Long-Term Warming Alters Carbohydrate Degradation Potential in Temperate Forest Soils

As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soi...

Full description

Saved in:
Bibliographic Details
Published inApplied and environmental microbiology Vol. 82; no. 22; pp. 6518 - 6530
Main Authors Pold, Grace, Billings, Andrew F., Blanchard, Jeff L., Burkhardt, Daniel B., Frey, Serita D., Melillo, Jerry M., Schnabel, Julia, van Diepen, Linda T. A., DeAngelis, Kristen M.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 15.11.2016
Subjects
Online AccessGet full text
ISSN0099-2240
1098-5336
1098-5336
DOI10.1128/AEM.02012-16

Cover

Loading…
Abstract As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world. IMPORTANCE The massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indicate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20 years of 5°C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degradation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study illustrates the utility of combining culture-dependent and culture-independent surveys of microbial communities to improve our understanding of the role changing microbial communities may play in soil carbon cycling under climate change.
AbstractList As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world. The massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indicate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20 years of 5°C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degradation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study illustrates the utility of combining culture-dependent and culture-independent surveys of microbial communities to improve our understanding of the role changing microbial communities may play in soil carbon cycling under climate change.
As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world. IMPORTANCE The massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indicate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20 years of 5°C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degradation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study illustrates the utility of combining culture-dependent and culture-independent surveys of microbial communities to improve our understanding of the role changing microbial communities may play in soil carbon cycling under climate change.
As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world. IMPORTANCE: The massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indicate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20 years of 5°C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degradation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study illustrates the utility of combining culture-dependent and culture-independent surveys of microbial communities to improve our understanding of the role changing microbial communities may play in soil carbon cycling under climate change.
As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world.As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world.The massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indicate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20 years of 5°C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degradation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study illustrates the utility of combining culture-dependent and culture-independent surveys of microbial communities to improve our understanding of the role changing microbial communities may play in soil carbon cycling under climate change.IMPORTANCEThe massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indicate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20 years of 5°C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degradation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study illustrates the utility of combining culture-dependent and culture-independent surveys of microbial communities to improve our understanding of the role changing microbial communities may play in soil carbon cycling under climate change.
As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world.
As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5 degree C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world. IMPORTANCE The massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indicate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20 years of 5 degree C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degradation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study illustrates the utility of combining culture-dependent and culture-independent surveys of microbial communities to improve our understanding of the role changing microbial communities may play in soil carbon cycling under climate change.
Author Burkhardt, Daniel B.
Frey, Serita D.
Pold, Grace
Schnabel, Julia
van Diepen, Linda T. A.
Blanchard, Jeff L.
Billings, Andrew F.
DeAngelis, Kristen M.
Melillo, Jerry M.
Author_xml – sequence: 1
  givenname: Grace
  orcidid: 0000-0003-4418-4246
  surname: Pold
  fullname: Pold, Grace
  organization: Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, USA
– sequence: 2
  givenname: Andrew F.
  surname: Billings
  fullname: Billings, Andrew F.
  organization: Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
– sequence: 3
  givenname: Jeff L.
  surname: Blanchard
  fullname: Blanchard, Jeff L.
  organization: Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, USA, Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA
– sequence: 4
  givenname: Daniel B.
  surname: Burkhardt
  fullname: Burkhardt, Daniel B.
  organization: Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
– sequence: 5
  givenname: Serita D.
  surname: Frey
  fullname: Frey, Serita D.
  organization: Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
– sequence: 6
  givenname: Jerry M.
  surname: Melillo
  fullname: Melillo, Jerry M.
  organization: The Ecosystems Center, Marine Biological Laboratories, Woods Hole, Massachusetts, USA
– sequence: 7
  givenname: Julia
  surname: Schnabel
  fullname: Schnabel, Julia
  organization: Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
– sequence: 8
  givenname: Linda T. A.
  surname: van Diepen
  fullname: van Diepen, Linda T. A.
  organization: Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
– sequence: 9
  givenname: Kristen M.
  orcidid: 0000-0002-5585-4551
  surname: DeAngelis
  fullname: DeAngelis, Kristen M.
  organization: Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, USA, Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27590813$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1424727$$D View this record in Osti.gov
BookMark eNqNks1vEzEQxS1URNPCjTNawYUDW_wd-4IUhRaQgkBqEEfL650krnbtYDtI_e9xklJBxYHTHPzzm3kz7wydhBgAoecEXxBC1dvZ5ecLTDGhLZGP0IRgrVrBmDxBE4y1binl-BSd5XyDMeZYqifolE6FxoqwCfq2iGHdLiGNzXebRh_WzWwokHIzt6mLm9s-2QLNe1gn29viY2i-xgKheDs0PjRLGLdwQK5iglya6-iH_BQ9Xtkhw7O7eo6ury6X84_t4suHT_PZonWCqdJaRrWgzPWgpCUgieSd40pS6LXlytqVFB1wPsWSAOmxXREntBDKStYpdo7eHVW3u26E3tWpkh3MNvnRplsTrTd_vwS_Mev40wispOCyCrw8CsRcvMnOF3AbF0MAVwzhlE_ptEKv77qk-GNXLZrRZwfDYAPEXTZEcckxo0r-B8qEVFWUVPTVA_Qm7lKoy9pTUgutxZ568afDe2u_71eBN0fApZhzgtU9QrDZx8PUeJhDPAzZD0gf4NXz4ap1P37496dfoVK7qw
CODEN AEMIDF
CitedBy_id crossref_primary_10_1128_mBio_02293_19
crossref_primary_10_1016_j_scitotenv_2023_168793
crossref_primary_10_1186_s40793_019_0344_4
crossref_primary_10_2139_ssrn_4066274
crossref_primary_10_1016_j_geoderma_2017_12_005
crossref_primary_10_1128_MRA_00956_20
crossref_primary_10_1146_annurev_environ_012320_082720
crossref_primary_10_3390_soilsystems5010014
crossref_primary_10_1007_s42773_024_00327_0
crossref_primary_10_1016_j_pedobi_2022_150821
crossref_primary_10_1016_j_soilbio_2021_108298
crossref_primary_10_1038_s41467_021_22408_5
crossref_primary_10_1016_j_soilbio_2020_108055
crossref_primary_10_1016_j_apsoil_2021_103973
crossref_primary_10_1002_ecs2_3460
crossref_primary_10_1016_j_soilbio_2019_02_005
crossref_primary_10_1016_j_biotechadv_2019_03_013
crossref_primary_10_1093_jpe_rtae003
crossref_primary_10_3389_fmicb_2021_802213
crossref_primary_10_1016_j_pedsph_2023_12_012
crossref_primary_10_1111_1462_2920_15655
crossref_primary_10_1016_j_indcrop_2024_118074
crossref_primary_10_1016_j_soilbio_2017_03_002
crossref_primary_10_5194_soil_7_477_2021
crossref_primary_10_1016_j_soilbio_2020_107875
crossref_primary_10_1038_s41396_019_0484_y
crossref_primary_10_1016_j_apsoil_2017_04_021
crossref_primary_10_1126_science_aan2874
crossref_primary_10_1016_j_gecco_2023_e02561
crossref_primary_10_1016_j_soilbio_2019_02_018
crossref_primary_10_1128_msphere_00059_25
crossref_primary_10_1186_s40168_017_0340_0
crossref_primary_10_1128_aem_00825_23
crossref_primary_10_1007_s10533_024_01165_9
crossref_primary_10_1016_j_scib_2021_03_008
crossref_primary_10_3389_fmicb_2017_02504
crossref_primary_10_3390_microorganisms10101950
crossref_primary_10_1093_femsec_fiad036
crossref_primary_10_1016_j_envres_2023_117162
crossref_primary_10_1016_j_scitotenv_2024_174692
crossref_primary_10_1016_j_scitotenv_2019_135992
crossref_primary_10_1111_1758_2229_12898
crossref_primary_10_1128_mSystems_00092_19
crossref_primary_10_1007_s11104_023_06104_5
crossref_primary_10_1093_ismeco_ycae051
crossref_primary_10_1002_2018JG004432
crossref_primary_10_1002_ecs2_2598
crossref_primary_10_3389_ffgc_2022_800335
crossref_primary_10_3390_su15032745
crossref_primary_10_1038_s41579_023_00876_4
crossref_primary_10_3390_microorganisms7090287
crossref_primary_10_1128_AEM_02346_18
crossref_primary_10_1021_acs_estlett_0c00748
crossref_primary_10_1038_ismej_2017_118
crossref_primary_10_3389_fmicb_2021_666558
crossref_primary_10_1016_j_apsoil_2024_105711
crossref_primary_10_1636_JoA_S_22_039
crossref_primary_10_1016_j_scitotenv_2023_165733
crossref_primary_10_1002_ecy_2985
crossref_primary_10_1016_j_jenvman_2023_118889
crossref_primary_10_1016_j_indcrop_2022_114899
crossref_primary_10_1128_mBio_01809_17
Cites_doi 10.1111/j.1365-2486.2010.02318.x
10.1016/j.soilbio.2012.11.012
10.18637/jss.v036.i11
10.1128/AEM.01080-10
10.1073/pnas.1018189108
10.1111/j.1365-2672.2004.02230.x
10.1007/s11356-014-3018-1
10.1371/journal.pone.0055929
10.1890/es10-00133.1
10.1111/j.1469-8137.2006.01778.x
10.1093/nar/gkr1065
10.1007/978-0-387-98141-3
10.1002/0471250953.bi1108s33
10.1093/nar/gki038
10.1007/BF00418675
10.1038/nclimate2940
10.1128/AEM.68.5.2391-2396.2002
10.1016/j.biotechadv.2013.10.008
10.1038/ismej.2015.57
10.1111/j.1523-1739.2010.01455.x
10.1007/978-0-387-21706-2
10.1007/s00442-011-1909-0
10.1128/9781555815882.ch6
10.1371/journal.pbio.1002475
10.1016/j.chemosphere.2012.02.036
10.1038/ismej.2011.95
10.1093/sysbio/syu070
10.1038/srep18032
10.1111/j.1461-0248.2008.01251.x
10.1016/S0022-2836(05)80360-2
10.1128/AEM.03112-12
10.1016/j.soilbio.2008.07.020
10.1007/s00284-008-9276-8
10.1007/s00253-013-5130-4
10.1099/ijs.0.021824-0
10.1093/nar/gkm864
10.1371/journal.pone.0089108
10.1890/12-0279.1
10.1016/j.quaint.2006.10.027
10.1021/es4020184
10.1093/bioinformatics/btl158
10.1093/nar/gkn663
10.1111/j.2517-6161.1995.tb02031.x
10.1099/ijs.0.64915-0
10.1093/bioinformatics/btl529
10.1093/sysbio/syp074
10.1038/nclimate1796
10.1038/nature10576
10.3389/fmicb.2015.00104
10.1186/2047-217X-1-18
10.1093/nar/gkr1044
10.1038/nclimate1951
10.3389/fmicb.2015.00480
10.1186/s13059-014-0550-8
10.1111/j.1365-2486.2011.02615.x
10.1038/ismej.2012.160
10.1038/ja.2012.31
10.1016/j.scitotenv.2016.02.078
10.1128/JB.173.2.697-703.1991
10.1515/zpch-1889-0108
10.1046/j.1462-2920.2002.00352.x
10.1128/AEM.00120-09
10.1038/nclimate1331
10.1128/AEM.01030-14
10.1126/science.1074153
10.1128/aem.57.12.3674-3676.1991
10.1128/AEM.03718-14
10.1007/s10533-015-0073-8
10.1093/bioinformatics/14.9.755
10.1111/nph.12481
10.1128/AEM.03712-13
10.3389/fmicb.2013.00149
10.1038/ismej.2015.171
10.1038/ismej.2012.11
10.1186/1472-6750-11-94
10.1099/00207713-16-3-313
10.1111/1462-2920.13026
10.1093/bioinformatics/btq461
10.1016/j.soilbio.2016.01.008
10.2307/1941962
10.1093/bioinformatics/btl446
10.1093/nar/gku990
10.1139/gen-2013-0069
10.4056/sigs.632
10.1038/nature04514
10.1038/nature12129
10.1038/ismej.2013.104
ContentType Journal Article
Copyright Copyright © 2016 Pold et al.
Copyright American Society for Microbiology Nov 2016
Copyright © 2016 Pold et al. 2016 Pold et al.
Copyright_xml – notice: Copyright © 2016 Pold et al.
– notice: Copyright American Society for Microbiology Nov 2016
– notice: Copyright © 2016 Pold et al. 2016 Pold et al.
CorporateAuthor The Marine Biological Laboratory, Woods Hole, MA (United States)
CorporateAuthor_xml – name: The Marine Biological Laboratory, Woods Hole, MA (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
OIOZB
OTOTI
5PM
DOI 10.1128/AEM.02012-16
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
Virology and AIDS Abstracts
MEDLINE - Academic

Engineering Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Biology
Environmental Sciences
DocumentTitleAlternate Soil Warming Impacts Carbohydrate Degradation
EISSN 1098-5336
EndPage 6530
ExternalDocumentID PMC5086546
1424727
4241893331
27590813
10_1128_AEM_02012_16
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: U.S. Department of Energy (DOE)
  grantid: DE-SC0010740
– fundername: National Science Foundation (NSF)
  grantid: NSF 1237491; NSF 1456528; ACI-1053575
– fundername: U.S. Department of Energy (DOE)
  grantid: DE-AC02-05CH11231
GroupedDBID ---
-~X
0R~
23M
2WC
39C
4.4
53G
5GY
5RE
5VS
6J9
85S
AAGFI
AAYXX
AAZTW
ABOGM
ABPPZ
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
ADUKH
AENEX
AFRAH
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
CITATION
CS3
D0L
DIK
E.-
E3Z
EBS
EJD
F5P
GX1
H13
HYE
HZ~
K-O
KQ8
L7B
O9-
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TAF
TN5
TR2
TWZ
UHB
W8F
WH7
WOQ
X6Y
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
OK1
RHF
UCJ
Z5M
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
AAPBV
ABPTK
ABRJW
OIOZB
OTOTI
PQEST
ZA5
5PM
ID FETCH-LOGICAL-c538t-a329523cde86a1e6164bc4862ed9a48aaf65be447061e1d0af1c59558a63b83
ISSN 0099-2240
1098-5336
IngestDate Thu Aug 21 14:30:15 EDT 2025
Fri May 19 00:46:17 EDT 2023
Fri Jul 11 14:13:13 EDT 2025
Fri Jul 11 00:47:17 EDT 2025
Mon Jun 30 08:43:30 EDT 2025
Wed Feb 19 02:40:49 EST 2025
Thu Apr 24 23:00:00 EDT 2025
Tue Jul 01 02:20:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License Copyright © 2016 Pold et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c538t-a329523cde86a1e6164bc4862ed9a48aaf65be447061e1d0af1c59558a63b83
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
SC0010740; AC02-05CH11231
USDOE Office of Science (SC), Biological and Environmental Research (BER)
Present address: Linda T. A. van Diepen, Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming, USA.
Citation Pold G, Billings AF, Blanchard JL, Burkhardt DB, Frey SD, Melillo JM, Schnabel J, van Diepen LTA, DeAngelis KM. 2016. Long-term warming alters carbohydrate degradation potential in temperate forest soils. Appl Environ Microbiol 82:6518–6530. doi:10.1128/AEM.02012-16.
ORCID 0000-0003-4418-4246
0000-0002-5585-4551
0000000255854551
0000000344184246
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5086546
PMID 27590813
PQID 1836959951
PQPubID 42251
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5086546
osti_scitechconnect_1424727
proquest_miscellaneous_1846403286
proquest_miscellaneous_1835687271
proquest_journals_1836959951
pubmed_primary_27590813
crossref_primary_10_1128_AEM_02012_16
crossref_citationtrail_10_1128_AEM_02012_16
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-15
PublicationDateYYYYMMDD 2016-11-15
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Applied and environmental microbiology
PublicationTitleAlternate Appl Environ Microbiol
PublicationYear 2016
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
e_1_3_3_75_2
e_1_3_3_71_2
e_1_3_3_77_2
e_1_3_3_79_2
Boose E (e_1_3_3_95_2) 2001
IPCC (e_1_3_3_2_2) 2013
Foster DR (e_1_3_3_24_2) 2012
Wallenstein M (e_1_3_3_8_2) 2011
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_90_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_92_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_94_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_73_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_86_2
e_1_3_3_88_2
Benjamini Y (e_1_3_3_45_2) 1995; 57
Hungate RE (e_1_3_3_58_2) 1973; 17
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_80_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_82_2
Cooper P (e_1_3_3_64_2) 2011
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_84_2
e_1_3_3_51_2
e_1_3_3_74_2
e_1_3_3_76_2
e_1_3_3_70_2
e_1_3_3_78_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
Melillo JM (e_1_3_3_93_2) 1999
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_91_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_72_2
Tanner RS (e_1_3_3_49_2) 2007
e_1_3_3_62_2
e_1_3_3_85_2
e_1_3_3_60_2
e_1_3_3_87_2
e_1_3_3_89_2
e_1_3_3_6_2
e_1_3_3_28_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_68_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_81_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_83_2
20709691 - Bioinformatics. 2010 Oct 1;26(19):2460-1
20525617 - Syst Biol. 2010 Jan;59(1):9-26
2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10
23889694 - Environ Sci Technol. 2013 Sep 17;47(18):10708-17
25762989 - Front Microbiol. 2015 Feb 13;6:104
18810533 - Curr Microbiol. 2008 Nov;57(5):503-7
21606374 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9508-12
21995752 - BMC Biotechnol. 2011 Oct 13;11:94
12481133 - Science. 2002 Dec 13;298(5601):2173-6
26901800 - Sci Total Environ. 2016 May 15;553:32-41
24189093 - Biotechnol Adv. 2014 Mar-Apr;32(2):255-68
16928733 - Bioinformatics. 2006 Nov 1;22(21):2688-90
24237341 - Genome. 2013 Oct;56(10):599-611
23687898 - Ecology. 2013 Mar;94(3):726-38
21097594 - Appl Environ Microbiol. 2011 Jan;77(2):586-96
22194640 - Nucleic Acids Res. 2012 Jan;40(Database issue):D115-22
17050570 - Bioinformatics. 2007 Jan 1;23(1):127-8
23587118 - Gigascience. 2012 Dec 27;1(1):18
21274573 - Oecologia. 2011 Mar;165(3):553-65
24010995 - New Phytol. 2014 Jan;201(1):269-78
21400694 - Curr Protoc Bioinformatics. 2011 Mar;Chapter 11:Unit 11.8
17911292 - Int J Syst Evol Microbiol. 2007 Oct;57(Pt 10):2259-61
20184650 - Conserv Biol. 2010 Aug;24(4):1042-51
27276034 - PLoS Biol. 2016 Jun 08;14(6):e1002475
25015892 - Appl Environ Microbiol. 2014 Sep;80(18):5761-72
24375144 - Appl Environ Microbiol. 2014 Mar;80(5):1777-86
11976113 - Appl Environ Microbiol. 2002 May;68(5):2391-6
9918945 - Bioinformatics. 1998;14(9):755-63
21304638 - Stand Genomic Sci. 2009 Jul 20;1(1):63-7
26286355 - Environ Microbiol. 2016 Jan;18(1):288-301
22511226 - J Antibiot (Tokyo). 2012 Jul;65(7):335-40
16348614 - Appl Environ Microbiol. 1991 Dec;57(12):3674-6
25209222 - Syst Biol. 2015 Jan;64(1):127-36
25516281 - Genome Biol. 2014;15(12):550
25909978 - ISME J. 2015 Nov;9(11):2465-76
26042112 - Front Microbiol. 2015 May 20;6:480
16731699 - Bioinformatics. 2006 Jul 1;22(13):1658-9
24888608 - Environ Sci Pollut Res Int. 2014 Sep;21(18):10725-35
16866945 - New Phytol. 2006;171(2):391-404
24551229 - PLoS One. 2014 Feb 13;9(2):e89108
20118293 - Int J Syst Evol Microbiol. 2010 Dec;60(Pt 12):2951-9
15608200 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D294-6
23418476 - PLoS One. 2013;8(2):e55929
17947321 - Nucleic Acids Res. 2007;35(21):7188-96
22402400 - ISME J. 2012 Sep;6(9):1749-62
19046360 - Ecol Lett. 2008 Dec;11(12):1316-27
22056985 - Nature. 2011 Nov 06;480(7377):368-71
22397839 - Chemosphere. 2012 Jun;87(10):1171-8
12460273 - Environ Microbiol. 2002 Nov;4(11):654-66
23676669 - Nature. 2013 May 30;497(7451):615-8
22127870 - Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301
23893311 - Appl Microbiol Biotechnol. 2014 Feb;98(3):1449-58
25527556 - Appl Environ Microbiol. 2015 Feb;81(4):1513-19
15078513 - J Appl Microbiol. 2004;96(5):973-81
26371406 - ISME J. 2016 Apr;10 (4):959-67
23785358 - Front Microbiol. 2013 Jun 14;4:149
21776033 - ISME J. 2012 Feb;6(2):248-58
25378341 - Nucleic Acids Res. 2015 Jan;43(Database issue):D1107-12
1987160 - J Bacteriol. 1991 Jan;173(2):697-703
26658882 - Sci Rep. 2015 Dec 10;5:18032
23315727 - Appl Environ Microbiol. 2013 Mar;79(6):2096-8
23235290 - ISME J. 2013 Apr;7(4):830-8
18838391 - Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8
19561189 - Appl Environ Microbiol. 2009 Aug;75(16):5428-33
16525463 - Nature. 2006 Mar 9;440(7081):165-73
23823489 - ISME J. 2013 Nov;7(11):2229-41
References_xml – ident: e_1_3_3_77_2
  doi: 10.1111/j.1365-2486.2010.02318.x
– ident: e_1_3_3_4_2
  doi: 10.1016/j.soilbio.2012.11.012
– ident: e_1_3_3_47_2
  doi: 10.18637/jss.v036.i11
– volume-title: Harvard Forest Data Archive HF001-06
  year: 2001
  ident: e_1_3_3_95_2
– ident: e_1_3_3_52_2
  doi: 10.1128/AEM.01080-10
– ident: e_1_3_3_19_2
  doi: 10.1073/pnas.1018189108
– ident: e_1_3_3_54_2
  doi: 10.1111/j.1365-2672.2004.02230.x
– ident: e_1_3_3_85_2
  doi: 10.1007/s11356-014-3018-1
– ident: e_1_3_3_14_2
  doi: 10.1371/journal.pone.0055929
– ident: e_1_3_3_18_2
  doi: 10.1890/es10-00133.1
– ident: e_1_3_3_76_2
  doi: 10.1111/j.1469-8137.2006.01778.x
– volume-title: Prospect Hill soil warming experiment at Harvard Forest since 1991
  year: 1999
  ident: e_1_3_3_93_2
– ident: e_1_3_3_38_2
  doi: 10.1093/nar/gkr1065
– ident: e_1_3_3_42_2
  doi: 10.1007/978-0-387-98141-3
– ident: e_1_3_3_29_2
  doi: 10.1002/0471250953.bi1108s33
– ident: e_1_3_3_34_2
  doi: 10.1093/nar/gki038
– ident: e_1_3_3_7_2
  doi: 10.1007/BF00418675
– ident: e_1_3_3_12_2
  doi: 10.1038/nclimate2940
– ident: e_1_3_3_57_2
  doi: 10.1128/AEM.68.5.2391-2396.2002
– ident: e_1_3_3_82_2
  doi: 10.1016/j.biotechadv.2013.10.008
– ident: e_1_3_3_16_2
  doi: 10.1038/ismej.2015.57
– ident: e_1_3_3_69_2
  doi: 10.1111/j.1523-1739.2010.01455.x
– ident: e_1_3_3_44_2
  doi: 10.1007/978-0-387-21706-2
– volume-title: NCBI news, November 2011
  year: 2011
  ident: e_1_3_3_64_2
– ident: e_1_3_3_71_2
  doi: 10.1007/s00442-011-1909-0
– start-page: 69
  volume-title: Manual of environmental microbiology
  year: 2007
  ident: e_1_3_3_49_2
  doi: 10.1128/9781555815882.ch6
– ident: e_1_3_3_91_2
  doi: 10.1371/journal.pbio.1002475
– ident: e_1_3_3_87_2
  doi: 10.1016/j.chemosphere.2012.02.036
– ident: e_1_3_3_15_2
  doi: 10.1038/ismej.2011.95
– ident: e_1_3_3_84_2
  doi: 10.1093/sysbio/syu070
– ident: e_1_3_3_75_2
  doi: 10.1038/srep18032
– ident: e_1_3_3_22_2
  doi: 10.1111/j.1461-0248.2008.01251.x
– ident: e_1_3_3_62_2
  doi: 10.1016/S0022-2836(05)80360-2
– start-page: 245
  volume-title: Soil enzymology
  year: 2011
  ident: e_1_3_3_8_2
– ident: e_1_3_3_83_2
  doi: 10.1128/AEM.03112-12
– ident: e_1_3_3_23_2
  doi: 10.1016/j.soilbio.2008.07.020
– ident: e_1_3_3_66_2
  doi: 10.1007/s00284-008-9276-8
– ident: e_1_3_3_86_2
  doi: 10.1007/s00253-013-5130-4
– ident: e_1_3_3_56_2
  doi: 10.1099/ijs.0.021824-0
– ident: e_1_3_3_35_2
  doi: 10.1093/nar/gkm864
– ident: e_1_3_3_55_2
  doi: 10.1371/journal.pone.0089108
– ident: e_1_3_3_79_2
  doi: 10.1890/12-0279.1
– ident: e_1_3_3_72_2
  doi: 10.1016/j.quaint.2006.10.027
– ident: e_1_3_3_31_2
  doi: 10.1021/es4020184
– ident: e_1_3_3_61_2
  doi: 10.1093/bioinformatics/btl158
– ident: e_1_3_3_41_2
  doi: 10.1093/nar/gkn663
– volume: 57
  start-page: 289
  year: 1995
  ident: e_1_3_3_45_2
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J R Stat Soc Ser B Methodol
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_3_3_60_2
  doi: 10.1099/ijs.0.64915-0
– ident: e_1_3_3_65_2
  doi: 10.1093/bioinformatics/btl529
– ident: e_1_3_3_68_2
  doi: 10.1093/sysbio/syp074
– ident: e_1_3_3_25_2
  doi: 10.1038/nclimate1796
– ident: e_1_3_3_11_2
  doi: 10.1038/nature10576
– ident: e_1_3_3_17_2
  doi: 10.3389/fmicb.2015.00104
– ident: e_1_3_3_28_2
  doi: 10.1186/2047-217X-1-18
– ident: e_1_3_3_33_2
  doi: 10.1093/nar/gkr1044
– ident: e_1_3_3_94_2
  doi: 10.1038/nclimate1951
– ident: e_1_3_3_5_2
  doi: 10.3389/fmicb.2015.00480
– ident: e_1_3_3_43_2
  doi: 10.1186/s13059-014-0550-8
– ident: e_1_3_3_3_2
  doi: 10.1111/j.1365-2486.2011.02615.x
– ident: e_1_3_3_6_2
  doi: 10.1038/ismej.2012.160
– ident: e_1_3_3_51_2
  doi: 10.1038/ja.2012.31
– ident: e_1_3_3_40_2
  doi: 10.1016/j.scitotenv.2016.02.078
– ident: e_1_3_3_59_2
  doi: 10.1128/JB.173.2.697-703.1991
– ident: e_1_3_3_9_2
  doi: 10.1515/zpch-1889-0108
– ident: e_1_3_3_48_2
  doi: 10.1046/j.1462-2920.2002.00352.x
– ident: e_1_3_3_27_2
  doi: 10.1128/AEM.00120-09
– ident: e_1_3_3_10_2
  doi: 10.1038/nclimate1331
– volume-title: New science, synthesis, scholarship, and strategic vision for society
  year: 2012
  ident: e_1_3_3_24_2
– ident: e_1_3_3_39_2
  doi: 10.1128/AEM.01030-14
– ident: e_1_3_3_21_2
  doi: 10.1126/science.1074153
– ident: e_1_3_3_50_2
  doi: 10.1128/aem.57.12.3674-3676.1991
– ident: e_1_3_3_80_2
  doi: 10.1128/AEM.03718-14
– ident: e_1_3_3_26_2
  doi: 10.1007/s10533-015-0073-8
– ident: e_1_3_3_37_2
  doi: 10.1093/bioinformatics/14.9.755
– volume: 17
  start-page: 123
  year: 1973
  ident: e_1_3_3_58_2
  article-title: The roll-tube method for cultivation of strict anaerobes
  publication-title: Bull Ecol Res Comm
– ident: e_1_3_3_78_2
  doi: 10.1111/nph.12481
– volume-title: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC)
  year: 2013
  ident: e_1_3_3_2_2
– ident: e_1_3_3_13_2
  doi: 10.1128/AEM.03712-13
– ident: e_1_3_3_88_2
  doi: 10.3389/fmicb.2013.00149
– ident: e_1_3_3_70_2
  doi: 10.1038/ismej.2015.171
– ident: e_1_3_3_73_2
  doi: 10.1038/ismej.2012.11
– ident: e_1_3_3_67_2
  doi: 10.1186/1472-6750-11-94
– ident: e_1_3_3_53_2
  doi: 10.1099/00207713-16-3-313
– ident: e_1_3_3_90_2
  doi: 10.1111/1462-2920.13026
– ident: e_1_3_3_36_2
  doi: 10.1093/bioinformatics/btq461
– ident: e_1_3_3_92_2
  doi: 10.1016/j.soilbio.2016.01.008
– ident: e_1_3_3_20_2
  doi: 10.2307/1941962
– ident: e_1_3_3_63_2
  doi: 10.1093/bioinformatics/btl446
– ident: e_1_3_3_74_2
  doi: 10.1093/nar/gku990
– ident: e_1_3_3_32_2
  doi: 10.1139/gen-2013-0069
– ident: e_1_3_3_30_2
  doi: 10.4056/sigs.632
– ident: e_1_3_3_89_2
  doi: 10.1038/nature04514
– ident: e_1_3_3_46_2
  doi: 10.1038/nature12129
– ident: e_1_3_3_81_2
  doi: 10.1038/ismej.2013.104
– reference: 24237341 - Genome. 2013 Oct;56(10):599-611
– reference: 24010995 - New Phytol. 2014 Jan;201(1):269-78
– reference: 21776033 - ISME J. 2012 Feb;6(2):248-58
– reference: 23315727 - Appl Environ Microbiol. 2013 Mar;79(6):2096-8
– reference: 25762989 - Front Microbiol. 2015 Feb 13;6:104
– reference: 23823489 - ISME J. 2013 Nov;7(11):2229-41
– reference: 23889694 - Environ Sci Technol. 2013 Sep 17;47(18):10708-17
– reference: 20525617 - Syst Biol. 2010 Jan;59(1):9-26
– reference: 20709691 - Bioinformatics. 2010 Oct 1;26(19):2460-1
– reference: 18838391 - Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8
– reference: 16525463 - Nature. 2006 Mar 9;440(7081):165-73
– reference: 24888608 - Environ Sci Pollut Res Int. 2014 Sep;21(18):10725-35
– reference: 26286355 - Environ Microbiol. 2016 Jan;18(1):288-301
– reference: 22397839 - Chemosphere. 2012 Jun;87(10):1171-8
– reference: 25209222 - Syst Biol. 2015 Jan;64(1):127-36
– reference: 12481133 - Science. 2002 Dec 13;298(5601):2173-6
– reference: 25909978 - ISME J. 2015 Nov;9(11):2465-76
– reference: 24375144 - Appl Environ Microbiol. 2014 Mar;80(5):1777-86
– reference: 21274573 - Oecologia. 2011 Mar;165(3):553-65
– reference: 23676669 - Nature. 2013 May 30;497(7451):615-8
– reference: 24551229 - PLoS One. 2014 Feb 13;9(2):e89108
– reference: 23893311 - Appl Microbiol Biotechnol. 2014 Feb;98(3):1449-58
– reference: 26042112 - Front Microbiol. 2015 May 20;6:480
– reference: 20118293 - Int J Syst Evol Microbiol. 2010 Dec;60(Pt 12):2951-9
– reference: 17947321 - Nucleic Acids Res. 2007;35(21):7188-96
– reference: 26371406 - ISME J. 2016 Apr;10 (4):959-67
– reference: 24189093 - Biotechnol Adv. 2014 Mar-Apr;32(2):255-68
– reference: 1987160 - J Bacteriol. 1991 Jan;173(2):697-703
– reference: 27276034 - PLoS Biol. 2016 Jun 08;14(6):e1002475
– reference: 21606374 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9508-12
– reference: 25527556 - Appl Environ Microbiol. 2015 Feb;81(4):1513-19
– reference: 22511226 - J Antibiot (Tokyo). 2012 Jul;65(7):335-40
– reference: 15608200 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D294-6
– reference: 12460273 - Environ Microbiol. 2002 Nov;4(11):654-66
– reference: 25378341 - Nucleic Acids Res. 2015 Jan;43(Database issue):D1107-12
– reference: 21304638 - Stand Genomic Sci. 2009 Jul 20;1(1):63-7
– reference: 17050570 - Bioinformatics. 2007 Jan 1;23(1):127-8
– reference: 19561189 - Appl Environ Microbiol. 2009 Aug;75(16):5428-33
– reference: 20184650 - Conserv Biol. 2010 Aug;24(4):1042-51
– reference: 22402400 - ISME J. 2012 Sep;6(9):1749-62
– reference: 16731699 - Bioinformatics. 2006 Jul 1;22(13):1658-9
– reference: 23235290 - ISME J. 2013 Apr;7(4):830-8
– reference: 22056985 - Nature. 2011 Nov 06;480(7377):368-71
– reference: 21400694 - Curr Protoc Bioinformatics. 2011 Mar;Chapter 11:Unit 11.8
– reference: 23587118 - Gigascience. 2012 Dec 27;1(1):18
– reference: 11976113 - Appl Environ Microbiol. 2002 May;68(5):2391-6
– reference: 25015892 - Appl Environ Microbiol. 2014 Sep;80(18):5761-72
– reference: 23418476 - PLoS One. 2013;8(2):e55929
– reference: 18810533 - Curr Microbiol. 2008 Nov;57(5):503-7
– reference: 23687898 - Ecology. 2013 Mar;94(3):726-38
– reference: 15078513 - J Appl Microbiol. 2004;96(5):973-81
– reference: 21097594 - Appl Environ Microbiol. 2011 Jan;77(2):586-96
– reference: 9918945 - Bioinformatics. 1998;14(9):755-63
– reference: 25516281 - Genome Biol. 2014;15(12):550
– reference: 26901800 - Sci Total Environ. 2016 May 15;553:32-41
– reference: 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10
– reference: 21995752 - BMC Biotechnol. 2011 Oct 13;11:94
– reference: 16348614 - Appl Environ Microbiol. 1991 Dec;57(12):3674-6
– reference: 26658882 - Sci Rep. 2015 Dec 10;5:18032
– reference: 22194640 - Nucleic Acids Res. 2012 Jan;40(Database issue):D115-22
– reference: 23785358 - Front Microbiol. 2013 Jun 14;4:149
– reference: 16928733 - Bioinformatics. 2006 Nov 1;22(21):2688-90
– reference: 19046360 - Ecol Lett. 2008 Dec;11(12):1316-27
– reference: 17911292 - Int J Syst Evol Microbiol. 2007 Oct;57(Pt 10):2259-61
– reference: 16866945 - New Phytol. 2006;171(2):391-404
– reference: 22127870 - Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301
SSID ssj0004068
Score 2.4916043
Snippet As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil....
SourceID pubmedcentral
osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6518
SubjectTerms Actinobacteria
Actinobacteria - genetics
Actinobacteria - metabolism
Bacteria
Bacteria - classification
Bacteria - isolation & purification
Bacteria - metabolism
BASIC BIOLOGICAL SCIENCES
Biodegradation
Carbohydrate Metabolism
Carbohydrates
Carbon - metabolism
Carbon Cycle
Carbon Dioxide - metabolism
Cellulose
Cellulose - metabolism
Climate Change
Ecosystem
ENVIRONMENTAL SCIENCES
Eukaryota - genetics
Eukaryota - metabolism
Forest soils
Forests
Global Warming
Metagenomics - methods
Microbial activity
Microbial Consortia - genetics
Microbial Consortia - physiology
Microbial Ecology
Microbiology
Polymers
Soil Microbiology
Soil microorganisms
Soil temperature
Temperate forests
Time Factors
Xylans - metabolism
Title Long-Term Warming Alters Carbohydrate Degradation Potential in Temperate Forest Soils
URI https://www.ncbi.nlm.nih.gov/pubmed/27590813
https://www.proquest.com/docview/1836959951
https://www.proquest.com/docview/1835687271
https://www.proquest.com/docview/1846403286
https://www.osti.gov/servlets/purl/1424727
https://pubmed.ncbi.nlm.nih.gov/PMC5086546
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWqIgQcEJSvsgsKEpyiLEnquM6xRV2tYLuANhW9RU7ifoiSoCY9LL-Kn8hMnA93KSvgElWNlbqd1_FzMu8NIa-B1Urus8jyRMQs6sSuBSw8shLfFpGdxDaXKBSeXrCzGX0_9-adzk-tamlXRCfxj4O6kv-JKrwHcUWV7D9EtrkovAGvIb5whAjD8a9ifJ6lSyuA3Gp-EVjTsjRH-PA7xzKOKFtdJegDASlluRWqdZL5KSuwPKh02jADCZy5HIINOvPCvMzWm1ynqzVHxbvrmiQOFSfr1sGpSa91B-qtaPEyXpeu33lbPdkWE483gLmVUNX15aPm5lb0eLf9imeKVgdfNYiublE4DLV6SqSpqQIwXWmFqNPr06wStO9byDLU8qRyMlqeAitletLmrgZOpWyuUjDzVEL_fW1wUe8g5LcToMiOazkHLLgvPoans_PzMJjMg_2z5ZJPge8AwRugcP-WCxsT7Jnx4bPmT28zXvue4teopRYuf6t_8B4J6maQzA9tcK7X6WrEJ3hA7lc7FmOk4PeQdGTaI7dVD9OrHrlTS9vzHrmnuVs-IrMGnkYFT0PB09DhaWjwNBp4GuvUaOBpKHgaJTwfk8vTSfDuzKq6eFgxLKaFJQau77mDOJGcCUcy2J9HMYWNtEx8QbkQC-ZFktIhMEvpJLZYOLHnex4XbBDxwRPSTbNUPiOGTYfJMKIS1omYxnQIU-PUZ4nHsXxvYfeJWf-oYVwZ3GOflU1YbnRdHo4m07AMQeiwPnnTjP6ujF3-MO4I4xMCIUVX5RjLz-IiRIEoUP8-Oa7DFlaJIQ9hlWQ-Gvk5ffKqOQ1pG5_FiVRmu3KMxzhc4cYxlFH0u4RJPFVIaKbqDj0f2PygT4Z7GGkGoG38_pl0vSrt42FLhgrG5zdP_Yjcbf_Kx6RbbHfyBfDvInpZQv4XG23d-g
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-Term+Warming+Alters+Carbohydrate+Degradation+Potential+in+Temperate+Forest+Soils&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Pold%2C+Grace&rft.au=Billings%2C+Andrew+F&rft.au=Blanchard%2C+Jeff+L&rft.au=Burkhardt%2C+Daniel+B&rft.date=2016-11-15&rft.pub=American+Society+for+Microbiology&rft.issn=0099-2240&rft.eissn=1098-5336&rft.volume=82&rft.issue=22&rft.spage=6518&rft_id=info:doi/10.1128%2Faem.02012-16&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4241893331
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon