Long-Term Warming Alters Carbohydrate Degradation Potential in Temperate Forest Soils
As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soi...
Saved in:
Published in | Applied and environmental microbiology Vol. 82; no. 22; pp. 6518 - 6530 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
15.11.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0099-2240 1098-5336 1098-5336 |
DOI | 10.1128/AEM.02012-16 |
Cover
Loading…
Abstract | As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with
Actinobacteria
in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world.
IMPORTANCE
The massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indicate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20 years of 5°C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degradation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study illustrates the utility of combining culture-dependent and culture-independent surveys of microbial communities to improve our understanding of the role changing microbial communities may play in soil carbon cycling under climate change. |
---|---|
AbstractList | As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world.
The massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indicate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20 years of 5°C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degradation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study illustrates the utility of combining culture-dependent and culture-independent surveys of microbial communities to improve our understanding of the role changing microbial communities may play in soil carbon cycling under climate change. As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world. IMPORTANCE The massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indicate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20 years of 5°C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degradation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study illustrates the utility of combining culture-dependent and culture-independent surveys of microbial communities to improve our understanding of the role changing microbial communities may play in soil carbon cycling under climate change. As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world. IMPORTANCE: The massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indicate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20 years of 5°C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degradation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study illustrates the utility of combining culture-dependent and culture-independent surveys of microbial communities to improve our understanding of the role changing microbial communities may play in soil carbon cycling under climate change. As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world.As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world.The massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indicate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20 years of 5°C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degradation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study illustrates the utility of combining culture-dependent and culture-independent surveys of microbial communities to improve our understanding of the role changing microbial communities may play in soil carbon cycling under climate change.IMPORTANCEThe massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indicate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20 years of 5°C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degradation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study illustrates the utility of combining culture-dependent and culture-independent surveys of microbial communities to improve our understanding of the role changing microbial communities may play in soil carbon cycling under climate change. As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world. As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5 degree C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world. IMPORTANCE The massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indicate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20 years of 5 degree C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degradation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study illustrates the utility of combining culture-dependent and culture-independent surveys of microbial communities to improve our understanding of the role changing microbial communities may play in soil carbon cycling under climate change. |
Author | Burkhardt, Daniel B. Frey, Serita D. Pold, Grace Schnabel, Julia van Diepen, Linda T. A. Blanchard, Jeff L. Billings, Andrew F. DeAngelis, Kristen M. Melillo, Jerry M. |
Author_xml | – sequence: 1 givenname: Grace orcidid: 0000-0003-4418-4246 surname: Pold fullname: Pold, Grace organization: Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, USA – sequence: 2 givenname: Andrew F. surname: Billings fullname: Billings, Andrew F. organization: Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA – sequence: 3 givenname: Jeff L. surname: Blanchard fullname: Blanchard, Jeff L. organization: Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, USA, Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA – sequence: 4 givenname: Daniel B. surname: Burkhardt fullname: Burkhardt, Daniel B. organization: Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA – sequence: 5 givenname: Serita D. surname: Frey fullname: Frey, Serita D. organization: Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA – sequence: 6 givenname: Jerry M. surname: Melillo fullname: Melillo, Jerry M. organization: The Ecosystems Center, Marine Biological Laboratories, Woods Hole, Massachusetts, USA – sequence: 7 givenname: Julia surname: Schnabel fullname: Schnabel, Julia organization: Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA – sequence: 8 givenname: Linda T. A. surname: van Diepen fullname: van Diepen, Linda T. A. organization: Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA – sequence: 9 givenname: Kristen M. orcidid: 0000-0002-5585-4551 surname: DeAngelis fullname: DeAngelis, Kristen M. organization: Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, USA, Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27590813$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1424727$$D View this record in Osti.gov |
BookMark | eNqNks1vEzEQxS1URNPCjTNawYUDW_wd-4IUhRaQgkBqEEfL650krnbtYDtI_e9xklJBxYHTHPzzm3kz7wydhBgAoecEXxBC1dvZ5ecLTDGhLZGP0IRgrVrBmDxBE4y1binl-BSd5XyDMeZYqifolE6FxoqwCfq2iGHdLiGNzXebRh_WzWwokHIzt6mLm9s-2QLNe1gn29viY2i-xgKheDs0PjRLGLdwQK5iglya6-iH_BQ9Xtkhw7O7eo6ury6X84_t4suHT_PZonWCqdJaRrWgzPWgpCUgieSd40pS6LXlytqVFB1wPsWSAOmxXREntBDKStYpdo7eHVW3u26E3tWpkh3MNvnRplsTrTd_vwS_Mev40wispOCyCrw8CsRcvMnOF3AbF0MAVwzhlE_ptEKv77qk-GNXLZrRZwfDYAPEXTZEcckxo0r-B8qEVFWUVPTVA_Qm7lKoy9pTUgutxZ568afDe2u_71eBN0fApZhzgtU9QrDZx8PUeJhDPAzZD0gf4NXz4ap1P37496dfoVK7qw |
CODEN | AEMIDF |
CitedBy_id | crossref_primary_10_1128_mBio_02293_19 crossref_primary_10_1016_j_scitotenv_2023_168793 crossref_primary_10_1186_s40793_019_0344_4 crossref_primary_10_2139_ssrn_4066274 crossref_primary_10_1016_j_geoderma_2017_12_005 crossref_primary_10_1128_MRA_00956_20 crossref_primary_10_1146_annurev_environ_012320_082720 crossref_primary_10_3390_soilsystems5010014 crossref_primary_10_1007_s42773_024_00327_0 crossref_primary_10_1016_j_pedobi_2022_150821 crossref_primary_10_1016_j_soilbio_2021_108298 crossref_primary_10_1038_s41467_021_22408_5 crossref_primary_10_1016_j_soilbio_2020_108055 crossref_primary_10_1016_j_apsoil_2021_103973 crossref_primary_10_1002_ecs2_3460 crossref_primary_10_1016_j_soilbio_2019_02_005 crossref_primary_10_1016_j_biotechadv_2019_03_013 crossref_primary_10_1093_jpe_rtae003 crossref_primary_10_3389_fmicb_2021_802213 crossref_primary_10_1016_j_pedsph_2023_12_012 crossref_primary_10_1111_1462_2920_15655 crossref_primary_10_1016_j_indcrop_2024_118074 crossref_primary_10_1016_j_soilbio_2017_03_002 crossref_primary_10_5194_soil_7_477_2021 crossref_primary_10_1016_j_soilbio_2020_107875 crossref_primary_10_1038_s41396_019_0484_y crossref_primary_10_1016_j_apsoil_2017_04_021 crossref_primary_10_1126_science_aan2874 crossref_primary_10_1016_j_gecco_2023_e02561 crossref_primary_10_1016_j_soilbio_2019_02_018 crossref_primary_10_1128_msphere_00059_25 crossref_primary_10_1186_s40168_017_0340_0 crossref_primary_10_1128_aem_00825_23 crossref_primary_10_1007_s10533_024_01165_9 crossref_primary_10_1016_j_scib_2021_03_008 crossref_primary_10_3389_fmicb_2017_02504 crossref_primary_10_3390_microorganisms10101950 crossref_primary_10_1093_femsec_fiad036 crossref_primary_10_1016_j_envres_2023_117162 crossref_primary_10_1016_j_scitotenv_2024_174692 crossref_primary_10_1016_j_scitotenv_2019_135992 crossref_primary_10_1111_1758_2229_12898 crossref_primary_10_1128_mSystems_00092_19 crossref_primary_10_1007_s11104_023_06104_5 crossref_primary_10_1093_ismeco_ycae051 crossref_primary_10_1002_2018JG004432 crossref_primary_10_1002_ecs2_2598 crossref_primary_10_3389_ffgc_2022_800335 crossref_primary_10_3390_su15032745 crossref_primary_10_1038_s41579_023_00876_4 crossref_primary_10_3390_microorganisms7090287 crossref_primary_10_1128_AEM_02346_18 crossref_primary_10_1021_acs_estlett_0c00748 crossref_primary_10_1038_ismej_2017_118 crossref_primary_10_3389_fmicb_2021_666558 crossref_primary_10_1016_j_apsoil_2024_105711 crossref_primary_10_1636_JoA_S_22_039 crossref_primary_10_1016_j_scitotenv_2023_165733 crossref_primary_10_1002_ecy_2985 crossref_primary_10_1016_j_jenvman_2023_118889 crossref_primary_10_1016_j_indcrop_2022_114899 crossref_primary_10_1128_mBio_01809_17 |
Cites_doi | 10.1111/j.1365-2486.2010.02318.x 10.1016/j.soilbio.2012.11.012 10.18637/jss.v036.i11 10.1128/AEM.01080-10 10.1073/pnas.1018189108 10.1111/j.1365-2672.2004.02230.x 10.1007/s11356-014-3018-1 10.1371/journal.pone.0055929 10.1890/es10-00133.1 10.1111/j.1469-8137.2006.01778.x 10.1093/nar/gkr1065 10.1007/978-0-387-98141-3 10.1002/0471250953.bi1108s33 10.1093/nar/gki038 10.1007/BF00418675 10.1038/nclimate2940 10.1128/AEM.68.5.2391-2396.2002 10.1016/j.biotechadv.2013.10.008 10.1038/ismej.2015.57 10.1111/j.1523-1739.2010.01455.x 10.1007/978-0-387-21706-2 10.1007/s00442-011-1909-0 10.1128/9781555815882.ch6 10.1371/journal.pbio.1002475 10.1016/j.chemosphere.2012.02.036 10.1038/ismej.2011.95 10.1093/sysbio/syu070 10.1038/srep18032 10.1111/j.1461-0248.2008.01251.x 10.1016/S0022-2836(05)80360-2 10.1128/AEM.03112-12 10.1016/j.soilbio.2008.07.020 10.1007/s00284-008-9276-8 10.1007/s00253-013-5130-4 10.1099/ijs.0.021824-0 10.1093/nar/gkm864 10.1371/journal.pone.0089108 10.1890/12-0279.1 10.1016/j.quaint.2006.10.027 10.1021/es4020184 10.1093/bioinformatics/btl158 10.1093/nar/gkn663 10.1111/j.2517-6161.1995.tb02031.x 10.1099/ijs.0.64915-0 10.1093/bioinformatics/btl529 10.1093/sysbio/syp074 10.1038/nclimate1796 10.1038/nature10576 10.3389/fmicb.2015.00104 10.1186/2047-217X-1-18 10.1093/nar/gkr1044 10.1038/nclimate1951 10.3389/fmicb.2015.00480 10.1186/s13059-014-0550-8 10.1111/j.1365-2486.2011.02615.x 10.1038/ismej.2012.160 10.1038/ja.2012.31 10.1016/j.scitotenv.2016.02.078 10.1128/JB.173.2.697-703.1991 10.1515/zpch-1889-0108 10.1046/j.1462-2920.2002.00352.x 10.1128/AEM.00120-09 10.1038/nclimate1331 10.1128/AEM.01030-14 10.1126/science.1074153 10.1128/aem.57.12.3674-3676.1991 10.1128/AEM.03718-14 10.1007/s10533-015-0073-8 10.1093/bioinformatics/14.9.755 10.1111/nph.12481 10.1128/AEM.03712-13 10.3389/fmicb.2013.00149 10.1038/ismej.2015.171 10.1038/ismej.2012.11 10.1186/1472-6750-11-94 10.1099/00207713-16-3-313 10.1111/1462-2920.13026 10.1093/bioinformatics/btq461 10.1016/j.soilbio.2016.01.008 10.2307/1941962 10.1093/bioinformatics/btl446 10.1093/nar/gku990 10.1139/gen-2013-0069 10.4056/sigs.632 10.1038/nature04514 10.1038/nature12129 10.1038/ismej.2013.104 |
ContentType | Journal Article |
Copyright | Copyright © 2016 Pold et al. Copyright American Society for Microbiology Nov 2016 Copyright © 2016 Pold et al. 2016 Pold et al. |
Copyright_xml | – notice: Copyright © 2016 Pold et al. – notice: Copyright American Society for Microbiology Nov 2016 – notice: Copyright © 2016 Pold et al. 2016 Pold et al. |
CorporateAuthor | The Marine Biological Laboratory, Woods Hole, MA (United States) |
CorporateAuthor_xml | – name: The Marine Biological Laboratory, Woods Hole, MA (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 OIOZB OTOTI 5PM |
DOI | 10.1128/AEM.02012-16 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Virology and AIDS Abstracts MEDLINE - Academic Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Biology Environmental Sciences |
DocumentTitleAlternate | Soil Warming Impacts Carbohydrate Degradation |
EISSN | 1098-5336 |
EndPage | 6530 |
ExternalDocumentID | PMC5086546 1424727 4241893331 27590813 10_1128_AEM_02012_16 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: U.S. Department of Energy (DOE) grantid: DE-SC0010740 – fundername: National Science Foundation (NSF) grantid: NSF 1237491; NSF 1456528; ACI-1053575 – fundername: U.S. Department of Energy (DOE) grantid: DE-AC02-05CH11231 |
GroupedDBID | --- -~X 0R~ 23M 2WC 39C 4.4 53G 5GY 5RE 5VS 6J9 85S AAGFI AAYXX AAZTW ABOGM ABPPZ ACBTR ACGFO ACIWK ACNCT ACPRK ADBBV ADUKH AENEX AFRAH AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW CITATION CS3 D0L DIK E.- E3Z EBS EJD F5P GX1 H13 HYE HZ~ K-O KQ8 L7B O9- P2P PQQKQ RHI RNS RPM RSF RXW TAE TAF TN5 TR2 TWZ UHB W8F WH7 WOQ X6Y ~02 ~KM CGR CUY CVF ECM EIF NPM OK1 RHF UCJ Z5M 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 AAPBV ABPTK ABRJW OIOZB OTOTI PQEST ZA5 5PM |
ID | FETCH-LOGICAL-c538t-a329523cde86a1e6164bc4862ed9a48aaf65be447061e1d0af1c59558a63b83 |
ISSN | 0099-2240 1098-5336 |
IngestDate | Thu Aug 21 14:30:15 EDT 2025 Fri May 19 00:46:17 EDT 2023 Fri Jul 11 14:13:13 EDT 2025 Fri Jul 11 00:47:17 EDT 2025 Mon Jun 30 08:43:30 EDT 2025 Wed Feb 19 02:40:49 EST 2025 Thu Apr 24 23:00:00 EDT 2025 Tue Jul 01 02:20:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | Copyright © 2016 Pold et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c538t-a329523cde86a1e6164bc4862ed9a48aaf65be447061e1d0af1c59558a63b83 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 SC0010740; AC02-05CH11231 USDOE Office of Science (SC), Biological and Environmental Research (BER) Present address: Linda T. A. van Diepen, Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming, USA. Citation Pold G, Billings AF, Blanchard JL, Burkhardt DB, Frey SD, Melillo JM, Schnabel J, van Diepen LTA, DeAngelis KM. 2016. Long-term warming alters carbohydrate degradation potential in temperate forest soils. Appl Environ Microbiol 82:6518–6530. doi:10.1128/AEM.02012-16. |
ORCID | 0000-0003-4418-4246 0000-0002-5585-4551 0000000255854551 0000000344184246 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5086546 |
PMID | 27590813 |
PQID | 1836959951 |
PQPubID | 42251 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5086546 osti_scitechconnect_1424727 proquest_miscellaneous_1846403286 proquest_miscellaneous_1835687271 proquest_journals_1836959951 pubmed_primary_27590813 crossref_primary_10_1128_AEM_02012_16 crossref_citationtrail_10_1128_AEM_02012_16 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11-15 |
PublicationDateYYYYMMDD | 2016-11-15 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Applied and environmental microbiology |
PublicationTitleAlternate | Appl Environ Microbiol |
PublicationYear | 2016 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_50_2 e_1_3_3_75_2 e_1_3_3_71_2 e_1_3_3_77_2 e_1_3_3_79_2 Boose E (e_1_3_3_95_2) 2001 IPCC (e_1_3_3_2_2) 2013 Foster DR (e_1_3_3_24_2) 2012 Wallenstein M (e_1_3_3_8_2) 2011 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_90_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_92_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_94_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_73_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_86_2 e_1_3_3_88_2 Benjamini Y (e_1_3_3_45_2) 1995; 57 Hungate RE (e_1_3_3_58_2) 1973; 17 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_80_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_82_2 Cooper P (e_1_3_3_64_2) 2011 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_84_2 e_1_3_3_51_2 e_1_3_3_74_2 e_1_3_3_76_2 e_1_3_3_70_2 e_1_3_3_78_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 Melillo JM (e_1_3_3_93_2) 1999 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_91_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_72_2 Tanner RS (e_1_3_3_49_2) 2007 e_1_3_3_62_2 e_1_3_3_85_2 e_1_3_3_60_2 e_1_3_3_87_2 e_1_3_3_89_2 e_1_3_3_6_2 e_1_3_3_28_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_68_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_81_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_83_2 20709691 - Bioinformatics. 2010 Oct 1;26(19):2460-1 20525617 - Syst Biol. 2010 Jan;59(1):9-26 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 23889694 - Environ Sci Technol. 2013 Sep 17;47(18):10708-17 25762989 - Front Microbiol. 2015 Feb 13;6:104 18810533 - Curr Microbiol. 2008 Nov;57(5):503-7 21606374 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9508-12 21995752 - BMC Biotechnol. 2011 Oct 13;11:94 12481133 - Science. 2002 Dec 13;298(5601):2173-6 26901800 - Sci Total Environ. 2016 May 15;553:32-41 24189093 - Biotechnol Adv. 2014 Mar-Apr;32(2):255-68 16928733 - Bioinformatics. 2006 Nov 1;22(21):2688-90 24237341 - Genome. 2013 Oct;56(10):599-611 23687898 - Ecology. 2013 Mar;94(3):726-38 21097594 - Appl Environ Microbiol. 2011 Jan;77(2):586-96 22194640 - Nucleic Acids Res. 2012 Jan;40(Database issue):D115-22 17050570 - Bioinformatics. 2007 Jan 1;23(1):127-8 23587118 - Gigascience. 2012 Dec 27;1(1):18 21274573 - Oecologia. 2011 Mar;165(3):553-65 24010995 - New Phytol. 2014 Jan;201(1):269-78 21400694 - Curr Protoc Bioinformatics. 2011 Mar;Chapter 11:Unit 11.8 17911292 - Int J Syst Evol Microbiol. 2007 Oct;57(Pt 10):2259-61 20184650 - Conserv Biol. 2010 Aug;24(4):1042-51 27276034 - PLoS Biol. 2016 Jun 08;14(6):e1002475 25015892 - Appl Environ Microbiol. 2014 Sep;80(18):5761-72 24375144 - Appl Environ Microbiol. 2014 Mar;80(5):1777-86 11976113 - Appl Environ Microbiol. 2002 May;68(5):2391-6 9918945 - Bioinformatics. 1998;14(9):755-63 21304638 - Stand Genomic Sci. 2009 Jul 20;1(1):63-7 26286355 - Environ Microbiol. 2016 Jan;18(1):288-301 22511226 - J Antibiot (Tokyo). 2012 Jul;65(7):335-40 16348614 - Appl Environ Microbiol. 1991 Dec;57(12):3674-6 25209222 - Syst Biol. 2015 Jan;64(1):127-36 25516281 - Genome Biol. 2014;15(12):550 25909978 - ISME J. 2015 Nov;9(11):2465-76 26042112 - Front Microbiol. 2015 May 20;6:480 16731699 - Bioinformatics. 2006 Jul 1;22(13):1658-9 24888608 - Environ Sci Pollut Res Int. 2014 Sep;21(18):10725-35 16866945 - New Phytol. 2006;171(2):391-404 24551229 - PLoS One. 2014 Feb 13;9(2):e89108 20118293 - Int J Syst Evol Microbiol. 2010 Dec;60(Pt 12):2951-9 15608200 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D294-6 23418476 - PLoS One. 2013;8(2):e55929 17947321 - Nucleic Acids Res. 2007;35(21):7188-96 22402400 - ISME J. 2012 Sep;6(9):1749-62 19046360 - Ecol Lett. 2008 Dec;11(12):1316-27 22056985 - Nature. 2011 Nov 06;480(7377):368-71 22397839 - Chemosphere. 2012 Jun;87(10):1171-8 12460273 - Environ Microbiol. 2002 Nov;4(11):654-66 23676669 - Nature. 2013 May 30;497(7451):615-8 22127870 - Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301 23893311 - Appl Microbiol Biotechnol. 2014 Feb;98(3):1449-58 25527556 - Appl Environ Microbiol. 2015 Feb;81(4):1513-19 15078513 - J Appl Microbiol. 2004;96(5):973-81 26371406 - ISME J. 2016 Apr;10 (4):959-67 23785358 - Front Microbiol. 2013 Jun 14;4:149 21776033 - ISME J. 2012 Feb;6(2):248-58 25378341 - Nucleic Acids Res. 2015 Jan;43(Database issue):D1107-12 1987160 - J Bacteriol. 1991 Jan;173(2):697-703 26658882 - Sci Rep. 2015 Dec 10;5:18032 23315727 - Appl Environ Microbiol. 2013 Mar;79(6):2096-8 23235290 - ISME J. 2013 Apr;7(4):830-8 18838391 - Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8 19561189 - Appl Environ Microbiol. 2009 Aug;75(16):5428-33 16525463 - Nature. 2006 Mar 9;440(7081):165-73 23823489 - ISME J. 2013 Nov;7(11):2229-41 |
References_xml | – ident: e_1_3_3_77_2 doi: 10.1111/j.1365-2486.2010.02318.x – ident: e_1_3_3_4_2 doi: 10.1016/j.soilbio.2012.11.012 – ident: e_1_3_3_47_2 doi: 10.18637/jss.v036.i11 – volume-title: Harvard Forest Data Archive HF001-06 year: 2001 ident: e_1_3_3_95_2 – ident: e_1_3_3_52_2 doi: 10.1128/AEM.01080-10 – ident: e_1_3_3_19_2 doi: 10.1073/pnas.1018189108 – ident: e_1_3_3_54_2 doi: 10.1111/j.1365-2672.2004.02230.x – ident: e_1_3_3_85_2 doi: 10.1007/s11356-014-3018-1 – ident: e_1_3_3_14_2 doi: 10.1371/journal.pone.0055929 – ident: e_1_3_3_18_2 doi: 10.1890/es10-00133.1 – ident: e_1_3_3_76_2 doi: 10.1111/j.1469-8137.2006.01778.x – volume-title: Prospect Hill soil warming experiment at Harvard Forest since 1991 year: 1999 ident: e_1_3_3_93_2 – ident: e_1_3_3_38_2 doi: 10.1093/nar/gkr1065 – ident: e_1_3_3_42_2 doi: 10.1007/978-0-387-98141-3 – ident: e_1_3_3_29_2 doi: 10.1002/0471250953.bi1108s33 – ident: e_1_3_3_34_2 doi: 10.1093/nar/gki038 – ident: e_1_3_3_7_2 doi: 10.1007/BF00418675 – ident: e_1_3_3_12_2 doi: 10.1038/nclimate2940 – ident: e_1_3_3_57_2 doi: 10.1128/AEM.68.5.2391-2396.2002 – ident: e_1_3_3_82_2 doi: 10.1016/j.biotechadv.2013.10.008 – ident: e_1_3_3_16_2 doi: 10.1038/ismej.2015.57 – ident: e_1_3_3_69_2 doi: 10.1111/j.1523-1739.2010.01455.x – ident: e_1_3_3_44_2 doi: 10.1007/978-0-387-21706-2 – volume-title: NCBI news, November 2011 year: 2011 ident: e_1_3_3_64_2 – ident: e_1_3_3_71_2 doi: 10.1007/s00442-011-1909-0 – start-page: 69 volume-title: Manual of environmental microbiology year: 2007 ident: e_1_3_3_49_2 doi: 10.1128/9781555815882.ch6 – ident: e_1_3_3_91_2 doi: 10.1371/journal.pbio.1002475 – ident: e_1_3_3_87_2 doi: 10.1016/j.chemosphere.2012.02.036 – ident: e_1_3_3_15_2 doi: 10.1038/ismej.2011.95 – ident: e_1_3_3_84_2 doi: 10.1093/sysbio/syu070 – ident: e_1_3_3_75_2 doi: 10.1038/srep18032 – ident: e_1_3_3_22_2 doi: 10.1111/j.1461-0248.2008.01251.x – ident: e_1_3_3_62_2 doi: 10.1016/S0022-2836(05)80360-2 – start-page: 245 volume-title: Soil enzymology year: 2011 ident: e_1_3_3_8_2 – ident: e_1_3_3_83_2 doi: 10.1128/AEM.03112-12 – ident: e_1_3_3_23_2 doi: 10.1016/j.soilbio.2008.07.020 – ident: e_1_3_3_66_2 doi: 10.1007/s00284-008-9276-8 – ident: e_1_3_3_86_2 doi: 10.1007/s00253-013-5130-4 – ident: e_1_3_3_56_2 doi: 10.1099/ijs.0.021824-0 – ident: e_1_3_3_35_2 doi: 10.1093/nar/gkm864 – ident: e_1_3_3_55_2 doi: 10.1371/journal.pone.0089108 – ident: e_1_3_3_79_2 doi: 10.1890/12-0279.1 – ident: e_1_3_3_72_2 doi: 10.1016/j.quaint.2006.10.027 – ident: e_1_3_3_31_2 doi: 10.1021/es4020184 – ident: e_1_3_3_61_2 doi: 10.1093/bioinformatics/btl158 – ident: e_1_3_3_41_2 doi: 10.1093/nar/gkn663 – volume: 57 start-page: 289 year: 1995 ident: e_1_3_3_45_2 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J R Stat Soc Ser B Methodol doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: e_1_3_3_60_2 doi: 10.1099/ijs.0.64915-0 – ident: e_1_3_3_65_2 doi: 10.1093/bioinformatics/btl529 – ident: e_1_3_3_68_2 doi: 10.1093/sysbio/syp074 – ident: e_1_3_3_25_2 doi: 10.1038/nclimate1796 – ident: e_1_3_3_11_2 doi: 10.1038/nature10576 – ident: e_1_3_3_17_2 doi: 10.3389/fmicb.2015.00104 – ident: e_1_3_3_28_2 doi: 10.1186/2047-217X-1-18 – ident: e_1_3_3_33_2 doi: 10.1093/nar/gkr1044 – ident: e_1_3_3_94_2 doi: 10.1038/nclimate1951 – ident: e_1_3_3_5_2 doi: 10.3389/fmicb.2015.00480 – ident: e_1_3_3_43_2 doi: 10.1186/s13059-014-0550-8 – ident: e_1_3_3_3_2 doi: 10.1111/j.1365-2486.2011.02615.x – ident: e_1_3_3_6_2 doi: 10.1038/ismej.2012.160 – ident: e_1_3_3_51_2 doi: 10.1038/ja.2012.31 – ident: e_1_3_3_40_2 doi: 10.1016/j.scitotenv.2016.02.078 – ident: e_1_3_3_59_2 doi: 10.1128/JB.173.2.697-703.1991 – ident: e_1_3_3_9_2 doi: 10.1515/zpch-1889-0108 – ident: e_1_3_3_48_2 doi: 10.1046/j.1462-2920.2002.00352.x – ident: e_1_3_3_27_2 doi: 10.1128/AEM.00120-09 – ident: e_1_3_3_10_2 doi: 10.1038/nclimate1331 – volume-title: New science, synthesis, scholarship, and strategic vision for society year: 2012 ident: e_1_3_3_24_2 – ident: e_1_3_3_39_2 doi: 10.1128/AEM.01030-14 – ident: e_1_3_3_21_2 doi: 10.1126/science.1074153 – ident: e_1_3_3_50_2 doi: 10.1128/aem.57.12.3674-3676.1991 – ident: e_1_3_3_80_2 doi: 10.1128/AEM.03718-14 – ident: e_1_3_3_26_2 doi: 10.1007/s10533-015-0073-8 – ident: e_1_3_3_37_2 doi: 10.1093/bioinformatics/14.9.755 – volume: 17 start-page: 123 year: 1973 ident: e_1_3_3_58_2 article-title: The roll-tube method for cultivation of strict anaerobes publication-title: Bull Ecol Res Comm – ident: e_1_3_3_78_2 doi: 10.1111/nph.12481 – volume-title: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) year: 2013 ident: e_1_3_3_2_2 – ident: e_1_3_3_13_2 doi: 10.1128/AEM.03712-13 – ident: e_1_3_3_88_2 doi: 10.3389/fmicb.2013.00149 – ident: e_1_3_3_70_2 doi: 10.1038/ismej.2015.171 – ident: e_1_3_3_73_2 doi: 10.1038/ismej.2012.11 – ident: e_1_3_3_67_2 doi: 10.1186/1472-6750-11-94 – ident: e_1_3_3_53_2 doi: 10.1099/00207713-16-3-313 – ident: e_1_3_3_90_2 doi: 10.1111/1462-2920.13026 – ident: e_1_3_3_36_2 doi: 10.1093/bioinformatics/btq461 – ident: e_1_3_3_92_2 doi: 10.1016/j.soilbio.2016.01.008 – ident: e_1_3_3_20_2 doi: 10.2307/1941962 – ident: e_1_3_3_63_2 doi: 10.1093/bioinformatics/btl446 – ident: e_1_3_3_74_2 doi: 10.1093/nar/gku990 – ident: e_1_3_3_32_2 doi: 10.1139/gen-2013-0069 – ident: e_1_3_3_30_2 doi: 10.4056/sigs.632 – ident: e_1_3_3_89_2 doi: 10.1038/nature04514 – ident: e_1_3_3_46_2 doi: 10.1038/nature12129 – ident: e_1_3_3_81_2 doi: 10.1038/ismej.2013.104 – reference: 24237341 - Genome. 2013 Oct;56(10):599-611 – reference: 24010995 - New Phytol. 2014 Jan;201(1):269-78 – reference: 21776033 - ISME J. 2012 Feb;6(2):248-58 – reference: 23315727 - Appl Environ Microbiol. 2013 Mar;79(6):2096-8 – reference: 25762989 - Front Microbiol. 2015 Feb 13;6:104 – reference: 23823489 - ISME J. 2013 Nov;7(11):2229-41 – reference: 23889694 - Environ Sci Technol. 2013 Sep 17;47(18):10708-17 – reference: 20525617 - Syst Biol. 2010 Jan;59(1):9-26 – reference: 20709691 - Bioinformatics. 2010 Oct 1;26(19):2460-1 – reference: 18838391 - Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8 – reference: 16525463 - Nature. 2006 Mar 9;440(7081):165-73 – reference: 24888608 - Environ Sci Pollut Res Int. 2014 Sep;21(18):10725-35 – reference: 26286355 - Environ Microbiol. 2016 Jan;18(1):288-301 – reference: 22397839 - Chemosphere. 2012 Jun;87(10):1171-8 – reference: 25209222 - Syst Biol. 2015 Jan;64(1):127-36 – reference: 12481133 - Science. 2002 Dec 13;298(5601):2173-6 – reference: 25909978 - ISME J. 2015 Nov;9(11):2465-76 – reference: 24375144 - Appl Environ Microbiol. 2014 Mar;80(5):1777-86 – reference: 21274573 - Oecologia. 2011 Mar;165(3):553-65 – reference: 23676669 - Nature. 2013 May 30;497(7451):615-8 – reference: 24551229 - PLoS One. 2014 Feb 13;9(2):e89108 – reference: 23893311 - Appl Microbiol Biotechnol. 2014 Feb;98(3):1449-58 – reference: 26042112 - Front Microbiol. 2015 May 20;6:480 – reference: 20118293 - Int J Syst Evol Microbiol. 2010 Dec;60(Pt 12):2951-9 – reference: 17947321 - Nucleic Acids Res. 2007;35(21):7188-96 – reference: 26371406 - ISME J. 2016 Apr;10 (4):959-67 – reference: 24189093 - Biotechnol Adv. 2014 Mar-Apr;32(2):255-68 – reference: 1987160 - J Bacteriol. 1991 Jan;173(2):697-703 – reference: 27276034 - PLoS Biol. 2016 Jun 08;14(6):e1002475 – reference: 21606374 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9508-12 – reference: 25527556 - Appl Environ Microbiol. 2015 Feb;81(4):1513-19 – reference: 22511226 - J Antibiot (Tokyo). 2012 Jul;65(7):335-40 – reference: 15608200 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D294-6 – reference: 12460273 - Environ Microbiol. 2002 Nov;4(11):654-66 – reference: 25378341 - Nucleic Acids Res. 2015 Jan;43(Database issue):D1107-12 – reference: 21304638 - Stand Genomic Sci. 2009 Jul 20;1(1):63-7 – reference: 17050570 - Bioinformatics. 2007 Jan 1;23(1):127-8 – reference: 19561189 - Appl Environ Microbiol. 2009 Aug;75(16):5428-33 – reference: 20184650 - Conserv Biol. 2010 Aug;24(4):1042-51 – reference: 22402400 - ISME J. 2012 Sep;6(9):1749-62 – reference: 16731699 - Bioinformatics. 2006 Jul 1;22(13):1658-9 – reference: 23235290 - ISME J. 2013 Apr;7(4):830-8 – reference: 22056985 - Nature. 2011 Nov 06;480(7377):368-71 – reference: 21400694 - Curr Protoc Bioinformatics. 2011 Mar;Chapter 11:Unit 11.8 – reference: 23587118 - Gigascience. 2012 Dec 27;1(1):18 – reference: 11976113 - Appl Environ Microbiol. 2002 May;68(5):2391-6 – reference: 25015892 - Appl Environ Microbiol. 2014 Sep;80(18):5761-72 – reference: 23418476 - PLoS One. 2013;8(2):e55929 – reference: 18810533 - Curr Microbiol. 2008 Nov;57(5):503-7 – reference: 23687898 - Ecology. 2013 Mar;94(3):726-38 – reference: 15078513 - J Appl Microbiol. 2004;96(5):973-81 – reference: 21097594 - Appl Environ Microbiol. 2011 Jan;77(2):586-96 – reference: 9918945 - Bioinformatics. 1998;14(9):755-63 – reference: 25516281 - Genome Biol. 2014;15(12):550 – reference: 26901800 - Sci Total Environ. 2016 May 15;553:32-41 – reference: 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 – reference: 21995752 - BMC Biotechnol. 2011 Oct 13;11:94 – reference: 16348614 - Appl Environ Microbiol. 1991 Dec;57(12):3674-6 – reference: 26658882 - Sci Rep. 2015 Dec 10;5:18032 – reference: 22194640 - Nucleic Acids Res. 2012 Jan;40(Database issue):D115-22 – reference: 23785358 - Front Microbiol. 2013 Jun 14;4:149 – reference: 16928733 - Bioinformatics. 2006 Nov 1;22(21):2688-90 – reference: 19046360 - Ecol Lett. 2008 Dec;11(12):1316-27 – reference: 17911292 - Int J Syst Evol Microbiol. 2007 Oct;57(Pt 10):2259-61 – reference: 16866945 - New Phytol. 2006;171(2):391-404 – reference: 22127870 - Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301 |
SSID | ssj0004068 |
Score | 2.4916043 |
Snippet | As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil.... |
SourceID | pubmedcentral osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 6518 |
SubjectTerms | Actinobacteria Actinobacteria - genetics Actinobacteria - metabolism Bacteria Bacteria - classification Bacteria - isolation & purification Bacteria - metabolism BASIC BIOLOGICAL SCIENCES Biodegradation Carbohydrate Metabolism Carbohydrates Carbon - metabolism Carbon Cycle Carbon Dioxide - metabolism Cellulose Cellulose - metabolism Climate Change Ecosystem ENVIRONMENTAL SCIENCES Eukaryota - genetics Eukaryota - metabolism Forest soils Forests Global Warming Metagenomics - methods Microbial activity Microbial Consortia - genetics Microbial Consortia - physiology Microbial Ecology Microbiology Polymers Soil Microbiology Soil microorganisms Soil temperature Temperate forests Time Factors Xylans - metabolism |
Title | Long-Term Warming Alters Carbohydrate Degradation Potential in Temperate Forest Soils |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27590813 https://www.proquest.com/docview/1836959951 https://www.proquest.com/docview/1835687271 https://www.proquest.com/docview/1846403286 https://www.osti.gov/servlets/purl/1424727 https://pubmed.ncbi.nlm.nih.gov/PMC5086546 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWqIgQcEJSvsgsKEpyiLEnquM6xRV2tYLuANhW9RU7ifoiSoCY9LL-Kn8hMnA93KSvgElWNlbqd1_FzMu8NIa-B1Urus8jyRMQs6sSuBSw8shLfFpGdxDaXKBSeXrCzGX0_9-adzk-tamlXRCfxj4O6kv-JKrwHcUWV7D9EtrkovAGvIb5whAjD8a9ifJ6lSyuA3Gp-EVjTsjRH-PA7xzKOKFtdJegDASlluRWqdZL5KSuwPKh02jADCZy5HIINOvPCvMzWm1ynqzVHxbvrmiQOFSfr1sGpSa91B-qtaPEyXpeu33lbPdkWE483gLmVUNX15aPm5lb0eLf9imeKVgdfNYiublE4DLV6SqSpqQIwXWmFqNPr06wStO9byDLU8qRyMlqeAitletLmrgZOpWyuUjDzVEL_fW1wUe8g5LcToMiOazkHLLgvPoans_PzMJjMg_2z5ZJPge8AwRugcP-WCxsT7Jnx4bPmT28zXvue4teopRYuf6t_8B4J6maQzA9tcK7X6WrEJ3hA7lc7FmOk4PeQdGTaI7dVD9OrHrlTS9vzHrmnuVs-IrMGnkYFT0PB09DhaWjwNBp4GuvUaOBpKHgaJTwfk8vTSfDuzKq6eFgxLKaFJQau77mDOJGcCUcy2J9HMYWNtEx8QbkQC-ZFktIhMEvpJLZYOLHnex4XbBDxwRPSTbNUPiOGTYfJMKIS1omYxnQIU-PUZ4nHsXxvYfeJWf-oYVwZ3GOflU1YbnRdHo4m07AMQeiwPnnTjP6ujF3-MO4I4xMCIUVX5RjLz-IiRIEoUP8-Oa7DFlaJIQ9hlWQ-Gvk5ffKqOQ1pG5_FiVRmu3KMxzhc4cYxlFH0u4RJPFVIaKbqDj0f2PygT4Z7GGkGoG38_pl0vSrt42FLhgrG5zdP_Yjcbf_Kx6RbbHfyBfDvInpZQv4XG23d-g |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-Term+Warming+Alters+Carbohydrate+Degradation+Potential+in+Temperate+Forest+Soils&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Pold%2C+Grace&rft.au=Billings%2C+Andrew+F&rft.au=Blanchard%2C+Jeff+L&rft.au=Burkhardt%2C+Daniel+B&rft.date=2016-11-15&rft.pub=American+Society+for+Microbiology&rft.issn=0099-2240&rft.eissn=1098-5336&rft.volume=82&rft.issue=22&rft.spage=6518&rft_id=info:doi/10.1128%2Faem.02012-16&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4241893331 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon |