Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment
Immunotherapy has gained increasing focus in treating pancreatic ductal adenocarcinoma (PDAC), since conventional therapies like chemotherapy could not provide satisfactory improvement in overall survival outcome of PDAC patients. However, it is still not the game changing solution due to the unique...
Saved in:
Published in | Biomaterials Vol. 268; p. 120546 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0142-9612 1878-5905 1878-5905 |
DOI | 10.1016/j.biomaterials.2020.120546 |
Cover
Loading…
Abstract | Immunotherapy has gained increasing focus in treating pancreatic ductal adenocarcinoma (PDAC), since conventional therapies like chemotherapy could not provide satisfactory improvement in overall survival outcome of PDAC patients. However, it is still not the game changing solution due to the unique tumor microenvironment and low cancer immunogenicity of PDAC. Thus, inducing more intratumoral effector immune cells as well as reversing immunosuppression is the core of PDAC treatment. Herein, we demonstrate an exosome-based dual delivery biosystem for enhancing PDAC immunotherapy as well as reversing tumor immunosuppression of M2-like tumor associated macrophages (M2-TAMs) upon disruption of galectin-9/dectin 1 axis. The deliver system is constructed from bone marrow mesenchymal stem cell (BM-MSC) exosomes, electroporation-loaded galectin-9 siRNA, and surficially modified with oxaliplatin (OXA) prodrug as an immunogenic cell death (ICD)-trigger. The use of biomaterials, BM-MSC exosomes, can significantly improve tumor targeting efficacy, thus increasing drug accumulation in the tumor site. The combined therapy (iEXO-OXA) elicits anti-tumor immunity through tumor-suppressive macrophage polarization, cytotoxic T lymphocytes recruitment and Tregs downregulation, and achieves significant therapeutic efficacy in cancer treatment.
[Display omitted] |
---|---|
AbstractList | Immunotherapy has gained increasing focus in treating pancreatic ductal adenocarcinoma (PDAC), since conventional therapies like chemotherapy could not provide satisfactory improvement in overall survival outcome of PDAC patients. However, it is still not the game changing solution due to the unique tumor microenvironment and low cancer immunogenicity of PDAC. Thus, inducing more intratumoral effector immune cells as well as reversing immunosuppression is the core of PDAC treatment. Herein, we demonstrate an exosome-based dual delivery biosystem for enhancing PDAC immunotherapy as well as reversing tumor immunosuppression of M2-like tumor associated macrophages (M2-TAMs) upon disruption of galectin-9/dectin 1 axis. The deliver system is constructed from bone marrow mesenchymal stem cell (BM-MSC) exosomes, electroporation-loaded galectin-9 siRNA, and surficially modified with oxaliplatin (OXA) prodrug as an immunogenic cell death (ICD)-trigger. The use of biomaterials, BM-MSC exosomes, can significantly improve tumor targeting efficacy, thus increasing drug accumulation in the tumor site. The combined therapy (iEXO-OXA) elicits anti-tumor immunity through tumor-suppressive macrophage polarization, cytotoxic T lymphocytes recruitment and Tregs downregulation, and achieves significant therapeutic efficacy in cancer treatment.
[Display omitted] Immunotherapy has gained increasing focus in treating pancreatic ductal adenocarcinoma (PDAC), since conventional therapies like chemotherapy could not provide satisfactory improvement in overall survival outcome of PDAC patients. However, it is still not the game changing solution due to the unique tumor microenvironment and low cancer immunogenicity of PDAC. Thus, inducing more intratumoral effector immune cells as well as reversing immunosuppression is the core of PDAC treatment. Herein, we demonstrate an exosome-based dual delivery biosystem for enhancing PDAC immunotherapy as well as reversing tumor immunosuppression of M2-like tumor associated macrophages (M2-TAMs) upon disruption of galectin-9/dectin 1 axis. The deliver system is constructed from bone marrow mesenchymal stem cell (BM-MSC) exosomes, electroporation-loaded galectin-9 siRNA, and surficially modified with oxaliplatin (OXA) prodrug as an immunogenic cell death (ICD)-trigger. The use of biomaterials, BM-MSC exosomes, can significantly improve tumor targeting efficacy, thus increasing drug accumulation in the tumor site. The combined therapy (iEXO-OXA) elicits anti-tumor immunity through tumor-suppressive macrophage polarization, cytotoxic T lymphocytes recruitment and Tregs downregulation, and achieves significant therapeutic efficacy in cancer treatment. Immunotherapy has gained increasing focus in treating pancreatic ductal adenocarcinoma (PDAC), since conventional therapies like chemotherapy could not provide satisfactory improvement in overall survival outcome of PDAC patients. However, it is still not the game changing solution due to the unique tumor microenvironment and low cancer immunogenicity of PDAC. Thus, inducing more intratumoral effector immune cells as well as reversing immunosuppression is the core of PDAC treatment. Herein, we demonstrate an exosome-based dual delivery biosystem for enhancing PDAC immunotherapy as well as reversing tumor immunosuppression of M2-like tumor associated macrophages (M2-TAMs) upon disruption of galectin-9/dectin 1 axis. The deliver system is constructed from bone marrow mesenchymal stem cell (BM-MSC) exosomes, electroporation-loaded galectin-9 siRNA, and surficially modified with oxaliplatin (OXA) prodrug as an immunogenic cell death (ICD)-trigger. The use of biomaterials, BM-MSC exosomes, can significantly improve tumor targeting efficacy, thus increasing drug accumulation in the tumor site. The combined therapy (iEXO-OXA) elicits anti-tumor immunity through tumor-suppressive macrophage polarization, cytotoxic T lymphocytes recruitment and Tregs downregulation, and achieves significant therapeutic efficacy in cancer treatment.Immunotherapy has gained increasing focus in treating pancreatic ductal adenocarcinoma (PDAC), since conventional therapies like chemotherapy could not provide satisfactory improvement in overall survival outcome of PDAC patients. However, it is still not the game changing solution due to the unique tumor microenvironment and low cancer immunogenicity of PDAC. Thus, inducing more intratumoral effector immune cells as well as reversing immunosuppression is the core of PDAC treatment. Herein, we demonstrate an exosome-based dual delivery biosystem for enhancing PDAC immunotherapy as well as reversing tumor immunosuppression of M2-like tumor associated macrophages (M2-TAMs) upon disruption of galectin-9/dectin 1 axis. The deliver system is constructed from bone marrow mesenchymal stem cell (BM-MSC) exosomes, electroporation-loaded galectin-9 siRNA, and surficially modified with oxaliplatin (OXA) prodrug as an immunogenic cell death (ICD)-trigger. The use of biomaterials, BM-MSC exosomes, can significantly improve tumor targeting efficacy, thus increasing drug accumulation in the tumor site. The combined therapy (iEXO-OXA) elicits anti-tumor immunity through tumor-suppressive macrophage polarization, cytotoxic T lymphocytes recruitment and Tregs downregulation, and achieves significant therapeutic efficacy in cancer treatment. |
ArticleNumber | 120546 |
Author | Chen, Hongyi Zhou, Yu Zhang, Yiwen Sun, Tao Zhou, Wenxi Chen, Xinli Zhang, Yujie Chu, Yongchao Guo, Qin Jiang, Chen Ning, Tingting Li, Chao Liu, Peixin |
Author_xml | – sequence: 1 givenname: Wenxi surname: Zhou fullname: Zhou, Wenxi organization: Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China – sequence: 2 givenname: Yu surname: Zhou fullname: Zhou, Yu organization: Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China – sequence: 3 givenname: Xinli surname: Chen fullname: Chen, Xinli organization: Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China – sequence: 4 givenname: Tingting surname: Ning fullname: Ning, Tingting organization: Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China – sequence: 5 givenname: Hongyi surname: Chen fullname: Chen, Hongyi organization: Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China – sequence: 6 givenname: Qin surname: Guo fullname: Guo, Qin organization: Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China – sequence: 7 givenname: Yiwen surname: Zhang fullname: Zhang, Yiwen organization: Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China – sequence: 8 givenname: Peixin surname: Liu fullname: Liu, Peixin organization: Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China – sequence: 9 givenname: Yujie surname: Zhang fullname: Zhang, Yujie organization: Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China – sequence: 10 givenname: Chao surname: Li fullname: Li, Chao organization: Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China – sequence: 11 givenname: Yongchao surname: Chu fullname: Chu, Yongchao organization: Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China – sequence: 12 givenname: Tao surname: Sun fullname: Sun, Tao organization: Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China – sequence: 13 givenname: Chen surname: Jiang fullname: Jiang, Chen email: jiangchen@shmu.edu.cn organization: Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33253966$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUctuFDEQtFAQ2QR-AY04cZnF7x1zgoRXpEjkEM6Wx9Oz8TK2F9sTsX-PV5tIKJfsyY-urq6uOkMnIQZA6B3BS4KJ_LBZ9i56UyA5M-UlxbQWKBZcvkAL0q26VigsTtACE05bJQk9RWc5b3B9Y05foVPGqGBKygVyNybYBKY429h6hdQWk9ZQXFg38Dfm6CE3Y0wNhLta33877-cQyx0ks901JgxNgm2K62S839fL7CveO5sihHuXYvAQymv0cqxy4c3DeY5-fft6e_mjvf75_ery83VrBetK242jFNQIEHS1snKo20nSDR2ugkciuSLGYhgV7bk0knFmRyX6FTVK8K4fBDtH7w-8VdKfGXLR3mUL02QCxDlrKiinXAqlnodyKTHrMGMV-vYBOvceBr1Nzpu0049OVsCnA6BunXOCUVtXqq0xlGTcpAnW-_D0Rv8fnt6Hpw_hVYqPTygepxzV_OXQDNXbewdJZ-ugBjq4BLboIbrjaC6e0NjJBWfN9Bt2x5L8A1PT1UM |
CitedBy_id | crossref_primary_10_1016_j_cej_2021_131419 crossref_primary_10_1016_j_ijbiomac_2023_125794 crossref_primary_10_2147_IJN_S388604 crossref_primary_10_1088_1361_6528_ad5690 crossref_primary_10_1002_advs_202206095 crossref_primary_10_1016_j_biomaterials_2021_120708 crossref_primary_10_2139_ssrn_4051618 crossref_primary_10_3390_cancers16162876 crossref_primary_10_1016_j_clinsp_2024_100481 crossref_primary_10_3390_cells12030356 crossref_primary_10_1007_s11060_023_04257_y crossref_primary_10_1186_s13045_022_01305_4 crossref_primary_10_3390_ijms22105278 crossref_primary_10_1039_D3CS00602F crossref_primary_10_3390_ijms24043559 crossref_primary_10_59313_jsr_a_1439875 crossref_primary_10_3389_fphar_2021_734443 crossref_primary_10_1080_2162402X_2022_2152635 crossref_primary_10_3390_cells13141183 crossref_primary_10_1038_s41416_023_02175_4 crossref_primary_10_3390_ijms23031496 crossref_primary_10_1039_D4NA00393D crossref_primary_10_1016_j_canlet_2022_215823 crossref_primary_10_3389_fonc_2023_1149551 crossref_primary_10_3389_fmolb_2022_1020888 crossref_primary_10_3390_app14198948 crossref_primary_10_1016_j_biopha_2023_114373 crossref_primary_10_1016_j_phymed_2025_156514 crossref_primary_10_1088_2516_1091_ac73c9 crossref_primary_10_3389_fimmu_2021_802080 crossref_primary_10_3389_fimmu_2024_1401852 crossref_primary_10_1016_j_virol_2024_110303 crossref_primary_10_3389_fbioe_2021_653417 crossref_primary_10_1002_mco2_339 crossref_primary_10_1016_j_cej_2024_149234 crossref_primary_10_1038_s41420_023_01698_2 crossref_primary_10_1186_s12935_024_03456_5 crossref_primary_10_1016_j_apsb_2024_05_010 crossref_primary_10_1186_s12951_023_01825_2 crossref_primary_10_1016_j_prp_2024_155214 crossref_primary_10_1016_j_actbio_2022_12_013 crossref_primary_10_12677_acm_2024_1451601 crossref_primary_10_3390_curroncol31110536 crossref_primary_10_1016_j_trim_2022_101766 crossref_primary_10_1080_17425247_2022_2045943 crossref_primary_10_1080_14728222_2023_2259102 crossref_primary_10_3390_biom11060901 crossref_primary_10_1186_s40824_023_00350_5 crossref_primary_10_2174_1567201820666230504120841 crossref_primary_10_1016_j_jconrel_2024_04_009 crossref_primary_10_1021_acs_biomac_1c01081 crossref_primary_10_1016_j_bbcan_2025_189287 crossref_primary_10_3390_ijtm4020015 crossref_primary_10_1016_j_bbrc_2023_05_024 crossref_primary_10_1016_j_phrs_2023_106880 crossref_primary_10_1097_MPA_0000000000002115 crossref_primary_10_1186_s12885_023_10705_9 crossref_primary_10_1016_j_semcancer_2023_11_003 crossref_primary_10_3390_cancers13246175 crossref_primary_10_1016_j_gendis_2022_10_020 crossref_primary_10_1186_s12951_022_01330_y crossref_primary_10_1002_advs_202301339 crossref_primary_10_3389_fmolb_2022_1022725 crossref_primary_10_1155_2024_2825971 crossref_primary_10_3389_fimmu_2024_1362120 crossref_primary_10_1016_j_actbio_2022_08_020 crossref_primary_10_1016_j_ajps_2023_100852 crossref_primary_10_1016_j_intimp_2024_112171 crossref_primary_10_1186_s12951_023_01973_5 crossref_primary_10_4251_wjgo_v15_i4_596 crossref_primary_10_3389_fimmu_2023_1130033 crossref_primary_10_1002_smll_202107712 crossref_primary_10_1016_j_nantod_2023_101771 crossref_primary_10_1002_smll_202206441 crossref_primary_10_1080_10717544_2022_2104404 crossref_primary_10_1002_mabi_202300093 crossref_primary_10_3390_curroncol31090361 crossref_primary_10_3390_pharmaceutics14040733 crossref_primary_10_1016_j_jddst_2024_106411 crossref_primary_10_3389_fbioe_2022_1091360 crossref_primary_10_1007_s12079_023_00794_3 crossref_primary_10_1016_j_biopha_2024_117296 crossref_primary_10_7717_peerj_18783 crossref_primary_10_1002_adfm_202303195 crossref_primary_10_1038_s41698_024_00681_z crossref_primary_10_3390_pharmaceutics15051465 crossref_primary_10_3390_cancers14235793 crossref_primary_10_3390_cancers15133507 crossref_primary_10_1016_j_phymed_2025_156390 crossref_primary_10_3390_cells12121560 crossref_primary_10_3390_ijms22179543 crossref_primary_10_1007_s11033_022_07765_8 crossref_primary_10_1016_j_bbcan_2024_189183 crossref_primary_10_3390_cancers14174236 crossref_primary_10_3390_ijms24076174 crossref_primary_10_1016_j_apsb_2024_07_007 crossref_primary_10_1039_D1BM00331C crossref_primary_10_3389_fbioe_2022_1019459 crossref_primary_10_3389_fbioe_2023_1214190 crossref_primary_10_1016_j_actbio_2023_02_011 crossref_primary_10_1155_2021_7844455 crossref_primary_10_2147_IJN_S379917 crossref_primary_10_2147_IJN_S457008 crossref_primary_10_1002_smll_202302834 crossref_primary_10_1186_s12645_023_00173_y crossref_primary_10_1039_D2BM01044E crossref_primary_10_1186_s12967_022_03325_7 crossref_primary_10_4251_wjgo_v13_i12_1981 crossref_primary_10_1186_s12645_022_00117_y crossref_primary_10_3390_molecules27227789 crossref_primary_10_1177_11795549241271691 crossref_primary_10_1186_s40001_023_01556_y crossref_primary_10_1002_adfm_202404900 crossref_primary_10_1016_j_canlet_2022_215934 crossref_primary_10_1186_s12951_022_01429_2 crossref_primary_10_3390_ijms23095253 crossref_primary_10_3748_wjg_v28_i32_4527 crossref_primary_10_1002_smll_202203825 crossref_primary_10_25259_Cytojournal_99_2024 crossref_primary_10_1186_s12951_023_02064_1 crossref_primary_10_3390_pharmaceutics15010066 crossref_primary_10_1016_j_biomaterials_2025_123282 crossref_primary_10_1002_ijc_34471 crossref_primary_10_3390_ijms25147715 crossref_primary_10_1186_s13018_023_04017_8 crossref_primary_10_1016_j_mtbio_2023_100760 crossref_primary_10_1016_j_drudis_2024_104061 crossref_primary_10_1016_j_intimp_2023_111025 crossref_primary_10_1016_j_jconrel_2022_05_062 crossref_primary_10_1016_j_mtbio_2022_100238 crossref_primary_10_1002_adtp_202200255 crossref_primary_10_3389_fmolb_2024_1447953 crossref_primary_10_3389_fphar_2022_1107329 crossref_primary_10_3390_cancers15061776 crossref_primary_10_1186_s13045_021_01149_4 crossref_primary_10_3390_pharmaceutics13081106 crossref_primary_10_3390_molecules28093816 crossref_primary_10_3390_ijms25063406 crossref_primary_10_1016_j_ajps_2021_12_001 crossref_primary_10_1002_mog2_67 crossref_primary_10_3892_or_2024_8846 crossref_primary_10_3389_fonc_2022_951019 crossref_primary_10_1186_s12951_022_01472_z crossref_primary_10_3390_pharmaceutics15020534 crossref_primary_10_1002_chem_202400660 crossref_primary_10_3389_fimmu_2022_863346 crossref_primary_10_3389_fonc_2024_1502283 crossref_primary_10_1016_j_apmt_2024_102084 crossref_primary_10_1021_acsbiomaterials_3c00745 crossref_primary_10_3390_ijms24021012 crossref_primary_10_20517_evcna_2023_58 crossref_primary_10_1016_j_addr_2021_113974 crossref_primary_10_1016_j_semcancer_2021_05_001 crossref_primary_10_1016_j_biomaterials_2022_121484 crossref_primary_10_3389_fimmu_2024_1421854 crossref_primary_10_1007_s12032_022_01781_1 crossref_primary_10_1016_j_tice_2024_102449 crossref_primary_10_1016_j_biopha_2023_115505 crossref_primary_10_1186_s13045_021_01141_y crossref_primary_10_4049_jimmunol_2100706 crossref_primary_10_1016_j_cyto_2022_156108 crossref_primary_10_1016_j_mam_2022_101167 crossref_primary_10_3390_cancers13123040 crossref_primary_10_1016_j_phrs_2021_105980 crossref_primary_10_1186_s43556_022_00088_x crossref_primary_10_1186_s13287_024_04061_z crossref_primary_10_1016_j_jddst_2022_104042 crossref_primary_10_3389_fimmu_2022_838374 crossref_primary_10_1186_s12964_021_00789_w crossref_primary_10_3390_ijms232213974 crossref_primary_10_1016_j_tranon_2023_101842 crossref_primary_10_3390_cancers13184537 crossref_primary_10_3892_ol_2022_13555 crossref_primary_10_3389_fimmu_2023_1269391 crossref_primary_10_1016_j_jconrel_2023_01_075 crossref_primary_10_1016_j_semcancer_2023_09_004 crossref_primary_10_1039_D3TB01008B crossref_primary_10_1111_jcmm_18348 crossref_primary_10_2174_1566523221666211119110755 crossref_primary_10_3390_biology11020177 crossref_primary_10_3390_pharmaceutics14102208 crossref_primary_10_1007_s13346_024_01784_7 crossref_primary_10_3389_fonc_2021_667427 crossref_primary_10_1016_j_actbio_2024_11_011 crossref_primary_10_3389_fphar_2023_1144955 crossref_primary_10_3390_pharmaceutics15020598 crossref_primary_10_1038_s41416_023_02336_5 crossref_primary_10_3390_nano14070639 crossref_primary_10_1002_wnan_2012 crossref_primary_10_1021_acsbiomaterials_4c00856 crossref_primary_10_3390_biomedicines11041231 crossref_primary_10_1186_s12964_024_01510_3 crossref_primary_10_1186_s12964_024_01473_5 crossref_primary_10_1016_j_biopha_2022_113992 crossref_primary_10_1016_j_biopha_2023_115179 crossref_primary_10_3390_pharmaceutics14102236 crossref_primary_10_3390_cells13080682 crossref_primary_10_1186_s12964_023_01370_3 crossref_primary_10_1186_s12951_024_02513_5 crossref_primary_10_1186_s12964_024_01654_2 crossref_primary_10_1016_j_csbj_2024_04_054 crossref_primary_10_1186_s12951_024_02975_7 crossref_primary_10_1016_j_canlet_2021_11_015 crossref_primary_10_2174_0115680266304636240626055711 crossref_primary_10_3389_fphar_2024_1490896 crossref_primary_10_3390_cancers16030567 crossref_primary_10_3389_fonc_2021_743189 crossref_primary_10_3390_molecules27041303 crossref_primary_10_1166_jbn_2021_3134 crossref_primary_10_1007_s12672_022_00539_5 crossref_primary_10_1039_D2BM01058E crossref_primary_10_3389_fimmu_2022_1104625 crossref_primary_10_3390_pharmaceutics15051453 crossref_primary_10_1002_mco2_709 crossref_primary_10_1016_j_biopha_2023_115717 crossref_primary_10_21926_obm_genet_2403252 crossref_primary_10_1016_j_ejpb_2021_12_003 crossref_primary_10_1016_j_jconrel_2021_12_024 crossref_primary_10_1186_s12951_022_01382_0 crossref_primary_10_3389_fimmu_2022_1093607 crossref_primary_10_2147_IJN_S457782 crossref_primary_10_3389_fcell_2024_1372847 crossref_primary_10_1038_s41419_023_05753_9 crossref_primary_10_1002_jex2_156 crossref_primary_10_3390_cancers15082256 crossref_primary_10_1186_s13045_021_01208_w crossref_primary_10_3390_cells12050720 crossref_primary_10_1007_s00216_022_04147_8 crossref_primary_10_2147_IJN_S413496 crossref_primary_10_1186_s13045_024_01535_8 crossref_primary_10_3390_cancers15102838 crossref_primary_10_1021_acsnano_4c02947 crossref_primary_10_3390_molecules28031506 crossref_primary_10_1016_j_canlet_2022_215751 crossref_primary_10_1016_j_canlet_2022_215993 crossref_primary_10_1155_2022_1779346 crossref_primary_10_3389_fimmu_2023_1296857 crossref_primary_10_3389_fmolb_2022_807497 crossref_primary_10_1016_j_jconrel_2023_08_002 crossref_primary_10_1016_j_critrevonc_2024_104594 crossref_primary_10_1002_adma_202211579 crossref_primary_10_52586_5061 crossref_primary_10_1016_j_jddst_2024_106259 crossref_primary_10_1021_acs_molpharmaceut_1c00653 crossref_primary_10_1021_acs_bioconjchem_3c00205 crossref_primary_10_1002_mco2_660 crossref_primary_10_1016_j_pbiomolbio_2025_02_003 crossref_primary_10_1016_j_jconrel_2022_01_008 crossref_primary_10_1002_adtp_202200079 crossref_primary_10_1093_carcin_bgac091 crossref_primary_10_1360_TB_2021_0987 crossref_primary_10_3390_app122312259 crossref_primary_10_1016_j_semcancer_2022_04_007 crossref_primary_10_1002_adhm_202404821 crossref_primary_10_1016_j_vesic_2023_100022 crossref_primary_10_1016_j_lfs_2022_120935 crossref_primary_10_1002_mco2_70019 crossref_primary_10_3389_fimmu_2024_1484535 crossref_primary_10_1002_ctm2_497 crossref_primary_10_3389_fcell_2021_679658 crossref_primary_10_3390_life13102033 crossref_primary_10_1080_21645515_2022_2143154 crossref_primary_10_1016_j_bbcan_2024_189238 crossref_primary_10_1016_j_jconrel_2023_09_032 crossref_primary_10_3390_cancers13194844 crossref_primary_10_1016_j_addr_2022_114450 crossref_primary_10_1186_s12929_022_00798_y crossref_primary_10_1016_j_bbrc_2022_11_040 crossref_primary_10_1016_j_intimp_2024_112820 crossref_primary_10_3390_pharmaceutics14102033 crossref_primary_10_1016_j_jconrel_2022_06_014 crossref_primary_10_3390_pharmaceutics15071814 crossref_primary_10_1007_s12032_025_02626_3 crossref_primary_10_1002_adhm_202100650 crossref_primary_10_1002_ijc_34195 crossref_primary_10_1016_j_actbio_2022_07_022 crossref_primary_10_1186_s12943_022_01650_5 crossref_primary_10_1002_ddr_22000 crossref_primary_10_3389_fonc_2022_1101823 crossref_primary_10_1038_s41392_022_00932_0 crossref_primary_10_3389_fonc_2024_1362436 crossref_primary_10_1021_acsnano_4c11630 crossref_primary_10_1016_j_tranon_2025_102291 crossref_primary_10_1186_s12885_022_10207_0 crossref_primary_10_1039_D3TB01991H crossref_primary_10_1186_s12964_021_00808_w crossref_primary_10_2147_IJN_S466459 crossref_primary_10_1016_j_actbio_2024_01_010 crossref_primary_10_2217_nnm_2023_0335 crossref_primary_10_3389_fphar_2022_1001417 crossref_primary_10_1080_13543784_2024_2360209 crossref_primary_10_3390_cancers14051221 crossref_primary_10_3390_cancers15041307 crossref_primary_10_3389_fcell_2022_830208 crossref_primary_10_3390_pharmaceutics13101638 crossref_primary_10_1016_j_jelechem_2022_116590 crossref_primary_10_3390_biom11121912 crossref_primary_10_3390_cancers16050919 crossref_primary_10_20517_cdr_2024_107 crossref_primary_10_1016_j_trecan_2024_07_010 crossref_primary_10_1111_cpr_13630 crossref_primary_10_3390_ijms23073620 crossref_primary_10_1186_s12943_023_01898_5 crossref_primary_10_1186_s12943_024_02215_4 crossref_primary_10_1002_adhm_202202245 crossref_primary_10_1016_j_biomaterials_2021_121306 crossref_primary_10_3389_fimmu_2022_1017400 |
Cites_doi | 10.1146/annurev-immunol-032712-100008 10.1073/pnas.1320318110 10.1016/j.clim.2015.03.021 10.1016/j.addr.2012.07.001 10.1158/0008-5472.CAN-07-0175 10.1002/adma.201803001 10.1371/journal.pone.0152599 10.1016/j.apsb.2019.11.013 10.1038/leu.2016.107 10.1016/j.ccell.2015.03.001 10.1097/PPO.0000000000000011 10.1016/j.jconrel.2017.09.019 10.3402/jev.v4.26316 10.3748/wjg.v20.i9.2237 10.1038/nprot.2012.131 10.3402/jev.v3.24641 10.1186/s12885-017-3958-1 10.1038/nri3254 10.1158/1078-0432.CCR-04-0861 10.1038/s41467-017-01651-9 10.1038/nature22341 10.1186/s12943-020-01151-3 10.1371/journal.pone.0081799 10.1038/nm1523 10.1038/nature13954 10.1016/j.ejca.2018.12.007 10.1016/j.addr.2016.02.006 10.1016/j.imbio.2005.05.021 10.7150/thno.24110 10.1002/adma.201705328 10.1080/2162402X.2016.1273309 10.1038/s41388-020-1186-7 10.1126/science.1208347 10.1038/nm.4314 10.1038/nbt.1807 10.1016/j.trecan.2018.04.001 10.1016/j.nano.2015.10.012 10.1038/s41557-018-0209-2 10.1038/nm1622 10.1056/NEJMra1404198 10.1111/cas.12059 10.1016/j.addr.2017.05.013 10.1016/j.coi.2013.01.006 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biomaterials.2020.120546 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1878-5905 |
ExternalDocumentID | 33253966 10_1016_j_biomaterials_2020_120546 S0142961220307924 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAIAV AAYOK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG RIG AAYXX AGRNS BNPGV CITATION SSH NPM PKN 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c538t-8ff652a5e5277c6d202618d80539f16491ac0ef92b46a6343cf95b72a9548bd53 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 1878-5905 |
IngestDate | Fri Jul 11 15:37:30 EDT 2025 Fri Jul 11 15:42:36 EDT 2025 Wed Feb 19 02:28:31 EST 2025 Thu Apr 24 23:03:50 EDT 2025 Tue Jul 01 01:19:42 EDT 2025 Fri Feb 23 02:44:13 EST 2024 Tue Aug 26 19:59:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Galectin 9/dectin 1 axis Macrophage polarization Pancreatic cancer immunotherapy Immunogenic cell death BM-MSC exosomes |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c538t-8ff652a5e5277c6d202618d80539f16491ac0ef92b46a6343cf95b72a9548bd53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 33253966 |
PQID | 2466038033 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2524246599 proquest_miscellaneous_2466038033 pubmed_primary_33253966 crossref_citationtrail_10_1016_j_biomaterials_2020_120546 crossref_primary_10_1016_j_biomaterials_2020_120546 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2020_120546 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2020_120546 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Horibe, Tanahashi, Kawauchi, Murakami, Rikitake (bib33) 2018; 18 Ohue, Kurose, Nozawa, Isobe, Nishio, Tanaka, Doki, Hori, Fukuoka, Oka, Nakayama (bib42) 2016; 4 Joffre, Segura, Savina, Amigorena (bib44) 2012; 12 Feig, Jones, Kraman, Wells, Deonarine, Chan, Connell, Roberts, Zhao, Caballero, Teichmann, Janowitz, Jodrell, Tuveson, Fearon (bib2) 2013; 110 Seifert, Reiche, Heiduk, Tannert, Meinecke, Baier, von Renesse, Kahlert, Distler, Welsch, Reissfelder, Aust, Miller, Weitz, Seifert (bib9) 2020; 39 Rucki, Zheng (bib11) 2014; 20 Obeid, Tesniere, Ghiringhelli, Fimia, Apetoh, Perfettini, Castedo, Mignot, Panaretakis, Casares, Metivier, Larochette, van Endert, Ciccosanti, Piacentini, Zitvogel, Kroemer (bib21) 2007; 13 Apetoh, Ghiringhelli, Tesniere, Obeid, Ortiz, Criollo, Mignot, Maiuri, Ullrich, Saulnier, Yang, Amigorena, Ryffel, Barrat, Saftig, Levi, Lidereau, Nogues, Mira, Chompret, Joulin, Clavel-Chapelon, Bourhis, Andre, Delaloge, Tursz, Kroemer, Zitvogel (bib23) 2007; 13 Cowan, Maitra (bib10) 2014; 20 Costa Verdera, Gitz-Francois, Schiffelers, Vader (bib32) 2017; 266 Kim, Haney, Zhao, Mahajan, Deygen, Klyachko, Inskoe, Piroyan, Sokolsky, Okolie, Hingtgen, Kabanov, Batrakova (bib15) 2016; 12 Jiang, Jin, Kong, Cao, Ma, Jia, Wang, Suo, Cao (bib40) 2013; 8 Huang, Wu, Gao, Yu, Lei, Zhu, Shi, Chen, Qin, Wang, Cao (bib27) 2019; 11 Tran, Mattheolabakis, Aldawsari, Amiji (bib17) 2015; 160 El-Andaloussi, Lee, Lakhal-Littleton, Li, Seow, Gardiner, Alvarez-Erviti, Sargent, Wood (bib30) 2012; 7 Wen, Dooner, Cheng, Papa, Del Tatto, Pereira, Deng, Goldberg, Aliotta, Chatterjee, Stewart, Carpanetto, Collino, Bruno, Camussi, Quesenberry (bib35) 2016; 30 Wang-Gillam, Hubner, Siveke, Von Hoff, Belanger, de Jong, Mirakhur, Chen (bib13) 2019; 108 Mulcahy, Pink, Carter (bib31) 2014; 3 Vader, Mol, Pasterkamp, Schiffelers (bib16) 2016; 106 Clark, Hingorani, Mick, Combs, Tuveson, Vonderheide (bib5) 2007; 67 Michaud, Martins, Sukkurwala, Adjemian, Ma, Pellegatti, Shen, Kepp, Scoazec, Mignot, Rello-Varona, Tailler, Menger, Vacchelli, Galluzzi, Ghiringhelli, di Virgilio, Zitvogel, Kroemer (bib22) 2011; 334 Kroemer, Galluzzi, Kepp, Zitvogel (bib38) 2013; 31 Topalian, Drake, Pardoll (bib3) 2015; 27 Wang, Sun, Ma, Gao, Song, Xue, Chen, Chen, Zhang, Shao, Wang, Zhao, Liu, Wang, Wang, Zhang, Yang, Qu (bib41) 2016; 11 Ryan, Hong, Bardeesy (bib1) 2014; 371 Daley, Mani, Mohan, Akkad, Ochi, Heindel, Lee, Zambirinis, Pandian, Savadkar, Torres-Hernandez, Nayak, Wang, Hundeyin, Diskin, Aykut, Werba, Barilla, Rodriguez, Chang, Gardner, Mahal, Ueberheide, Miller (bib8) 2017; 23 Wiklander, Nordin, O'Loughlin, Gustafsson, Corso, Mager, Vader, Lee, Sork, Seow, Heldring, Alvarez-Erviti, Smith, Le Blanc, Macchiarini, Jungebluth, Wood, Andaloussi (bib36) 2015; 4 Morrison, Byrne, Vonderheide (bib7) 2018; 4 Zhou, Zhou, Chen, Wang, Li, Chen, Zhang, Lu, Ding, Jiang (bib18) 2019; 10 Lu, Liu, Liao, Salazar, Sun, Jiang, Chang, Jiang, Wang, Wu, Meng, Nel (bib20) 2017; 8 Yeo, Lai, Zhang, Tan, Yin, Teh, Lim (bib37) 2013; 65 Tumeh, Harview, Yearley, Shintaku, Taylor, Robert, Chmielowski, Spasic, Henry, Ciobanu, West, Carmona, Kivork, Seja, Cherry, Gutierrez, Grogan, Mateus, Tomasic, Glaspy, Emerson, Robins, Pierce, Elashoff, Robert, Ribas (bib4) 2014; 515 Kabashima-Niibe, Higuchi, Takaishi, Masugi, Matsuzaki, Mabuchi, Funakoshi, Adachi, Hamamoto, Kawachi, Aiura, Kitagawa, Sakamoto, Hibi (bib34) 2013; 104 Baron-Bodo, Doceur, Lefebvre, Labroquere, Defaye, Cambouris, Prigent, Salcedo, Boyer, Nardin (bib28) 2005; 210 Fenton, Olafson, Pillai, Mitchell, Langer (bib12) 2018 Feng, Zhou, Hou, Wang, Wang, Fu, Ma, Yu, Li (bib25) 2018; 30 Irie, Yamauchi, Kontani, Kihara, Liu, Shirato, Seki, Nishi, Nakamura, Yokomise, Hirashima (bib43) 2005; 11 Vonderheide, Bayne (bib19) 2013; 25 Sideras, Biermann, Verheij, Takkenberg, Mancham, Hansen, Schutz, de Man, Sprengers, Buschow, Verseput, Boor, Pan, van Gulik, Terkivatan, Ijzermans, Beuers, Sleijfer, Bruno, Kwekkeboom (bib39) 2017; 6 Alvarez-Erviti, Seow, Yin, Betts, Lakhal, Wood (bib29) 2011; 29 Stewart, Keselowsky (bib14) 2017; 114 Liu, Chen, Ruan, Chen, Zhang, He, Zhang, Lu, Guo, Sun, Wang, Jiang (bib24) 2018; 8 Kamerkar, LeBleu, Sugimoto, Yang, Ruivo, Melo, Lee, Kalluri (bib26) 2017; 546 Fan, Wang, Chen, Shang, Das, Song (bib6) 2020; 19 Vonderheide (10.1016/j.biomaterials.2020.120546_bib19) 2013; 25 Michaud (10.1016/j.biomaterials.2020.120546_bib22) 2011; 334 Wang (10.1016/j.biomaterials.2020.120546_bib41) 2016; 11 Ohue (10.1016/j.biomaterials.2020.120546_bib42) 2016; 4 Feig (10.1016/j.biomaterials.2020.120546_bib2) 2013; 110 Vader (10.1016/j.biomaterials.2020.120546_bib16) 2016; 106 Irie (10.1016/j.biomaterials.2020.120546_bib43) 2005; 11 Wen (10.1016/j.biomaterials.2020.120546_bib35) 2016; 30 Cowan (10.1016/j.biomaterials.2020.120546_bib10) 2014; 20 Kroemer (10.1016/j.biomaterials.2020.120546_bib38) 2013; 31 Alvarez-Erviti (10.1016/j.biomaterials.2020.120546_bib29) 2011; 29 Sideras (10.1016/j.biomaterials.2020.120546_bib39) 2017; 6 Costa Verdera (10.1016/j.biomaterials.2020.120546_bib32) 2017; 266 Tran (10.1016/j.biomaterials.2020.120546_bib17) 2015; 160 Kabashima-Niibe (10.1016/j.biomaterials.2020.120546_bib34) 2013; 104 Rucki (10.1016/j.biomaterials.2020.120546_bib11) 2014; 20 Jiang (10.1016/j.biomaterials.2020.120546_bib40) 2013; 8 Wiklander (10.1016/j.biomaterials.2020.120546_bib36) 2015; 4 Wang-Gillam (10.1016/j.biomaterials.2020.120546_bib13) 2019; 108 Joffre (10.1016/j.biomaterials.2020.120546_bib44) 2012; 12 Stewart (10.1016/j.biomaterials.2020.120546_bib14) 2017; 114 Feng (10.1016/j.biomaterials.2020.120546_bib25) 2018; 30 Kamerkar (10.1016/j.biomaterials.2020.120546_bib26) 2017; 546 Topalian (10.1016/j.biomaterials.2020.120546_bib3) 2015; 27 Fenton (10.1016/j.biomaterials.2020.120546_bib12) 2018 Morrison (10.1016/j.biomaterials.2020.120546_bib7) 2018; 4 Liu (10.1016/j.biomaterials.2020.120546_bib24) 2018; 8 Tumeh (10.1016/j.biomaterials.2020.120546_bib4) 2014; 515 Fan (10.1016/j.biomaterials.2020.120546_bib6) 2020; 19 Obeid (10.1016/j.biomaterials.2020.120546_bib21) 2007; 13 Seifert (10.1016/j.biomaterials.2020.120546_bib9) 2020; 39 Ryan (10.1016/j.biomaterials.2020.120546_bib1) 2014; 371 Mulcahy (10.1016/j.biomaterials.2020.120546_bib31) 2014; 3 Yeo (10.1016/j.biomaterials.2020.120546_bib37) 2013; 65 Lu (10.1016/j.biomaterials.2020.120546_bib20) 2017; 8 El-Andaloussi (10.1016/j.biomaterials.2020.120546_bib30) 2012; 7 Daley (10.1016/j.biomaterials.2020.120546_bib8) 2017; 23 Huang (10.1016/j.biomaterials.2020.120546_bib27) 2019; 11 Kim (10.1016/j.biomaterials.2020.120546_bib15) 2016; 12 Apetoh (10.1016/j.biomaterials.2020.120546_bib23) 2007; 13 Baron-Bodo (10.1016/j.biomaterials.2020.120546_bib28) 2005; 210 Horibe (10.1016/j.biomaterials.2020.120546_bib33) 2018; 18 Zhou (10.1016/j.biomaterials.2020.120546_bib18) 2019; 10 Clark (10.1016/j.biomaterials.2020.120546_bib5) 2007; 67 |
References_xml | – volume: 20 start-page: 2237 year: 2014 end-page: 2246 ident: bib11 article-title: Pancreatic cancer stroma: understanding biology leads to new therapeutic strategies publication-title: World J. Gastroenterol. – volume: 29 start-page: 341 year: 2011 end-page: 345 ident: bib29 article-title: Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes publication-title: Nat. Biotechnol. – volume: 266 start-page: 100 year: 2017 end-page: 108 ident: bib32 article-title: Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis publication-title: J. Contr. Release – volume: 27 start-page: 450 year: 2015 end-page: 461 ident: bib3 article-title: Immune checkpoint blockade: a common denominator approach to cancer therapy publication-title: Canc. Cell – volume: 13 start-page: 54 year: 2007 end-page: 61 ident: bib21 article-title: Calreticulin exposure dictates the immunogenicity of cancer cell death publication-title: Nat. Med. – volume: 515 start-page: 568 year: 2014 end-page: 571 ident: bib4 article-title: PD-1 blockade induces responses by inhibiting adaptive immune resistance publication-title: Nature – volume: 11 start-page: 310 year: 2019 end-page: 319 ident: bib27 article-title: Maleimide-thiol adducts stabilized through stretching publication-title: Nat. Chem. – volume: 104 start-page: 157 year: 2013 end-page: 164 ident: bib34 article-title: Mesenchymal stem cells regulate epithelial-mesenchymal transition and tumor progression of pancreatic cancer cells publication-title: Canc. Sci. – year: 2018 ident: bib12 article-title: Advances in biomaterials for drug delivery publication-title: Adv. Mater. – volume: 12 start-page: 655 year: 2016 end-page: 664 ident: bib15 article-title: Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells publication-title: Nanomedicine – volume: 31 start-page: 51 year: 2013 end-page: 72 ident: bib38 article-title: Immunogenic cell death in cancer therapy publication-title: Annu. Rev. Immunol. – volume: 6 year: 2017 ident: bib39 article-title: PD-L1, Galectin-9 and CD8+ tumor-infiltrating lymphocytes are associated with survival in hepatocellular carcinoma publication-title: OncoImmunology – volume: 13 start-page: 1050 year: 2007 end-page: 1059 ident: bib23 article-title: Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy publication-title: Nat. Med. – volume: 4 start-page: 1049 year: 2016 end-page: 1060 ident: bib42 article-title: Survival of lung adenocarcinoma patients predicted from expression of PD-L1, galectin-9, and XAGE1 (GAGED2a) on tumor cells and tumor-infiltrating T cells, cancer immunol publication-title: Res. – volume: 4 start-page: 418 year: 2018 end-page: 428 ident: bib7 article-title: Immunotherapy and prevention of pancreatic cancer publication-title: Trends Cancer – volume: 4 start-page: 26316 year: 2015 ident: bib36 article-title: Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting publication-title: J. Extracell. Vesicles – volume: 39 start-page: 3102 year: 2020 end-page: 3113 ident: bib9 article-title: Detection of pancreatic ductal adenocarcinoma with galectin-9 serum levels publication-title: Oncogene – volume: 546 start-page: 498 year: 2017 end-page: 503 ident: bib26 article-title: Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer publication-title: Nature – volume: 7 start-page: 2112 year: 2012 end-page: 2126 ident: bib30 article-title: Exosome-mediated delivery of siRNA in vitro and in vivo publication-title: Nat. Protoc. – volume: 160 start-page: 46 year: 2015 end-page: 58 ident: bib17 article-title: Exosomes as nanocarriers for immunotherapy of cancer and inflammatory diseases publication-title: Clin. Immunol. – volume: 8 start-page: 1811 year: 2017 ident: bib20 article-title: Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression publication-title: Nat. Commun. – volume: 25 start-page: 200 year: 2013 end-page: 205 ident: bib19 article-title: Inflammatory networks and immune surveillance of pancreatic carcinoma publication-title: Curr. Opin. Immunol. – volume: 8 start-page: 2974 year: 2018 end-page: 2987 ident: bib24 article-title: Platinum-based nanovectors engineered with immuno-modulating adjuvant for inhibiting tumor growth and promoting immunity publication-title: Theranostics – volume: 30 year: 2018 ident: bib25 article-title: Binary cooperative prodrug nanoparticles improve immunotherapy by synergistically modulating immune tumor microenvironment publication-title: Adv. Mater. – volume: 11 year: 2016 ident: bib41 article-title: Reduced expression of galectin-9 contributes to a poor outcome in colon cancer by inhibiting NK cell chemotaxis partially through the rho/ROCK1 signaling pathway publication-title: PloS One – volume: 65 start-page: 336 year: 2013 end-page: 341 ident: bib37 article-title: Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery publication-title: Adv. Drug Deliv. Rev. – volume: 8 year: 2013 ident: bib40 article-title: Decreased galectin-9 and increased Tim-3 expression are related to poor prognosis in gastric cancer publication-title: PloS One – volume: 23 start-page: 556 year: 2017 end-page: 567 ident: bib8 article-title: Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance publication-title: Nat. Med. – volume: 30 start-page: 2221 year: 2016 end-page: 2231 ident: bib35 article-title: Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells publication-title: Leukemia – volume: 12 start-page: 557 year: 2012 end-page: 569 ident: bib44 article-title: Cross-presentation by dendritic cells publication-title: Nat. Rev. Immunol. – volume: 3 year: 2014 ident: bib31 article-title: Routes and mechanisms of extracellular vesicle uptake publication-title: J. Extracell. Vesicles – volume: 19 start-page: 32 year: 2020 ident: bib6 article-title: Current advances and outlooks in immunotherapy for pancreatic ductal adenocarcinoma publication-title: Mol. Canc. – volume: 108 start-page: 78 year: 2019 end-page: 87 ident: bib13 article-title: NAPOLI-1 phase 3 study of liposomal irinotecan in metastatic pancreatic cancer: final overall survival analysis and characteristics of long-term survivors publication-title: Eur. J. Canc. – volume: 11 start-page: 2962 year: 2005 end-page: 2968 ident: bib43 article-title: Galectin-9 as a prognostic factor with antimetastatic potential in breast cancer publication-title: Clin. Canc. Res. – volume: 18 start-page: 47 year: 2018 ident: bib33 article-title: Mechanism of recipient cell-dependent differences in exosome uptake publication-title: BMC Canc. – volume: 20 start-page: 80 year: 2014 end-page: 84 ident: bib10 article-title: Genetic progression of pancreatic cancer publication-title: Canc. J. – volume: 106 start-page: 148 year: 2016 end-page: 156 ident: bib16 article-title: Extracellular vesicles for drug delivery publication-title: Adv. Drug Deliv. Rev. – volume: 110 start-page: 20212 year: 2013 end-page: 20217 ident: bib2 article-title: Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 334 start-page: 1573 year: 2011 end-page: 1577 ident: bib22 article-title: Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice publication-title: Science – volume: 67 start-page: 9518 year: 2007 end-page: 9527 ident: bib5 article-title: Dynamics of the immune reaction to pancreatic cancer from inception to invasion publication-title: Canc. Res. – volume: 210 start-page: 267 year: 2005 end-page: 277 ident: bib28 article-title: Anti-tumor properties of human-activated macrophages produced in large scale for clinical application publication-title: Immunobiology – volume: 371 start-page: 1039 year: 2014 end-page: 1049 ident: bib1 article-title: Pancreatic adenocarcinoma publication-title: N. Engl. J. Med. – volume: 114 start-page: 161 year: 2017 end-page: 174 ident: bib14 article-title: Combinatorial drug delivery approaches for immunomodulation publication-title: Adv. Drug Deliv. Rev. – volume: 10 start-page: 1563 year: 2019 end-page: 1575 ident: bib18 article-title: Bone marrow mesenchymal stem cells-derived exosomes for penetrating and targeted chemotherapy of pancreatic cancer publication-title: Acta Pharm. Sin. B – volume: 31 start-page: 51 year: 2013 ident: 10.1016/j.biomaterials.2020.120546_bib38 article-title: Immunogenic cell death in cancer therapy publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-032712-100008 – volume: 110 start-page: 20212 issue: 50 year: 2013 ident: 10.1016/j.biomaterials.2020.120546_bib2 article-title: Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.1320318110 – volume: 160 start-page: 46 issue: 1 year: 2015 ident: 10.1016/j.biomaterials.2020.120546_bib17 article-title: Exosomes as nanocarriers for immunotherapy of cancer and inflammatory diseases publication-title: Clin. Immunol. doi: 10.1016/j.clim.2015.03.021 – volume: 65 start-page: 336 issue: 3 year: 2013 ident: 10.1016/j.biomaterials.2020.120546_bib37 article-title: Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.07.001 – volume: 67 start-page: 9518 issue: 19 year: 2007 ident: 10.1016/j.biomaterials.2020.120546_bib5 article-title: Dynamics of the immune reaction to pancreatic cancer from inception to invasion publication-title: Canc. Res. doi: 10.1158/0008-5472.CAN-07-0175 – volume: 30 issue: 38 year: 2018 ident: 10.1016/j.biomaterials.2020.120546_bib25 article-title: Binary cooperative prodrug nanoparticles improve immunotherapy by synergistically modulating immune tumor microenvironment publication-title: Adv. Mater. doi: 10.1002/adma.201803001 – volume: 11 issue: 3 year: 2016 ident: 10.1016/j.biomaterials.2020.120546_bib41 article-title: Reduced expression of galectin-9 contributes to a poor outcome in colon cancer by inhibiting NK cell chemotaxis partially through the rho/ROCK1 signaling pathway publication-title: PloS One doi: 10.1371/journal.pone.0152599 – volume: 10 start-page: 1563 issue: 8 year: 2019 ident: 10.1016/j.biomaterials.2020.120546_bib18 article-title: Bone marrow mesenchymal stem cells-derived exosomes for penetrating and targeted chemotherapy of pancreatic cancer publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2019.11.013 – volume: 30 start-page: 2221 issue: 11 year: 2016 ident: 10.1016/j.biomaterials.2020.120546_bib35 article-title: Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells publication-title: Leukemia doi: 10.1038/leu.2016.107 – volume: 27 start-page: 450 issue: 4 year: 2015 ident: 10.1016/j.biomaterials.2020.120546_bib3 article-title: Immune checkpoint blockade: a common denominator approach to cancer therapy publication-title: Canc. Cell doi: 10.1016/j.ccell.2015.03.001 – volume: 20 start-page: 80 issue: 1 year: 2014 ident: 10.1016/j.biomaterials.2020.120546_bib10 article-title: Genetic progression of pancreatic cancer publication-title: Canc. J. doi: 10.1097/PPO.0000000000000011 – volume: 266 start-page: 100 year: 2017 ident: 10.1016/j.biomaterials.2020.120546_bib32 article-title: Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2017.09.019 – volume: 4 start-page: 26316 year: 2015 ident: 10.1016/j.biomaterials.2020.120546_bib36 article-title: Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting publication-title: J. Extracell. Vesicles doi: 10.3402/jev.v4.26316 – volume: 20 start-page: 2237 issue: 9 year: 2014 ident: 10.1016/j.biomaterials.2020.120546_bib11 article-title: Pancreatic cancer stroma: understanding biology leads to new therapeutic strategies publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v20.i9.2237 – volume: 7 start-page: 2112 issue: 12 year: 2012 ident: 10.1016/j.biomaterials.2020.120546_bib30 article-title: Exosome-mediated delivery of siRNA in vitro and in vivo publication-title: Nat. Protoc. doi: 10.1038/nprot.2012.131 – volume: 3 year: 2014 ident: 10.1016/j.biomaterials.2020.120546_bib31 article-title: Routes and mechanisms of extracellular vesicle uptake publication-title: J. Extracell. Vesicles doi: 10.3402/jev.v3.24641 – volume: 18 start-page: 47 issue: 1 year: 2018 ident: 10.1016/j.biomaterials.2020.120546_bib33 article-title: Mechanism of recipient cell-dependent differences in exosome uptake publication-title: BMC Canc. doi: 10.1186/s12885-017-3958-1 – volume: 12 start-page: 557 issue: 8 year: 2012 ident: 10.1016/j.biomaterials.2020.120546_bib44 article-title: Cross-presentation by dendritic cells publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3254 – volume: 11 start-page: 2962 issue: 8 year: 2005 ident: 10.1016/j.biomaterials.2020.120546_bib43 article-title: Galectin-9 as a prognostic factor with antimetastatic potential in breast cancer publication-title: Clin. Canc. Res. doi: 10.1158/1078-0432.CCR-04-0861 – volume: 8 start-page: 1811 issue: 1 year: 2017 ident: 10.1016/j.biomaterials.2020.120546_bib20 article-title: Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression publication-title: Nat. Commun. doi: 10.1038/s41467-017-01651-9 – volume: 546 start-page: 498 issue: 7659 year: 2017 ident: 10.1016/j.biomaterials.2020.120546_bib26 article-title: Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer publication-title: Nature doi: 10.1038/nature22341 – volume: 19 start-page: 32 issue: 1 year: 2020 ident: 10.1016/j.biomaterials.2020.120546_bib6 article-title: Current advances and outlooks in immunotherapy for pancreatic ductal adenocarcinoma publication-title: Mol. Canc. doi: 10.1186/s12943-020-01151-3 – volume: 8 issue: 12 year: 2013 ident: 10.1016/j.biomaterials.2020.120546_bib40 article-title: Decreased galectin-9 and increased Tim-3 expression are related to poor prognosis in gastric cancer publication-title: PloS One doi: 10.1371/journal.pone.0081799 – volume: 13 start-page: 54 issue: 1 year: 2007 ident: 10.1016/j.biomaterials.2020.120546_bib21 article-title: Calreticulin exposure dictates the immunogenicity of cancer cell death publication-title: Nat. Med. doi: 10.1038/nm1523 – volume: 515 start-page: 568 issue: 7528 year: 2014 ident: 10.1016/j.biomaterials.2020.120546_bib4 article-title: PD-1 blockade induces responses by inhibiting adaptive immune resistance publication-title: Nature doi: 10.1038/nature13954 – volume: 108 start-page: 78 year: 2019 ident: 10.1016/j.biomaterials.2020.120546_bib13 article-title: NAPOLI-1 phase 3 study of liposomal irinotecan in metastatic pancreatic cancer: final overall survival analysis and characteristics of long-term survivors publication-title: Eur. J. Canc. doi: 10.1016/j.ejca.2018.12.007 – volume: 106 start-page: 148 issue: Pt A year: 2016 ident: 10.1016/j.biomaterials.2020.120546_bib16 article-title: Extracellular vesicles for drug delivery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2016.02.006 – volume: 210 start-page: 267 issue: 2–4 year: 2005 ident: 10.1016/j.biomaterials.2020.120546_bib28 article-title: Anti-tumor properties of human-activated macrophages produced in large scale for clinical application publication-title: Immunobiology doi: 10.1016/j.imbio.2005.05.021 – volume: 8 start-page: 2974 issue: 11 year: 2018 ident: 10.1016/j.biomaterials.2020.120546_bib24 article-title: Platinum-based nanovectors engineered with immuno-modulating adjuvant for inhibiting tumor growth and promoting immunity publication-title: Theranostics doi: 10.7150/thno.24110 – year: 2018 ident: 10.1016/j.biomaterials.2020.120546_bib12 article-title: Advances in biomaterials for drug delivery publication-title: Adv. Mater. doi: 10.1002/adma.201705328 – volume: 6 issue: 2 year: 2017 ident: 10.1016/j.biomaterials.2020.120546_bib39 article-title: PD-L1, Galectin-9 and CD8+ tumor-infiltrating lymphocytes are associated with survival in hepatocellular carcinoma publication-title: OncoImmunology doi: 10.1080/2162402X.2016.1273309 – volume: 39 start-page: 3102 issue: 15 year: 2020 ident: 10.1016/j.biomaterials.2020.120546_bib9 article-title: Detection of pancreatic ductal adenocarcinoma with galectin-9 serum levels publication-title: Oncogene doi: 10.1038/s41388-020-1186-7 – volume: 334 start-page: 1573 issue: 6062 year: 2011 ident: 10.1016/j.biomaterials.2020.120546_bib22 article-title: Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice publication-title: Science doi: 10.1126/science.1208347 – volume: 4 start-page: 1049 issue: 12 year: 2016 ident: 10.1016/j.biomaterials.2020.120546_bib42 article-title: Survival of lung adenocarcinoma patients predicted from expression of PD-L1, galectin-9, and XAGE1 (GAGED2a) on tumor cells and tumor-infiltrating T cells, cancer immunol publication-title: Res. – volume: 23 start-page: 556 issue: 5 year: 2017 ident: 10.1016/j.biomaterials.2020.120546_bib8 article-title: Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance publication-title: Nat. Med. doi: 10.1038/nm.4314 – volume: 29 start-page: 341 issue: 4 year: 2011 ident: 10.1016/j.biomaterials.2020.120546_bib29 article-title: Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1807 – volume: 4 start-page: 418 issue: 6 year: 2018 ident: 10.1016/j.biomaterials.2020.120546_bib7 article-title: Immunotherapy and prevention of pancreatic cancer publication-title: Trends Cancer doi: 10.1016/j.trecan.2018.04.001 – volume: 12 start-page: 655 issue: 3 year: 2016 ident: 10.1016/j.biomaterials.2020.120546_bib15 article-title: Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells publication-title: Nanomedicine doi: 10.1016/j.nano.2015.10.012 – volume: 11 start-page: 310 issue: 4 year: 2019 ident: 10.1016/j.biomaterials.2020.120546_bib27 article-title: Maleimide-thiol adducts stabilized through stretching publication-title: Nat. Chem. doi: 10.1038/s41557-018-0209-2 – volume: 13 start-page: 1050 issue: 9 year: 2007 ident: 10.1016/j.biomaterials.2020.120546_bib23 article-title: Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy publication-title: Nat. Med. doi: 10.1038/nm1622 – volume: 371 start-page: 1039 issue: 11 year: 2014 ident: 10.1016/j.biomaterials.2020.120546_bib1 article-title: Pancreatic adenocarcinoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1404198 – volume: 104 start-page: 157 issue: 2 year: 2013 ident: 10.1016/j.biomaterials.2020.120546_bib34 article-title: Mesenchymal stem cells regulate epithelial-mesenchymal transition and tumor progression of pancreatic cancer cells publication-title: Canc. Sci. doi: 10.1111/cas.12059 – volume: 114 start-page: 161 year: 2017 ident: 10.1016/j.biomaterials.2020.120546_bib14 article-title: Combinatorial drug delivery approaches for immunomodulation publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2017.05.013 – volume: 25 start-page: 200 issue: 2 year: 2013 ident: 10.1016/j.biomaterials.2020.120546_bib19 article-title: Inflammatory networks and immune surveillance of pancreatic carcinoma publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2013.01.006 |
SSID | ssj0014042 |
Score | 2.7002578 |
Snippet | Immunotherapy has gained increasing focus in treating pancreatic ductal adenocarcinoma (PDAC), since conventional therapies like chemotherapy could not provide... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 120546 |
SubjectTerms | adenocarcinoma biocompatible materials BM-MSC exosomes bone marrow cancer therapy cell death cytotoxicity drug therapy drugs exosomes Galectin 9/dectin 1 axis galectins Immunogenic cell death immunogenicity immunosuppression immunotherapy Macrophage polarization macrophages mesenchymal stromal cells Pancreatic cancer immunotherapy |
Title | Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961220307924 https://dx.doi.org/10.1016/j.biomaterials.2020.120546 https://www.ncbi.nlm.nih.gov/pubmed/33253966 https://www.proquest.com/docview/2466038033 https://www.proquest.com/docview/2524246599 |
Volume | 268 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5EQfQgvl0fSwWvdbdJmjaIB1mUVVE8KHgrSZriitsV7YJe_O3O9LGsB2XBazoDaSeZR_PNF4Aj4xjXGLh8lQbOF5iA-JoJ6wdW8NhRSCtvLbm5lf0HcfUYPs5Br-mFIVhl7fsrn15663qkU3_Nzutg0CFYElMYoBmtUywjqINdRATrO_6awDyIPYZVMEacD0o3xKMlxota3HVRmRprRUZkC5jDyN-C1G9JaBmMLlZhpc4ivbNqomsw5_J1WJ7iFlyHxZv61HwDBndo2jI5tJ4lK7_5FQAcBT33MXofDd27h9mr5_In4t_A4QH1jdTdWZ-ezlOP6C9LLNeQnhfjIcoPCc431Su3CQ8X5_e9vl9fseBb9HSFH2eZDJkOXciiyMqUUUkWpzFuTZVhJaUCbbsuU8wIqSUX3GYqNBHTxBNn0pBvwXw-yt0OeDI2wqVSOSuNYJE0adYNNNZnQWocZgotUM03TWzNP07XYLwkDdDsOZm2R0L2SCp7tIBPdF8rFo6ZtE4a0yVNnyl6xgSDxUzapxPtHytyZv3DZrUkuGXpHEbnbjRGISFll8ddzv-QCalvR4ZKtWC7WmqTN-ecoXmk3P3nDPdgiRFCp_yhtA_zxdvYHWCKVZh2uYfasHB2ed2__QbioSi8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6FPbxULbuK92XB3sVsSVZsSh7KGUlXZuwhxb6JiRZphmLU1oHtv9-d7Yc0oeOwF7lO5B9p_uw7n4H8MUFLiw6LqbLLDCJAQizXHqWeSmKQC6tnVoynanJpfx-lV_twHHfC0NlldH2dza9tdZxZRS_5uhmPh9RWRLX6KA56SmmEY9gl9Cp5AB2j07PJrP1ZYJM2xk6RM-Ioccebcu8qMvdNp20MV3khLeAYYx6yE89FIe2_ujkOezFQDI56vb6AnZCvQ_PNuAF9-HxNF6cv4T5D5RuGx_6xJOgb1lXA46ESfi9vFsuwl2CAWwS6muC4MDlObWOxAatP4mty4QQMNtyrgU9b1YLpF9QRd9Gu9wruDz5dnE8YXHKAvNo7BpWVJXKuc1Dzsdjr0pOWVlRFng6dYXJlM6sT0OluZPKKiGFr3TuxtwSVJwrc_EaBvWyDm8hUYWToVQ6eOUkHytXVmlmMUXLShcwWBiC7r-p8RGCnCZh_DJ9rdlPsykPQ_IwnTyGINa8Nx0Qx1Zch73oTN9qisbRoL_YivvrmvueUm7N_7nXFoOnlq5ibB2WKySSSqWiSIX4B01OrTsq13oIbzpVW7-5EBzFo9TBf-7wEzyZXEzPzfnp7OwdPOVUsNP-X3oPg-Z2FT5gxNW4j_FE_QXtAytt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pancreatic+cancer-targeting+exosomes+for+enhancing+immunotherapy+and+reprogramming+tumor+microenvironment&rft.jtitle=Biomaterials&rft.au=Zhou%2C+Wenxi&rft.au=Zhou%2C+Yu&rft.au=Chen%2C+Xinli&rft.au=Ning%2C+Tingting&rft.date=2021-01-01&rft.issn=1878-5905&rft.eissn=1878-5905&rft.volume=268&rft.spage=120546&rft_id=info:doi/10.1016%2Fj.biomaterials.2020.120546&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |