Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment

Immunotherapy has gained increasing focus in treating pancreatic ductal adenocarcinoma (PDAC), since conventional therapies like chemotherapy could not provide satisfactory improvement in overall survival outcome of PDAC patients. However, it is still not the game changing solution due to the unique...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 268; p. 120546
Main Authors Zhou, Wenxi, Zhou, Yu, Chen, Xinli, Ning, Tingting, Chen, Hongyi, Guo, Qin, Zhang, Yiwen, Liu, Peixin, Zhang, Yujie, Li, Chao, Chu, Yongchao, Sun, Tao, Jiang, Chen
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.01.2021
Subjects
Online AccessGet full text
ISSN0142-9612
1878-5905
1878-5905
DOI10.1016/j.biomaterials.2020.120546

Cover

Loading…
Abstract Immunotherapy has gained increasing focus in treating pancreatic ductal adenocarcinoma (PDAC), since conventional therapies like chemotherapy could not provide satisfactory improvement in overall survival outcome of PDAC patients. However, it is still not the game changing solution due to the unique tumor microenvironment and low cancer immunogenicity of PDAC. Thus, inducing more intratumoral effector immune cells as well as reversing immunosuppression is the core of PDAC treatment. Herein, we demonstrate an exosome-based dual delivery biosystem for enhancing PDAC immunotherapy as well as reversing tumor immunosuppression of M2-like tumor associated macrophages (M2-TAMs) upon disruption of galectin-9/dectin 1 axis. The deliver system is constructed from bone marrow mesenchymal stem cell (BM-MSC) exosomes, electroporation-loaded galectin-9 siRNA, and surficially modified with oxaliplatin (OXA) prodrug as an immunogenic cell death (ICD)-trigger. The use of biomaterials, BM-MSC exosomes, can significantly improve tumor targeting efficacy, thus increasing drug accumulation in the tumor site. The combined therapy (iEXO-OXA) elicits anti-tumor immunity through tumor-suppressive macrophage polarization, cytotoxic T lymphocytes recruitment and Tregs downregulation, and achieves significant therapeutic efficacy in cancer treatment. [Display omitted]
AbstractList Immunotherapy has gained increasing focus in treating pancreatic ductal adenocarcinoma (PDAC), since conventional therapies like chemotherapy could not provide satisfactory improvement in overall survival outcome of PDAC patients. However, it is still not the game changing solution due to the unique tumor microenvironment and low cancer immunogenicity of PDAC. Thus, inducing more intratumoral effector immune cells as well as reversing immunosuppression is the core of PDAC treatment. Herein, we demonstrate an exosome-based dual delivery biosystem for enhancing PDAC immunotherapy as well as reversing tumor immunosuppression of M2-like tumor associated macrophages (M2-TAMs) upon disruption of galectin-9/dectin 1 axis. The deliver system is constructed from bone marrow mesenchymal stem cell (BM-MSC) exosomes, electroporation-loaded galectin-9 siRNA, and surficially modified with oxaliplatin (OXA) prodrug as an immunogenic cell death (ICD)-trigger. The use of biomaterials, BM-MSC exosomes, can significantly improve tumor targeting efficacy, thus increasing drug accumulation in the tumor site. The combined therapy (iEXO-OXA) elicits anti-tumor immunity through tumor-suppressive macrophage polarization, cytotoxic T lymphocytes recruitment and Tregs downregulation, and achieves significant therapeutic efficacy in cancer treatment. [Display omitted]
Immunotherapy has gained increasing focus in treating pancreatic ductal adenocarcinoma (PDAC), since conventional therapies like chemotherapy could not provide satisfactory improvement in overall survival outcome of PDAC patients. However, it is still not the game changing solution due to the unique tumor microenvironment and low cancer immunogenicity of PDAC. Thus, inducing more intratumoral effector immune cells as well as reversing immunosuppression is the core of PDAC treatment. Herein, we demonstrate an exosome-based dual delivery biosystem for enhancing PDAC immunotherapy as well as reversing tumor immunosuppression of M2-like tumor associated macrophages (M2-TAMs) upon disruption of galectin-9/dectin 1 axis. The deliver system is constructed from bone marrow mesenchymal stem cell (BM-MSC) exosomes, electroporation-loaded galectin-9 siRNA, and surficially modified with oxaliplatin (OXA) prodrug as an immunogenic cell death (ICD)-trigger. The use of biomaterials, BM-MSC exosomes, can significantly improve tumor targeting efficacy, thus increasing drug accumulation in the tumor site. The combined therapy (iEXO-OXA) elicits anti-tumor immunity through tumor-suppressive macrophage polarization, cytotoxic T lymphocytes recruitment and Tregs downregulation, and achieves significant therapeutic efficacy in cancer treatment.
Immunotherapy has gained increasing focus in treating pancreatic ductal adenocarcinoma (PDAC), since conventional therapies like chemotherapy could not provide satisfactory improvement in overall survival outcome of PDAC patients. However, it is still not the game changing solution due to the unique tumor microenvironment and low cancer immunogenicity of PDAC. Thus, inducing more intratumoral effector immune cells as well as reversing immunosuppression is the core of PDAC treatment. Herein, we demonstrate an exosome-based dual delivery biosystem for enhancing PDAC immunotherapy as well as reversing tumor immunosuppression of M2-like tumor associated macrophages (M2-TAMs) upon disruption of galectin-9/dectin 1 axis. The deliver system is constructed from bone marrow mesenchymal stem cell (BM-MSC) exosomes, electroporation-loaded galectin-9 siRNA, and surficially modified with oxaliplatin (OXA) prodrug as an immunogenic cell death (ICD)-trigger. The use of biomaterials, BM-MSC exosomes, can significantly improve tumor targeting efficacy, thus increasing drug accumulation in the tumor site. The combined therapy (iEXO-OXA) elicits anti-tumor immunity through tumor-suppressive macrophage polarization, cytotoxic T lymphocytes recruitment and Tregs downregulation, and achieves significant therapeutic efficacy in cancer treatment.Immunotherapy has gained increasing focus in treating pancreatic ductal adenocarcinoma (PDAC), since conventional therapies like chemotherapy could not provide satisfactory improvement in overall survival outcome of PDAC patients. However, it is still not the game changing solution due to the unique tumor microenvironment and low cancer immunogenicity of PDAC. Thus, inducing more intratumoral effector immune cells as well as reversing immunosuppression is the core of PDAC treatment. Herein, we demonstrate an exosome-based dual delivery biosystem for enhancing PDAC immunotherapy as well as reversing tumor immunosuppression of M2-like tumor associated macrophages (M2-TAMs) upon disruption of galectin-9/dectin 1 axis. The deliver system is constructed from bone marrow mesenchymal stem cell (BM-MSC) exosomes, electroporation-loaded galectin-9 siRNA, and surficially modified with oxaliplatin (OXA) prodrug as an immunogenic cell death (ICD)-trigger. The use of biomaterials, BM-MSC exosomes, can significantly improve tumor targeting efficacy, thus increasing drug accumulation in the tumor site. The combined therapy (iEXO-OXA) elicits anti-tumor immunity through tumor-suppressive macrophage polarization, cytotoxic T lymphocytes recruitment and Tregs downregulation, and achieves significant therapeutic efficacy in cancer treatment.
ArticleNumber 120546
Author Chen, Hongyi
Zhou, Yu
Zhang, Yiwen
Sun, Tao
Zhou, Wenxi
Chen, Xinli
Zhang, Yujie
Chu, Yongchao
Guo, Qin
Jiang, Chen
Ning, Tingting
Li, Chao
Liu, Peixin
Author_xml – sequence: 1
  givenname: Wenxi
  surname: Zhou
  fullname: Zhou, Wenxi
  organization: Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
– sequence: 2
  givenname: Yu
  surname: Zhou
  fullname: Zhou, Yu
  organization: Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
– sequence: 3
  givenname: Xinli
  surname: Chen
  fullname: Chen, Xinli
  organization: Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
– sequence: 4
  givenname: Tingting
  surname: Ning
  fullname: Ning, Tingting
  organization: Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
– sequence: 5
  givenname: Hongyi
  surname: Chen
  fullname: Chen, Hongyi
  organization: Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
– sequence: 6
  givenname: Qin
  surname: Guo
  fullname: Guo, Qin
  organization: Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
– sequence: 7
  givenname: Yiwen
  surname: Zhang
  fullname: Zhang, Yiwen
  organization: Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
– sequence: 8
  givenname: Peixin
  surname: Liu
  fullname: Liu, Peixin
  organization: Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
– sequence: 9
  givenname: Yujie
  surname: Zhang
  fullname: Zhang, Yujie
  organization: Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
– sequence: 10
  givenname: Chao
  surname: Li
  fullname: Li, Chao
  organization: Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
– sequence: 11
  givenname: Yongchao
  surname: Chu
  fullname: Chu, Yongchao
  organization: Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
– sequence: 12
  givenname: Tao
  surname: Sun
  fullname: Sun, Tao
  organization: Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
– sequence: 13
  givenname: Chen
  surname: Jiang
  fullname: Jiang, Chen
  email: jiangchen@shmu.edu.cn
  organization: Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33253966$$D View this record in MEDLINE/PubMed
BookMark eNqNUctuFDEQtFAQ2QR-AY04cZnF7x1zgoRXpEjkEM6Wx9Oz8TK2F9sTsX-PV5tIKJfsyY-urq6uOkMnIQZA6B3BS4KJ_LBZ9i56UyA5M-UlxbQWKBZcvkAL0q26VigsTtACE05bJQk9RWc5b3B9Y05foVPGqGBKygVyNybYBKY429h6hdQWk9ZQXFg38Dfm6CE3Y0wNhLta33877-cQyx0ks901JgxNgm2K62S839fL7CveO5sihHuXYvAQymv0cqxy4c3DeY5-fft6e_mjvf75_ery83VrBetK242jFNQIEHS1snKo20nSDR2ugkciuSLGYhgV7bk0knFmRyX6FTVK8K4fBDtH7w-8VdKfGXLR3mUL02QCxDlrKiinXAqlnodyKTHrMGMV-vYBOvceBr1Nzpu0049OVsCnA6BunXOCUVtXqq0xlGTcpAnW-_D0Rv8fnt6Hpw_hVYqPTygepxzV_OXQDNXbewdJZ-ugBjq4BLboIbrjaC6e0NjJBWfN9Bt2x5L8A1PT1UM
CitedBy_id crossref_primary_10_1016_j_cej_2021_131419
crossref_primary_10_1016_j_ijbiomac_2023_125794
crossref_primary_10_2147_IJN_S388604
crossref_primary_10_1088_1361_6528_ad5690
crossref_primary_10_1002_advs_202206095
crossref_primary_10_1016_j_biomaterials_2021_120708
crossref_primary_10_2139_ssrn_4051618
crossref_primary_10_3390_cancers16162876
crossref_primary_10_1016_j_clinsp_2024_100481
crossref_primary_10_3390_cells12030356
crossref_primary_10_1007_s11060_023_04257_y
crossref_primary_10_1186_s13045_022_01305_4
crossref_primary_10_3390_ijms22105278
crossref_primary_10_1039_D3CS00602F
crossref_primary_10_3390_ijms24043559
crossref_primary_10_59313_jsr_a_1439875
crossref_primary_10_3389_fphar_2021_734443
crossref_primary_10_1080_2162402X_2022_2152635
crossref_primary_10_3390_cells13141183
crossref_primary_10_1038_s41416_023_02175_4
crossref_primary_10_3390_ijms23031496
crossref_primary_10_1039_D4NA00393D
crossref_primary_10_1016_j_canlet_2022_215823
crossref_primary_10_3389_fonc_2023_1149551
crossref_primary_10_3389_fmolb_2022_1020888
crossref_primary_10_3390_app14198948
crossref_primary_10_1016_j_biopha_2023_114373
crossref_primary_10_1016_j_phymed_2025_156514
crossref_primary_10_1088_2516_1091_ac73c9
crossref_primary_10_3389_fimmu_2021_802080
crossref_primary_10_3389_fimmu_2024_1401852
crossref_primary_10_1016_j_virol_2024_110303
crossref_primary_10_3389_fbioe_2021_653417
crossref_primary_10_1002_mco2_339
crossref_primary_10_1016_j_cej_2024_149234
crossref_primary_10_1038_s41420_023_01698_2
crossref_primary_10_1186_s12935_024_03456_5
crossref_primary_10_1016_j_apsb_2024_05_010
crossref_primary_10_1186_s12951_023_01825_2
crossref_primary_10_1016_j_prp_2024_155214
crossref_primary_10_1016_j_actbio_2022_12_013
crossref_primary_10_12677_acm_2024_1451601
crossref_primary_10_3390_curroncol31110536
crossref_primary_10_1016_j_trim_2022_101766
crossref_primary_10_1080_17425247_2022_2045943
crossref_primary_10_1080_14728222_2023_2259102
crossref_primary_10_3390_biom11060901
crossref_primary_10_1186_s40824_023_00350_5
crossref_primary_10_2174_1567201820666230504120841
crossref_primary_10_1016_j_jconrel_2024_04_009
crossref_primary_10_1021_acs_biomac_1c01081
crossref_primary_10_1016_j_bbcan_2025_189287
crossref_primary_10_3390_ijtm4020015
crossref_primary_10_1016_j_bbrc_2023_05_024
crossref_primary_10_1016_j_phrs_2023_106880
crossref_primary_10_1097_MPA_0000000000002115
crossref_primary_10_1186_s12885_023_10705_9
crossref_primary_10_1016_j_semcancer_2023_11_003
crossref_primary_10_3390_cancers13246175
crossref_primary_10_1016_j_gendis_2022_10_020
crossref_primary_10_1186_s12951_022_01330_y
crossref_primary_10_1002_advs_202301339
crossref_primary_10_3389_fmolb_2022_1022725
crossref_primary_10_1155_2024_2825971
crossref_primary_10_3389_fimmu_2024_1362120
crossref_primary_10_1016_j_actbio_2022_08_020
crossref_primary_10_1016_j_ajps_2023_100852
crossref_primary_10_1016_j_intimp_2024_112171
crossref_primary_10_1186_s12951_023_01973_5
crossref_primary_10_4251_wjgo_v15_i4_596
crossref_primary_10_3389_fimmu_2023_1130033
crossref_primary_10_1002_smll_202107712
crossref_primary_10_1016_j_nantod_2023_101771
crossref_primary_10_1002_smll_202206441
crossref_primary_10_1080_10717544_2022_2104404
crossref_primary_10_1002_mabi_202300093
crossref_primary_10_3390_curroncol31090361
crossref_primary_10_3390_pharmaceutics14040733
crossref_primary_10_1016_j_jddst_2024_106411
crossref_primary_10_3389_fbioe_2022_1091360
crossref_primary_10_1007_s12079_023_00794_3
crossref_primary_10_1016_j_biopha_2024_117296
crossref_primary_10_7717_peerj_18783
crossref_primary_10_1002_adfm_202303195
crossref_primary_10_1038_s41698_024_00681_z
crossref_primary_10_3390_pharmaceutics15051465
crossref_primary_10_3390_cancers14235793
crossref_primary_10_3390_cancers15133507
crossref_primary_10_1016_j_phymed_2025_156390
crossref_primary_10_3390_cells12121560
crossref_primary_10_3390_ijms22179543
crossref_primary_10_1007_s11033_022_07765_8
crossref_primary_10_1016_j_bbcan_2024_189183
crossref_primary_10_3390_cancers14174236
crossref_primary_10_3390_ijms24076174
crossref_primary_10_1016_j_apsb_2024_07_007
crossref_primary_10_1039_D1BM00331C
crossref_primary_10_3389_fbioe_2022_1019459
crossref_primary_10_3389_fbioe_2023_1214190
crossref_primary_10_1016_j_actbio_2023_02_011
crossref_primary_10_1155_2021_7844455
crossref_primary_10_2147_IJN_S379917
crossref_primary_10_2147_IJN_S457008
crossref_primary_10_1002_smll_202302834
crossref_primary_10_1186_s12645_023_00173_y
crossref_primary_10_1039_D2BM01044E
crossref_primary_10_1186_s12967_022_03325_7
crossref_primary_10_4251_wjgo_v13_i12_1981
crossref_primary_10_1186_s12645_022_00117_y
crossref_primary_10_3390_molecules27227789
crossref_primary_10_1177_11795549241271691
crossref_primary_10_1186_s40001_023_01556_y
crossref_primary_10_1002_adfm_202404900
crossref_primary_10_1016_j_canlet_2022_215934
crossref_primary_10_1186_s12951_022_01429_2
crossref_primary_10_3390_ijms23095253
crossref_primary_10_3748_wjg_v28_i32_4527
crossref_primary_10_1002_smll_202203825
crossref_primary_10_25259_Cytojournal_99_2024
crossref_primary_10_1186_s12951_023_02064_1
crossref_primary_10_3390_pharmaceutics15010066
crossref_primary_10_1016_j_biomaterials_2025_123282
crossref_primary_10_1002_ijc_34471
crossref_primary_10_3390_ijms25147715
crossref_primary_10_1186_s13018_023_04017_8
crossref_primary_10_1016_j_mtbio_2023_100760
crossref_primary_10_1016_j_drudis_2024_104061
crossref_primary_10_1016_j_intimp_2023_111025
crossref_primary_10_1016_j_jconrel_2022_05_062
crossref_primary_10_1016_j_mtbio_2022_100238
crossref_primary_10_1002_adtp_202200255
crossref_primary_10_3389_fmolb_2024_1447953
crossref_primary_10_3389_fphar_2022_1107329
crossref_primary_10_3390_cancers15061776
crossref_primary_10_1186_s13045_021_01149_4
crossref_primary_10_3390_pharmaceutics13081106
crossref_primary_10_3390_molecules28093816
crossref_primary_10_3390_ijms25063406
crossref_primary_10_1016_j_ajps_2021_12_001
crossref_primary_10_1002_mog2_67
crossref_primary_10_3892_or_2024_8846
crossref_primary_10_3389_fonc_2022_951019
crossref_primary_10_1186_s12951_022_01472_z
crossref_primary_10_3390_pharmaceutics15020534
crossref_primary_10_1002_chem_202400660
crossref_primary_10_3389_fimmu_2022_863346
crossref_primary_10_3389_fonc_2024_1502283
crossref_primary_10_1016_j_apmt_2024_102084
crossref_primary_10_1021_acsbiomaterials_3c00745
crossref_primary_10_3390_ijms24021012
crossref_primary_10_20517_evcna_2023_58
crossref_primary_10_1016_j_addr_2021_113974
crossref_primary_10_1016_j_semcancer_2021_05_001
crossref_primary_10_1016_j_biomaterials_2022_121484
crossref_primary_10_3389_fimmu_2024_1421854
crossref_primary_10_1007_s12032_022_01781_1
crossref_primary_10_1016_j_tice_2024_102449
crossref_primary_10_1016_j_biopha_2023_115505
crossref_primary_10_1186_s13045_021_01141_y
crossref_primary_10_4049_jimmunol_2100706
crossref_primary_10_1016_j_cyto_2022_156108
crossref_primary_10_1016_j_mam_2022_101167
crossref_primary_10_3390_cancers13123040
crossref_primary_10_1016_j_phrs_2021_105980
crossref_primary_10_1186_s43556_022_00088_x
crossref_primary_10_1186_s13287_024_04061_z
crossref_primary_10_1016_j_jddst_2022_104042
crossref_primary_10_3389_fimmu_2022_838374
crossref_primary_10_1186_s12964_021_00789_w
crossref_primary_10_3390_ijms232213974
crossref_primary_10_1016_j_tranon_2023_101842
crossref_primary_10_3390_cancers13184537
crossref_primary_10_3892_ol_2022_13555
crossref_primary_10_3389_fimmu_2023_1269391
crossref_primary_10_1016_j_jconrel_2023_01_075
crossref_primary_10_1016_j_semcancer_2023_09_004
crossref_primary_10_1039_D3TB01008B
crossref_primary_10_1111_jcmm_18348
crossref_primary_10_2174_1566523221666211119110755
crossref_primary_10_3390_biology11020177
crossref_primary_10_3390_pharmaceutics14102208
crossref_primary_10_1007_s13346_024_01784_7
crossref_primary_10_3389_fonc_2021_667427
crossref_primary_10_1016_j_actbio_2024_11_011
crossref_primary_10_3389_fphar_2023_1144955
crossref_primary_10_3390_pharmaceutics15020598
crossref_primary_10_1038_s41416_023_02336_5
crossref_primary_10_3390_nano14070639
crossref_primary_10_1002_wnan_2012
crossref_primary_10_1021_acsbiomaterials_4c00856
crossref_primary_10_3390_biomedicines11041231
crossref_primary_10_1186_s12964_024_01510_3
crossref_primary_10_1186_s12964_024_01473_5
crossref_primary_10_1016_j_biopha_2022_113992
crossref_primary_10_1016_j_biopha_2023_115179
crossref_primary_10_3390_pharmaceutics14102236
crossref_primary_10_3390_cells13080682
crossref_primary_10_1186_s12964_023_01370_3
crossref_primary_10_1186_s12951_024_02513_5
crossref_primary_10_1186_s12964_024_01654_2
crossref_primary_10_1016_j_csbj_2024_04_054
crossref_primary_10_1186_s12951_024_02975_7
crossref_primary_10_1016_j_canlet_2021_11_015
crossref_primary_10_2174_0115680266304636240626055711
crossref_primary_10_3389_fphar_2024_1490896
crossref_primary_10_3390_cancers16030567
crossref_primary_10_3389_fonc_2021_743189
crossref_primary_10_3390_molecules27041303
crossref_primary_10_1166_jbn_2021_3134
crossref_primary_10_1007_s12672_022_00539_5
crossref_primary_10_1039_D2BM01058E
crossref_primary_10_3389_fimmu_2022_1104625
crossref_primary_10_3390_pharmaceutics15051453
crossref_primary_10_1002_mco2_709
crossref_primary_10_1016_j_biopha_2023_115717
crossref_primary_10_21926_obm_genet_2403252
crossref_primary_10_1016_j_ejpb_2021_12_003
crossref_primary_10_1016_j_jconrel_2021_12_024
crossref_primary_10_1186_s12951_022_01382_0
crossref_primary_10_3389_fimmu_2022_1093607
crossref_primary_10_2147_IJN_S457782
crossref_primary_10_3389_fcell_2024_1372847
crossref_primary_10_1038_s41419_023_05753_9
crossref_primary_10_1002_jex2_156
crossref_primary_10_3390_cancers15082256
crossref_primary_10_1186_s13045_021_01208_w
crossref_primary_10_3390_cells12050720
crossref_primary_10_1007_s00216_022_04147_8
crossref_primary_10_2147_IJN_S413496
crossref_primary_10_1186_s13045_024_01535_8
crossref_primary_10_3390_cancers15102838
crossref_primary_10_1021_acsnano_4c02947
crossref_primary_10_3390_molecules28031506
crossref_primary_10_1016_j_canlet_2022_215751
crossref_primary_10_1016_j_canlet_2022_215993
crossref_primary_10_1155_2022_1779346
crossref_primary_10_3389_fimmu_2023_1296857
crossref_primary_10_3389_fmolb_2022_807497
crossref_primary_10_1016_j_jconrel_2023_08_002
crossref_primary_10_1016_j_critrevonc_2024_104594
crossref_primary_10_1002_adma_202211579
crossref_primary_10_52586_5061
crossref_primary_10_1016_j_jddst_2024_106259
crossref_primary_10_1021_acs_molpharmaceut_1c00653
crossref_primary_10_1021_acs_bioconjchem_3c00205
crossref_primary_10_1002_mco2_660
crossref_primary_10_1016_j_pbiomolbio_2025_02_003
crossref_primary_10_1016_j_jconrel_2022_01_008
crossref_primary_10_1002_adtp_202200079
crossref_primary_10_1093_carcin_bgac091
crossref_primary_10_1360_TB_2021_0987
crossref_primary_10_3390_app122312259
crossref_primary_10_1016_j_semcancer_2022_04_007
crossref_primary_10_1002_adhm_202404821
crossref_primary_10_1016_j_vesic_2023_100022
crossref_primary_10_1016_j_lfs_2022_120935
crossref_primary_10_1002_mco2_70019
crossref_primary_10_3389_fimmu_2024_1484535
crossref_primary_10_1002_ctm2_497
crossref_primary_10_3389_fcell_2021_679658
crossref_primary_10_3390_life13102033
crossref_primary_10_1080_21645515_2022_2143154
crossref_primary_10_1016_j_bbcan_2024_189238
crossref_primary_10_1016_j_jconrel_2023_09_032
crossref_primary_10_3390_cancers13194844
crossref_primary_10_1016_j_addr_2022_114450
crossref_primary_10_1186_s12929_022_00798_y
crossref_primary_10_1016_j_bbrc_2022_11_040
crossref_primary_10_1016_j_intimp_2024_112820
crossref_primary_10_3390_pharmaceutics14102033
crossref_primary_10_1016_j_jconrel_2022_06_014
crossref_primary_10_3390_pharmaceutics15071814
crossref_primary_10_1007_s12032_025_02626_3
crossref_primary_10_1002_adhm_202100650
crossref_primary_10_1002_ijc_34195
crossref_primary_10_1016_j_actbio_2022_07_022
crossref_primary_10_1186_s12943_022_01650_5
crossref_primary_10_1002_ddr_22000
crossref_primary_10_3389_fonc_2022_1101823
crossref_primary_10_1038_s41392_022_00932_0
crossref_primary_10_3389_fonc_2024_1362436
crossref_primary_10_1021_acsnano_4c11630
crossref_primary_10_1016_j_tranon_2025_102291
crossref_primary_10_1186_s12885_022_10207_0
crossref_primary_10_1039_D3TB01991H
crossref_primary_10_1186_s12964_021_00808_w
crossref_primary_10_2147_IJN_S466459
crossref_primary_10_1016_j_actbio_2024_01_010
crossref_primary_10_2217_nnm_2023_0335
crossref_primary_10_3389_fphar_2022_1001417
crossref_primary_10_1080_13543784_2024_2360209
crossref_primary_10_3390_cancers14051221
crossref_primary_10_3390_cancers15041307
crossref_primary_10_3389_fcell_2022_830208
crossref_primary_10_3390_pharmaceutics13101638
crossref_primary_10_1016_j_jelechem_2022_116590
crossref_primary_10_3390_biom11121912
crossref_primary_10_3390_cancers16050919
crossref_primary_10_20517_cdr_2024_107
crossref_primary_10_1016_j_trecan_2024_07_010
crossref_primary_10_1111_cpr_13630
crossref_primary_10_3390_ijms23073620
crossref_primary_10_1186_s12943_023_01898_5
crossref_primary_10_1186_s12943_024_02215_4
crossref_primary_10_1002_adhm_202202245
crossref_primary_10_1016_j_biomaterials_2021_121306
crossref_primary_10_3389_fimmu_2022_1017400
Cites_doi 10.1146/annurev-immunol-032712-100008
10.1073/pnas.1320318110
10.1016/j.clim.2015.03.021
10.1016/j.addr.2012.07.001
10.1158/0008-5472.CAN-07-0175
10.1002/adma.201803001
10.1371/journal.pone.0152599
10.1016/j.apsb.2019.11.013
10.1038/leu.2016.107
10.1016/j.ccell.2015.03.001
10.1097/PPO.0000000000000011
10.1016/j.jconrel.2017.09.019
10.3402/jev.v4.26316
10.3748/wjg.v20.i9.2237
10.1038/nprot.2012.131
10.3402/jev.v3.24641
10.1186/s12885-017-3958-1
10.1038/nri3254
10.1158/1078-0432.CCR-04-0861
10.1038/s41467-017-01651-9
10.1038/nature22341
10.1186/s12943-020-01151-3
10.1371/journal.pone.0081799
10.1038/nm1523
10.1038/nature13954
10.1016/j.ejca.2018.12.007
10.1016/j.addr.2016.02.006
10.1016/j.imbio.2005.05.021
10.7150/thno.24110
10.1002/adma.201705328
10.1080/2162402X.2016.1273309
10.1038/s41388-020-1186-7
10.1126/science.1208347
10.1038/nm.4314
10.1038/nbt.1807
10.1016/j.trecan.2018.04.001
10.1016/j.nano.2015.10.012
10.1038/s41557-018-0209-2
10.1038/nm1622
10.1056/NEJMra1404198
10.1111/cas.12059
10.1016/j.addr.2017.05.013
10.1016/j.coi.2013.01.006
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.biomaterials.2020.120546
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

PubMed
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1878-5905
ExternalDocumentID 33253966
10_1016_j_biomaterials_2020_120546
S0142961220307924
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAIAV
AAYOK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
RIG
AAYXX
AGRNS
BNPGV
CITATION
SSH
NPM
PKN
7X8
7S9
L.6
ID FETCH-LOGICAL-c538t-8ff652a5e5277c6d202618d80539f16491ac0ef92b46a6343cf95b72a9548bd53
IEDL.DBID .~1
ISSN 0142-9612
1878-5905
IngestDate Fri Jul 11 15:37:30 EDT 2025
Fri Jul 11 15:42:36 EDT 2025
Wed Feb 19 02:28:31 EST 2025
Thu Apr 24 23:03:50 EDT 2025
Tue Jul 01 01:19:42 EDT 2025
Fri Feb 23 02:44:13 EST 2024
Tue Aug 26 19:59:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Galectin 9/dectin 1 axis
Macrophage polarization
Pancreatic cancer immunotherapy
Immunogenic cell death
BM-MSC exosomes
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c538t-8ff652a5e5277c6d202618d80539f16491ac0ef92b46a6343cf95b72a9548bd53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 33253966
PQID 2466038033
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2524246599
proquest_miscellaneous_2466038033
pubmed_primary_33253966
crossref_citationtrail_10_1016_j_biomaterials_2020_120546
crossref_primary_10_1016_j_biomaterials_2020_120546
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2020_120546
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2020_120546
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Horibe, Tanahashi, Kawauchi, Murakami, Rikitake (bib33) 2018; 18
Ohue, Kurose, Nozawa, Isobe, Nishio, Tanaka, Doki, Hori, Fukuoka, Oka, Nakayama (bib42) 2016; 4
Joffre, Segura, Savina, Amigorena (bib44) 2012; 12
Feig, Jones, Kraman, Wells, Deonarine, Chan, Connell, Roberts, Zhao, Caballero, Teichmann, Janowitz, Jodrell, Tuveson, Fearon (bib2) 2013; 110
Seifert, Reiche, Heiduk, Tannert, Meinecke, Baier, von Renesse, Kahlert, Distler, Welsch, Reissfelder, Aust, Miller, Weitz, Seifert (bib9) 2020; 39
Rucki, Zheng (bib11) 2014; 20
Obeid, Tesniere, Ghiringhelli, Fimia, Apetoh, Perfettini, Castedo, Mignot, Panaretakis, Casares, Metivier, Larochette, van Endert, Ciccosanti, Piacentini, Zitvogel, Kroemer (bib21) 2007; 13
Apetoh, Ghiringhelli, Tesniere, Obeid, Ortiz, Criollo, Mignot, Maiuri, Ullrich, Saulnier, Yang, Amigorena, Ryffel, Barrat, Saftig, Levi, Lidereau, Nogues, Mira, Chompret, Joulin, Clavel-Chapelon, Bourhis, Andre, Delaloge, Tursz, Kroemer, Zitvogel (bib23) 2007; 13
Cowan, Maitra (bib10) 2014; 20
Costa Verdera, Gitz-Francois, Schiffelers, Vader (bib32) 2017; 266
Kim, Haney, Zhao, Mahajan, Deygen, Klyachko, Inskoe, Piroyan, Sokolsky, Okolie, Hingtgen, Kabanov, Batrakova (bib15) 2016; 12
Jiang, Jin, Kong, Cao, Ma, Jia, Wang, Suo, Cao (bib40) 2013; 8
Huang, Wu, Gao, Yu, Lei, Zhu, Shi, Chen, Qin, Wang, Cao (bib27) 2019; 11
Tran, Mattheolabakis, Aldawsari, Amiji (bib17) 2015; 160
El-Andaloussi, Lee, Lakhal-Littleton, Li, Seow, Gardiner, Alvarez-Erviti, Sargent, Wood (bib30) 2012; 7
Wen, Dooner, Cheng, Papa, Del Tatto, Pereira, Deng, Goldberg, Aliotta, Chatterjee, Stewart, Carpanetto, Collino, Bruno, Camussi, Quesenberry (bib35) 2016; 30
Wang-Gillam, Hubner, Siveke, Von Hoff, Belanger, de Jong, Mirakhur, Chen (bib13) 2019; 108
Mulcahy, Pink, Carter (bib31) 2014; 3
Vader, Mol, Pasterkamp, Schiffelers (bib16) 2016; 106
Clark, Hingorani, Mick, Combs, Tuveson, Vonderheide (bib5) 2007; 67
Michaud, Martins, Sukkurwala, Adjemian, Ma, Pellegatti, Shen, Kepp, Scoazec, Mignot, Rello-Varona, Tailler, Menger, Vacchelli, Galluzzi, Ghiringhelli, di Virgilio, Zitvogel, Kroemer (bib22) 2011; 334
Kroemer, Galluzzi, Kepp, Zitvogel (bib38) 2013; 31
Topalian, Drake, Pardoll (bib3) 2015; 27
Wang, Sun, Ma, Gao, Song, Xue, Chen, Chen, Zhang, Shao, Wang, Zhao, Liu, Wang, Wang, Zhang, Yang, Qu (bib41) 2016; 11
Ryan, Hong, Bardeesy (bib1) 2014; 371
Daley, Mani, Mohan, Akkad, Ochi, Heindel, Lee, Zambirinis, Pandian, Savadkar, Torres-Hernandez, Nayak, Wang, Hundeyin, Diskin, Aykut, Werba, Barilla, Rodriguez, Chang, Gardner, Mahal, Ueberheide, Miller (bib8) 2017; 23
Wiklander, Nordin, O'Loughlin, Gustafsson, Corso, Mager, Vader, Lee, Sork, Seow, Heldring, Alvarez-Erviti, Smith, Le Blanc, Macchiarini, Jungebluth, Wood, Andaloussi (bib36) 2015; 4
Morrison, Byrne, Vonderheide (bib7) 2018; 4
Zhou, Zhou, Chen, Wang, Li, Chen, Zhang, Lu, Ding, Jiang (bib18) 2019; 10
Lu, Liu, Liao, Salazar, Sun, Jiang, Chang, Jiang, Wang, Wu, Meng, Nel (bib20) 2017; 8
Yeo, Lai, Zhang, Tan, Yin, Teh, Lim (bib37) 2013; 65
Tumeh, Harview, Yearley, Shintaku, Taylor, Robert, Chmielowski, Spasic, Henry, Ciobanu, West, Carmona, Kivork, Seja, Cherry, Gutierrez, Grogan, Mateus, Tomasic, Glaspy, Emerson, Robins, Pierce, Elashoff, Robert, Ribas (bib4) 2014; 515
Kabashima-Niibe, Higuchi, Takaishi, Masugi, Matsuzaki, Mabuchi, Funakoshi, Adachi, Hamamoto, Kawachi, Aiura, Kitagawa, Sakamoto, Hibi (bib34) 2013; 104
Baron-Bodo, Doceur, Lefebvre, Labroquere, Defaye, Cambouris, Prigent, Salcedo, Boyer, Nardin (bib28) 2005; 210
Fenton, Olafson, Pillai, Mitchell, Langer (bib12) 2018
Feng, Zhou, Hou, Wang, Wang, Fu, Ma, Yu, Li (bib25) 2018; 30
Irie, Yamauchi, Kontani, Kihara, Liu, Shirato, Seki, Nishi, Nakamura, Yokomise, Hirashima (bib43) 2005; 11
Vonderheide, Bayne (bib19) 2013; 25
Sideras, Biermann, Verheij, Takkenberg, Mancham, Hansen, Schutz, de Man, Sprengers, Buschow, Verseput, Boor, Pan, van Gulik, Terkivatan, Ijzermans, Beuers, Sleijfer, Bruno, Kwekkeboom (bib39) 2017; 6
Alvarez-Erviti, Seow, Yin, Betts, Lakhal, Wood (bib29) 2011; 29
Stewart, Keselowsky (bib14) 2017; 114
Liu, Chen, Ruan, Chen, Zhang, He, Zhang, Lu, Guo, Sun, Wang, Jiang (bib24) 2018; 8
Kamerkar, LeBleu, Sugimoto, Yang, Ruivo, Melo, Lee, Kalluri (bib26) 2017; 546
Fan, Wang, Chen, Shang, Das, Song (bib6) 2020; 19
Vonderheide (10.1016/j.biomaterials.2020.120546_bib19) 2013; 25
Michaud (10.1016/j.biomaterials.2020.120546_bib22) 2011; 334
Wang (10.1016/j.biomaterials.2020.120546_bib41) 2016; 11
Ohue (10.1016/j.biomaterials.2020.120546_bib42) 2016; 4
Feig (10.1016/j.biomaterials.2020.120546_bib2) 2013; 110
Vader (10.1016/j.biomaterials.2020.120546_bib16) 2016; 106
Irie (10.1016/j.biomaterials.2020.120546_bib43) 2005; 11
Wen (10.1016/j.biomaterials.2020.120546_bib35) 2016; 30
Cowan (10.1016/j.biomaterials.2020.120546_bib10) 2014; 20
Kroemer (10.1016/j.biomaterials.2020.120546_bib38) 2013; 31
Alvarez-Erviti (10.1016/j.biomaterials.2020.120546_bib29) 2011; 29
Sideras (10.1016/j.biomaterials.2020.120546_bib39) 2017; 6
Costa Verdera (10.1016/j.biomaterials.2020.120546_bib32) 2017; 266
Tran (10.1016/j.biomaterials.2020.120546_bib17) 2015; 160
Kabashima-Niibe (10.1016/j.biomaterials.2020.120546_bib34) 2013; 104
Rucki (10.1016/j.biomaterials.2020.120546_bib11) 2014; 20
Jiang (10.1016/j.biomaterials.2020.120546_bib40) 2013; 8
Wiklander (10.1016/j.biomaterials.2020.120546_bib36) 2015; 4
Wang-Gillam (10.1016/j.biomaterials.2020.120546_bib13) 2019; 108
Joffre (10.1016/j.biomaterials.2020.120546_bib44) 2012; 12
Stewart (10.1016/j.biomaterials.2020.120546_bib14) 2017; 114
Feng (10.1016/j.biomaterials.2020.120546_bib25) 2018; 30
Kamerkar (10.1016/j.biomaterials.2020.120546_bib26) 2017; 546
Topalian (10.1016/j.biomaterials.2020.120546_bib3) 2015; 27
Fenton (10.1016/j.biomaterials.2020.120546_bib12) 2018
Morrison (10.1016/j.biomaterials.2020.120546_bib7) 2018; 4
Liu (10.1016/j.biomaterials.2020.120546_bib24) 2018; 8
Tumeh (10.1016/j.biomaterials.2020.120546_bib4) 2014; 515
Fan (10.1016/j.biomaterials.2020.120546_bib6) 2020; 19
Obeid (10.1016/j.biomaterials.2020.120546_bib21) 2007; 13
Seifert (10.1016/j.biomaterials.2020.120546_bib9) 2020; 39
Ryan (10.1016/j.biomaterials.2020.120546_bib1) 2014; 371
Mulcahy (10.1016/j.biomaterials.2020.120546_bib31) 2014; 3
Yeo (10.1016/j.biomaterials.2020.120546_bib37) 2013; 65
Lu (10.1016/j.biomaterials.2020.120546_bib20) 2017; 8
El-Andaloussi (10.1016/j.biomaterials.2020.120546_bib30) 2012; 7
Daley (10.1016/j.biomaterials.2020.120546_bib8) 2017; 23
Huang (10.1016/j.biomaterials.2020.120546_bib27) 2019; 11
Kim (10.1016/j.biomaterials.2020.120546_bib15) 2016; 12
Apetoh (10.1016/j.biomaterials.2020.120546_bib23) 2007; 13
Baron-Bodo (10.1016/j.biomaterials.2020.120546_bib28) 2005; 210
Horibe (10.1016/j.biomaterials.2020.120546_bib33) 2018; 18
Zhou (10.1016/j.biomaterials.2020.120546_bib18) 2019; 10
Clark (10.1016/j.biomaterials.2020.120546_bib5) 2007; 67
References_xml – volume: 20
  start-page: 2237
  year: 2014
  end-page: 2246
  ident: bib11
  article-title: Pancreatic cancer stroma: understanding biology leads to new therapeutic strategies
  publication-title: World J. Gastroenterol.
– volume: 29
  start-page: 341
  year: 2011
  end-page: 345
  ident: bib29
  article-title: Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes
  publication-title: Nat. Biotechnol.
– volume: 266
  start-page: 100
  year: 2017
  end-page: 108
  ident: bib32
  article-title: Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis
  publication-title: J. Contr. Release
– volume: 27
  start-page: 450
  year: 2015
  end-page: 461
  ident: bib3
  article-title: Immune checkpoint blockade: a common denominator approach to cancer therapy
  publication-title: Canc. Cell
– volume: 13
  start-page: 54
  year: 2007
  end-page: 61
  ident: bib21
  article-title: Calreticulin exposure dictates the immunogenicity of cancer cell death
  publication-title: Nat. Med.
– volume: 515
  start-page: 568
  year: 2014
  end-page: 571
  ident: bib4
  article-title: PD-1 blockade induces responses by inhibiting adaptive immune resistance
  publication-title: Nature
– volume: 11
  start-page: 310
  year: 2019
  end-page: 319
  ident: bib27
  article-title: Maleimide-thiol adducts stabilized through stretching
  publication-title: Nat. Chem.
– volume: 104
  start-page: 157
  year: 2013
  end-page: 164
  ident: bib34
  article-title: Mesenchymal stem cells regulate epithelial-mesenchymal transition and tumor progression of pancreatic cancer cells
  publication-title: Canc. Sci.
– year: 2018
  ident: bib12
  article-title: Advances in biomaterials for drug delivery
  publication-title: Adv. Mater.
– volume: 12
  start-page: 655
  year: 2016
  end-page: 664
  ident: bib15
  article-title: Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells
  publication-title: Nanomedicine
– volume: 31
  start-page: 51
  year: 2013
  end-page: 72
  ident: bib38
  article-title: Immunogenic cell death in cancer therapy
  publication-title: Annu. Rev. Immunol.
– volume: 6
  year: 2017
  ident: bib39
  article-title: PD-L1, Galectin-9 and CD8+ tumor-infiltrating lymphocytes are associated with survival in hepatocellular carcinoma
  publication-title: OncoImmunology
– volume: 13
  start-page: 1050
  year: 2007
  end-page: 1059
  ident: bib23
  article-title: Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy
  publication-title: Nat. Med.
– volume: 4
  start-page: 1049
  year: 2016
  end-page: 1060
  ident: bib42
  article-title: Survival of lung adenocarcinoma patients predicted from expression of PD-L1, galectin-9, and XAGE1 (GAGED2a) on tumor cells and tumor-infiltrating T cells, cancer immunol
  publication-title: Res.
– volume: 4
  start-page: 418
  year: 2018
  end-page: 428
  ident: bib7
  article-title: Immunotherapy and prevention of pancreatic cancer
  publication-title: Trends Cancer
– volume: 4
  start-page: 26316
  year: 2015
  ident: bib36
  article-title: Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting
  publication-title: J. Extracell. Vesicles
– volume: 39
  start-page: 3102
  year: 2020
  end-page: 3113
  ident: bib9
  article-title: Detection of pancreatic ductal adenocarcinoma with galectin-9 serum levels
  publication-title: Oncogene
– volume: 546
  start-page: 498
  year: 2017
  end-page: 503
  ident: bib26
  article-title: Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer
  publication-title: Nature
– volume: 7
  start-page: 2112
  year: 2012
  end-page: 2126
  ident: bib30
  article-title: Exosome-mediated delivery of siRNA in vitro and in vivo
  publication-title: Nat. Protoc.
– volume: 160
  start-page: 46
  year: 2015
  end-page: 58
  ident: bib17
  article-title: Exosomes as nanocarriers for immunotherapy of cancer and inflammatory diseases
  publication-title: Clin. Immunol.
– volume: 8
  start-page: 1811
  year: 2017
  ident: bib20
  article-title: Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression
  publication-title: Nat. Commun.
– volume: 25
  start-page: 200
  year: 2013
  end-page: 205
  ident: bib19
  article-title: Inflammatory networks and immune surveillance of pancreatic carcinoma
  publication-title: Curr. Opin. Immunol.
– volume: 8
  start-page: 2974
  year: 2018
  end-page: 2987
  ident: bib24
  article-title: Platinum-based nanovectors engineered with immuno-modulating adjuvant for inhibiting tumor growth and promoting immunity
  publication-title: Theranostics
– volume: 30
  year: 2018
  ident: bib25
  article-title: Binary cooperative prodrug nanoparticles improve immunotherapy by synergistically modulating immune tumor microenvironment
  publication-title: Adv. Mater.
– volume: 11
  year: 2016
  ident: bib41
  article-title: Reduced expression of galectin-9 contributes to a poor outcome in colon cancer by inhibiting NK cell chemotaxis partially through the rho/ROCK1 signaling pathway
  publication-title: PloS One
– volume: 65
  start-page: 336
  year: 2013
  end-page: 341
  ident: bib37
  article-title: Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery
  publication-title: Adv. Drug Deliv. Rev.
– volume: 8
  year: 2013
  ident: bib40
  article-title: Decreased galectin-9 and increased Tim-3 expression are related to poor prognosis in gastric cancer
  publication-title: PloS One
– volume: 23
  start-page: 556
  year: 2017
  end-page: 567
  ident: bib8
  article-title: Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance
  publication-title: Nat. Med.
– volume: 30
  start-page: 2221
  year: 2016
  end-page: 2231
  ident: bib35
  article-title: Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells
  publication-title: Leukemia
– volume: 12
  start-page: 557
  year: 2012
  end-page: 569
  ident: bib44
  article-title: Cross-presentation by dendritic cells
  publication-title: Nat. Rev. Immunol.
– volume: 3
  year: 2014
  ident: bib31
  article-title: Routes and mechanisms of extracellular vesicle uptake
  publication-title: J. Extracell. Vesicles
– volume: 19
  start-page: 32
  year: 2020
  ident: bib6
  article-title: Current advances and outlooks in immunotherapy for pancreatic ductal adenocarcinoma
  publication-title: Mol. Canc.
– volume: 108
  start-page: 78
  year: 2019
  end-page: 87
  ident: bib13
  article-title: NAPOLI-1 phase 3 study of liposomal irinotecan in metastatic pancreatic cancer: final overall survival analysis and characteristics of long-term survivors
  publication-title: Eur. J. Canc.
– volume: 11
  start-page: 2962
  year: 2005
  end-page: 2968
  ident: bib43
  article-title: Galectin-9 as a prognostic factor with antimetastatic potential in breast cancer
  publication-title: Clin. Canc. Res.
– volume: 18
  start-page: 47
  year: 2018
  ident: bib33
  article-title: Mechanism of recipient cell-dependent differences in exosome uptake
  publication-title: BMC Canc.
– volume: 20
  start-page: 80
  year: 2014
  end-page: 84
  ident: bib10
  article-title: Genetic progression of pancreatic cancer
  publication-title: Canc. J.
– volume: 106
  start-page: 148
  year: 2016
  end-page: 156
  ident: bib16
  article-title: Extracellular vesicles for drug delivery
  publication-title: Adv. Drug Deliv. Rev.
– volume: 110
  start-page: 20212
  year: 2013
  end-page: 20217
  ident: bib2
  article-title: Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 334
  start-page: 1573
  year: 2011
  end-page: 1577
  ident: bib22
  article-title: Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice
  publication-title: Science
– volume: 67
  start-page: 9518
  year: 2007
  end-page: 9527
  ident: bib5
  article-title: Dynamics of the immune reaction to pancreatic cancer from inception to invasion
  publication-title: Canc. Res.
– volume: 210
  start-page: 267
  year: 2005
  end-page: 277
  ident: bib28
  article-title: Anti-tumor properties of human-activated macrophages produced in large scale for clinical application
  publication-title: Immunobiology
– volume: 371
  start-page: 1039
  year: 2014
  end-page: 1049
  ident: bib1
  article-title: Pancreatic adenocarcinoma
  publication-title: N. Engl. J. Med.
– volume: 114
  start-page: 161
  year: 2017
  end-page: 174
  ident: bib14
  article-title: Combinatorial drug delivery approaches for immunomodulation
  publication-title: Adv. Drug Deliv. Rev.
– volume: 10
  start-page: 1563
  year: 2019
  end-page: 1575
  ident: bib18
  article-title: Bone marrow mesenchymal stem cells-derived exosomes for penetrating and targeted chemotherapy of pancreatic cancer
  publication-title: Acta Pharm. Sin. B
– volume: 31
  start-page: 51
  year: 2013
  ident: 10.1016/j.biomaterials.2020.120546_bib38
  article-title: Immunogenic cell death in cancer therapy
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-032712-100008
– volume: 110
  start-page: 20212
  issue: 50
  year: 2013
  ident: 10.1016/j.biomaterials.2020.120546_bib2
  article-title: Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.1320318110
– volume: 160
  start-page: 46
  issue: 1
  year: 2015
  ident: 10.1016/j.biomaterials.2020.120546_bib17
  article-title: Exosomes as nanocarriers for immunotherapy of cancer and inflammatory diseases
  publication-title: Clin. Immunol.
  doi: 10.1016/j.clim.2015.03.021
– volume: 65
  start-page: 336
  issue: 3
  year: 2013
  ident: 10.1016/j.biomaterials.2020.120546_bib37
  article-title: Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2012.07.001
– volume: 67
  start-page: 9518
  issue: 19
  year: 2007
  ident: 10.1016/j.biomaterials.2020.120546_bib5
  article-title: Dynamics of the immune reaction to pancreatic cancer from inception to invasion
  publication-title: Canc. Res.
  doi: 10.1158/0008-5472.CAN-07-0175
– volume: 30
  issue: 38
  year: 2018
  ident: 10.1016/j.biomaterials.2020.120546_bib25
  article-title: Binary cooperative prodrug nanoparticles improve immunotherapy by synergistically modulating immune tumor microenvironment
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803001
– volume: 11
  issue: 3
  year: 2016
  ident: 10.1016/j.biomaterials.2020.120546_bib41
  article-title: Reduced expression of galectin-9 contributes to a poor outcome in colon cancer by inhibiting NK cell chemotaxis partially through the rho/ROCK1 signaling pathway
  publication-title: PloS One
  doi: 10.1371/journal.pone.0152599
– volume: 10
  start-page: 1563
  issue: 8
  year: 2019
  ident: 10.1016/j.biomaterials.2020.120546_bib18
  article-title: Bone marrow mesenchymal stem cells-derived exosomes for penetrating and targeted chemotherapy of pancreatic cancer
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2019.11.013
– volume: 30
  start-page: 2221
  issue: 11
  year: 2016
  ident: 10.1016/j.biomaterials.2020.120546_bib35
  article-title: Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells
  publication-title: Leukemia
  doi: 10.1038/leu.2016.107
– volume: 27
  start-page: 450
  issue: 4
  year: 2015
  ident: 10.1016/j.biomaterials.2020.120546_bib3
  article-title: Immune checkpoint blockade: a common denominator approach to cancer therapy
  publication-title: Canc. Cell
  doi: 10.1016/j.ccell.2015.03.001
– volume: 20
  start-page: 80
  issue: 1
  year: 2014
  ident: 10.1016/j.biomaterials.2020.120546_bib10
  article-title: Genetic progression of pancreatic cancer
  publication-title: Canc. J.
  doi: 10.1097/PPO.0000000000000011
– volume: 266
  start-page: 100
  year: 2017
  ident: 10.1016/j.biomaterials.2020.120546_bib32
  article-title: Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2017.09.019
– volume: 4
  start-page: 26316
  year: 2015
  ident: 10.1016/j.biomaterials.2020.120546_bib36
  article-title: Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting
  publication-title: J. Extracell. Vesicles
  doi: 10.3402/jev.v4.26316
– volume: 20
  start-page: 2237
  issue: 9
  year: 2014
  ident: 10.1016/j.biomaterials.2020.120546_bib11
  article-title: Pancreatic cancer stroma: understanding biology leads to new therapeutic strategies
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v20.i9.2237
– volume: 7
  start-page: 2112
  issue: 12
  year: 2012
  ident: 10.1016/j.biomaterials.2020.120546_bib30
  article-title: Exosome-mediated delivery of siRNA in vitro and in vivo
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2012.131
– volume: 3
  year: 2014
  ident: 10.1016/j.biomaterials.2020.120546_bib31
  article-title: Routes and mechanisms of extracellular vesicle uptake
  publication-title: J. Extracell. Vesicles
  doi: 10.3402/jev.v3.24641
– volume: 18
  start-page: 47
  issue: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2020.120546_bib33
  article-title: Mechanism of recipient cell-dependent differences in exosome uptake
  publication-title: BMC Canc.
  doi: 10.1186/s12885-017-3958-1
– volume: 12
  start-page: 557
  issue: 8
  year: 2012
  ident: 10.1016/j.biomaterials.2020.120546_bib44
  article-title: Cross-presentation by dendritic cells
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3254
– volume: 11
  start-page: 2962
  issue: 8
  year: 2005
  ident: 10.1016/j.biomaterials.2020.120546_bib43
  article-title: Galectin-9 as a prognostic factor with antimetastatic potential in breast cancer
  publication-title: Clin. Canc. Res.
  doi: 10.1158/1078-0432.CCR-04-0861
– volume: 8
  start-page: 1811
  issue: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2020.120546_bib20
  article-title: Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01651-9
– volume: 546
  start-page: 498
  issue: 7659
  year: 2017
  ident: 10.1016/j.biomaterials.2020.120546_bib26
  article-title: Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer
  publication-title: Nature
  doi: 10.1038/nature22341
– volume: 19
  start-page: 32
  issue: 1
  year: 2020
  ident: 10.1016/j.biomaterials.2020.120546_bib6
  article-title: Current advances and outlooks in immunotherapy for pancreatic ductal adenocarcinoma
  publication-title: Mol. Canc.
  doi: 10.1186/s12943-020-01151-3
– volume: 8
  issue: 12
  year: 2013
  ident: 10.1016/j.biomaterials.2020.120546_bib40
  article-title: Decreased galectin-9 and increased Tim-3 expression are related to poor prognosis in gastric cancer
  publication-title: PloS One
  doi: 10.1371/journal.pone.0081799
– volume: 13
  start-page: 54
  issue: 1
  year: 2007
  ident: 10.1016/j.biomaterials.2020.120546_bib21
  article-title: Calreticulin exposure dictates the immunogenicity of cancer cell death
  publication-title: Nat. Med.
  doi: 10.1038/nm1523
– volume: 515
  start-page: 568
  issue: 7528
  year: 2014
  ident: 10.1016/j.biomaterials.2020.120546_bib4
  article-title: PD-1 blockade induces responses by inhibiting adaptive immune resistance
  publication-title: Nature
  doi: 10.1038/nature13954
– volume: 108
  start-page: 78
  year: 2019
  ident: 10.1016/j.biomaterials.2020.120546_bib13
  article-title: NAPOLI-1 phase 3 study of liposomal irinotecan in metastatic pancreatic cancer: final overall survival analysis and characteristics of long-term survivors
  publication-title: Eur. J. Canc.
  doi: 10.1016/j.ejca.2018.12.007
– volume: 106
  start-page: 148
  issue: Pt A
  year: 2016
  ident: 10.1016/j.biomaterials.2020.120546_bib16
  article-title: Extracellular vesicles for drug delivery
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2016.02.006
– volume: 210
  start-page: 267
  issue: 2–4
  year: 2005
  ident: 10.1016/j.biomaterials.2020.120546_bib28
  article-title: Anti-tumor properties of human-activated macrophages produced in large scale for clinical application
  publication-title: Immunobiology
  doi: 10.1016/j.imbio.2005.05.021
– volume: 8
  start-page: 2974
  issue: 11
  year: 2018
  ident: 10.1016/j.biomaterials.2020.120546_bib24
  article-title: Platinum-based nanovectors engineered with immuno-modulating adjuvant for inhibiting tumor growth and promoting immunity
  publication-title: Theranostics
  doi: 10.7150/thno.24110
– year: 2018
  ident: 10.1016/j.biomaterials.2020.120546_bib12
  article-title: Advances in biomaterials for drug delivery
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705328
– volume: 6
  issue: 2
  year: 2017
  ident: 10.1016/j.biomaterials.2020.120546_bib39
  article-title: PD-L1, Galectin-9 and CD8+ tumor-infiltrating lymphocytes are associated with survival in hepatocellular carcinoma
  publication-title: OncoImmunology
  doi: 10.1080/2162402X.2016.1273309
– volume: 39
  start-page: 3102
  issue: 15
  year: 2020
  ident: 10.1016/j.biomaterials.2020.120546_bib9
  article-title: Detection of pancreatic ductal adenocarcinoma with galectin-9 serum levels
  publication-title: Oncogene
  doi: 10.1038/s41388-020-1186-7
– volume: 334
  start-page: 1573
  issue: 6062
  year: 2011
  ident: 10.1016/j.biomaterials.2020.120546_bib22
  article-title: Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice
  publication-title: Science
  doi: 10.1126/science.1208347
– volume: 4
  start-page: 1049
  issue: 12
  year: 2016
  ident: 10.1016/j.biomaterials.2020.120546_bib42
  article-title: Survival of lung adenocarcinoma patients predicted from expression of PD-L1, galectin-9, and XAGE1 (GAGED2a) on tumor cells and tumor-infiltrating T cells, cancer immunol
  publication-title: Res.
– volume: 23
  start-page: 556
  issue: 5
  year: 2017
  ident: 10.1016/j.biomaterials.2020.120546_bib8
  article-title: Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance
  publication-title: Nat. Med.
  doi: 10.1038/nm.4314
– volume: 29
  start-page: 341
  issue: 4
  year: 2011
  ident: 10.1016/j.biomaterials.2020.120546_bib29
  article-title: Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1807
– volume: 4
  start-page: 418
  issue: 6
  year: 2018
  ident: 10.1016/j.biomaterials.2020.120546_bib7
  article-title: Immunotherapy and prevention of pancreatic cancer
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2018.04.001
– volume: 12
  start-page: 655
  issue: 3
  year: 2016
  ident: 10.1016/j.biomaterials.2020.120546_bib15
  article-title: Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2015.10.012
– volume: 11
  start-page: 310
  issue: 4
  year: 2019
  ident: 10.1016/j.biomaterials.2020.120546_bib27
  article-title: Maleimide-thiol adducts stabilized through stretching
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0209-2
– volume: 13
  start-page: 1050
  issue: 9
  year: 2007
  ident: 10.1016/j.biomaterials.2020.120546_bib23
  article-title: Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy
  publication-title: Nat. Med.
  doi: 10.1038/nm1622
– volume: 371
  start-page: 1039
  issue: 11
  year: 2014
  ident: 10.1016/j.biomaterials.2020.120546_bib1
  article-title: Pancreatic adenocarcinoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1404198
– volume: 104
  start-page: 157
  issue: 2
  year: 2013
  ident: 10.1016/j.biomaterials.2020.120546_bib34
  article-title: Mesenchymal stem cells regulate epithelial-mesenchymal transition and tumor progression of pancreatic cancer cells
  publication-title: Canc. Sci.
  doi: 10.1111/cas.12059
– volume: 114
  start-page: 161
  year: 2017
  ident: 10.1016/j.biomaterials.2020.120546_bib14
  article-title: Combinatorial drug delivery approaches for immunomodulation
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2017.05.013
– volume: 25
  start-page: 200
  issue: 2
  year: 2013
  ident: 10.1016/j.biomaterials.2020.120546_bib19
  article-title: Inflammatory networks and immune surveillance of pancreatic carcinoma
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2013.01.006
SSID ssj0014042
Score 2.7002578
Snippet Immunotherapy has gained increasing focus in treating pancreatic ductal adenocarcinoma (PDAC), since conventional therapies like chemotherapy could not provide...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 120546
SubjectTerms adenocarcinoma
biocompatible materials
BM-MSC exosomes
bone marrow
cancer therapy
cell death
cytotoxicity
drug therapy
drugs
exosomes
Galectin 9/dectin 1 axis
galectins
Immunogenic cell death
immunogenicity
immunosuppression
immunotherapy
Macrophage polarization
macrophages
mesenchymal stromal cells
Pancreatic cancer immunotherapy
Title Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961220307924
https://dx.doi.org/10.1016/j.biomaterials.2020.120546
https://www.ncbi.nlm.nih.gov/pubmed/33253966
https://www.proquest.com/docview/2466038033
https://www.proquest.com/docview/2524246599
Volume 268
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5EQfQgvl0fSwWvdbdJmjaIB1mUVVE8KHgrSZriitsV7YJe_O3O9LGsB2XBazoDaSeZR_PNF4Aj4xjXGLh8lQbOF5iA-JoJ6wdW8NhRSCtvLbm5lf0HcfUYPs5Br-mFIVhl7fsrn15663qkU3_Nzutg0CFYElMYoBmtUywjqINdRATrO_6awDyIPYZVMEacD0o3xKMlxota3HVRmRprRUZkC5jDyN-C1G9JaBmMLlZhpc4ivbNqomsw5_J1WJ7iFlyHxZv61HwDBndo2jI5tJ4lK7_5FQAcBT33MXofDd27h9mr5_In4t_A4QH1jdTdWZ-ezlOP6C9LLNeQnhfjIcoPCc431Su3CQ8X5_e9vl9fseBb9HSFH2eZDJkOXciiyMqUUUkWpzFuTZVhJaUCbbsuU8wIqSUX3GYqNBHTxBNn0pBvwXw-yt0OeDI2wqVSOSuNYJE0adYNNNZnQWocZgotUM03TWzNP07XYLwkDdDsOZm2R0L2SCp7tIBPdF8rFo6ZtE4a0yVNnyl6xgSDxUzapxPtHytyZv3DZrUkuGXpHEbnbjRGISFll8ddzv-QCalvR4ZKtWC7WmqTN-ecoXmk3P3nDPdgiRFCp_yhtA_zxdvYHWCKVZh2uYfasHB2ed2__QbioSi8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6FPbxULbuK92XB3sVsSVZsSh7KGUlXZuwhxb6JiRZphmLU1oHtv9-d7Yc0oeOwF7lO5B9p_uw7n4H8MUFLiw6LqbLLDCJAQizXHqWeSmKQC6tnVoynanJpfx-lV_twHHfC0NlldH2dza9tdZxZRS_5uhmPh9RWRLX6KA56SmmEY9gl9Cp5AB2j07PJrP1ZYJM2xk6RM-Ioccebcu8qMvdNp20MV3khLeAYYx6yE89FIe2_ujkOezFQDI56vb6AnZCvQ_PNuAF9-HxNF6cv4T5D5RuGx_6xJOgb1lXA46ESfi9vFsuwl2CAWwS6muC4MDlObWOxAatP4mty4QQMNtyrgU9b1YLpF9QRd9Gu9wruDz5dnE8YXHKAvNo7BpWVJXKuc1Dzsdjr0pOWVlRFng6dYXJlM6sT0OluZPKKiGFr3TuxtwSVJwrc_EaBvWyDm8hUYWToVQ6eOUkHytXVmlmMUXLShcwWBiC7r-p8RGCnCZh_DJ9rdlPsykPQ_IwnTyGINa8Nx0Qx1Zch73oTN9qisbRoL_YivvrmvueUm7N_7nXFoOnlq5ibB2WKySSSqWiSIX4B01OrTsq13oIbzpVW7-5EBzFo9TBf-7wEzyZXEzPzfnp7OwdPOVUsNP-X3oPg-Z2FT5gxNW4j_FE_QXtAytt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pancreatic+cancer-targeting+exosomes+for+enhancing+immunotherapy+and+reprogramming+tumor+microenvironment&rft.jtitle=Biomaterials&rft.au=Zhou%2C+Wenxi&rft.au=Zhou%2C+Yu&rft.au=Chen%2C+Xinli&rft.au=Ning%2C+Tingting&rft.date=2021-01-01&rft.issn=1878-5905&rft.eissn=1878-5905&rft.volume=268&rft.spage=120546&rft_id=info:doi/10.1016%2Fj.biomaterials.2020.120546&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon