_av5Q_Jx_mgaOrn9HB5vTLxvAasnehpVhyLwFUzkoq2VpywbIaS1Pr3UZ1B4224pQIv0SDLRV-Lo2vtmA3ULJ9SX1t9r1bcDoa8AAhRW0PXbYfklb3fVV2bWiNY_Exdnp5-ks6LswBAUlwyYwBYMWJCDic0mz23kun43NBDOjrLKxRK-c5RIfL6Mkpf1fgRkjOWk9Yigfi8OqrvCpAB-mPpwYn7rIJNY6lcvERpmTkYwws3Yk1PDYddFLlHOnjCs9cNEu9U2XaXaZDiNNLhsJubNddUIde1m9Hbyrh1JUSp6a1pO9rN_trH8L2r3tXw0BpWlW81GNqbC-pkEU1NzKQEX_GBPTdl1muQxH4kkXjbt_zjqPhIXTZ_95h8_FHf7UceNeiMNmfY0vCYU19ridZsfi1sn7j7PzX2G5NbE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTeLjAcH4Kp9G4jVqEidpLMTDVG3q2NoXNtQ3y47tNWgkVZsh9X_gj-YucaohAarEa-JLHN_5_HN89zuAD9biImnjNLAJ50FiuAjymP5biSxNnQhVXtCJ7nSWTS6Tz_N0vgfjPheGwiq97-98euut_ZWhH83hsiyHFJYUCyLAEsQaNZrfgQNip0JjPzg6PZvMtocJSdjW0KH2AQn03KNtmBdluaum0zZFeomWxZOoNf-8Tv0Nh7br0ckjeOiBJDvq-voY9mx1CA9u0Qsewt2pPzh_Aj-nX8aBwes_rGHr469rZqsFKZwtFaHmDVOVYWW1KHXZMNRbG6rXao3Vjq03FQJFfBPrI1fZ1Uq5Zs30hpWUYlJ_r42vBIaPYYqhZbG2zA7JL3C3u7ouu2q06ilcnhxfjCeBL8QQFOgPm0AVhFssYhGXc5zgxlEGbaxGNlNCCx1z64TRlOXjeJSkuAUsbEZgjmtnbcifwX5VV_YFMBemLhwpl5pIJVobkfNER5nhEY9spvUARD_ssvAs5VQs41r24Wjf5G2VSVKZDCOJKhsA38ouO66OnaQ-9tqVfTYq-k-JS8pO0p-20r_Z7c7y73uDkjix6bRGVba-wUZo11TNQET_aBPjjp1nOQ8H8Lyzxu2XE9UjwuH05X_28B3cm1xMz-X56ezsFdynO12o3GvYb1Y39g2Cska_9ZPuF9SiOGI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSC-derived+sEVs+enhance+patency+and+inhibit+calcification+of+synthetic+vascular+grafts+by+immunomodulation+in+a+rat+model+of+hyperlipidemia&rft.jtitle=Biomaterials&rft.au=Wei%2C+Yongzhen&rft.au=Wu%2C+Yifan&rft.au=Zhao%2C+Runxia&rft.au=Zhang%2C+Kaiyue&rft.date=2019-06-01&rft.pub=Elsevier+Ltd&rft.issn=0142-9612&rft.eissn=1878-5905&rft.volume=204&rft.spage=13&rft.epage=24&rft_id=info:doi/10.1016%2Fj.biomaterials.2019.01.049&rft.externalDocID=S014296121930047X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon