Decellularized tissue engineered hyaline cartilage graft for articular cartilage repair
Articular cartilage repair has been a long-standing challenge in orthopaedic medicine due to the limited self-regenerative capability of cartilage tissue. Currently, cartilage lesions are often treated by microfracture or autologous chondrocyte implantation (ACI). However, these treatments are frequ...
Saved in:
Published in | Biomaterials Vol. 235; p. 119821 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Articular cartilage repair has been a long-standing challenge in orthopaedic medicine due to the limited self-regenerative capability of cartilage tissue. Currently, cartilage lesions are often treated by microfracture or autologous chondrocyte implantation (ACI). However, these treatments are frequently reported to result in a mixture of the desired hyaline cartilage and mechanically inferior fibrocartilage. In this study, by combining the advantages of cartilage tissue engineering and decellularization technology, we developed a decellularized allogeneic hyaline cartilage graft, named dLhCG, which achieved superior efficacy in articular cartilage repair and surpassed living autologous chondrocyte-based cartilaginous engraftment and ACI. By the 6-month time point after implantation in porcine knee joints, the fine morphology, composition, phenotype, microstructure and mechanical properties of the regenerated hyaline-like cartilaginous neo-tissue have been demonstrated via histology, biochemical assays, DNA microarrays and mechanical tests. The articular cartilaginous engraftment with allogeneic dLhCG was indicated to be well consistent, compatible and integrated with the native cartilage of the host. The successful repair of articular chondral defects in large animal models suggests the readiness of allogeneic dLhCG for clinical trials. |
---|---|
AbstractList | Articular cartilage repair has been a long-standing challenge in orthopaedic medicine due to the limited self-regenerative capability of cartilage tissue. Currently, cartilage lesions are often treated by microfracture or autologous chondrocyte implantation (ACI). However, these treatments are frequently reported to result in a mixture of the desired hyaline cartilage and mechanically inferior fibrocartilage. In this study, by combining the advantages of cartilage tissue engineering and decellularization technology, we developed a decellularized allogeneic hyaline cartilage graft, named dLhCG, which achieved superior efficacy in articular cartilage repair and surpassed living autologous chondrocyte-based cartilaginous engraftment and ACI. By the 6-month time point after implantation in porcine knee joints, the fine morphology, composition, phenotype, microstructure and mechanical properties of the regenerated hyaline-like cartilaginous neo-tissue have been demonstrated via histology, biochemical assays, DNA microarrays and mechanical tests. The articular cartilaginous engraftment with allogeneic dLhCG was indicated to be well consistent, compatible and integrated with the native cartilage of the host. The successful repair of articular chondral defects in large animal models suggests the readiness of allogeneic dLhCG for clinical trials.Articular cartilage repair has been a long-standing challenge in orthopaedic medicine due to the limited self-regenerative capability of cartilage tissue. Currently, cartilage lesions are often treated by microfracture or autologous chondrocyte implantation (ACI). However, these treatments are frequently reported to result in a mixture of the desired hyaline cartilage and mechanically inferior fibrocartilage. In this study, by combining the advantages of cartilage tissue engineering and decellularization technology, we developed a decellularized allogeneic hyaline cartilage graft, named dLhCG, which achieved superior efficacy in articular cartilage repair and surpassed living autologous chondrocyte-based cartilaginous engraftment and ACI. By the 6-month time point after implantation in porcine knee joints, the fine morphology, composition, phenotype, microstructure and mechanical properties of the regenerated hyaline-like cartilaginous neo-tissue have been demonstrated via histology, biochemical assays, DNA microarrays and mechanical tests. The articular cartilaginous engraftment with allogeneic dLhCG was indicated to be well consistent, compatible and integrated with the native cartilage of the host. The successful repair of articular chondral defects in large animal models suggests the readiness of allogeneic dLhCG for clinical trials. Articular cartilage repair has been a long-standing challenge in orthopaedic medicine due to the limited self-regenerative capability of cartilage tissue. Currently, cartilage lesions are often treated by microfracture or autologous chondrocyte implantation (ACI). However, these treatments are frequently reported to result in a mixture of the desired hyaline cartilage and mechanically inferior fibrocartilage. In this study, by combining the advantages of cartilage tissue engineering and decellularization technology, we developed a decellularized allogeneic hyaline cartilage graft, named dLhCG, which achieved superior efficacy in articular cartilage repair and surpassed living autologous chondrocyte-based cartilaginous engraftment and ACI. By the 6-month time point after implantation in porcine knee joints, the fine morphology, composition, phenotype, microstructure and mechanical properties of the regenerated hyaline-like cartilaginous neo-tissue have been demonstrated via histology, biochemical assays, DNA microarrays and mechanical tests. The articular cartilaginous engraftment with allogeneic dLhCG was indicated to be well consistent, compatible and integrated with the native cartilage of the host. The successful repair of articular chondral defects in large animal models suggests the readiness of allogeneic dLhCG for clinical trials. |
ArticleNumber | 119821 |
Author | Zhu, Wenzhen Peck, Yvonne Chuah, Yon Jin He, Pengfei Nie, Xiaolei Wang, Dong-An |
Author_xml | – sequence: 1 givenname: Xiaolei surname: Nie fullname: Nie, Xiaolei organization: School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore – sequence: 2 givenname: Yon Jin surname: Chuah fullname: Chuah, Yon Jin organization: School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore – sequence: 3 givenname: Wenzhen surname: Zhu fullname: Zhu, Wenzhen organization: School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore – sequence: 4 givenname: Pengfei surname: He fullname: He, Pengfei organization: School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore – sequence: 5 givenname: Yvonne surname: Peck fullname: Peck, Yvonne organization: School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore – sequence: 6 givenname: Dong-An surname: Wang fullname: Wang, Dong-An email: dwang229@cityu.edu.hk organization: School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32006743$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1P3DAQhq2KqizQv1BFPXHJ1t_r9FQ-CxJSLyCOluNMtrPNJlvbQVp-PY4WJMRpT_bMvPOMPe8ROeiHHgj5zuicUaZ_rOY1DmuXIKDr4pxTngusMpx9IjNmFqZUFVUHZEaZ5GWlGT8kRzGuaI6p5F_IoeCU6oUUM_J4CR66buxcwGdoioQxjlBAv8QeIOTM363r8r3wLiTs3BKKZXBtKtohFFPKT73vqgE2DsMJ-dzmx8HX1_OYPFxf3V_clHd_ft9enN2VXgmTSid0U2mqpDaaKeokqxamBd5qWBjH67o2rRE58KqWQLWSTMiqYtI0tRe1EcfkdMfdhOH_CDHZNcbpR66HYYyWKy4544bvIRWK0kpzrbP026t0rNfQ2E3AtQtb-7a3LPi1E_gwxBigtR6TSzj0KTjsLKN2ssqu7Hur7GSV3VmVET8_IN6m7NV8uWuGvNsnhGCjR-g9NBjAJ9sMuB_m_APGZ6_Ru-4fbPeFvAApXc1s |
CitedBy_id | crossref_primary_10_1088_1748_605X_ad884f crossref_primary_10_1089_ten_teb_2022_0190 crossref_primary_10_1016_j_mtbio_2024_100948 crossref_primary_10_1002_adhm_202100878 crossref_primary_10_1089_ten_tec_2022_0005 crossref_primary_10_1016_j_ijbiomac_2024_137144 crossref_primary_10_1007_s12204_022_2507_5 crossref_primary_10_1016_j_ijbiomac_2025_139711 crossref_primary_10_1038_s43246_024_00598_x crossref_primary_10_1002_adhm_202202814 crossref_primary_10_3390_ijms21155447 crossref_primary_10_3390_life11080756 crossref_primary_10_1111_aor_13701 crossref_primary_10_1002_marc_202300508 crossref_primary_10_3390_bioengineering12010077 crossref_primary_10_1016_j_nanoen_2022_108158 crossref_primary_10_3390_ijms21165593 crossref_primary_10_1021_acsbiomaterials_4c00603 crossref_primary_10_1111_aor_14126 crossref_primary_10_1016_j_bioactmat_2020_05_009 crossref_primary_10_1039_D0TB00616E crossref_primary_10_1021_acsami_1c19447 crossref_primary_10_34133_bmr_0072 crossref_primary_10_1093_rb_rbae064 crossref_primary_10_1039_D2TB02005J crossref_primary_10_1039_D0TB02616F crossref_primary_10_1016_j_bioactmat_2024_10_013 crossref_primary_10_1016_j_mtbio_2024_101228 crossref_primary_10_1039_D0TB01111H crossref_primary_10_1016_j_joca_2022_07_012 crossref_primary_10_1016_j_bioactmat_2020_09_030 crossref_primary_10_1039_D0TB01534B crossref_primary_10_1002_adem_202200304 crossref_primary_10_3389_fped_2024_1342906 crossref_primary_10_3390_polym13122000 crossref_primary_10_1002_smll_202304088 crossref_primary_10_1016_j_bioactmat_2024_02_008 crossref_primary_10_1016_j_reth_2020_11_005 crossref_primary_10_3390_polym16131794 crossref_primary_10_1016_j_cej_2024_152463 crossref_primary_10_1016_j_mtbio_2025_101451 crossref_primary_10_1016_j_jbspin_2020_105096 crossref_primary_10_1016_j_ijbiomac_2023_128453 crossref_primary_10_1016_j_bioactmat_2024_09_005 crossref_primary_10_1021_acsnano_3c09033 crossref_primary_10_1089_ten_teb_2020_0208 crossref_primary_10_1016_j_lfs_2022_121043 crossref_primary_10_1039_D3TB01701J crossref_primary_10_1088_1748_605X_ac51b9 crossref_primary_10_1016_j_bioadv_2024_214125 crossref_primary_10_3390_gels10070430 crossref_primary_10_1016_j_bprint_2023_e00317 crossref_primary_10_1515_ntrev_2023_0151 crossref_primary_10_1016_j_mtbio_2023_100695 crossref_primary_10_3390_bioengineering10040453 crossref_primary_10_1002_adhm_202202581 crossref_primary_10_1021_acsami_1c07530 crossref_primary_10_1016_j_ijbiomac_2024_133818 crossref_primary_10_1016_j_cej_2023_145228 crossref_primary_10_1177_20417314241268189 crossref_primary_10_1016_j_smaim_2021_12_002 crossref_primary_10_3389_fcell_2021_655440 crossref_primary_10_1080_09205063_2022_2088530 crossref_primary_10_1088_1748_605X_ac2595 crossref_primary_10_1093_rb_rbab018 crossref_primary_10_1002_btpr_3174 crossref_primary_10_1002_ctm2_248 crossref_primary_10_1002_adfm_201909044 crossref_primary_10_3389_fbioe_2021_664592 crossref_primary_10_1021_acsami_1c17629 crossref_primary_10_1016_j_gene_2023_147337 crossref_primary_10_1039_D1NR06284K crossref_primary_10_1016_j_ijbiomac_2024_135827 crossref_primary_10_1016_j_jmst_2023_01_035 crossref_primary_10_1016_j_biomaterials_2023_122420 crossref_primary_10_1002_adhm_202100146 crossref_primary_10_1089_ten_tea_2022_29025_abstracts crossref_primary_10_1021_acsnano_4c00780 crossref_primary_10_1088_1748_605X_ac094b crossref_primary_10_1016_j_bioadv_2022_213019 crossref_primary_10_1016_j_biomaterials_2024_122875 crossref_primary_10_1088_1758_5090_ad88a6 crossref_primary_10_1155_2022_7638245 crossref_primary_10_1016_j_actbio_2023_10_008 crossref_primary_10_1016_j_actbio_2024_03_015 crossref_primary_10_1016_j_ijbiomac_2021_12_097 crossref_primary_10_1166_mex_2023_2339 crossref_primary_10_1002_mabi_202200372 crossref_primary_10_1002_adfm_202307886 crossref_primary_10_1016_j_apmt_2021_101257 crossref_primary_10_1002_term_3222 crossref_primary_10_1002_term_3224 crossref_primary_10_1039_D3TC02166A crossref_primary_10_1016_j_apmt_2020_100922 crossref_primary_10_1016_j_bioactmat_2021_03_013 crossref_primary_10_1088_1748_605X_ac8a31 crossref_primary_10_3390_bioengineering10080916 crossref_primary_10_1186_s12896_023_00800_x crossref_primary_10_2106_JBJS_CC_21_00608 crossref_primary_10_1007_s42399_021_01044_6 crossref_primary_10_1021_acs_biomac_3c01424 crossref_primary_10_1002_adhm_202202008 crossref_primary_10_1016_j_biomaterials_2020_120310 crossref_primary_10_1126_scitranslmed_abb6683 crossref_primary_10_1016_j_mtbio_2023_100893 |
Cites_doi | 10.1186/ar613 10.1007/s10735-010-9257-7 10.1038/srep16225 10.3390/ma8095269 10.1016/j.biomaterials.2009.03.050 10.1089/ten.2006.0246 10.1007/s00167-008-0494-1 10.1097/IJG.0000000000000108 10.1093/rheumatology/31.9.583 10.1016/j.knee.2016.02.001 10.1177/1941738115611350 10.1002/adfm.201102884 10.1126/science.1222454 10.1302/0301-620X.87B5.15905 10.3109/03008208808992791 10.1016/S1369-7021(11)70058-X 10.1007/s00167-008-0663-2 10.1148/radiol.2015141146 10.1155/2017/9831534 10.1002/stem.1634 10.1089/ten.tec.2012.0760 10.1016/0014-5793(88)81307-3 10.1007/s00018-016-2268-0 10.1177/1941738109350438 10.7717/peerj.3629 10.1021/acsbiomaterials.7b00619 10.2106/JBJS.15.01208 10.1016/j.actbio.2013.09.006 10.1089/ten.tec.2017.0018 10.1016/j.joca.2010.05.026 10.1186/s40634-015-0031-3 10.1089/ten.tea.2012.0365 10.1615/CritRevBiomedEng.v37.i1-2.10 10.1007/s13238-017-0377-7 10.3389/fphys.2018.00419 10.1016/j.knee.2009.02.004 10.1302/0301-620X.86B2.14324 10.1089/ten.tea.2013.0544 10.1016/j.ijsu.2019.06.007 10.3390/ijms151018789 10.1007/s00256-005-0002-3 10.1097/SAP.0000000000000157 10.1302/0301-620X.87B5.14936 10.1039/C8BM00772A 10.1155/2014/272481 10.1101/pdb.prot4986 10.1177/1947603515607963 10.1242/dmm.034280 10.1189/jlb.4MR0316-102R 10.1007/s00167-004-0535-3 10.1177/0363546517701912 10.1016/0003-2697(88)90532-5 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biomaterials.2020.119821 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1878-5905 |
ExternalDocumentID | 32006743 10_1016_j_biomaterials_2020_119821 S0142961220300673 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAIAV AAYOK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG RIG AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c538t-a36d96054686150a41978fe2f6e78a2bbb8f836e7c5b4e065413499148dbc3b83 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 1878-5905 |
IngestDate | Fri Jul 11 06:43:33 EDT 2025 Tue Aug 05 11:28:35 EDT 2025 Mon Jul 21 05:59:28 EDT 2025 Thu Apr 24 23:08:31 EDT 2025 Tue Jul 01 01:19:40 EDT 2025 Fri Feb 23 02:48:55 EST 2024 Tue Aug 26 20:00:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pre-clinical Cartilage Large animal model Scaffold-free Tissue engineering Decellularization |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c538t-a36d96054686150a41978fe2f6e78a2bbb8f836e7c5b4e065413499148dbc3b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 32006743 |
PQID | 2350096266 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2524212828 proquest_miscellaneous_2350096266 pubmed_primary_32006743 crossref_citationtrail_10_1016_j_biomaterials_2020_119821 crossref_primary_10_1016_j_biomaterials_2020_119821 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2020_119821 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2020_119821 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2020 2020-03-00 20200301 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yue (bib38) 2014; 23 Krzyszczyk, Schloss, Palmer, Berthiaume (bib30) 2018; 9 Jansen, Hollander, Buttle, Everts (bib39) 2010; 41 Sharpe, Ahmed, Fleetcroft, Martin (bib9) 2005; 87-B Hanifi, Richardson, Kuiper, Roberts, Pleshko (bib11) 2012 Dang, Waxman, Wang, Jensen, Loewen, Bilonick, Loewen (bib51) 2017; 5 Peck, He, Chilla, Poh, Wang (bib18) 2015; 5 Robb, Shridhar, Flynn (bib14) 2018; 4 Dewan, Gibson, Elisseeff, Trice (bib22) 2014; 2014 Gao, Goebel, Orth, Cucchiarini, Madry (bib4) 2018; 11 Takahashi, Tins, McCall, Richardson, Takagi, Ashton (bib36) 2006; 35 Mccarthy, Roberts (bib10) 2013 Nie, Wang (bib15) 2018; 6 Knutsen, Drogset, Engebretsen, Grøntvedt, Ludvigsen, Løken, Solheim, Strand, Johansen (bib23) 2016; 98 Wotton, Duance, Fryer (bib46) 1988; 234 Rich, Whittaker (bib56) 2005; 22 Sheikh, Brooks, Barzilay, Fine, Glogauer (bib29) 2015; 8 Syedain, Bradee, Kren, Taylor, Tranquillo (bib53) 2013; 19 Iwasa, Engebretsen, Shima, Ochi (bib12) 2009; 17 Zhang, Hu, Athanasiou (bib13) 2009; 37 Sophia Fox, Bedi, Rodeo (bib1) 2009; 1 Horas, Pelinkovic, Herr, Aigner, Schnettler (bib41) 2003; 85-A Roberts, McCall, Darby, Menage, Evans, Harrison, Richardson (bib37) 2003; 5 Dipietro (bib31) 2016; 100 McCarthy, Richardson, Parker, Roberts (bib8) 2016; 7 Zheng, Willers, Kirilak, Yates, Xu, Wood, Shimmin (bib32) 2007; 13 Bartlett, Skinner, Gooding, Carrington, Flanagan, Briggs, Bentley (bib63) 2005; 87-B Gilpin, Yang (bib16) 2017; 2017 Mhanna, Kashyap, Palazzolo, Vallmajo-Martin, Becher, Möller, Schnabelrauch, Zenobi-Wong (bib44) 2014; 20 Luo, Sinkeviciute, He, Karsdal, Henrotin, Mobasheri, Önnerfjord, Bay-Jensen (bib45) 2017; 8 Qu, Van Hogezand, Zhao, Kuo, Carlsen (bib55) 2015; 75 Landén, Li, Ståhle (bib28) 2016; 73 Burk, Erbe, Berner, Kacza, Kasper, Pfeiffer, Winter, Brehm (bib52) 2014; 20 Goldner (bib58) 1938; 14 Velnar, Bunc, Klobucar, Gradisnik (bib27) 2016; 16 Saxne, Heinegård (bib47) 1992; 31 Kock, Smolders, van Susante, Buma, van Kampen, Verdonschot (bib6) 2008; 16 Negrin (bib21) 2012 Schmitz, Laverty, Kraus, Aigner (bib59) 2010; 18 Aae, Randsborg, Lurås, Årøen, Lian (bib25) 2017; 26 Na, Shi, Liu, Jia, Kong, Zhang, Han, Ren (bib20) 2019; 68 Elder, Eleswarapu, Athanasiou (bib50) 2009; 30 O'Brien (bib17) 2011; 14 Roberts, Menage, Sandell, Evans, Richardson (bib60) 2009; 16 Guermazi, Roemer, Alizai, Winalski, Welsch, Brittberg, Trattnig (bib5) 2015; 277 Hyunchul, Gil Lee, Hyoung Shin, Kim, Won Chai, Cheol Jeong, Eun Kim, Shim, Sun Shin, Seob Shin, Chan, Sup Yoon (bib33) 2014; 32 Brittberg, Peterson, Sjögren-Jansson, Tallheden, Lindahl (bib43) 2003; 85-A Huey, Hu, Athanasiou (bib2) 2012; 338 Richter, Schenck, Wascher, Treme, Treme (bib3) 2016; 8 Su, Lau, Leong, Gong, Wang (bib19) 2012; 22 Templeton (bib61) 1988; 17 Cissell, Link, Hu, Athanasiou (bib62) 2017; 23 Kraeutler, Belk, Purcell, McCarty (bib24) 2018; 46 Marlovits, Striessnig, Kutscha-Lissberg, Resinger, Aldrian, Vécsei, Trattnig (bib42) 2005; 13 Fischer, Jacobson, Rose, Zeller (bib57) 2008 Kim, Sah, Doong, Grodzinsky (bib35) 1988; 174 Christensen, Foldager, Olesen, Vingtoft, Rölfing, Ringgaard, Lind (bib34) 2015; 2 Gudmann, Wang, Hoielt, Chen, Siebuhr, He, Christiansen, Karsdal, Bay-Jensen (bib48) 2014; 15 Smith, Sigal, Grande (bib26) 2016; 63 Xu, Xu, Yang, Li, Ma, Xia, Zhang, Zhang, Wu, Zhang (bib49) 2014; 9 Faulk, Carruthers, Warner, Kramer, Reing, Zhang, D'Amore, Badylak (bib54) 2014; 10 Niemeyer, Albrecht, Andereya, Angele, Ateschrang, Aurich, Baumann, Bosch, Erggelet, Fickert, Gebhard, Gelse, Günther, Hoburg, Kasten, Kolombe, Madry, Marlovits, Meenen, Müller, Nöth, Petersen, Pietschmann, Richter, Rolauffs, Rhunau, Schewe, Steinert, Steinwachs, Welsch, Zinser, Fritz (bib7) 2016; 23 Henderson, Tuy, Oakes (bib40) 2004; 86 McCarthy (10.1016/j.biomaterials.2020.119821_bib8) 2016; 7 Faulk (10.1016/j.biomaterials.2020.119821_bib54) 2014; 10 Negrin (10.1016/j.biomaterials.2020.119821_bib21) 2012 Takahashi (10.1016/j.biomaterials.2020.119821_bib36) 2006; 35 Schmitz (10.1016/j.biomaterials.2020.119821_bib59) 2010; 18 Hyunchul (10.1016/j.biomaterials.2020.119821_bib33) 2014; 32 Mccarthy (10.1016/j.biomaterials.2020.119821_bib10) 2013 Luo (10.1016/j.biomaterials.2020.119821_bib45) 2017; 8 Dang (10.1016/j.biomaterials.2020.119821_bib51) 2017; 5 Velnar (10.1016/j.biomaterials.2020.119821_bib27) 2016; 16 Kraeutler (10.1016/j.biomaterials.2020.119821_bib24) 2018; 46 Iwasa (10.1016/j.biomaterials.2020.119821_bib12) 2009; 17 Bartlett (10.1016/j.biomaterials.2020.119821_bib63) 2005; 87-B Sophia Fox (10.1016/j.biomaterials.2020.119821_bib1) 2009; 1 Dewan (10.1016/j.biomaterials.2020.119821_bib22) 2014; 2014 Sheikh (10.1016/j.biomaterials.2020.119821_bib29) 2015; 8 Zhang (10.1016/j.biomaterials.2020.119821_bib13) 2009; 37 Brittberg (10.1016/j.biomaterials.2020.119821_bib43) 2003; 85-A Wotton (10.1016/j.biomaterials.2020.119821_bib46) 1988; 234 Saxne (10.1016/j.biomaterials.2020.119821_bib47) 1992; 31 Goldner (10.1016/j.biomaterials.2020.119821_bib58) 1938; 14 Na (10.1016/j.biomaterials.2020.119821_bib20) 2019; 68 Knutsen (10.1016/j.biomaterials.2020.119821_bib23) 2016; 98 Gao (10.1016/j.biomaterials.2020.119821_bib4) 2018; 11 Roberts (10.1016/j.biomaterials.2020.119821_bib37) 2003; 5 Niemeyer (10.1016/j.biomaterials.2020.119821_bib7) 2016; 23 Zheng (10.1016/j.biomaterials.2020.119821_bib32) 2007; 13 Peck (10.1016/j.biomaterials.2020.119821_bib18) 2015; 5 Syedain (10.1016/j.biomaterials.2020.119821_bib53) 2013; 19 Roberts (10.1016/j.biomaterials.2020.119821_bib60) 2009; 16 Templeton (10.1016/j.biomaterials.2020.119821_bib61) 1988; 17 Marlovits (10.1016/j.biomaterials.2020.119821_bib42) 2005; 13 Cissell (10.1016/j.biomaterials.2020.119821_bib62) 2017; 23 Kock (10.1016/j.biomaterials.2020.119821_bib6) 2008; 16 Nie (10.1016/j.biomaterials.2020.119821_bib15) 2018; 6 Henderson (10.1016/j.biomaterials.2020.119821_bib40) 2004; 86 Mhanna (10.1016/j.biomaterials.2020.119821_bib44) 2014; 20 Landén (10.1016/j.biomaterials.2020.119821_bib28) 2016; 73 Gudmann (10.1016/j.biomaterials.2020.119821_bib48) 2014; 15 Burk (10.1016/j.biomaterials.2020.119821_bib52) 2014; 20 Gilpin (10.1016/j.biomaterials.2020.119821_bib16) 2017; 2017 Dipietro (10.1016/j.biomaterials.2020.119821_bib31) 2016; 100 O'Brien (10.1016/j.biomaterials.2020.119821_bib17) 2011; 14 Fischer (10.1016/j.biomaterials.2020.119821_bib57) 2008 Aae (10.1016/j.biomaterials.2020.119821_bib25) 2017; 26 Guermazi (10.1016/j.biomaterials.2020.119821_bib5) 2015; 277 Rich (10.1016/j.biomaterials.2020.119821_bib56) 2005; 22 Huey (10.1016/j.biomaterials.2020.119821_bib2) 2012; 338 Horas (10.1016/j.biomaterials.2020.119821_bib41) 2003; 85-A Richter (10.1016/j.biomaterials.2020.119821_bib3) 2016; 8 Christensen (10.1016/j.biomaterials.2020.119821_bib34) 2015; 2 Kim (10.1016/j.biomaterials.2020.119821_bib35) 1988; 174 Jansen (10.1016/j.biomaterials.2020.119821_bib39) 2010; 41 Xu (10.1016/j.biomaterials.2020.119821_bib49) 2014; 9 Robb (10.1016/j.biomaterials.2020.119821_bib14) 2018; 4 Yue (10.1016/j.biomaterials.2020.119821_bib38) 2014; 23 Sharpe (10.1016/j.biomaterials.2020.119821_bib9) 2005; 87-B Elder (10.1016/j.biomaterials.2020.119821_bib50) 2009; 30 Qu (10.1016/j.biomaterials.2020.119821_bib55) 2015; 75 Krzyszczyk (10.1016/j.biomaterials.2020.119821_bib30) 2018; 9 Hanifi (10.1016/j.biomaterials.2020.119821_bib11) 2012 Smith (10.1016/j.biomaterials.2020.119821_bib26) 2016; 63 Su (10.1016/j.biomaterials.2020.119821_bib19) 2012; 22 |
References_xml | – volume: 15 start-page: 18789 year: 2014 end-page: 18803 ident: bib48 article-title: Cartilage turnover reflected by metabolic processing of type II collagen: a novel marker of anabolic function in chondrocytes publication-title: Int. J. Mol. Sci. – volume: 17 start-page: 23 year: 1988 end-page: 32 ident: bib61 article-title: The basis and applicability of the dimethylmethylene blue binding assay for sulfated glycosaminoglycans publication-title: Connect. Tissue Res. – volume: 14 start-page: 88 year: 2011 end-page: 95 ident: bib17 article-title: Biomaterials & scaffolds for tissue engineering publication-title: Mater. Today – volume: 5 start-page: R60 year: 2003 end-page: R73 ident: bib37 article-title: Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology publication-title: Arthritis Res. Ther. – volume: 85-A year: 2003 ident: bib43 article-title: Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments publication-title: J. Bone Joint Surg. Am. – year: 2013 ident: bib10 article-title: A Histological Comparison of the Repair Tissue Formed when Using Either Chondrogide® or Periosteum during Autologous Chondrocyte Implantation – volume: 20 start-page: 276 year: 2014 end-page: 284 ident: bib52 article-title: Freeze-thaw cycles enhance decellularization of large tendons publication-title: Tissue Eng. C Methods – volume: 32 start-page: 1254 year: 2014 end-page: 1266 ident: bib33 article-title: Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial publication-title: Stem Cell. – volume: 5 start-page: 16225 year: 2015 ident: bib18 article-title: A preclinical evaluation of an autologous living hyaline-like cartilaginous graft for articular cartilage repair: a pilot study publication-title: Sci. Rep. – volume: 8 start-page: 153 year: 2016 end-page: 160 ident: bib3 article-title: Knee articular cartilage repair and restoration techniques: a review of the literature publication-title: Sport Health – volume: 75 start-page: 112 year: 2015 end-page: 116 ident: bib55 article-title: Decellularization of a fasciocutaneous flap for use as a perfusable scaffold publication-title: Ann. Plast. Surg. – volume: 37 start-page: 1 year: 2009 end-page: 57 ident: bib13 article-title: The role of tissue engineering in articular cartilage repair and regeneration publication-title: Crit. Rev. Biomed. Eng. – volume: 73 start-page: 3861 year: 2016 end-page: 3885 ident: bib28 article-title: Transition from inflammation to proliferation: a critical step during wound healing publication-title: Cell. Mol. Life Sci. – volume: 100 start-page: 979 year: 2016 end-page: 984 ident: bib31 article-title: Angiogenesis and wound repair: when enough is enough publication-title: J. Leukoc. Biol. – volume: 2017 start-page: 9831534 year: 2017 ident: bib16 article-title: Decellularization strategies for regenerative medicine: from processing techniques to applications publication-title: BioMed Res. Int. – volume: 10 start-page: 183 year: 2014 end-page: 193 ident: bib54 article-title: The effect of detergents on the basement membrane complex of a biologic scaffold material publication-title: Acta Biomater. – volume: 35 start-page: 16 year: 2006 end-page: 26 ident: bib36 article-title: MR appearance of autologous chondrocyte implantation in the knee: correlation with the knee features and clinical outcome publication-title: Skeletal Radiol. – volume: 7 start-page: 7 year: 2016 end-page: 15 ident: bib8 article-title: Evaluating joint morbidity after chondral harvest for autologous chondrocyte implantation (ACI) publication-title: Cartilage – volume: 9 start-page: 419 year: 2018 ident: bib30 article-title: The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes publication-title: Front. Physiol. – volume: 18 start-page: S113 year: 2010 end-page: S116 ident: bib59 article-title: Basic methods in histopathology of joint tissues publication-title: Osteoarthritis Cartilage – volume: 41 start-page: 9 year: 2010 end-page: 17 ident: bib39 article-title: Type II and VI collagen in nasal and articular cartilage and the effect of IL-1 alpha on the distribution of these collagens publication-title: J. Mol. Histol. – volume: 16 start-page: 398 year: 2009 end-page: 404 ident: bib60 article-title: Immunohistochemical study of collagen types I and II and procollagen IIA in human cartilage repair tissue following autologous chondrocyte implantation publication-title: Knee – volume: 338 start-page: 917 year: 2012 end-page: 921 ident: bib2 article-title: Unlike bone, cartilage regeneration remains elusive publication-title: Science – volume: 8 start-page: 560 year: 2017 end-page: 572 ident: bib45 article-title: The minor collagens in articular cartilage publication-title: Protein Cell – volume: 11 year: 2018 ident: bib4 article-title: Subchondral drilling for articular cartilage repair: a systematic review of translational research publication-title: Dis. Model. Mech. – volume: 13 start-page: 451 year: 2005 end-page: 457 ident: bib42 article-title: Early postoperative adherence of matrix-induced autologous chondrocyte implantation for the treatment of full-thickness cartilage defects of the femoral condyle, Knee Surgery, Sport publication-title: Traumatol. Arthrosc. – volume: 63 year: 2016 ident: bib26 article-title: Immunology and cartilage regeneration publication-title: Immunol. Res. – volume: 174 start-page: 168 year: 1988 end-page: 176 ident: bib35 article-title: Fluorometric assay of DNA in cartilage explants using Hoechst 33258 publication-title: Anal. Biochem. – volume: 98 start-page: 1332 year: 2016 end-page: 1339 ident: bib23 article-title: A randomized multicenter trial comparing autologous chondrocyte implantation with microfracture: long-term follow-up at 14 to 15 years publication-title: J. Bone Jt. Surg. – volume: 234 start-page: 79 year: 1988 end-page: 82 ident: bib46 article-title: Type IX collagen: a possible function in articular cartilage publication-title: FEBS Lett. – year: 2012 ident: bib11 article-title: Clinical Outcome of Autologous Chondrocyte Implantation Is Correlated with Infrared Spectroscopic Imaging-Derived Parameters – volume: 46 start-page: 995 year: 2018 end-page: 999 ident: bib24 article-title: Microfracture versus autologous chondrocyte implantation for articular cartilage lesions in the knee: a systematic review of 5-year outcomes publication-title: Am. J. Sports Med. – volume: 85-A year: 2003 ident: bib41 article-title: Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial publication-title: J. Bone Joint Surg. Am. – volume: 26 start-page: 1044 year: 2017 end-page: 1052 ident: bib25 article-title: Microfracture is more cost-effective than autologous chondrocyte implantation: a review of level 1 and level 2 studies with 5 year follow-up, Knee Surgery, Sport publication-title: Traumatol. Arthrosc. – volume: 23 start-page: 426 year: 2016 end-page: 435 ident: bib7 article-title: Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group “Clinical Tissue Regeneration” of the German Society of Orthopaedics and Trauma (DGOU) publication-title: Knee – volume: 30 start-page: 3749 year: 2009 end-page: 3756 ident: bib50 article-title: Extraction techniques for the decellularization of tissue engineered articular cartilage constructs publication-title: Biomaterials – volume: 9 year: 2014 ident: bib49 article-title: Comparison of decellularization protocols for preparing a decellularized porcine annulus fibrosus scaffold publication-title: PloS One – volume: 5 year: 2017 ident: bib51 article-title: Freeze-thaw decellularization of the trabecular meshwork in an publication-title: PeerJ – volume: 17 start-page: 561 year: 2009 end-page: 577 ident: bib12 article-title: Clinical application of scaffolds for cartilage tissue engineering, Knee Surgery, Sport publication-title: Traumatol. Arthrosc. – volume: 277 start-page: 23 year: 2015 end-page: 43 ident: bib5 article-title: State of the art: MR imaging after knee cartilage repair surgery publication-title: Radiology – volume: 2 start-page: 13 year: 2015 ident: bib34 article-title: Experimental articular cartilage repair in the Göttingen minipig: the influence of multiple defects per knee publication-title: J. Exp. Orthop. – volume: 87-B start-page: 730 year: 2005 end-page: 735 ident: bib9 article-title: The treatment of osteochondral lesions using a combination of autologous chondrocyte implantation and autograft publication-title: J. Bone Joint Surg. Br. – start-page: 1 year: 2012 end-page: 3 ident: bib21 article-title: Autologous chondrocyte implantation versus microfracture of the knee publication-title: J. Clin. Trials – volume: 13 start-page: 737 year: 2007 end-page: 746 ident: bib32 article-title: Matrix-induced autologous chondrocyte implantation (MACI ®): biological and histological assessment publication-title: Tissue Eng. – volume: 23 start-page: 243 year: 2017 end-page: 250 ident: bib62 article-title: A modified hydroxyproline assay based on hydrochloric acid in ehrlich's solution accurately measures tissue collagen content publication-title: Tissue Eng. C Methods – volume: 4 start-page: 3627 year: 2018 end-page: 3643 ident: bib14 article-title: Decellularized matrices as cell-instructive scaffolds to guide tissue-specific regeneration publication-title: ACS Biomater. Sci. Eng. – volume: 31 start-page: 583 year: 1992 end-page: 591 ident: bib47 article-title: Cartilage oligomeric matrix protein: a novel marker of cartilage turnover detectable in synovial fluid and blood publication-title: Br. J. Rheumatol. – year: 2008 ident: bib57 article-title: Hematoxylin and eosin staining of tissue and cell sections publication-title: Cold Spring Harb. Protoc. – volume: 2014 start-page: 1 year: 2014 end-page: 11 ident: bib22 article-title: Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques publication-title: BioMed Res. Int. – volume: 22 start-page: 972 year: 2012 end-page: 978 ident: bib19 article-title: Creating a living hyaline cartilage graft free from non-cartilaginous constituents: an intermediate role of a biomaterial scaffold publication-title: Adv. Funct. Mater. – volume: 86 start-page: 205 year: 2004 end-page: 211 ident: bib40 article-title: Reoperation after autologous chondrocyte implantation. Indications and findings publication-title: J. Bone Joint Surg. Br. – volume: 16 start-page: 82 year: 2016 end-page: 90 ident: bib27 article-title: Biomaterials and host versus graft response: a short review publication-title: Bosn. J. Basic Med. Sci. – volume: 87-B start-page: 640 year: 2005 end-page: 645 ident: bib63 article-title: Autologous chondrocyte implantation publication-title: J. Bone Joint Surg. Br. – volume: 1 start-page: 461 year: 2009 end-page: 468 ident: bib1 article-title: The basic science of articular cartilage: structure, composition, and function publication-title: Sport Health – volume: 23 start-page: S20 year: 2014 end-page: S23 ident: bib38 article-title: Biology of the extracellular matrix: an overview publication-title: J. Glaucoma – volume: 14 start-page: 237 year: 1938 end-page: 243 ident: bib58 article-title: A modification of the masson trichrome technique for routine laboratory purposes publication-title: Am. J. Pathol. – volume: 16 start-page: 461 year: 2008 end-page: 468 ident: bib6 article-title: A cadaveric analysis of contact stress restoration after osteochondral transplantation of a cylindrical cartilage defect publication-title: Knee Surg. Sports Traumatol. Arthrosc. – volume: 68 start-page: 56 year: 2019 end-page: 62 ident: bib20 article-title: Is implantation of autologous chondrocytes superior to microfracture for articular-cartilage defects of the knee? A systematic review of 5-year follow-up data publication-title: Int. J. Surg. – volume: 8 start-page: 5671 year: 2015 end-page: 5701 ident: bib29 article-title: Macrophages, foreign body giant cells and their response to implantable biomaterials publication-title: Materials – volume: 20 start-page: 1454 year: 2014 end-page: 1464 ident: bib44 article-title: Chondrocyte culture in three dimensional alginate sulfate hydrogels promotes proliferation while maintaining expression of chondrogenic markers publication-title: Tissue Eng. – volume: 19 start-page: 759 year: 2013 end-page: 769 ident: bib53 article-title: Decellularized tissue-engineered heart valve leaflets with recellularization potential publication-title: Tissue Eng. – volume: 22 start-page: 97 year: 2005 end-page: 104 ident: bib56 article-title: Collagen and picrosirius red staining: a polarized light assessment of fibrillar hue and spatial distribution publication-title: Braz. J. Morphol. Sci. – volume: 6 start-page: 2798 year: 2018 end-page: 2811 ident: bib15 article-title: Decellularized orthopaedic tissue-engineered grafts: biomaterial scaffolds synthesised by therapeutic cells publication-title: Biomater. Sci. – volume: 5 start-page: R60 year: 2003 ident: 10.1016/j.biomaterials.2020.119821_bib37 article-title: Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology publication-title: Arthritis Res. Ther. doi: 10.1186/ar613 – volume: 41 start-page: 9 year: 2010 ident: 10.1016/j.biomaterials.2020.119821_bib39 article-title: Type II and VI collagen in nasal and articular cartilage and the effect of IL-1 alpha on the distribution of these collagens publication-title: J. Mol. Histol. doi: 10.1007/s10735-010-9257-7 – volume: 5 start-page: 16225 year: 2015 ident: 10.1016/j.biomaterials.2020.119821_bib18 article-title: A preclinical evaluation of an autologous living hyaline-like cartilaginous graft for articular cartilage repair: a pilot study publication-title: Sci. Rep. doi: 10.1038/srep16225 – volume: 8 start-page: 5671 year: 2015 ident: 10.1016/j.biomaterials.2020.119821_bib29 article-title: Macrophages, foreign body giant cells and their response to implantable biomaterials publication-title: Materials doi: 10.3390/ma8095269 – volume: 30 start-page: 3749 year: 2009 ident: 10.1016/j.biomaterials.2020.119821_bib50 article-title: Extraction techniques for the decellularization of tissue engineered articular cartilage constructs publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.03.050 – volume: 16 start-page: 82 year: 2016 ident: 10.1016/j.biomaterials.2020.119821_bib27 article-title: Biomaterials and host versus graft response: a short review publication-title: Bosn. J. Basic Med. Sci. – volume: 13 start-page: 737 year: 2007 ident: 10.1016/j.biomaterials.2020.119821_bib32 article-title: Matrix-induced autologous chondrocyte implantation (MACI ®): biological and histological assessment publication-title: Tissue Eng. doi: 10.1089/ten.2006.0246 – volume: 16 start-page: 461 year: 2008 ident: 10.1016/j.biomaterials.2020.119821_bib6 article-title: A cadaveric analysis of contact stress restoration after osteochondral transplantation of a cylindrical cartilage defect publication-title: Knee Surg. Sports Traumatol. Arthrosc. doi: 10.1007/s00167-008-0494-1 – volume: 23 start-page: S20 year: 2014 ident: 10.1016/j.biomaterials.2020.119821_bib38 article-title: Biology of the extracellular matrix: an overview publication-title: J. Glaucoma doi: 10.1097/IJG.0000000000000108 – volume: 31 start-page: 583 year: 1992 ident: 10.1016/j.biomaterials.2020.119821_bib47 article-title: Cartilage oligomeric matrix protein: a novel marker of cartilage turnover detectable in synovial fluid and blood publication-title: Br. J. Rheumatol. doi: 10.1093/rheumatology/31.9.583 – volume: 23 start-page: 426 year: 2016 ident: 10.1016/j.biomaterials.2020.119821_bib7 article-title: Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group “Clinical Tissue Regeneration” of the German Society of Orthopaedics and Trauma (DGOU) publication-title: Knee doi: 10.1016/j.knee.2016.02.001 – volume: 8 start-page: 153 year: 2016 ident: 10.1016/j.biomaterials.2020.119821_bib3 article-title: Knee articular cartilage repair and restoration techniques: a review of the literature publication-title: Sport Health doi: 10.1177/1941738115611350 – volume: 22 start-page: 972 year: 2012 ident: 10.1016/j.biomaterials.2020.119821_bib19 article-title: Creating a living hyaline cartilage graft free from non-cartilaginous constituents: an intermediate role of a biomaterial scaffold publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201102884 – volume: 338 start-page: 917 issue: 80- year: 2012 ident: 10.1016/j.biomaterials.2020.119821_bib2 article-title: Unlike bone, cartilage regeneration remains elusive publication-title: Science doi: 10.1126/science.1222454 – volume: 87-B start-page: 640 year: 2005 ident: 10.1016/j.biomaterials.2020.119821_bib63 article-title: Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee publication-title: J. Bone Joint Surg. Br. doi: 10.1302/0301-620X.87B5.15905 – volume: 17 start-page: 23 year: 1988 ident: 10.1016/j.biomaterials.2020.119821_bib61 article-title: The basis and applicability of the dimethylmethylene blue binding assay for sulfated glycosaminoglycans publication-title: Connect. Tissue Res. doi: 10.3109/03008208808992791 – volume: 14 start-page: 88 year: 2011 ident: 10.1016/j.biomaterials.2020.119821_bib17 article-title: Biomaterials & scaffolds for tissue engineering publication-title: Mater. Today doi: 10.1016/S1369-7021(11)70058-X – volume: 17 start-page: 561 year: 2009 ident: 10.1016/j.biomaterials.2020.119821_bib12 article-title: Clinical application of scaffolds for cartilage tissue engineering, Knee Surgery, Sport publication-title: Traumatol. Arthrosc. doi: 10.1007/s00167-008-0663-2 – volume: 277 start-page: 23 year: 2015 ident: 10.1016/j.biomaterials.2020.119821_bib5 article-title: State of the art: MR imaging after knee cartilage repair surgery publication-title: Radiology doi: 10.1148/radiol.2015141146 – volume: 2017 start-page: 9831534 year: 2017 ident: 10.1016/j.biomaterials.2020.119821_bib16 article-title: Decellularization strategies for regenerative medicine: from processing techniques to applications publication-title: BioMed Res. Int. doi: 10.1155/2017/9831534 – volume: 32 start-page: 1254 year: 2014 ident: 10.1016/j.biomaterials.2020.119821_bib33 article-title: Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial publication-title: Stem Cell. doi: 10.1002/stem.1634 – volume: 20 start-page: 276 year: 2014 ident: 10.1016/j.biomaterials.2020.119821_bib52 article-title: Freeze-thaw cycles enhance decellularization of large tendons publication-title: Tissue Eng. C Methods doi: 10.1089/ten.tec.2012.0760 – volume: 234 start-page: 79 year: 1988 ident: 10.1016/j.biomaterials.2020.119821_bib46 article-title: Type IX collagen: a possible function in articular cartilage publication-title: FEBS Lett. doi: 10.1016/0014-5793(88)81307-3 – volume: 73 start-page: 3861 year: 2016 ident: 10.1016/j.biomaterials.2020.119821_bib28 article-title: Transition from inflammation to proliferation: a critical step during wound healing publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-016-2268-0 – volume: 1 start-page: 461 year: 2009 ident: 10.1016/j.biomaterials.2020.119821_bib1 article-title: The basic science of articular cartilage: structure, composition, and function publication-title: Sport Health doi: 10.1177/1941738109350438 – volume: 5 year: 2017 ident: 10.1016/j.biomaterials.2020.119821_bib51 article-title: Freeze-thaw decellularization of the trabecular meshwork in an ex vivo eye perfusion model publication-title: PeerJ doi: 10.7717/peerj.3629 – volume: 4 start-page: 3627 year: 2018 ident: 10.1016/j.biomaterials.2020.119821_bib14 article-title: Decellularized matrices as cell-instructive scaffolds to guide tissue-specific regeneration publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.7b00619 – volume: 98 start-page: 1332 year: 2016 ident: 10.1016/j.biomaterials.2020.119821_bib23 article-title: A randomized multicenter trial comparing autologous chondrocyte implantation with microfracture: long-term follow-up at 14 to 15 years publication-title: J. Bone Jt. Surg. doi: 10.2106/JBJS.15.01208 – volume: 10 start-page: 183 year: 2014 ident: 10.1016/j.biomaterials.2020.119821_bib54 article-title: The effect of detergents on the basement membrane complex of a biologic scaffold material publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.09.006 – volume: 23 start-page: 243 year: 2017 ident: 10.1016/j.biomaterials.2020.119821_bib62 article-title: A modified hydroxyproline assay based on hydrochloric acid in ehrlich's solution accurately measures tissue collagen content publication-title: Tissue Eng. C Methods doi: 10.1089/ten.tec.2017.0018 – start-page: 1 year: 2012 ident: 10.1016/j.biomaterials.2020.119821_bib21 article-title: Autologous chondrocyte implantation versus microfracture of the knee publication-title: J. Clin. Trials – volume: 18 start-page: S113 year: 2010 ident: 10.1016/j.biomaterials.2020.119821_bib59 article-title: Basic methods in histopathology of joint tissues publication-title: Osteoarthritis Cartilage doi: 10.1016/j.joca.2010.05.026 – volume: 2 start-page: 13 year: 2015 ident: 10.1016/j.biomaterials.2020.119821_bib34 article-title: Experimental articular cartilage repair in the Göttingen minipig: the influence of multiple defects per knee publication-title: J. Exp. Orthop. doi: 10.1186/s40634-015-0031-3 – volume: 19 start-page: 759 year: 2013 ident: 10.1016/j.biomaterials.2020.119821_bib53 article-title: Decellularized tissue-engineered heart valve leaflets with recellularization potential publication-title: Tissue Eng. doi: 10.1089/ten.tea.2012.0365 – volume: 37 start-page: 1 year: 2009 ident: 10.1016/j.biomaterials.2020.119821_bib13 article-title: The role of tissue engineering in articular cartilage repair and regeneration publication-title: Crit. Rev. Biomed. Eng. doi: 10.1615/CritRevBiomedEng.v37.i1-2.10 – volume: 22 start-page: 97 year: 2005 ident: 10.1016/j.biomaterials.2020.119821_bib56 article-title: Collagen and picrosirius red staining: a polarized light assessment of fibrillar hue and spatial distribution publication-title: Braz. J. Morphol. Sci. – volume: 8 start-page: 560 year: 2017 ident: 10.1016/j.biomaterials.2020.119821_bib45 article-title: The minor collagens in articular cartilage publication-title: Protein Cell doi: 10.1007/s13238-017-0377-7 – volume: 9 start-page: 419 year: 2018 ident: 10.1016/j.biomaterials.2020.119821_bib30 article-title: The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes publication-title: Front. Physiol. doi: 10.3389/fphys.2018.00419 – volume: 16 start-page: 398 year: 2009 ident: 10.1016/j.biomaterials.2020.119821_bib60 article-title: Immunohistochemical study of collagen types I and II and procollagen IIA in human cartilage repair tissue following autologous chondrocyte implantation publication-title: Knee doi: 10.1016/j.knee.2009.02.004 – volume: 85-A issue: Suppl 3 year: 2003 ident: 10.1016/j.biomaterials.2020.119821_bib43 article-title: Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments publication-title: J. Bone Joint Surg. Am. – volume: 86 start-page: 205 year: 2004 ident: 10.1016/j.biomaterials.2020.119821_bib40 article-title: Reoperation after autologous chondrocyte implantation. Indications and findings publication-title: J. Bone Joint Surg. Br. doi: 10.1302/0301-620X.86B2.14324 – volume: 20 start-page: 1454 year: 2014 ident: 10.1016/j.biomaterials.2020.119821_bib44 article-title: Chondrocyte culture in three dimensional alginate sulfate hydrogels promotes proliferation while maintaining expression of chondrogenic markers publication-title: Tissue Eng. doi: 10.1089/ten.tea.2013.0544 – volume: 68 start-page: 56 year: 2019 ident: 10.1016/j.biomaterials.2020.119821_bib20 article-title: Is implantation of autologous chondrocytes superior to microfracture for articular-cartilage defects of the knee? A systematic review of 5-year follow-up data publication-title: Int. J. Surg. doi: 10.1016/j.ijsu.2019.06.007 – volume: 15 start-page: 18789 year: 2014 ident: 10.1016/j.biomaterials.2020.119821_bib48 article-title: Cartilage turnover reflected by metabolic processing of type II collagen: a novel marker of anabolic function in chondrocytes publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms151018789 – volume: 14 start-page: 237 year: 1938 ident: 10.1016/j.biomaterials.2020.119821_bib58 article-title: A modification of the masson trichrome technique for routine laboratory purposes publication-title: Am. J. Pathol. – volume: 26 start-page: 1044 year: 2017 ident: 10.1016/j.biomaterials.2020.119821_bib25 article-title: Microfracture is more cost-effective than autologous chondrocyte implantation: a review of level 1 and level 2 studies with 5 year follow-up, Knee Surgery, Sport publication-title: Traumatol. Arthrosc. – volume: 35 start-page: 16 year: 2006 ident: 10.1016/j.biomaterials.2020.119821_bib36 article-title: MR appearance of autologous chondrocyte implantation in the knee: correlation with the knee features and clinical outcome publication-title: Skeletal Radiol. doi: 10.1007/s00256-005-0002-3 – volume: 75 start-page: 112 year: 2015 ident: 10.1016/j.biomaterials.2020.119821_bib55 article-title: Decellularization of a fasciocutaneous flap for use as a perfusable scaffold publication-title: Ann. Plast. Surg. doi: 10.1097/SAP.0000000000000157 – volume: 63 year: 2016 ident: 10.1016/j.biomaterials.2020.119821_bib26 article-title: Immunology and cartilage regeneration publication-title: Immunol. Res. – volume: 87-B start-page: 730 year: 2005 ident: 10.1016/j.biomaterials.2020.119821_bib9 article-title: The treatment of osteochondral lesions using a combination of autologous chondrocyte implantation and autograft publication-title: J. Bone Joint Surg. Br. doi: 10.1302/0301-620X.87B5.14936 – volume: 6 start-page: 2798 year: 2018 ident: 10.1016/j.biomaterials.2020.119821_bib15 article-title: Decellularized orthopaedic tissue-engineered grafts: biomaterial scaffolds synthesised by therapeutic cells publication-title: Biomater. Sci. doi: 10.1039/C8BM00772A – volume: 2014 start-page: 1 year: 2014 ident: 10.1016/j.biomaterials.2020.119821_bib22 article-title: Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques publication-title: BioMed Res. Int. doi: 10.1155/2014/272481 – year: 2008 ident: 10.1016/j.biomaterials.2020.119821_bib57 article-title: Hematoxylin and eosin staining of tissue and cell sections publication-title: Cold Spring Harb. Protoc. doi: 10.1101/pdb.prot4986 – volume: 7 start-page: 7 year: 2016 ident: 10.1016/j.biomaterials.2020.119821_bib8 article-title: Evaluating joint morbidity after chondral harvest for autologous chondrocyte implantation (ACI) publication-title: Cartilage doi: 10.1177/1947603515607963 – volume: 11 year: 2018 ident: 10.1016/j.biomaterials.2020.119821_bib4 article-title: Subchondral drilling for articular cartilage repair: a systematic review of translational research publication-title: Dis. Model. Mech. doi: 10.1242/dmm.034280 – volume: 9 year: 2014 ident: 10.1016/j.biomaterials.2020.119821_bib49 article-title: Comparison of decellularization protocols for preparing a decellularized porcine annulus fibrosus scaffold publication-title: PloS One – volume: 100 start-page: 979 year: 2016 ident: 10.1016/j.biomaterials.2020.119821_bib31 article-title: Angiogenesis and wound repair: when enough is enough publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.4MR0316-102R – year: 2012 ident: 10.1016/j.biomaterials.2020.119821_bib11 – volume: 85-A year: 2003 ident: 10.1016/j.biomaterials.2020.119821_bib41 article-title: Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial publication-title: J. Bone Joint Surg. Am. – volume: 13 start-page: 451 year: 2005 ident: 10.1016/j.biomaterials.2020.119821_bib42 article-title: Early postoperative adherence of matrix-induced autologous chondrocyte implantation for the treatment of full-thickness cartilage defects of the femoral condyle, Knee Surgery, Sport publication-title: Traumatol. Arthrosc. doi: 10.1007/s00167-004-0535-3 – volume: 46 start-page: 995 year: 2018 ident: 10.1016/j.biomaterials.2020.119821_bib24 article-title: Microfracture versus autologous chondrocyte implantation for articular cartilage lesions in the knee: a systematic review of 5-year outcomes publication-title: Am. J. Sports Med. doi: 10.1177/0363546517701912 – volume: 174 start-page: 168 year: 1988 ident: 10.1016/j.biomaterials.2020.119821_bib35 article-title: Fluorometric assay of DNA in cartilage explants using Hoechst 33258 publication-title: Anal. Biochem. doi: 10.1016/0003-2697(88)90532-5 – year: 2013 ident: 10.1016/j.biomaterials.2020.119821_bib10 |
SSID | ssj0014042 |
Score | 2.6029842 |
Snippet | Articular cartilage repair has been a long-standing challenge in orthopaedic medicine due to the limited self-regenerative capability of cartilage tissue.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 119821 |
SubjectTerms | Animals biocompatible materials Cartilage Cartilage, Articular Chondrocytes Decellularization DNA microarrays histology Hyaline Cartilage Knee Joint Large animal model microstructure orthopedics phenotype Pre-clinical Scaffold-free Swine Tissue Engineering Transplantation, Autologous |
Title | Decellularized tissue engineered hyaline cartilage graft for articular cartilage repair |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961220300673 https://dx.doi.org/10.1016/j.biomaterials.2020.119821 https://www.ncbi.nlm.nih.gov/pubmed/32006743 https://www.proquest.com/docview/2350096266 https://www.proquest.com/docview/2524212828 |
Volume | 235 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6kguhBfFtfrOB1bTfZRxbxUKqlKnqy6G1JNomulFbKetCDv92ZfZR6qBQ8bjYDyWQyj-SbCcCZNGimI4-5vmxb12dKurESnpuGkRRKc18XFfjuH8L-wL99Dp6XoFvnwhCsstL9pU4vtHXV0qq42XrPshbBkliMBpqhnNJzK5TB7kck5effU5gHVY9hJYyRudS7LjxaYLwoxV3m5VJjrMhIg8SCefOM1DwntDBGvQ1Yr7xIp1MOdBOWzGgL1mZqC27Byn11a74NT1eGzucJcJp9Ge3kBbMdU3XHltdPSe6mk9LUh6hinJeJtLmDHq1TcINoZ_5O0Ihlkx0Y9K4fu323elDBTVGv5a7kocaIJfBDQXXgpe9hDGkNs6GJhGRKKWEFx480UL6htFMqXhhjxKRVypXgu9AYjUdmH5zQatlmsq0V-iDKeErrqG2EZdJyyaVtQlxzMEmrauP06MUwqWFlb8ks9xPiflJyvwl8Svte1txYiOqiXqikzipFPZigaViI-nJK_Uv-FqY_rWUjwQ1KqypHZvyBnXhAcSI6Qn_0CYqbeYx-m7BXCtZ05pwOfdDPO_jnCA9hlb5K_NwRNPLJhzlGhypXJ8WOOYHlzs1d_-EH4rAiYw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RT9swED4xJm3wgDY2oINtnjQeszZ2kjpCPCAYKoPyBBpvnh3bW1FVUAlC8LA_xR_kLnGq7gFUaeIxic9yzue775LPZ4Cv2mGY7sY8SnTHRwk3OsqNjKMi62pprEhsVYGvf5z1TpMfZ-nZHNw3e2GIVhl8f-3TK28d7rSDNtuXg0GbaEk8xwDN0U7puJXArDx0tzeYt11tH-zhJG9yvv_9ZLcXhaMFogJXeBlpkVnE7mmSSaqIrpMYsynvuM9cV2pujJFeCrwoUpM42oBJZfxyzB2sKYSRAvt9AS8T7IyOTfj2d8IroXI1vOZN8oiG11Q6rUhltKdel7VtYXLKyWXlksePRcXHUG8V_fbfwFKArWyn1sxbmHOjZVicKma4DK_64Tf9O_i55-iHADFcB3fOsrKaXeZCc7zz51YTvmUF6XqIPo39HmtfMoTQrFI_yU49HWPUHIzfw-mzqHkF5kcXI7cGLPNWd7juWIOgx7jYWNvtOOm59kIL7VuQNxpURShvTqdsDFXDYztX09pXpH1Va78FYiJ7WRf5mElqq5ko1WxjRcerMBbNJL09kf7H4GeW_9LYhkKPQLOqR-7iGhuJlBJTRF5PtEkrKgCm2y1YrQ1r8uaCvjIhsPzwnyP8DK97J_0jdXRwfLgOC_SkJu9twHw5vnYfEc2V5lO1ehj8eu7l-gCOOlyD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decellularized+tissue+engineered+hyaline+cartilage+graft+for+articular+cartilage+repair&rft.jtitle=Biomaterials&rft.au=Nie%2C+Xiaolei&rft.au=Chuah%2C+Yon+Jin&rft.au=Zhu%2C+Wenzhen&rft.au=He%2C+Pengfei&rft.date=2020-03-01&rft.issn=1878-5905&rft.eissn=1878-5905&rft.volume=235&rft.spage=119821&rft_id=info:doi/10.1016%2Fj.biomaterials.2020.119821&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |