Phosphorus Reduces Negative Effects of Nitrogen Addition on Soil Microbial Communities and Functions

Increased soil nitrogen (N) from atmospheric N deposition could change microbial communities and functions. However, the underlying mechanisms and whether soil phosphorus (P) status are responsible for these changes still have not been well explained. Here, we investigated the effects of N and P add...

Full description

Saved in:
Bibliographic Details
Published inMicroorganisms (Basel) Vol. 8; no. 11; p. 1828
Main Authors Xia, Zongwei, Yang, Jingyi, Sang, Changpeng, Wang, Xu, Sun, Lifei, Jiang, Ping, Wang, Chao, Bai, Edith
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 20.11.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Increased soil nitrogen (N) from atmospheric N deposition could change microbial communities and functions. However, the underlying mechanisms and whether soil phosphorus (P) status are responsible for these changes still have not been well explained. Here, we investigated the effects of N and P additions on soil bacterial and fungal communities and predicted their functional compositions in a temperate forest. We found that N addition significantly decreased soil bacterial diversity in the organic (O) horizon, but tended to increase bacterial diversity in the mineral (A) horizon soil. P addition alone did not significantly change soil bacterial diversity but mitigated the negative effect of N addition on bacterial diversity in the O horizon. Neither N addition nor P addition significantly influenced soil fungal diversity. Changes in soil microbial community composition under N and P additions were mainly due to the shifts in soil pH and NO3− contents. N addition can affect bacterial functional potentials, such as ureolysis, N fixation, respiration, decomposition of organic matter processes, and fungal guilds, such as pathogen, saprotroph, and mycorrhizal fungi, by which more C probably was lost in O horizon soil under increased N deposition. However, P addition can alleviate or switch the effects of increased N deposition on the microbial functional potentials in O horizon soil and may even be a benefit for more C sequestration in A horizon soil. Our results highlight the different responses of microorganisms to N and P additions between O and A horizons and provides an important insight for predicting the changes in forest C storage status under increasing N deposition in the future.
AbstractList Increased soil nitrogen (N) from atmospheric N deposition could change microbial communities and functions. However, the underlying mechanisms and whether soil phosphorus (P) status are responsible for these changes still have not been well explained. Here, we investigated the effects of N and P additions on soil bacterial and fungal communities and predicted their functional compositions in a temperate forest. We found that N addition significantly decreased soil bacterial diversity in the organic (O) horizon, but tended to increase bacterial diversity in the mineral (A) horizon soil. P addition alone did not significantly change soil bacterial diversity but mitigated the negative effect of N addition on bacterial diversity in the O horizon. Neither N addition nor P addition significantly influenced soil fungal diversity. Changes in soil microbial community composition under N and P additions were mainly due to the shifts in soil pH and NO3− contents. N addition can affect bacterial functional potentials, such as ureolysis, N fixation, respiration, decomposition of organic matter processes, and fungal guilds, such as pathogen, saprotroph, and mycorrhizal fungi, by which more C probably was lost in O horizon soil under increased N deposition. However, P addition can alleviate or switch the effects of increased N deposition on the microbial functional potentials in O horizon soil and may even be a benefit for more C sequestration in A horizon soil. Our results highlight the different responses of microorganisms to N and P additions between O and A horizons and provides an important insight for predicting the changes in forest C storage status under increasing N deposition in the future.
Increased soil nitrogen (N) from atmospheric N deposition could change microbial communities and functions. However, the underlying mechanisms and whether soil phosphorus (P) status are responsible for these changes still have not been well explained. Here, we investigated the effects of N and P additions on soil bacterial and fungal communities and predicted their functional compositions in a temperate forest. We found that N addition significantly decreased soil bacterial diversity in the organic (O) horizon, but tended to increase bacterial diversity in the mineral (A) horizon soil. P addition alone did not significantly change soil bacterial diversity but mitigated the negative effect of N addition on bacterial diversity in the O horizon. Neither N addition nor P addition significantly influenced soil fungal diversity. Changes in soil microbial community composition under N and P additions were mainly due to the shifts in soil pH and NO 3 − contents. N addition can affect bacterial functional potentials, such as ureolysis, N fixation, respiration, decomposition of organic matter processes, and fungal guilds, such as pathogen, saprotroph, and mycorrhizal fungi, by which more C probably was lost in O horizon soil under increased N deposition. However, P addition can alleviate or switch the effects of increased N deposition on the microbial functional potentials in O horizon soil and may even be a benefit for more C sequestration in A horizon soil. Our results highlight the different responses of microorganisms to N and P additions between O and A horizons and provides an important insight for predicting the changes in forest C storage status under increasing N deposition in the future.
Increased soil nitrogen (N) from atmospheric N deposition could change microbial communities and functions. However, the underlying mechanisms and whether soil phosphorus (P) status are responsible for these changes still have not been well explained. Here, we investigated the effects of N and P additions on soil bacterial and fungal communities and predicted their functional compositions in a temperate forest. We found that N addition significantly decreased soil bacterial diversity in the organic (O) horizon, but tended to increase bacterial diversity in the mineral (A) horizon soil. P addition alone did not significantly change soil bacterial diversity but mitigated the negative effect of N addition on bacterial diversity in the O horizon. Neither N addition nor P addition significantly influenced soil fungal diversity. Changes in soil microbial community composition under N and P additions were mainly due to the shifts in soil pH and NO contents. N addition can affect bacterial functional potentials, such as ureolysis, N fixation, respiration, decomposition of organic matter processes, and fungal guilds, such as pathogen, saprotroph, and mycorrhizal fungi, by which more C probably was lost in O horizon soil under increased N deposition. However, P addition can alleviate or switch the effects of increased N deposition on the microbial functional potentials in O horizon soil and may even be a benefit for more C sequestration in A horizon soil. Our results highlight the different responses of microorganisms to N and P additions between O and A horizons and provides an important insight for predicting the changes in forest C storage status under increasing N deposition in the future.
Increased soil nitrogen (N) from atmospheric N deposition could change microbial communities and functions. However, the underlying mechanisms and whether soil phosphorus (P) status are responsible for these changes still have not been well explained. Here, we investigated the effects of N and P additions on soil bacterial and fungal communities and predicted their functional compositions in a temperate forest. We found that N addition significantly decreased soil bacterial diversity in the organic (O) horizon, but tended to increase bacterial diversity in the mineral (A) horizon soil. P addition alone did not significantly change soil bacterial diversity but mitigated the negative effect of N addition on bacterial diversity in the O horizon. Neither N addition nor P addition significantly influenced soil fungal diversity. Changes in soil microbial community composition under N and P additions were mainly due to the shifts in soil pH and NO₃⁻ contents. N addition can affect bacterial functional potentials, such as ureolysis, N fixation, respiration, decomposition of organic matter processes, and fungal guilds, such as pathogen, saprotroph, and mycorrhizal fungi, by which more C probably was lost in O horizon soil under increased N deposition. However, P addition can alleviate or switch the effects of increased N deposition on the microbial functional potentials in O horizon soil and may even be a benefit for more C sequestration in A horizon soil. Our results highlight the different responses of microorganisms to N and P additions between O and A horizons and provides an important insight for predicting the changes in forest C storage status under increasing N deposition in the future.
Increased soil nitrogen (N) from atmospheric N deposition could change microbial communities and functions. However, the underlying mechanisms and whether soil phosphorus (P) status are responsible for these changes still have not been well explained. Here, we investigated the effects of N and P additions on soil bacterial and fungal communities and predicted their functional compositions in a temperate forest. We found that N addition significantly decreased soil bacterial diversity in the organic (O) horizon, but tended to increase bacterial diversity in the mineral (A) horizon soil. P addition alone did not significantly change soil bacterial diversity but mitigated the negative effect of N addition on bacterial diversity in the O horizon. Neither N addition nor P addition significantly influenced soil fungal diversity. Changes in soil microbial community composition under N and P additions were mainly due to the shifts in soil pH and NO3- contents. N addition can affect bacterial functional potentials, such as ureolysis, N fixation, respiration, decomposition of organic matter processes, and fungal guilds, such as pathogen, saprotroph, and mycorrhizal fungi, by which more C probably was lost in O horizon soil under increased N deposition. However, P addition can alleviate or switch the effects of increased N deposition on the microbial functional potentials in O horizon soil and may even be a benefit for more C sequestration in A horizon soil. Our results highlight the different responses of microorganisms to N and P additions between O and A horizons and provides an important insight for predicting the changes in forest C storage status under increasing N deposition in the future.Increased soil nitrogen (N) from atmospheric N deposition could change microbial communities and functions. However, the underlying mechanisms and whether soil phosphorus (P) status are responsible for these changes still have not been well explained. Here, we investigated the effects of N and P additions on soil bacterial and fungal communities and predicted their functional compositions in a temperate forest. We found that N addition significantly decreased soil bacterial diversity in the organic (O) horizon, but tended to increase bacterial diversity in the mineral (A) horizon soil. P addition alone did not significantly change soil bacterial diversity but mitigated the negative effect of N addition on bacterial diversity in the O horizon. Neither N addition nor P addition significantly influenced soil fungal diversity. Changes in soil microbial community composition under N and P additions were mainly due to the shifts in soil pH and NO3- contents. N addition can affect bacterial functional potentials, such as ureolysis, N fixation, respiration, decomposition of organic matter processes, and fungal guilds, such as pathogen, saprotroph, and mycorrhizal fungi, by which more C probably was lost in O horizon soil under increased N deposition. However, P addition can alleviate or switch the effects of increased N deposition on the microbial functional potentials in O horizon soil and may even be a benefit for more C sequestration in A horizon soil. Our results highlight the different responses of microorganisms to N and P additions between O and A horizons and provides an important insight for predicting the changes in forest C storage status under increasing N deposition in the future.
Author Bai, Edith
Yang, Jingyi
Wang, Xu
Wang, Chao
Sun, Lifei
Jiang, Ping
Sang, Changpeng
Xia, Zongwei
AuthorAffiliation 1 CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; xiazongwei@iae.ac.cn (Z.X.); jyyang17@126.com (J.Y.); sangcp1991@163.com (C.S.); wangxu113@mails.ucas.ac.cn (X.W.); sunlifei@iae.ac.cn (L.S.); jiangp@iae.ac.cn (P.J.); baie@iae.ac.cn (E.B.)
3 Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
AuthorAffiliation_xml – name: 3 Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
– name: 2 University of Chinese Academy of Sciences, Beijing 100049, China
– name: 1 CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; xiazongwei@iae.ac.cn (Z.X.); jyyang17@126.com (J.Y.); sangcp1991@163.com (C.S.); wangxu113@mails.ucas.ac.cn (X.W.); sunlifei@iae.ac.cn (L.S.); jiangp@iae.ac.cn (P.J.); baie@iae.ac.cn (E.B.)
Author_xml – sequence: 1
  givenname: Zongwei
  surname: Xia
  fullname: Xia, Zongwei
– sequence: 2
  givenname: Jingyi
  surname: Yang
  fullname: Yang, Jingyi
– sequence: 3
  givenname: Changpeng
  surname: Sang
  fullname: Sang, Changpeng
– sequence: 4
  givenname: Xu
  surname: Wang
  fullname: Wang, Xu
– sequence: 5
  givenname: Lifei
  surname: Sun
  fullname: Sun, Lifei
– sequence: 6
  givenname: Ping
  surname: Jiang
  fullname: Jiang, Ping
– sequence: 7
  givenname: Chao
  orcidid: 0000-0002-5756-7505
  surname: Wang
  fullname: Wang, Chao
– sequence: 8
  givenname: Edith
  surname: Bai
  fullname: Bai, Edith
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33233486$$D View this record in MEDLINE/PubMed
BookMark eNqNkm1rFDEQx4NUbK39CErAN745zcPmCUEoR6uFWsWH1yGbnb3LsZu0yW7Bb2-u10pbRAyBDJnf_Gcyk-doL6YICL2k5C3nhrwbg88p5ZWLoYxFU0o100_QASNKLpgkau-evY-OStmQugzlWtBnaJ9zxnmj5QHqvq5TuVynPBf8DbrZQ8EXsHJTuAZ80vfgp4JTjy_ClNMKIj7uujCFFHHd31MY8OdtLW1wA16mcZxj9VYNFzt8Oke_RcsL9LR3Q4Gj2_MQ_Tw9-bH8tDj_8vFseXy-8ILraeFa6CgQzY1uBCjSaMqU9N6xxitJaUtANz1rATRtGe2M7D34XrVaCaaE54fobKfbJbexlzmMLv-yyQV7c1EbZl2egh_AAiPAlWyE0LRpGqMJiGowLxVtudRV68NO63JuR-g8xCm74YHoQ08Ma7tK11ZJYwQ3VeDNrUBOVzOUyY6heBgGFyHNxbKalBmtifwPVDbUSCJ4RV8_QjdpzrF29YZiUjIhKvXqfvF_qr6bewXe74A6u1Iy9NaHyW2HVd8SBkuJ3X40-9ePVqPFo-i7BP-O-w158dxj
CitedBy_id crossref_primary_10_1016_j_scitotenv_2021_150388
crossref_primary_10_1007_s10457_023_00814_6
crossref_primary_10_1007_s11104_024_06687_7
crossref_primary_10_3390_agronomy12030651
crossref_primary_10_3390_f14050928
crossref_primary_10_3390_f15081473
crossref_primary_10_1007_s00374_021_01593_x
crossref_primary_10_3389_fmars_2023_1131713
crossref_primary_10_1007_s11104_023_05950_7
crossref_primary_10_3389_fmicb_2024_1289022
crossref_primary_10_3390_jof7080615
crossref_primary_10_1016_j_scitotenv_2023_162472
crossref_primary_10_3389_ffgc_2024_1525250
crossref_primary_10_1016_j_apsoil_2023_105050
crossref_primary_10_3390_microorganisms9122498
crossref_primary_10_1021_acsearthspacechem_1c00243
crossref_primary_10_3389_fmicb_2021_689674
crossref_primary_10_3390_jof9010053
crossref_primary_10_1007_s11356_023_28688_2
crossref_primary_10_1016_j_apsoil_2024_105314
crossref_primary_10_1007_s11104_023_06295_x
crossref_primary_10_3389_fevo_2021_758348
crossref_primary_10_1016_j_ejsobi_2024_103684
crossref_primary_10_1016_j_soilbio_2021_108207
crossref_primary_10_3390_atmos14091342
crossref_primary_10_1002_sae2_12072
crossref_primary_10_1002_ece3_70875
crossref_primary_10_1016_j_ecolind_2021_108306
crossref_primary_10_3390_microorganisms11112634
crossref_primary_10_1007_s11104_024_06788_3
crossref_primary_10_1007_s42832_023_0200_8
crossref_primary_10_1016_j_soilbio_2023_108982
crossref_primary_10_1111_1365_2435_14484
crossref_primary_10_1016_j_catena_2024_108132
crossref_primary_10_1111_gcb_16874
crossref_primary_10_1007_s11104_024_06930_1
crossref_primary_10_1093_femsec_fiae064
Cites_doi 10.1016/j.soilbio.2015.07.005
10.1038/ngeo844
10.1016/0038-0717(88)90014-4
10.2136/sssaj2013.05.0179
10.1093/nar/gkl244
10.1073/pnas.1508382112
10.1007/s10482-015-0530-3
10.1073/pnas.0507535103
10.1016/0038-0717(85)90144-0
10.1016/0038-0717(82)90001-3
10.1016/j.apsoil.2019.03.002
10.1007/s10021-010-9347-0
10.1007/s13595-014-0444-7
10.1038/nmeth.f.303
10.1002/ecy.1895
10.1016/j.apsoil.2019.05.014
10.1126/science.1243768
10.1016/0038-0717(87)90052-6
10.1088/1748-9326/9/11/115003
10.1038/ismej.2013.34
10.1007/s00248-016-0730-z
10.1890/08-1140.1
10.1073/pnas.1320054111
10.1002/eap.2047
10.1111/j.1469-8137.2004.01159.x
10.1093/nar/gky1022
10.1111/gcb.12665
10.1016/j.scitotenv.2017.06.057
10.3389/fmicb.2016.01106
10.1890/06-2057.1
10.1016/j.soilbio.2017.10.009
10.1016/j.foreco.2004.03.017
10.1128/AEM.00062-07
10.1111/j.1365-2486.2011.02555.x
10.1007/978-1-4939-3369-3_11
10.2136/sssabookser5.3
10.1890/05-1839
10.1007/s00374-014-0964-1
10.1002/ldr.3439
10.1111/j.1461-0248.2008.01230.x
10.1007/978-0-387-35303-6
10.1002/ecm.1279
10.1890/06-0219
10.1371/journal.pone.0061188
10.1016/j.soilbio.2018.02.003
10.1111/ele.12826
10.1093/nar/gks1219
10.1016/j.soilbio.2015.06.028
10.1007/s10021-012-9550-2
10.7717/peerj.2584
10.1016/j.foreco.2011.03.018
10.1016/j.soilbio.2017.09.015
10.1038/nmeth.2604
10.1111/j.1365-2486.2008.01549.x
10.2307/1313296
10.1088/1748-9326/10/2/024019
10.5846/stxb201408031549
10.1016/j.funeco.2015.06.006
10.1016/j.foreco.2004.03.033
10.1126/science.aaf4507
10.1111/j.1365-2486.2006.01102.x
10.7717/peerj.7631
10.1128/AEM.00335-09
10.3390/f11040428
10.2136/sssaj2009.0240
10.1007/s10533-004-0370-0
10.1111/1365-2435.12677
10.1016/j.soilbio.2014.09.012
10.1111/gcb.12618
10.1038/ismej.2011.159
10.1371/journal.pone.0102765
10.1016/j.catena.2019.104094
10.1038/ismej.2010.58
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7T7
8FD
8FE
8FH
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/microorganisms8111828
DatabaseName CrossRef
PubMed
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

PubMed
AGRICOLA
CrossRef
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: Proquest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2076-2607
ExternalDocumentID oai_doaj_org_article_e20e37645581444980e51442c671b368
PMC7699539
33233486
10_3390_microorganisms8111828
Genre Journal Article
GeographicLocations United States--US
China
GeographicLocations_xml – name: China
– name: United States--US
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 31770531
– fundername: Key Laboratory of Geoprapgical Processes and Ecological Security of Changbei Mountains, Ministry of Education
  grantid: GPES201902
– fundername: Youth Innovation Promotion Association CAS to Chao Wang
  grantid: 2018231
– fundername: Key Research Program of Frontier Sciences, CAS
  grantid: ZDBS-LY-DQC019
GroupedDBID 53G
5VS
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ACPRK
AFKRA
AFPKN
AFRAH
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
GS5
GX1
HCIFZ
HYE
IAO
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
RNS
RPM
NPM
7T7
8FD
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c538t-abed1e0839845e70481276cca24c7611b0e84f2bee81b21d96fcecf7b875275c3
IEDL.DBID M48
ISSN 2076-2607
IngestDate Wed Aug 27 01:25:44 EDT 2025
Thu Aug 21 14:13:08 EDT 2025
Fri Jul 11 10:51:52 EDT 2025
Fri Jul 11 08:20:53 EDT 2025
Fri Jul 25 12:02:15 EDT 2025
Thu Jan 02 22:41:20 EST 2025
Thu Apr 24 23:01:57 EDT 2025
Tue Jul 01 01:32:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords temperate forest
microbial community
phosphorus addition
high throughput sequencing
functional potential
nitrogen deposition
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c538t-abed1e0839845e70481276cca24c7611b0e84f2bee81b21d96fcecf7b875275c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-5756-7505
OpenAccessLink https://www.proquest.com/docview/2464266255?pq-origsite=%requestingapplication%
PMID 33233486
PQID 2464266255
PQPubID 2032358
ParticipantIDs doaj_primary_oai_doaj_org_article_e20e37645581444980e51442c671b368
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7699539
proquest_miscellaneous_2498298806
proquest_miscellaneous_2464196053
proquest_journals_2464266255
pubmed_primary_33233486
crossref_citationtrail_10_3390_microorganisms8111828
crossref_primary_10_3390_microorganisms8111828
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201120
PublicationDateYYYYMMDD 2020-11-20
PublicationDate_xml – month: 11
  year: 2020
  text: 20201120
  day: 20
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Microorganisms (Basel)
PublicationTitleAlternate Microorganisms
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Nguyen (ref_49) 2016; 20
ref_50
Wang (ref_44) 2007; 73
Hogberg (ref_5) 2006; 12
Allison (ref_29) 2008; 14
Ware (ref_58) 1997; Volume 148
ref_53
Compton (ref_11) 2004; 196
Rognes (ref_41) 2016; 4
Vitousek (ref_3) 1997; 7
Wang (ref_16) 2018; 120
Tian (ref_15) 2015; 10
Zhou (ref_65) 2015; 90
Yang (ref_31) 2015; 72
Li (ref_67) 2016; 71
Treseder (ref_72) 2004; 164
Camenzind (ref_28) 2018; 88
DeSantis (ref_46) 2006; 34
Lauber (ref_52) 2009; 75
Lilleskov (ref_70) 2010; 13
Eisenlord (ref_18) 2010; 74
ref_60
Galloway (ref_2) 2014; 9
Leff (ref_63) 2015; 112
Camenzind (ref_71) 2014; 20
Sparling (ref_40) 1988; 20
Bobbink (ref_6) 2010; 20
ref_25
ref_69
Entwistle (ref_19) 2013; 77
Janssens (ref_12) 2010; 3
Fierer (ref_51) 2006; 103
Fierer (ref_20) 2007; 88
Li (ref_62) 2019; 7
Wagg (ref_9) 2014; 111
Aber (ref_33) 1998; 48
Fierer (ref_21) 2012; 6
Yan (ref_74) 2019; 181
Li (ref_61) 2015; 51
Navarrete (ref_64) 2015; 108
Lu (ref_7) 2014; 20
Eisenhauer (ref_27) 2012; 18
Brookes (ref_37) 1985; 17
Edgar (ref_43) 2013; 10
Galloway (ref_1) 2004; 70
Rousk (ref_59) 2010; 4
Morrow (ref_68) 2019; 139
Fierer (ref_77) 2013; 342
ref_35
Kaspari (ref_55) 2017; 98
ref_34
ref_32
ref_76
ref_75
Tian (ref_14) 2017; 607–608
LeBauer (ref_26) 2008; 89
Crowley (ref_30) 2012; 15
ref_39
Jackson (ref_73) 2018; 116
Vance (ref_38) 1987; 19
Louca (ref_48) 2016; 353
Wu (ref_66) 2019; 142
Nilsson (ref_47) 2019; 47
Eldridge (ref_10) 2017; 20
Philippot (ref_8) 2013; 7
Martin (ref_78) 2016; Volume 1399
Lucas (ref_54) 2011; 262
Treseder (ref_13) 2008; 11
Lindahl (ref_22) 2016; 30
Schimel (ref_57) 2007; 88
Yang (ref_17) 2020; 31
Magill (ref_4) 2004; 196
Zhou (ref_24) 2017; 115
Caporaso (ref_42) 2010; 7
Chen (ref_23) 2015; 89
Brookes (ref_36) 1982; 14
Quast (ref_45) 2012; 41
Nottingham (ref_56) 2015; 80
References_xml – volume: 90
  start-page: 42
  year: 2015
  ident: ref_65
  article-title: Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.07.005
– volume: 3
  start-page: 315
  year: 2010
  ident: ref_12
  article-title: Reduction of forest soil respiration in response to nitrogen deposition
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo844
– volume: 20
  start-page: 337
  year: 1988
  ident: ref_40
  article-title: A direct extraction method to estimate soil microbial C: Calibration in situ using microbial respiration and 14C labelled cells
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(88)90014-4
– volume: 77
  start-page: 1648
  year: 2013
  ident: ref_19
  article-title: Long-Term Experimental Nitrogen Deposition Alters the Composition of the Active Fungal Community in the Forest Floor
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2013.05.0179
– volume: 34
  start-page: W394
  year: 2006
  ident: ref_46
  article-title: NAST: A multiple sequence alignment server for comparative analysis of 16S rRNA genes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl244
– volume: 112
  start-page: 10967
  year: 2015
  ident: ref_63
  article-title: Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1508382112
– volume: 108
  start-page: 741
  year: 2015
  ident: ref_64
  article-title: Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility
  publication-title: Antonie Leeuwenhoek
  doi: 10.1007/s10482-015-0530-3
– volume: 103
  start-page: 626
  year: 2006
  ident: ref_51
  article-title: The diversity and biogeography of soil bacterial communities
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0507535103
– volume: 17
  start-page: 837
  year: 1985
  ident: ref_37
  article-title: Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(85)90144-0
– volume: 14
  start-page: 319
  year: 1982
  ident: ref_36
  article-title: Measurement of microbial biomass phosphorus in soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(82)90001-3
– volume: 139
  start-page: 47
  year: 2019
  ident: ref_68
  article-title: Additions of sugar and nitrogenous fertiliser affect plant nitrogen status and soil microbial communities
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2019.03.002
– volume: 13
  start-page: 683
  year: 2010
  ident: ref_70
  article-title: Simulated Nitrogen Deposition Causes a Decline of Intra- and Extraradical Abundance of Arbuscular Mycorrhizal Fungi and Changes in Microbial Community Structure in Northern Hardwood Forests
  publication-title: Ecosystems
  doi: 10.1007/s10021-010-9347-0
– ident: ref_39
– volume: 7
  start-page: 14
  year: 1997
  ident: ref_3
  article-title: Human alteration of the global nitrogen cycle: Sources and consequences
  publication-title: Ecol. Appl.
– volume: 72
  start-page: 435
  year: 2015
  ident: ref_31
  article-title: Changes in soil phosphorus fractions after 9 years of continuous nitrogen addition in a Larix gmelinii plantation
  publication-title: Ann. For. Sci.
  doi: 10.1007/s13595-014-0444-7
– volume: 7
  start-page: 335
  year: 2010
  ident: ref_42
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.f.303
– volume: 98
  start-page: 2019
  year: 2017
  ident: ref_55
  article-title: Biogeochemistry drives diversity in the prokaryotes, fungi, and invertebrates of a Panama forest
  publication-title: Ecology
  doi: 10.1002/ecy.1895
– volume: 142
  start-page: 43
  year: 2019
  ident: ref_66
  article-title: Long-term nitrogen addition changes soil microbial community and litter decomposition rate in a subtropical forest
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2019.05.014
– volume: 342
  start-page: 5
  year: 2013
  ident: ref_77
  article-title: Reconstructing the Microbial Diversity and Function of Pre-Agricultural Tallgrass Prairie Soils in the United States
  publication-title: Science
  doi: 10.1126/science.1243768
– volume: 19
  start-page: 703
  year: 1987
  ident: ref_38
  article-title: An extraction method for measuring soil microbial biomass C
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(87)90052-6
– volume: 9
  start-page: 115003
  year: 2014
  ident: ref_2
  article-title: Nitrogen footprints: Past, present and future
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/9/11/115003
– volume: 7
  start-page: 1609
  year: 2013
  ident: ref_8
  article-title: Loss in microbial diversity affects nitrogen cycling in soil
  publication-title: ISME J.
  doi: 10.1038/ismej.2013.34
– volume: 71
  start-page: 974
  year: 2016
  ident: ref_67
  article-title: Responses of Soil Bacterial Communities to Nitrogen Deposition and Precipitation Increment Are Closely Linked with Aboveground Community Variation
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-016-0730-z
– volume: 20
  start-page: 30
  year: 2010
  ident: ref_6
  article-title: Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis
  publication-title: Ecol. Appl.
  doi: 10.1890/08-1140.1
– volume: 111
  start-page: 5266
  year: 2014
  ident: ref_9
  article-title: Soil biodiversity and soil community composition determine ecosystem multifunctionality
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1320054111
– ident: ref_75
  doi: 10.1002/eap.2047
– volume: 164
  start-page: 347
  year: 2004
  ident: ref_72
  article-title: A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2004.01159.x
– volume: 47
  start-page: D259
  year: 2019
  ident: ref_47
  article-title: The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1022
– volume: 20
  start-page: 3790
  year: 2014
  ident: ref_7
  article-title: Nitrogen deposition contributes to soil acidification in tropical ecosystems
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12665
– volume: 607–608
  start-page: 1367
  year: 2017
  ident: ref_14
  article-title: Effects of nitrogen deposition on soil microbial communities in temperate and subtropical forests in China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.06.057
– ident: ref_53
  doi: 10.3389/fmicb.2016.01106
– volume: 89
  start-page: 371
  year: 2008
  ident: ref_26
  article-title: Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed
  publication-title: Ecology
  doi: 10.1890/06-2057.1
– volume: 116
  start-page: 148
  year: 2018
  ident: ref_73
  article-title: N addition undermines N supplied by arbuscular mycorrhizal fungi to native perennial grasses
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.10.009
– ident: ref_69
– volume: 196
  start-page: 143
  year: 2004
  ident: ref_11
  article-title: Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2004.03.017
– volume: 73
  start-page: 5261
  year: 2007
  ident: ref_44
  article-title: Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy
  publication-title: AEM
  doi: 10.1128/AEM.00062-07
– volume: 18
  start-page: 435
  year: 2012
  ident: ref_27
  article-title: Global change belowground: Impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2011.02555.x
– volume: Volume 1399
  start-page: 183
  year: 2016
  ident: ref_78
  article-title: Hybridization of Environmental Microbial Community Nucleic Acids by GeoChip
  publication-title: Microbial Environmental Genomics (MEG)
  doi: 10.1007/978-1-4939-3369-3_11
– ident: ref_35
  doi: 10.2136/sssabookser5.3
– volume: 88
  start-page: 1354
  year: 2007
  ident: ref_20
  article-title: Toward an ecological classification of soil bacteria
  publication-title: Ecology
  doi: 10.1890/05-1839
– volume: 51
  start-page: 207
  year: 2015
  ident: ref_61
  article-title: Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-014-0964-1
– volume: 31
  start-page: 190
  year: 2020
  ident: ref_17
  article-title: Response and driving factors of soil microbial diversity related to global nitrogen addition
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.3439
– volume: 11
  start-page: 1111
  year: 2008
  ident: ref_13
  article-title: Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2008.01230.x
– ident: ref_25
  doi: 10.1007/978-0-387-35303-6
– volume: 88
  start-page: 4
  year: 2018
  ident: ref_28
  article-title: Nutrient limitation of soil microbial processes in tropical forests
  publication-title: Ecol. Monogr.
  doi: 10.1002/ecm.1279
– volume: 88
  start-page: 1386
  year: 2007
  ident: ref_57
  article-title: Microbial stress-response physiology and its implications for ecosystem function
  publication-title: Ecology
  doi: 10.1890/06-0219
– ident: ref_60
  doi: 10.1371/journal.pone.0061188
– volume: 120
  start-page: 126
  year: 2018
  ident: ref_16
  article-title: Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.02.003
– volume: 20
  start-page: 1295
  year: 2017
  ident: ref_10
  article-title: Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12826
– volume: 41
  start-page: D590
  year: 2012
  ident: ref_45
  article-title: The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1219
– volume: 89
  start-page: 99
  year: 2015
  ident: ref_23
  article-title: Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs. soil acidification
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.06.028
– volume: 15
  start-page: 940
  year: 2012
  ident: ref_30
  article-title: Do Nutrient Limitation Patterns Shift from Nitrogen Toward Phosphorus with Increasing Nitrogen Deposition Across the Northeastern United States?
  publication-title: Ecosystems
  doi: 10.1007/s10021-012-9550-2
– volume: 4
  start-page: e2584
  year: 2016
  ident: ref_41
  article-title: VSEARCH: A versatile open source tool for metagenomics
  publication-title: PeerJ
  doi: 10.7717/peerj.2584
– volume: 262
  start-page: 95
  year: 2011
  ident: ref_54
  article-title: A meta-analysis of the effects of nitrogen additions on base cations: Implications for plants, soils, and streams
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2011.03.018
– volume: 115
  start-page: 433
  year: 2017
  ident: ref_24
  article-title: Patterns and mechanisms of responses by soil microbial communities to nitrogen addition
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.09.015
– volume: 10
  start-page: 996
  year: 2013
  ident: ref_43
  article-title: UPARSE: Highly accurate OTU sequences from microbial amplicon reads
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2604
– volume: 14
  start-page: 1156
  year: 2008
  ident: ref_29
  article-title: Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2008.01549.x
– volume: 48
  start-page: 921
  year: 1998
  ident: ref_33
  article-title: Nitrogen Saturation in Temperate Forest Ecosystems
  publication-title: BioScience
  doi: 10.2307/1313296
– volume: 10
  start-page: 024019
  year: 2015
  ident: ref_15
  article-title: A global analysis of soil acidification caused by nitrogen addition
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/10/2/024019
– ident: ref_32
  doi: 10.5846/stxb201408031549
– volume: 20
  start-page: 241
  year: 2016
  ident: ref_49
  article-title: FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild
  publication-title: Fungal Ecol.
  doi: 10.1016/j.funeco.2015.06.006
– volume: 196
  start-page: 7
  year: 2004
  ident: ref_4
  article-title: Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2004.03.033
– volume: 353
  start-page: 1272
  year: 2016
  ident: ref_48
  article-title: Decoupling function and taxonomy in the global ocean microbiome
  publication-title: Science
  doi: 10.1126/science.aaf4507
– volume: 12
  start-page: 489
  year: 2006
  ident: ref_5
  article-title: Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2006.01102.x
– volume: 7
  start-page: e7631
  year: 2019
  ident: ref_62
  article-title: Differential mechanisms underlying responses of soil bacterial and fungal communities to nitrogen and phosphorus inputs in a subtropical forest
  publication-title: PeerJ
  doi: 10.7717/peerj.7631
– volume: 75
  start-page: 5111
  year: 2009
  ident: ref_52
  article-title: Pyrosequencing-Based Assessment of Soil pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale
  publication-title: AEM
  doi: 10.1128/AEM.00335-09
– ident: ref_76
  doi: 10.3390/f11040428
– ident: ref_50
– volume: 74
  start-page: 1157
  year: 2010
  ident: ref_18
  article-title: Simulated Atmospheric Nitrogen Deposition Alters Actinobacterial Community Composition in Forest Soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2009.0240
– volume: 70
  start-page: 153
  year: 2004
  ident: ref_1
  article-title: Nitrogen Cycles: Past, Present, and Future
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-004-0370-0
– volume: 30
  start-page: 1967
  year: 2016
  ident: ref_22
  article-title: Mycorrhizal and saprotrophic fungal guilds compete for the same organic substrates but affect decomposition differently
  publication-title: Funct. Ecol.
  doi: 10.1111/1365-2435.12677
– volume: 80
  start-page: 26
  year: 2015
  ident: ref_56
  article-title: Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.09.012
– volume: 20
  start-page: 3646
  year: 2014
  ident: ref_71
  article-title: Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12618
– volume: 6
  start-page: 1007
  year: 2012
  ident: ref_21
  article-title: Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients
  publication-title: ISME J.
  doi: 10.1038/ismej.2011.159
– ident: ref_34
  doi: 10.1371/journal.pone.0102765
– volume: Volume 148
  start-page: 35
  year: 1997
  ident: ref_58
  article-title: Effects of Acidic Deposition on Soil Invertebrates and Microorganisms
  publication-title: Reviews of Environmental Contamination and Toxicology
– volume: 181
  start-page: 104094
  year: 2019
  ident: ref_74
  article-title: Nitrogen deposition and decreased precipitation altered nutrient foraging strategies of three temperate trees by affecting root and mycorrhizal traits
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104094
– volume: 4
  start-page: 1340
  year: 2010
  ident: ref_59
  article-title: Soil bacterial and fungal communities across a pH gradient in an arable soil
  publication-title: ISME J.
  doi: 10.1038/ismej.2010.58
SSID ssj0000913851
Score 2.3436198
Snippet Increased soil nitrogen (N) from atmospheric N deposition could change microbial communities and functions. However, the underlying mechanisms and whether soil...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1828
SubjectTerms A horizons
Acidification
Bacteria
Biomass
carbon sequestration
Community composition
community structure
Composition
degradation
Deoxyribonucleic acid
Deposition
DNA
Ecosystems
functional potential
fungal communities
Fungi
Guilds
high throughput sequencing
Horizon
Microbial activity
microbial community
Microbiomes
Microorganisms
mycorrhizal fungi
Nitrates
Nitrogen
nitrogen deposition
nitrogen fixation
organic horizons
Organic matter
pathogens
Phosphorus
phosphorus addition
prediction
saprotrophs
soil bacteria
Soil chemistry
Soil horizons
Soil investigations
Soil microorganisms
Soil pH
Soils
storage
Taxonomy
temperate forest
Temperate forests
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-QwFA4iCF5kXd3d6qxkYa_dadI0TY6zi4MIDsu6grfSpK_OgLYynTn43_uS1GFGBr0IPTUJbfJ-fa9NvkfIT1CucIhlMYJ5GwsJNi5BlyiQMgOJKiQ9E9PVRF7ciMvb7Hat1JfbExbogcPCDYEngEYgskwh9hdaJYAxXnArc2ZS6Y_5YsxbS6a8D9YsRSwRjuykmNcPH9z-tlApqXvoFHPAWm0EI8_Zvw1ovt4vuRaAxp_IQY8c6Si88SHZgeYz2Qu1JJ-OSPV32naP03a-7Og_x8cKHZ3Anef1poGjuKNtTSezxbxFraGjqvLbtShe1-3snl7NPCkTPqM_NeK4VmnZVHSMwc_r5zG5GZ___3MR9yUUYouebBGXBioGCLO0EhnkjhyG5xKlxoXNJWMmASVqbgAQvnJWaVlbsHVuMI3heWbTL2S3aRv4RqjKjFBljauOiawRiVHCVgIBBqtYLbWJiHhZy8L2_OKuzMV9gXmGE0GxVQQR-bUa9hgINt4b8NsJatXZ8WP7G9ix6LWmeE9rIjJ4EXPRG21XcCEdXsEkKyI_Vs1obu4fStlAuwx90Gmh63qrj1Zco2OUEfkaNGf1tmnK3dlnbMk3dGpjOpstzWzqab9zqXWW6pOPmP8p2efuwwFDI00GZHcxX8J3RFcLc-YN6Rn_wiOe
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagFRIXxLsLBRmJa2jsOH6cUIu6qpC6qgqVeotie8Ku1CbLZvfAv2fseAOLqiLlFE8SJ_PwN479DSEfQYfCIY5lCOZdJiS4rAZTo0LqEiSakIxMTOczeXYlvl6X12nCrU_LKrcxMQZq37kwR37EhQyDCSLgz8ufWagaFf6uphIaD8k-hmCNydf-yens4nKcZQmsl4gphq07Beb3R7dhndtQMam_7TULAFvvDEqRu_8uwPnvusm_BqLpU_IkIUh6PKj8GXkA7XPyaKgp-esF8Rfzrl_Ou9Wmp5eBlxV6OoMfkd-bDlzFPe0aOlusVx1aDz32Pi7bonh86xY39HwRyZnwGWn3SOBcpXXr6RQHwWinL8nV9PT7l7MslVLIHEa0dVZb8AwQbhktSlCBJIYridrjwinJmM1Bi4ZbAISxnHkjGweuURbTGa5KV7wie23XwgGhurRC141COSWsyK0WzgsEGsyzRho7IWL7LSuXeMZDuYubCvONoILqThVMyKfxsuVAtPG_C06CokbhwJMdT6BgldyuAp4DhlBRlhozR2F0DogQBXcS-19IvMnhVs1Vct6--mNqE_JhbEa3C_9S6ha6zSCDwQtD2H0yRnODAVJOyOvBcsbeFgUPe6CxRe3Y1M7r7La0i3mk_1bSmLIwb-7v-lvymIepAYZumB-SvfVqA-8QP63t--QkvwEHdR79
  priority: 102
  providerName: ProQuest
Title Phosphorus Reduces Negative Effects of Nitrogen Addition on Soil Microbial Communities and Functions
URI https://www.ncbi.nlm.nih.gov/pubmed/33233486
https://www.proquest.com/docview/2464266255
https://www.proquest.com/docview/2464196053
https://www.proquest.com/docview/2498298806
https://pubmed.ncbi.nlm.nih.gov/PMC7699539
https://doaj.org/article/e20e37645581444980e51442c671b368
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFD50LYO9jN2XrQsa7NWdJcu6PIzRjoYySCjdAn0ztny8BFK7ixNY__2OZCcsI7uAn6xjyfa56Du29B2Ad2h84RDHIwLzLpIKXZSjzUkheYqKTEgFJqbxRF1M5efr9PoANoQK_Qts96Z2vp7UdLk4-fH97iM5_AefcVLK_v7GL13riiC1N63hHjObe3BEk5P2vjruEX8IzpYnJhRlFJTBR4Tmdbev58897cxYgdh_Hxr9fVHlL7PU6BE87OElO-3s4TEcYP0E7ncFJ--eQnk5a9rbWbNct-zKk7Ziyyb4LZB_s47IuGVNxSbz1bIh02KnZRnWdDE6vjTzBRvPA3MTjdFvLfGErCyvSzaiGTIY8TOYjs6_frqI-joLkaNwt4ryAkuOhMWskSlqzyAjtCLVCum04ryI0chKFIiEcQUvraocukoXlOsInbrkORzWTY0vgZm0kCavNMlpWci4MNKVklAIL3mlbDEAuXmXmetJyH0tjEVGyYhXQbZXBQM42V5227Fw_OuCM6-orbAn0Q4nSDDrfTJDESPFV5mmhtJKaU2MBB-lcIruP1HUyfFGzdnGMDMhlQc1lIkN4O22mXzS_2jJa2zWnQxFNopvf5OxRliKnmoALzrL2d5tkgi_QZpa9I5N7TzObks9nwVucK2sTRP76j_GfQ0PhP94wMlR42M4XC3X-IYQ1qoYwtHZ-eTyahi-UAyDB_0EO8wq2Q
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8WChgJjqGJ4zj2AaEWutrSblSVVuotJM6EXalNls2uUP8Uv5FxXrCoKqdKOcWTxMk8_I1jfwPwFpUtHGI8h8C8cYRE4ySoE1JIEqAkE5I1E9MkkuNT8eUsONuAX91eGLussouJdaDOSmPnyLe5kHYwIQT8cf7DsVWj7N_VroRGYxYHePmTUrbqw_5n0u87zkd7J5_GTltVwDHk3EsnSTHzkJCHViLA0PKl8FDSi3BhKKf3UheVyHmKSIiOe5mWuUGThykhex4Gxqf73oJN4VMqM4DN3b3o6Lif1bEsm4Rhmq1Cvq_d7Qu7rq6p0FRdVMqzgF6tDYJ1rYCrAO6_6zT_GvhG9-Fei1jZTmNiD2ADi4dwu6lhefkIsqNpWc2n5WJVsWPLA4sVi_B7zSfOGm7kipU5i2bLRUnWynayrF4mxuj4Ws7O2WRWk0HRM9rdKpbjlSVFxkY06NZ-8RhOb-QjP4FBURb4DJgKUqGSPCS5UKTCTZUwmSBg42VeLnU6BNF9y9i0vOa2vMZ5TPmNVUF8pQqG8L6_bN4Qe_zvgl2rqF7Y8nLXJ0gwbt08Ru4ihWwRBIoyVaGVi4RIBTeS-u9LuslWp-a4DRZV_Me0h_CmbyY3t_9ukgLLVSNDwZJC5nUyWnFNAVkO4WljOX1vfZ_bPdfUEq7Z1NrrrLcUs2lNNx5KrQNfP7--66_hzvhkchgf7kcHL-Aut9MSHoUAdwsGy8UKXxJ2W6avWodh8O2mffQ3cfhcFA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8WChgJjmETx3HsA0It7aqlNFoVKvWWJs6EXalNls2uUP8av45xXrCoKqdKOcWTxMk8_NkZfwPwFpUtHGI8h8C8cYRE4ySoE1JIEqAkE5I1E9NRJPdPxOfT4HQDfnV7YWxaZRcT60CdlcaukY-4kHYwIQQ8ytu0iMnu-OP8h2MrSNk_rV05jcZEDvHyJ03fqg8Hu6Trd5yP97592nfaCgOOIUdfOkmKmYeEQrQSAYaWO4WHkl6KC0Pzey91UYmcp4iE7riXaZkbNHmYEsrnYWB8uu8t2AxpVuQOYHNnL5oc9ys8lnGT8Eyzbcj3tTu6sDl2TbWm6qJSngX3am1ArOsGXAV2_83Z_GsQHN-Hey16ZduNuT2ADSwewu2mnuXlI8gm07KaT8vFqmLHlhMWKxbh95pbnDU8yRUrcxbNlouSLJdtZ1mdMsbo-FrOztnRrCaGome0O1cs3ytLioyNaQCufeQxnNzIR34Cg6Is8BkwFaRCJXlIcqFIhZsqYTJBIMfLvFzqdAii-5axaTnObamN85jmOlYF8ZUqGML7_rJ5Q_Lxvwt2rKJ6YcvRXZ8gwbh1-Ri5ixS-RRAomrUKrVwkdCq4kdR_X9JNtjo1x23gqOI_Zj6EN30zubz9j5MUWK4aGQqcFD6vk9GKawrOcghPG8vpe-v73O6_ppZwzabWXme9pZhNa-rxUGod-Pr59V1_DXfIN-MvB9HhC7jL7QqFR9HA3YLBcrHClwTjlumr1l8YnN20i_4GYOdgSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorus+Reduces+Negative+Effects+of+Nitrogen+Addition+on+Soil+Microbial+Communities+and+Functions&rft.jtitle=Microorganisms+%28Basel%29&rft.au=Xia%2C+Zongwei&rft.au=Yang%2C+Jingyi&rft.au=Sang%2C+Changpeng&rft.au=Wang%2C+Xu&rft.date=2020-11-20&rft.issn=2076-2607&rft.eissn=2076-2607&rft.volume=8&rft.issue=11&rft_id=info:doi/10.3390%2Fmicroorganisms8111828&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-2607&client=summon