miRNA Targets: From Prediction Tools to Experimental Validation

MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression in both animals and plants. By pairing to microRNA responsive elements (mREs) on target mRNAs, miRNAs play gene-regulatory roles, producing remarkable changes in several physiological and pathological processes. Thus, the iden...

Full description

Saved in:
Bibliographic Details
Published inMethods and protocols Vol. 4; no. 1; p. 1
Main Authors Riolo, Giulia, Cantara, Silvia, Marzocchi, Carlotta, Ricci, Claudia
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 24.12.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression in both animals and plants. By pairing to microRNA responsive elements (mREs) on target mRNAs, miRNAs play gene-regulatory roles, producing remarkable changes in several physiological and pathological processes. Thus, the identification of miRNA-mRNA target interactions is fundamental for discovering the regulatory network governed by miRNAs. The best way to achieve this goal is usually by computational prediction followed by experimental validation of these miRNA-mRNA interactions. This review summarizes the key strategies for miRNA target identification. Several tools for computational analysis exist, each with different approaches to predict miRNA targets, and their number is constantly increasing. The major algorithms available for this aim, including Machine Learning methods, are discussed, to provide practical tips for familiarizing with their assumptions and understanding how to interpret the results. Then, all the experimental procedures for verifying the authenticity of the identified miRNA-mRNA target pairs are described, including High-Throughput technologies, in order to find the best approach for miRNA validation. For each strategy, strengths and weaknesses are discussed, to enable users to evaluate and select the right approach for their interests.
AbstractList MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression in both animals and plants. By pairing to microRNA responsive elements (mREs) on target mRNAs, miRNAs play gene-regulatory roles, producing remarkable changes in several physiological and pathological processes. Thus, the identification of miRNA-mRNA target interactions is fundamental for discovering the regulatory network governed by miRNAs. The best way to achieve this goal is usually by computational prediction followed by experimental validation of these miRNA-mRNA interactions. This review summarizes the key strategies for miRNA target identification. Several tools for computational analysis exist, each with different approaches to predict miRNA targets, and their number is constantly increasing. The major algorithms available for this aim, including Machine Learning methods, are discussed, to provide practical tips for familiarizing with their assumptions and understanding how to interpret the results. Then, all the experimental procedures for verifying the authenticity of the identified miRNA-mRNA target pairs are described, including High-Throughput technologies, in order to find the best approach for miRNA validation. For each strategy, strengths and weaknesses are discussed, to enable users to evaluate and select the right approach for their interests.
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression in both animals and plants. By pairing to microRNA responsive elements (mREs) on target mRNAs, miRNAs play gene-regulatory roles, producing remarkable changes in several physiological and pathological processes. Thus, the identification of miRNA-mRNA target interactions is fundamental for discovering the regulatory network governed by miRNAs. The best way to achieve this goal is usually by computational prediction followed by experimental validation of these miRNA-mRNA interactions. This review summarizes the key strategies for miRNA target identification. Several tools for computational analysis exist, each with different approaches to predict miRNA targets, and their number is constantly increasing. The major algorithms available for this aim, including Machine Learning methods, are discussed, to provide practical tips for familiarizing with their assumptions and understanding how to interpret the results. Then, all the experimental procedures for verifying the authenticity of the identified miRNA-mRNA target pairs are described, including High-Throughput technologies, in order to find the best approach for miRNA validation. For each strategy, strengths and weaknesses are discussed, to enable users to evaluate and select the right approach for their interests.MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression in both animals and plants. By pairing to microRNA responsive elements (mREs) on target mRNAs, miRNAs play gene-regulatory roles, producing remarkable changes in several physiological and pathological processes. Thus, the identification of miRNA-mRNA target interactions is fundamental for discovering the regulatory network governed by miRNAs. The best way to achieve this goal is usually by computational prediction followed by experimental validation of these miRNA-mRNA interactions. This review summarizes the key strategies for miRNA target identification. Several tools for computational analysis exist, each with different approaches to predict miRNA targets, and their number is constantly increasing. The major algorithms available for this aim, including Machine Learning methods, are discussed, to provide practical tips for familiarizing with their assumptions and understanding how to interpret the results. Then, all the experimental procedures for verifying the authenticity of the identified miRNA-mRNA target pairs are described, including High-Throughput technologies, in order to find the best approach for miRNA validation. For each strategy, strengths and weaknesses are discussed, to enable users to evaluate and select the right approach for their interests.
Author Marzocchi, Carlotta
Cantara, Silvia
Riolo, Giulia
Ricci, Claudia
AuthorAffiliation Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy; riolo@student.unisi.it (G.R.); cantara@unisi.it (S.C.); carlottamarzocchi@libero.it (C.M.)
AuthorAffiliation_xml – name: Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy; riolo@student.unisi.it (G.R.); cantara@unisi.it (S.C.); carlottamarzocchi@libero.it (C.M.)
Author_xml – sequence: 1
  givenname: Giulia
  orcidid: 0000-0003-2888-5755
  surname: Riolo
  fullname: Riolo, Giulia
– sequence: 2
  givenname: Silvia
  orcidid: 0000-0002-5741-295X
  surname: Cantara
  fullname: Cantara, Silvia
– sequence: 3
  givenname: Carlotta
  orcidid: 0000-0002-8573-4913
  surname: Marzocchi
  fullname: Marzocchi, Carlotta
– sequence: 4
  givenname: Claudia
  orcidid: 0000-0002-2431-0308
  surname: Ricci
  fullname: Ricci, Claudia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33374478$$D View this record in MEDLINE/PubMed
BookMark eNptkl9PFDEUxRuDEVh58QOYSXwxJAv9O2190BACQkLQmNXXptPeWbvpTNd21ui3t7CIQHxq0_vrybn33H20M6YREHpF8BFjGh8P68IxwRiTZ2iPcqznmkq98-C-iw5KWVWCEo4lFy_QLmNMci7VHvowhC_XJ83C5iVM5V1zntPQfM7gg5tCGptFSrE0U2rOfq0hhwHGycbmm43B2xvgJXre21jg4O6coa_nZ4vTi_nVp4-XpydXcyeYmubaOkU8g1Z45YkXTmnmheihc7QnikrWE-654q2WnXKK91T7FvegBXRta9kMXW51fbIrs65ObP5tkg3m9iHlpbF5Ci6CwZZQQrkivWDcdlh1lnVacEkBMyxo1Xq_1VpvugG8qz1lGx-JPq6M4btZpp9GqjpxpqrA2zuBnH5soExmCMVBjHaEtCmGcllBQrGo6Jsn6Cpt8lhHZaiogaiW1zBm6PVDR_dW_uZUgcMt4HIqJUN_jxBsbvbA_NuDCuMnsAvTbVq1mxD_9-UP-gyy0A
CitedBy_id crossref_primary_10_3390_ijms23116016
crossref_primary_10_3389_fendo_2022_1084656
crossref_primary_10_1016_j_theriogenology_2024_06_026
crossref_primary_10_1186_s40246_023_00478_4
crossref_primary_10_15407_oncology_2023_04_255
crossref_primary_10_1002_smtd_202100402
crossref_primary_10_1016_j_canlet_2022_215677
crossref_primary_10_1007_s11030_024_10855_3
crossref_primary_10_3390_ijms25010603
crossref_primary_10_1186_s13293_025_00686_8
crossref_primary_10_1002_mco2_745
crossref_primary_10_1016_j_plaphy_2023_107940
crossref_primary_10_3390_biom12020332
crossref_primary_10_47836_mjmhs_20_1_21
crossref_primary_10_1021_acs_est_4c04190
crossref_primary_10_3390_genes13122323
crossref_primary_10_3390_genes14030550
crossref_primary_10_3390_epigenomes6020012
crossref_primary_10_3390_biology11121798
crossref_primary_10_3390_ncrna9020018
crossref_primary_10_3390_ijms242316593
crossref_primary_10_1007_s10528_023_10458_x
crossref_primary_10_3390_cells13151289
crossref_primary_10_1093_nar_gkab1079
crossref_primary_10_1111_jcmm_16694
crossref_primary_10_1038_s41598_022_21473_0
crossref_primary_10_7717_peerj_18054
crossref_primary_10_1093_database_baad014
crossref_primary_10_1093_nar_gkad1142
crossref_primary_10_1021_acsomega_4c06551
crossref_primary_10_1212_NXG_0000000000200144
crossref_primary_10_3390_ijms25158493
crossref_primary_10_3390_biomedicines12030691
crossref_primary_10_3390_ijms232314716
crossref_primary_10_1016_j_arr_2024_102483
crossref_primary_10_1016_j_omtn_2023_102102
crossref_primary_10_3390_ijms25137498
crossref_primary_10_1016_j_jbc_2024_108015
crossref_primary_10_1016_j_bbagrm_2024_195022
crossref_primary_10_1016_j_humgen_2024_201306
crossref_primary_10_1021_acsomega_3c09633
crossref_primary_10_1016_j_jplph_2021_153451
crossref_primary_10_1111_and_14497
crossref_primary_10_1109_TCBB_2024_3362308
crossref_primary_10_3390_cancers13215312
crossref_primary_10_3390_ncrna10020021
crossref_primary_10_1007_s11845_023_03469_5
crossref_primary_10_3390_cells12091339
crossref_primary_10_1002_mnfr_202100428
crossref_primary_10_20517_evcna_2024_43
crossref_primary_10_3390_v14010041
crossref_primary_10_1016_j_repbio_2024_100924
crossref_primary_10_1016_j_aquatox_2023_106624
crossref_primary_10_1016_j_compbiolchem_2022_107729
crossref_primary_10_3390_ijms242316842
crossref_primary_10_3389_fcimb_2022_809052
crossref_primary_10_1089_regen_2023_0027
crossref_primary_10_3389_fpls_2024_1460540
crossref_primary_10_3389_fbinf_2024_1493712
crossref_primary_10_3390_ani14020214
crossref_primary_10_3390_ncrna10020022
crossref_primary_10_1093_jambio_lxad104
crossref_primary_10_1016_j_ncrna_2024_08_007
crossref_primary_10_1016_j_compbiolchem_2024_108208
crossref_primary_10_1007_s00705_023_05917_0
crossref_primary_10_1038_s41587_023_01951_0
crossref_primary_10_3390_genes15050574
crossref_primary_10_1186_s11658_022_00317_9
crossref_primary_10_1002_wrna_1768
crossref_primary_10_1038_s41598_024_72608_4
crossref_primary_10_31590_ejosat_1220962
crossref_primary_10_1152_ajpcell_00382_2023
crossref_primary_10_1016_j_prp_2024_155707
crossref_primary_10_1007_s00210_024_03719_y
crossref_primary_10_3389_fgene_2022_812183
crossref_primary_10_3390_genes13091528
crossref_primary_10_3389_fgene_2022_1070528
crossref_primary_10_1111_jipb_13848
crossref_primary_10_31857_S0016675823100156
crossref_primary_10_1007_s11103_024_01433_0
crossref_primary_10_3390_cancers13174492
crossref_primary_10_1002_ijch_202200088
crossref_primary_10_2174_0122115366278651240105071533
crossref_primary_10_3390_ijms242417224
crossref_primary_10_1016_j_csbj_2024_07_014
crossref_primary_10_1111_ejn_16523
crossref_primary_10_1016_j_compbiomed_2021_104544
crossref_primary_10_1038_s42003_024_07309_9
crossref_primary_10_1080_03602532_2022_2048846
crossref_primary_10_3390_ijms232314755
crossref_primary_10_3390_ijms25084548
crossref_primary_10_1016_j_virusres_2021_198631
crossref_primary_10_55230_mabjournal_v51i5_2343
crossref_primary_10_1007_s00438_024_02199_2
crossref_primary_10_1007_s10722_024_02271_1
crossref_primary_10_3390_ijms241411861
crossref_primary_10_1016_j_tig_2022_02_006
crossref_primary_10_1038_s41598_023_42868_7
crossref_primary_10_2478_rrlm_2022_0022
crossref_primary_10_3389_fpls_2021_780877
crossref_primary_10_7717_peerj_17396
crossref_primary_10_1186_s12866_024_03187_7
crossref_primary_10_1093_bfgp_elad020
crossref_primary_10_1002_advs_202201501
crossref_primary_10_1007_s11103_022_01279_4
crossref_primary_10_3390_ijms252312883
crossref_primary_10_20517_mrr_2024_46
crossref_primary_10_1134_S1022795423100150
crossref_primary_10_1016_j_ncrna_2022_06_003
crossref_primary_10_3390_app122412908
crossref_primary_10_1016_j_imu_2023_101162
crossref_primary_10_1007_s10142_023_01178_x
crossref_primary_10_1016_j_ttbdis_2023_102249
crossref_primary_10_1523_JNEUROSCI_0365_24_2024
crossref_primary_10_5230_jgc_2022_22_e31
crossref_primary_10_1007_s10142_025_01535_y
crossref_primary_10_3390_app112311366
crossref_primary_10_1016_j_bpc_2025_107421
crossref_primary_10_1177_11772719241296619
crossref_primary_10_3390_ijms241411356
crossref_primary_10_1016_j_compbiomed_2025_109886
crossref_primary_10_3390_v16121844
crossref_primary_10_1017_neu_2023_27
crossref_primary_10_3390_cells11142151
crossref_primary_10_3390_insects15040238
crossref_primary_10_1038_s41598_024_63462_5
crossref_primary_10_1080_15476286_2023_2244790
crossref_primary_10_37349_emed_2023_00159
Cites_doi 10.1147/rd.33.0210
10.1007/978-1-61779-083-6_11
10.1093/nar/gkp292
10.1261/rna.768207
10.1093/bioinformatics/btp503
10.1016/j.ymeth.2010.08.009
10.4161/rna.28649
10.1038/sj.embor.7401088
10.3389/fendo.2018.00402
10.1093/nar/gkt393
10.1016/S0092-8674(03)01018-3
10.1038/nmeth.1608
10.1371/journal.pbio.0030085
10.3390/biology2010189
10.1007/s13238-010-0129-4
10.1155/2019/9029351
10.1016/j.gene.2005.09.035
10.1186/gb-2010-11-8-r90
10.1016/j.cell.2008.12.023
10.1016/j.cell.2006.07.031
10.1002/wrna.1217
10.1016/j.cell.2013.03.043
10.1111/j.1365-313X.2011.04882.x
10.1016/j.ymeth.2007.09.005
10.2174/1389202921666200106111813
10.1016/j.bbrc.2014.01.181
10.1093/bioinformatics/btm484
10.2144/btn-2019-0065
10.1093/nar/gkv050
10.1093/nar/gnh040
10.1126/science.1121158
10.2174/138920209789208219
10.1126/science.1258040
10.1186/1471-2105-7-411
10.1101/gr.089367.108
10.1186/gb-2003-5-1-r1
10.1152/ajpgi.00120.2010
10.1093/nar/gky1141
10.1093/bib/bbz111
10.1038/nrg3765
10.3389/fonc.2019.01114
10.1093/nar/gkz757
10.1093/bioinformatics/btw189
10.1093/nar/gkx1067
10.1007/978-1-61779-083-6_12
10.1186/1471-2105-7-S5-S20
10.1093/nar/gkn851
10.1016/j.molcel.2007.06.017
10.1038/srep08004
10.1093/hmg/ddp443
10.1038/nsmb1226
10.1261/rna.2239606
10.1158/0008-5472.CAN-08-1942
10.1038/nsmb.1921
10.1093/nar/gkr330
10.1261/rna.035634.112
10.1093/bioinformatics/bty424
10.1145/2975167.2975212
10.1007/s00018-013-1551-6
10.1007/978-1-4939-9207-2_1
10.1007/978-1-4419-9863-7
10.1016/j.cell.2009.01.002
10.1016/j.csbj.2020.02.019
10.1016/j.cell.2004.12.035
10.1371/journal.pbio.0030264
10.1038/nmeth1079
10.1038/ng2135
10.1093/nar/gkm995
10.1261/rna.034934.112
10.1261/rna.7290705
10.3390/ijms151120266
10.4161/rna.4.2.4640
10.1038/msb.2010.24
10.1038/s41467-018-07981-6
10.1101/gr.082701.108
10.1093/nar/gkv457
10.1093/nar/gkx1141
10.7554/eLife.05005
10.1038/nbt.1543
10.1074/jbc.M611393200
10.1007/978-1-4939-7046-9_8
10.1038/nbt.1873
10.1038/ng1536
10.1016/j.bbagrm.2015.08.007
10.1016/j.cell.2010.03.009
10.3389/fgene.2017.00059
10.1186/1472-6750-3-18
10.1093/nar/gkl243
10.1371/journal.pone.0206239
10.1159/000485491
10.1038/nrg3965
10.1073/pnas.0500775102
10.1093/bioinformatics/bts615
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/mps4010001
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access资源_DOAJ
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
Publicly Available Content Database
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2409-9279
ExternalDocumentID oai_doaj_org_article_0a1212481f534ab08ba3b95472e03052
PMC7839038
33374478
10_3390_mps4010001
Genre Journal Article
Review
GroupedDBID AADQD
AAFWJ
AAYXX
ADBBV
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
GROUPED_DOAJ
HYE
IAO
IGS
ITC
MODMG
M~E
OK1
PGMZT
RPM
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c538t-9ac81d3e65d8d1d5c893d55febc2f18273f14d484697b8c84f29d60fe95eb66a3
IEDL.DBID BENPR
ISSN 2409-9279
IngestDate Wed Aug 27 01:18:25 EDT 2025
Thu Aug 21 13:48:15 EDT 2025
Fri Jul 11 11:23:50 EDT 2025
Fri Jul 25 11:52:29 EDT 2025
Wed Feb 19 02:09:55 EST 2025
Tue Jul 01 01:20:19 EDT 2025
Thu Apr 24 22:57:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords validation criteria
predictive strategies
experimental validation
prediction tools
high-throughput technologies
miRNA target
machine learning
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c538t-9ac81d3e65d8d1d5c893d55febc2f18273f14d484697b8c84f29d60fe95eb66a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2431-0308
0000-0003-2888-5755
0000-0002-5741-295X
0000-0002-8573-4913
OpenAccessLink https://www.proquest.com/docview/2521486433?pq-origsite=%requestingapplication%
PMID 33374478
PQID 2521486433
PQPubID 5046877
ParticipantIDs doaj_primary_oai_doaj_org_article_0a1212481f534ab08ba3b95472e03052
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7839038
proquest_miscellaneous_2473901205
proquest_journals_2521486433
pubmed_primary_33374478
crossref_primary_10_3390_mps4010001
crossref_citationtrail_10_3390_mps4010001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201224
PublicationDateYYYYMMDD 2020-12-24
PublicationDate_xml – month: 12
  year: 2020
  text: 20201224
  day: 24
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Methods and protocols
PublicationTitleAlternate Methods Protoc
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Roberts (ref_58) 2017; 1617
Khan (ref_82) 2009; 27
ref_12
Ritchie (ref_63) 2014; 445
Schirle (ref_11) 2014; 346
Kim (ref_83) 2006; 7
Kuhn (ref_65) 2008; 44
ref_19
Lee (ref_54) 2009; 19
ref_16
Borchert (ref_52) 2009; 18
Riley (ref_91) 2012; 18
Rehmsmeier (ref_17) 2006; 34
Kertesz (ref_30) 2007; 39
Weinmann (ref_90) 2009; 136
Thomas (ref_76) 2010; 17
ref_72
Jonas (ref_5) 2015; 16
Fiszer (ref_4) 2014; 71
Miranda (ref_48) 2006; 126
Hayder (ref_3) 2018; 9
Helwak (ref_95) 2013; 153
Bandyopadhyay (ref_44) 2009; 25
Kobayashi (ref_21) 2016; 1859
Chen (ref_59) 2020; 48
Schmittgen (ref_71) 2004; 32
Yang (ref_53) 2012; 70
Lukasik (ref_62) 2016; 32
Grimson (ref_28) 2007; 27
Sansom (ref_68) 2010; 299
Carroll (ref_78) 2014; 5
Thomson (ref_84) 2014; 39
Kozomara (ref_2) 2019; 47
Zhang (ref_94) 2011; 29
Lewis (ref_9) 2003; 115
Xiao (ref_38) 2009; 37
Enright (ref_25) 2003; 5
Maragkakis (ref_50) 2009; 37
Gumienny (ref_32) 2015; 43
Elton (ref_64) 2015; 14
Liu (ref_61) 2019; 9
Long (ref_23) 2007; 14
Bandyopadhyay (ref_40) 2015; 5
Oliveira (ref_56) 2017; 8
Lewis (ref_10) 2005; 120
Parveen (ref_35) 2019; 20
Nicolas (ref_74) 2011; 732
Beitzinger (ref_88) 2011; 732
Betel (ref_47) 2010; 11
Hafner (ref_92) 2010; 141
Bartel (ref_8) 2009; 136
Hausser (ref_96) 2014; 15
Yousef (ref_41) 2007; 23
Beitzinger (ref_87) 2007; 4
Wang (ref_67) 2019; 10
Agarwal (ref_29) 2015; 4
Chou (ref_36) 2017; 46
Arvey (ref_80) 2010; 6
Wen (ref_45) 2018; 34
ref_60
Zhu (ref_97) 2007; 282
Loher (ref_33) 2012; 28
Nuovo (ref_69) 2010; 52
Nielsen (ref_14) 2007; 13
Saetrom (ref_42) 2005; 11
ref_66
Marin (ref_55) 2013; 19
Akhtar (ref_15) 2019; 1970
Forero (ref_73) 2019; 67
Bracken (ref_81) 2008; 68
Robins (ref_22) 2005; 102
Hock (ref_89) 2007; 8
Karagkouni (ref_37) 2017; 46
Ebert (ref_77) 2007; 4
Murphy (ref_70) 2013; 2
Karbiener (ref_79) 2014; 15
Krek (ref_27) 2005; 37
Yue (ref_18) 2009; 10
Fan (ref_57) 2017; 44
Ciaudo (ref_39) 2020; 18
Paraskevopoulou (ref_46) 2013; 41
Samuel (ref_34) 1959; 3
Farh (ref_51) 2005; 310
Friedman (ref_13) 2009; 19
Han (ref_86) 2015; 9
Betel (ref_49) 2008; 36
Robins (ref_31) 2015; 43
Kern (ref_6) 2019; 21
ref_43
Kishore (ref_93) 2011; 8
Huang (ref_75) 2010; 1
Sethupathy (ref_20) 2006; 12
ref_1
Tarang (ref_85) 2014; 11
Watanabe (ref_26) 2006; 365
(ref_24) 2010; 39
ref_7
References_xml – volume: 3
  start-page: 210
  year: 1959
  ident: ref_34
  article-title: Some studies in Machine Learning using the game of checkers
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.33.0210
– volume: 732
  start-page: 139
  year: 2011
  ident: ref_74
  article-title: Experimental validation of microRNA targets using a luciferase reporter system
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-61779-083-6_11
– volume: 37
  start-page: W273
  year: 2009
  ident: ref_50
  article-title: DIANA-microT web server: Elucidating microRNA functions through target prediction
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp292
– volume: 13
  start-page: 1894
  year: 2007
  ident: ref_14
  article-title: Determinants of targeting by endogenous and exogenous microRNAs and siRNAs
  publication-title: RNA
  doi: 10.1261/rna.768207
– volume: 25
  start-page: 2625
  year: 2009
  ident: ref_44
  article-title: TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp503
– volume: 52
  start-page: 307
  year: 2010
  ident: ref_69
  article-title: In situ detection of microRNAs in paraffin embedded, formalin fixed tissues and the colocalization of their putative targets
  publication-title: Methods
  doi: 10.1016/j.ymeth.2010.08.009
– volume: 11
  start-page: 324
  year: 2014
  ident: ref_85
  article-title: Macros in microRNA target identification. A comparative analysis of in silico, in vitro and in vivo approaches to microRNA target identification
  publication-title: RNA Biol.
  doi: 10.4161/rna.28649
– volume: 8
  start-page: 1052
  year: 2007
  ident: ref_89
  article-title: Proteomic and functional analysis of Argonaute-containing mRNAprotein complexes in human cells
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7401088
– volume: 9
  start-page: 402
  year: 2018
  ident: ref_3
  article-title: Overview of microRNA biogenesis, mechanisms of actions, and circulation
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2018.00402
– volume: 41
  start-page: W169
  year: 2013
  ident: ref_46
  article-title: DIANA-microT web server v5.0: Service integration into miRNA functional analysis workflows
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt393
– volume: 115
  start-page: 787
  year: 2003
  ident: ref_9
  article-title: Prediction of mammalian microRNA targets
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)01018-3
– volume: 8
  start-page: 559
  year: 2011
  ident: ref_93
  article-title: A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1608
– ident: ref_12
  doi: 10.1371/journal.pbio.0030085
– volume: 2
  start-page: 189
  year: 2013
  ident: ref_70
  article-title: MicroRNA target identification-experimental approaches
  publication-title: Biology
  doi: 10.3390/biology2010189
– volume: 1
  start-page: 979
  year: 2010
  ident: ref_75
  article-title: A study of miRNAs targets prediction and experimental validation
  publication-title: Protein Cell
  doi: 10.1007/s13238-010-0129-4
– ident: ref_66
  doi: 10.1155/2019/9029351
– volume: 365
  start-page: 2
  year: 2006
  ident: ref_26
  article-title: Computational analysis of microRNA targets in Caenorhabditis elegans
  publication-title: Gene
  doi: 10.1016/j.gene.2005.09.035
– volume: 11
  start-page: R90
  year: 2010
  ident: ref_47
  article-title: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-8-r90
– volume: 136
  start-page: 496
  year: 2009
  ident: ref_90
  article-title: Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs
  publication-title: Cell
  doi: 10.1016/j.cell.2008.12.023
– volume: 126
  start-page: 1203
  year: 2006
  ident: ref_48
  article-title: A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.031
– volume: 5
  start-page: 361
  year: 2014
  ident: ref_78
  article-title: Understanding principles of miRNA target recognition and function through integrated biological and bioinformatics approaches
  publication-title: Wiley Interdiscip. Rev. RNA
  doi: 10.1002/wrna.1217
– volume: 153
  start-page: 654
  year: 2013
  ident: ref_95
  article-title: Mapping the human miRNA interactome by CLASH reveals frequent non-canonical binding
  publication-title: Cell
  doi: 10.1016/j.cell.2013.03.043
– volume: 70
  start-page: 421
  year: 2012
  ident: ref_53
  article-title: Alternative mRNA processing increases the complexity of microRNA-based gene regulation in Arabidopsis
  publication-title: Plant. J.
  doi: 10.1111/j.1365-313X.2011.04882.x
– volume: 44
  start-page: 47
  year: 2008
  ident: ref_65
  article-title: Experimental validation of miRNA targets
  publication-title: Methods
  doi: 10.1016/j.ymeth.2007.09.005
– volume: 20
  start-page: 537
  year: 2019
  ident: ref_35
  article-title: Applications of Machine Learning in miRNA discovery and target prediction
  publication-title: Curr. Genom.
  doi: 10.2174/1389202921666200106111813
– volume: 445
  start-page: 780
  year: 2014
  ident: ref_63
  article-title: Refining microRNA target predictions: Sorting the wheat from the chaff
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2014.01.181
– volume: 23
  start-page: 2987
  year: 2007
  ident: ref_41
  article-title: Naïve Bayes for microRNA target predictions-Machine Learning for microRNA targets
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm484
– volume: 67
  start-page: 192
  year: 2019
  ident: ref_73
  article-title: qPCR-based methods for expression analysis of miRNAs
  publication-title: Biotechniques
  doi: 10.2144/btn-2019-0065
– volume: 43
  start-page: 1380
  year: 2015
  ident: ref_32
  article-title: Accurate transcriptome-wide prediction of microRNA targets and small interfering RNA off-targets with MIRZA-G
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv050
– volume: 32
  start-page: e43
  year: 2004
  ident: ref_71
  article-title: A High-Throughput method to monitor the expression of microRNA precursors
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gnh040
– volume: 310
  start-page: 1817
  year: 2005
  ident: ref_51
  article-title: The widespread impact of mammalian MicroRNAs on mRNA repression and evolution
  publication-title: Science
  doi: 10.1126/science.1121158
– volume: 10
  start-page: 478
  year: 2009
  ident: ref_18
  article-title: Survey of computational algorithms for microRNA target prediction
  publication-title: Curr. Genom.
  doi: 10.2174/138920209789208219
– volume: 346
  start-page: 608
  year: 2014
  ident: ref_11
  article-title: Structural basis for microRNA targeting
  publication-title: Science
  doi: 10.1126/science.1258040
– volume: 14
  start-page: 758
  year: 2015
  ident: ref_64
  article-title: Experimental procedures to identify and validate specific mRNA targets of miRNAs
  publication-title: EXCLI J.
– volume: 7
  start-page: 411
  year: 2006
  ident: ref_83
  article-title: MiTarget: microRNA target-gene prediction using a support vector machine
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-7-411
– volume: 19
  start-page: 1175
  year: 2009
  ident: ref_54
  article-title: New class of microRNA targets containing simultaneous 5-UTR and 3-UTR interaction sites
  publication-title: Genome Res.
  doi: 10.1101/gr.089367.108
– volume: 5
  start-page: R1
  year: 2003
  ident: ref_25
  article-title: MicroRNA targets in Drosophila
  publication-title: Genome Biol.
  doi: 10.1186/gb-2003-5-1-r1
– volume: 299
  start-page: G632
  year: 2010
  ident: ref_68
  article-title: miR-802 regulates human angiotensin II type 1 receptor expression in intestinal epithelial C2BBe1 cells
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00120.2010
– volume: 47
  start-page: D155
  year: 2019
  ident: ref_2
  article-title: miRBase: from microRNA sequences to function
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1141
– volume: 21
  start-page: 1999
  year: 2019
  ident: ref_6
  article-title: What’s the target: Understanding two decades of in silico microRNA-target prediction
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbz111
– volume: 15
  start-page: 599
  year: 2014
  ident: ref_96
  article-title: Identification and consequences of miRNA-target interactions—Beyond repression of gene expression
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3765
– volume: 9
  start-page: 1114
  year: 2019
  ident: ref_61
  article-title: Bioinformatic identification of miR-622 key target genes and experimental validation of the miR-622-RNF8 axis in breast cancer
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2019.01114
– volume: 48
  start-page: D127
  year: 2020
  ident: ref_59
  article-title: miRDB: An online database for prediction of functional microRNA targets
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz757
– volume: 32
  start-page: 2722
  year: 2016
  ident: ref_62
  article-title: Tools4miRs—One place to gather all the tools for miRNA analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw189
– volume: 46
  start-page: D296
  year: 2017
  ident: ref_36
  article-title: miRTarBase update 2018: A resource for experimentally validated microRNA target interactions
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1067
– volume: 732
  start-page: 153
  year: 2011
  ident: ref_88
  article-title: Experimental identification of microRNA targets by immunoprecipitation of Argonaute protein complexes
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-61779-083-6_12
– ident: ref_16
  doi: 10.1186/1471-2105-7-S5-S20
– volume: 37
  start-page: D105
  year: 2009
  ident: ref_38
  article-title: miRecords: An integrated resource for microRNA-target interactions
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn851
– volume: 27
  start-page: 91
  year: 2007
  ident: ref_28
  article-title: MicroRNA targeting specificity in mammals: Determinants beyond seed pairing
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.06.017
– volume: 5
  start-page: 8004
  year: 2015
  ident: ref_40
  article-title: MBSTAR: Multiple instance learning for predicting specific functional binding sites in microRNA targets
  publication-title: Sci. Rep.
  doi: 10.1038/srep08004
– volume: 18
  start-page: 4801
  year: 2009
  ident: ref_52
  article-title: Adenosine deamination in human transcripts generates novel microRNA binding sites
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddp443
– volume: 14
  start-page: 287
  year: 2007
  ident: ref_23
  article-title: Potent effect of target structure on microRNA function
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1226
– volume: 12
  start-page: 192
  year: 2006
  ident: ref_20
  article-title: TarBase: A comprehensive database of experimentally supported animal microRNA targets
  publication-title: RNA
  doi: 10.1261/rna.2239606
– volume: 68
  start-page: 7846
  year: 2008
  ident: ref_81
  article-title: A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-1942
– volume: 17
  start-page: 1169
  year: 2010
  ident: ref_76
  article-title: Desperately seeking microRNA targets
  publication-title: Nat. Struct Mol. Biol.
  doi: 10.1038/nsmb.1921
– volume: 39
  start-page: 6845
  year: 2014
  ident: ref_84
  article-title: Experimental strategies for microRNA target identification
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr330
– volume: 9
  start-page: 29
  year: 2015
  ident: ref_86
  article-title: Advanced applications of RNA sequencing and challenges
  publication-title: Bioinform. Biol. Insights
– volume: 19
  start-page: 467
  year: 2013
  ident: ref_55
  article-title: Searching the coding region for microRNA targets
  publication-title: RNA
  doi: 10.1261/rna.035634.112
– volume: 34
  start-page: 3781
  year: 2018
  ident: ref_45
  article-title: DeepMirTar: A deep-learning approach for predicting human miRNA targets
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty424
– ident: ref_43
  doi: 10.1145/2975167.2975212
– volume: 71
  start-page: 2253
  year: 2014
  ident: ref_4
  article-title: The panorama of miRNA-mediated mechanisms in mammalian cells
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-013-1551-6
– volume: 1970
  start-page: 1
  year: 2019
  ident: ref_15
  article-title: A practical guide to miRNA target prediction
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-9207-2_1
– ident: ref_1
  doi: 10.1007/978-1-4419-9863-7
– volume: 136
  start-page: 215
  year: 2009
  ident: ref_8
  article-title: MicroRNAs: Target recognition and regulatory functions
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.002
– volume: 18
  start-page: 548
  year: 2020
  ident: ref_39
  article-title: Prediction of the miRNA interactome—Established methods and upcoming perspectives
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2020.02.019
– volume: 120
  start-page: 15
  year: 2005
  ident: ref_10
  article-title: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
  publication-title: Cell
  doi: 10.1016/j.cell.2004.12.035
– ident: ref_19
  doi: 10.1371/journal.pbio.0030264
– volume: 4
  start-page: 721
  year: 2007
  ident: ref_77
  article-title: MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells
  publication-title: Nat. Methods
  doi: 10.1038/nmeth1079
– volume: 39
  start-page: 1278
  year: 2007
  ident: ref_30
  article-title: The role of site accessibility in microRNA target recognition
  publication-title: Nat. Genet.
  doi: 10.1038/ng2135
– volume: 36
  start-page: D149
  year: 2008
  ident: ref_49
  article-title: The microRNA.org resource: Targets and expression
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm995
– volume: 18
  start-page: 1581
  year: 2012
  ident: ref_91
  article-title: Association of Argonaute proteins and microRNAs can occur after cell lysis
  publication-title: RNA
  doi: 10.1261/rna.034934.112
– volume: 11
  start-page: 995
  year: 2005
  ident: ref_42
  article-title: Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms
  publication-title: RNA
  doi: 10.1261/rna.7290705
– volume: 15
  start-page: 20266
  year: 2014
  ident: ref_79
  article-title: Hunting needle in the haystack: A guide to obtain biologically meaningful microRNA targets
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms151120266
– volume: 4
  start-page: 76
  year: 2007
  ident: ref_87
  article-title: Identification of human microRNA targets from isolated Argonaute protein complexes
  publication-title: RNA Biol.
  doi: 10.4161/rna.4.2.4640
– volume: 6
  start-page: 363
  year: 2010
  ident: ref_80
  article-title: Target mRNA abundance dilutes microRNA and siRNA activity
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2010.24
– volume: 10
  start-page: 95
  year: 2019
  ident: ref_67
  article-title: Single-cell microRNA-mRNA co-sequencing reveals non-genetic heterogeneity and mechanisms of microRNA regulation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07981-6
– ident: ref_7
– volume: 19
  start-page: 92
  year: 2009
  ident: ref_13
  article-title: Most mammalian mRNAs are conserved targets of microRNAs
  publication-title: Genome Res.
  doi: 10.1101/gr.082701.108
– volume: 43
  start-page: W474
  year: 2015
  ident: ref_31
  article-title: PACCMIT/PACCMIT-CDS: Identifying microRNA targets in 3′ UTRs and coding sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv457
– volume: 46
  start-page: D239
  year: 2017
  ident: ref_37
  article-title: DIANA-tarbase v8: A decade-long collection of experimentally supported miRNA-gene interactions
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1141
– volume: 4
  start-page: e05005
  year: 2015
  ident: ref_29
  article-title: Predicting effective microRNA target sites in mammalian mRNAs
  publication-title: eLife
  doi: 10.7554/eLife.05005
– volume: 27
  start-page: 549
  year: 2009
  ident: ref_82
  article-title: Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1543
– volume: 282
  start-page: 14328
  year: 2007
  ident: ref_97
  article-title: MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M611393200
– volume: 1617
  start-page: 109
  year: 2017
  ident: ref_58
  article-title: Computational prediction of microRNA target genes, target prediction databases, and web resources
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7046-9_8
– volume: 29
  start-page: 607
  year: 2011
  ident: ref_94
  article-title: Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1873
– volume: 37
  start-page: 495
  year: 2005
  ident: ref_27
  article-title: Combinatorial microRNA target predictions
  publication-title: Nat. Genet.
  doi: 10.1038/ng1536
– volume: 1859
  start-page: 71
  year: 2016
  ident: ref_21
  article-title: RISC assembly: Coordination between small RNAs and Argonaute proteins
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2015.08.007
– volume: 141
  start-page: 129
  year: 2010
  ident: ref_92
  article-title: Transcriptome wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP
  publication-title: Cell
  doi: 10.1016/j.cell.2010.03.009
– volume: 8
  start-page: 59
  year: 2017
  ident: ref_56
  article-title: Combining results from distinct microRNA target prediction tools enhances the performance of analyses
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2017.00059
– ident: ref_72
  doi: 10.1186/1472-6750-3-18
– volume: 34
  start-page: W451
  year: 2006
  ident: ref_17
  article-title: RNAhybrid: microRNA target prediction easy, fast and flexible
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl243
– volume: 39
  start-page: 19
  year: 2010
  ident: ref_24
  article-title: Efficient use of accessibility in microRNA target prediction
  publication-title: Nucleic Acids Res.
– ident: ref_60
  doi: 10.1371/journal.pone.0206239
– volume: 44
  start-page: 1311
  year: 2017
  ident: ref_57
  article-title: MiR-193a-3p is an important tumour suppressor in lung cancer and directly targets KRAS
  publication-title: Cell Physiol. Biochem.
  doi: 10.1159/000485491
– volume: 16
  start-page: 421
  year: 2015
  ident: ref_5
  article-title: Towards a molecular understanding of microRNA-mediated gene silencing
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3965
– volume: 102
  start-page: 4006
  year: 2005
  ident: ref_22
  article-title: Incorporating structure to predict microRNA targets
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0500775102
– volume: 28
  start-page: 3322
  year: 2012
  ident: ref_33
  article-title: Interactive exploration of RNA22 microRNA target predictions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts615
SSID ssj0002140745
Score 2.5239248
SecondaryResourceType review_article
Snippet MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression in both animals and plants. By pairing to microRNA responsive elements (mREs) on...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1
SubjectTerms Adenosine
Algorithms
Artificial intelligence
Computer applications
experimental validation
Gene expression
Gene regulation
Learning algorithms
Machine learning
MicroRNAs
miRNA
miRNA target
Post-transcription
prediction tools
predictive strategies
Proteins
Review
RNA polymerase
Seeds
Transfer RNA
validation criteria
SummonAdditionalLinks – databaseName: Open Access资源_DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykxdR_KpfRPTiodh8NakXUdkYgiIyZbeSpAkOXCvb_P99abu5ieDFa_MO6XvJe79fk_4eQueAUaHMah5LnzAgKNLGmgkTa62EoMoRU_cieHhM-y_8fiiGS62-wp2wRh64cdxloglkV66IF4xrkyijmckEl9SFtVpnX6h5S2Qq5GAKvEFy0eiRMuD1l-OPKVCJAGlWKlAt1P8buvx5SXKp6vQ20UYLF_FNM80ttObKbXQ9Hj0_3uBBfYl7eoV7k2qMnybhyCW4GQ-q6n2KZxXuLsn341dA3E0DpR300usO7vpx2wghtpCPZnGmLcBK5lJRqIIUwgLIKITwzljqgSBI5gkvOECJTBplFfc0K9LEu0w4k6aa7aJOWZVuH2EniSsAYzBCbPjHTQfC4R33BkpVYWyELubOyW2rEh6aVbznwBaCI_NvR0bobGH70Whj_Gp1G3y8sAh61vUDiHLeRjn_K8oROppHKG832TSnAD24AkjFInS6GIbtEc48dOmqT7DhMnzVoYmI0F4T0MVMGGOSc6kiJFdCvTLV1ZFy9FZLcEvAlQlTB__xbodonQYST2hM-RHqzCaf7hiQzsyc1Iv6C_qv-W8
  priority: 102
  providerName: Directory of Open Access Journals
Title miRNA Targets: From Prediction Tools to Experimental Validation
URI https://www.ncbi.nlm.nih.gov/pubmed/33374478
https://www.proquest.com/docview/2521486433
https://www.proquest.com/docview/2473901205
https://pubmed.ncbi.nlm.nih.gov/PMC7839038
https://doaj.org/article/0a1212481f534ab08ba3b95472e03052
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbt5tJLSenLaRpU2ksPJtbLknsJSdklFLqEsCm5GT3bQNberjf_PyNb62RL6NUag5iRZr4ZSd8g9AUwKoRZzXMZCgYJirS5ZsLkWishqPLE9L0Ifs7L8yv-41pcp4Jbl65Vbn1i76hda2ON_JhCnOEK4ic7Wf3NY9eoeLqaWmg8R3vggpWaoL2z6fzicqyywD8QI8XAS8ogvz9erjpIKSK02YlEPWH_Uyjz38uSj6LPbB-9TLARnw52foWe-eY1OlneXM5P8aK_zN19w7N1u8QX63j0EtWNF2172-FNi6ePaPzxL0DeQyOlN-hqNl18P89TQ4Tcgl_a5JW2AC-ZL4VTjjhhAWw4IYI3lgZIFCQLhDsOkKKSRlnFA61cWQRfCW_KUrO3aNK0jX-PsJfEO8AajBAb37rpmHgEz4OBkOWMzdDXrXJqm9jCY9OK2xqyhqjI-kGRGfo8yq4Gjownpc6ijkeJyGvdf2jXv-u0TepCEzAkVyQIxrUplNHMVIJL6qNnohk63FqoTputqx-WRoY-jcOwTeLZh258ewcyXMbqDi1Eht4NBh1nwhiTnEuVIblj6p2p7o40N396Km4J-LJg6uD_0_qAXtCYphOaU36IJpv1nf8IWGZjjtKCPeprAfd-5vTo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuCMQrUGgQcOAQNfEjdpBQ1ZZdbWm7qqot6i21HQcqdZNlsxXiT_EbGefVLqq49Rpb0Wge_r7xYwbgPXJUhFnFApGHFBMUYQJFuQ6UkpwTaSNd9yI4msTjU_b1jJ-twZ_uLYy7VtmtifVCnZXG7ZFvEcQZJhE_6fb8Z-C6RrnT1a6FRuMWB_b3L0zZqs_7X9C-HwgZDad746DtKhAYDO5lkCiDHI3amGcyizJuELEzznOrDcmRbQuaRyxjiMuJ0NJIlpMki8PcJtzqOFYU_3sP1hmNQzKA9d3h5Pik39VBGRGTeVMHldIk3JrNK0xhHJVaQb66QcBtrPbfy5k30G70CB62NNXfafzqMazZ4glszy5OJjv-tL48Xn3yR4ty5h8v3FGPM68_LcvLyl-W_vBG2wD_GzL9pnHTUzi9E1U9g0FRFvYF-FZENkNuQ6PIuLd1yiU6uWW5RojMtPHgY6ec1LTVyV2TjMsUsxSnyPRakR686-fOm5oct87adTruZ7g62vWHcvE9bcMyDVWE2M1klHPKlA6lVlQnnAli3UpIPNjoLJS2wV2l167owdt-GMPSnbWowpZXOIcJt5tEQu7B88agvSSUUsGYkB6IFVOviLo6Ulz8qEt_C-SzIZUv_y_WJtwfT48O08P9ycEreEDcFkFEAsI2YLBcXNnXyKOW-k3rvD6c33W8_AVs6zFh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IBCv0AJBwIFDtIkfcYKEqpbuqqWwWlVb1FuwHZtW6ibLZivEX-PXMc6rXVRx6zW2Imse_r6xxzMAb5GjIsxKFggbUgxQhA4k5SqQMuGcJCZSdS-Cr5P44IR9PuWnG_Cnewvj0iq7PbHeqPNSuzPyIUGcYQniJx3aNi1iuj_eWfwMXAcpd9PatdNoTOTI_P6F4Vv18XAfdf2OkPFo9ukgaDsMBBodfRWkUiNfoybmeZJHOdeI3jnn1ihNLDJvQW3EcoYYnQqV6IRZkuZxaE3KjYpjSfG_d2BTuKhoAJt7o8n0uD_hwfUiPvOmJiqlaTicLyoMZxytWkPBulnATQz330TNa8g3fgD3W8rq7zY29hA2TPEIdubnx5Ndf1Ynklcf_PGynPvTpbv2car2Z2V5Ufmr0h9dayHgf0PW3zRxegwntyKqJzAoysI8A9-IyOTIc2gUaffOTrqgxxpmFcJlrrQH7zvhZLqtVO4aZlxkGLE4QWZXgvTgTT930dTnuHHWnpNxP8PV1K4_lMsfWeuiWSgjxHGWRJZTJlWYKElVypkgxu2KxIPtTkNZ6-hVdmWWHrzuh9FF3b2LLEx5iXOYcCdLJOQePG0U2q-EUioYE4kHYk3Va0tdHynOz-oy4AK5bUiT5_9f1iu4i36SfTmcHG3BPeJOCyISELYNg9Xy0rxASrVSL1vb9eH7bbvLX3HkNZY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=miRNA+Targets%3A+From+Prediction+Tools+to+Experimental+Validation&rft.jtitle=Methods+and+protocols&rft.au=Riolo%2C+Giulia&rft.au=Cantara%2C+Silvia&rft.au=Marzocchi%2C+Carlotta&rft.au=Ricci%2C+Claudia&rft.date=2020-12-24&rft.eissn=2409-9279&rft.volume=4&rft.issue=1&rft_id=info:doi/10.3390%2Fmps4010001&rft_id=info%3Apmid%2F33374478&rft.externalDocID=33374478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2409-9279&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2409-9279&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2409-9279&client=summon