Microbial electrocatalysis: Redox mediators responsible for extracellular electron transfer

Redox mediator plays an important role in extracellular electron transfer (EET) in many environments wherein microbial electrocatalysis occurs actively. Because of the block of cell envelope and the low difference of redox potential between the intracellular and extracellular surroundings, the proce...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology advances Vol. 36; no. 7; pp. 1815 - 1827
Main Authors Liu, Xiaobo, Shi, Liang, Gu, Ji-Dong
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 15.11.2018
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Redox mediator plays an important role in extracellular electron transfer (EET) in many environments wherein microbial electrocatalysis occurs actively. Because of the block of cell envelope and the low difference of redox potential between the intracellular and extracellular surroundings, the proceeding of EET depends mainly on the help of a variety of mediators that function as an electron carrier or bridge. In this Review, we will summarize a wide range of redox mediators and further discuss their functional mechanisms in EET that drives a series of microbial electrocatalytic reactions. Studying these mediators adds to our knowledge of how charge transport and electrochemical reactions occur at the microorganism-electrode interface. This understanding would promote the widespread applications of microbial electrocatalysis in microbial fuel cells, bioremediation, bioelectrosynthesis, biomining, nanomaterial productions, etc. These improved applications will greatly benefit the sustainable development of the environmental-friendly biochemical industries. •A diverse redox mediators involved in extracellular electron transfer (EET) are summarized.•The EET mechanisms of redox mediators are discussed.•Advances in biotechnological applications of microbial electrocatalysis are reviewed.•Future perspectives are provided for the EET studies.
AbstractList Redox mediator plays an important role in extracellular electron transfer (EET) in many environments wherein microbial electrocatalysis occurs actively. Because of the block of cell envelope and the low difference of redox potential between the intracellular and extracellular surroundings, the proceeding of EET depends mainly on the help of a variety of mediators that function as an electron carrier or bridge. In this Review, we will summarize a wide range of redox mediators and further discuss their functional mechanisms in EET that drives a series of microbial electrocatalytic reactions. Studying these mediators adds to our knowledge of how charge transport and electrochemical reactions occur at the microorganism-electrode interface. This understanding would promote the widespread applications of microbial electrocatalysis in microbial fuel cells, bioremediation, bioelectrosynthesis, biomining, nanomaterial productions, etc. These improved applications will greatly benefit the sustainable development of the environmental-friendly biochemical industries.
Redox mediator plays an important role in extracellular electron transfer (EET) in many environments wherein microbial electrocatalysis occurs actively. Because of the block of cell envelope and the low difference of redox potential between the intracellular and extracellular surroundings, the proceeding of EET depends mainly on the help of a variety of mediators that function as an electron carrier or bridge. In this Review, we will summarize a wide range of redox mediators and further discuss their functional mechanisms in EET that drives a series of microbial electrocatalytic reactions. Studying these mediators adds to our knowledge of how charge transport and electrochemical reactions occur at the microorganism-electrode interface. This understanding would promote the widespread applications of microbial electrocatalysis in microbial fuel cells, bioremediation, bioelectrosynthesis, biomining, nanomaterial productions, etc. These improved applications will greatly benefit the sustainable development of the environmental-friendly biochemical industries.Redox mediator plays an important role in extracellular electron transfer (EET) in many environments wherein microbial electrocatalysis occurs actively. Because of the block of cell envelope and the low difference of redox potential between the intracellular and extracellular surroundings, the proceeding of EET depends mainly on the help of a variety of mediators that function as an electron carrier or bridge. In this Review, we will summarize a wide range of redox mediators and further discuss their functional mechanisms in EET that drives a series of microbial electrocatalytic reactions. Studying these mediators adds to our knowledge of how charge transport and electrochemical reactions occur at the microorganism-electrode interface. This understanding would promote the widespread applications of microbial electrocatalysis in microbial fuel cells, bioremediation, bioelectrosynthesis, biomining, nanomaterial productions, etc. These improved applications will greatly benefit the sustainable development of the environmental-friendly biochemical industries.
Redox mediator plays an important role in extracellular electron transfer (EET) in many environments wherein microbial electrocatalysis occurs actively. Because of the block of cell envelope and the low difference of redox potential between the intracellular and extracellular surroundings, the proceeding of EET depends mainly on the help of a variety of mediators that function as an electron carrier or bridge. In this Review, we will summarize a wide range of redox mediators and further discuss their functional mechanisms in EET that drives a series of microbial electrocatalytic reactions. Studying these mediators adds to our knowledge of how charge transport and electrochemical reactions occur at the microorganism-electrode interface. This understanding would promote the widespread applications of microbial electrocatalysis in microbial fuel cells, bioremediation, bioelectrosynthesis, biomining, nanomaterial productions, etc. These improved applications will greatly benefit the sustainable development of the environmental-friendly biochemical industries. •A diverse redox mediators involved in extracellular electron transfer (EET) are summarized.•The EET mechanisms of redox mediators are discussed.•Advances in biotechnological applications of microbial electrocatalysis are reviewed.•Future perspectives are provided for the EET studies.
Author Shi, Liang
Liu, Xiaobo
Gu, Ji-Dong
Author_xml – sequence: 1
  givenname: Xiaobo
  orcidid: 0000-0002-1865-4403
  surname: Liu
  fullname: Liu, Xiaobo
  email: xbliu123@hku.hk
  organization: Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, PR China
– sequence: 2
  givenname: Liang
  surname: Shi
  fullname: Shi, Liang
  email: liang.shi@cug.edu.cn
  organization: Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geoscience, Wuhan, Hubei 430074, PR China
– sequence: 3
  givenname: Ji-Dong
  orcidid: 0000-0002-7082-9784
  surname: Gu
  fullname: Gu, Ji-Dong
  email: jdgu@hku.hk
  organization: Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30196813$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1rFTEUhoNU7G31L8iAGzcz5kwmk4wLQYtfUBFEVy5CJjmDueQm1yRT2n9vLrdV6MauAofnvJy8zxk5CTEgIQ3QDiiMr7bd7GJB80vbq66nIDsqOkrhEdmAFKwFOU0nZEMFG9pJcHpKznLeVoBTzp6QU0ZhGiWwDfn5xZkUZ6d9gx5NSdHoov1Ndvl18w1tvG52aJ0uMeUmYd7HkN3ssVliavC6JG3Q-9XrdLcfmjoMecH0lDxetM_47PY9Jz8-vP9-8am9_Prx88Xby9ZwJks7AtB-MvW4EdEYC3YQY8-YGAdqF5jt0mtq-DRPAxpEMdNFgrCCTfNgkTF2Tl4ec_cp_l4xF7Vz-XCWDhjXrHpgICXlvH8AWpsBLrmo6It76DauKdSPVAoEE2KQh8Dnt9Q616LUPrmdTjfqruEKyCNQa8454fIXAaoOMtVW_ZOpDjIVFaq6qqtv7q0aV3RxMdSGnX9IwLtjANb2rxwmlY3DYKrQVF0pG93_Q_4AIVDCPg
CitedBy_id crossref_primary_10_1016_j_cej_2019_03_119
crossref_primary_10_1016_j_jbc_2023_105167
crossref_primary_10_1021_acsestwater_3c00329
crossref_primary_10_1039_D0CS00489H
crossref_primary_10_3389_fmicb_2022_1004589
crossref_primary_10_1016_j_bios_2020_112435
crossref_primary_10_1016_j_jpowsour_2024_234775
crossref_primary_10_1021_acssuschemeng_4c04119
crossref_primary_10_1016_j_envpol_2023_122107
crossref_primary_10_1155_2024_5866657
crossref_primary_10_1186_s40494_021_00508_1
crossref_primary_10_1016_j_apenergy_2021_116885
crossref_primary_10_1021_acs_iecr_3c03013
crossref_primary_10_1016_j_envres_2023_117712
crossref_primary_10_1007_s11431_019_9509_8
crossref_primary_10_1038_s41545_022_00205_x
crossref_primary_10_1016_j_bioelechem_2022_108359
crossref_primary_10_3390_microorganisms11092299
crossref_primary_10_1016_j_rser_2020_110404
crossref_primary_10_1016_j_ibiod_2020_105111
crossref_primary_10_1038_s43246_021_00173_8
crossref_primary_10_1016_j_cej_2024_154932
crossref_primary_10_1080_01496395_2023_2259079
crossref_primary_10_1016_j_apenergy_2020_115292
crossref_primary_10_1016_j_fuproc_2022_107478
crossref_primary_10_1016_j_bios_2019_111594
crossref_primary_10_1016_j_renene_2025_122809
crossref_primary_10_1016_j_scitotenv_2023_167690
crossref_primary_10_1021_acsestengg_4c00848
crossref_primary_10_3390_pr8040424
crossref_primary_10_1016_j_biotechadv_2021_107810
crossref_primary_10_1016_j_watres_2022_119393
crossref_primary_10_1021_acssuschemeng_9b02494
crossref_primary_10_1186_s13068_019_1385_z
crossref_primary_10_3390_catal14030208
crossref_primary_10_1016_j_ijhydene_2025_01_087
crossref_primary_10_3389_fenvs_2020_00044
crossref_primary_10_1016_j_chemosphere_2022_133865
crossref_primary_10_1002_smll_202301135
crossref_primary_10_1016_j_jhazmat_2020_124880
crossref_primary_10_1039_D1AN01954F
crossref_primary_10_1016_j_scitotenv_2024_174269
crossref_primary_10_1016_j_bioelechem_2019_107329
crossref_primary_10_1016_j_ijhydene_2018_11_111
crossref_primary_10_1016_j_gee_2020_06_026
crossref_primary_10_1021_acssuschemeng_2c06685
crossref_primary_10_1016_j_rser_2021_110950
crossref_primary_10_1039_D0EN00820F
crossref_primary_10_1186_s40643_022_00575_7
crossref_primary_10_1021_acs_chemrev_1c00487
crossref_primary_10_1111_1462_2920_16254
crossref_primary_10_1002_adhm_202101819
crossref_primary_10_1016_j_scitotenv_2019_134160
crossref_primary_10_3389_fmicb_2019_01817
crossref_primary_10_1016_j_ibiod_2019_104842
crossref_primary_10_1016_j_bios_2019_111931
crossref_primary_10_1016_j_watres_2024_122708
crossref_primary_10_1016_j_scitotenv_2019_134161
crossref_primary_10_1007_s11814_024_00131_3
crossref_primary_10_1016_j_bios_2021_113725
crossref_primary_10_1016_j_jwpe_2022_102966
crossref_primary_10_3390_app9204251
crossref_primary_10_3390_fermentation10100504
crossref_primary_10_1002_nano_202000291
crossref_primary_10_1007_s00284_022_03148_1
crossref_primary_10_1016_j_bej_2020_107886
crossref_primary_10_1016_j_scitotenv_2021_146606
crossref_primary_10_1007_s11274_018_2576_7
crossref_primary_10_1016_j_chemosphere_2024_141505
crossref_primary_10_1016_j_bioelechem_2024_108829
crossref_primary_10_1016_j_chemosphere_2022_137255
crossref_primary_10_1016_j_jclepro_2023_139353
crossref_primary_10_1016_j_biteb_2023_101402
crossref_primary_10_1016_j_jece_2025_115782
crossref_primary_10_1016_j_jwpe_2023_104458
crossref_primary_10_1016_j_tim_2020_01_008
crossref_primary_10_1016_j_jhazmat_2020_122018
crossref_primary_10_1128_AEM_03109_20
crossref_primary_10_1515_ijcre_2021_0019
crossref_primary_10_1016_j_electacta_2023_141849
crossref_primary_10_1039_D3CS00535F
crossref_primary_10_1016_j_cej_2024_158369
crossref_primary_10_1016_j_bios_2020_112652
crossref_primary_10_1016_j_scitotenv_2022_158696
crossref_primary_10_1016_j_algal_2022_102755
crossref_primary_10_1557_mrc_2019_27
crossref_primary_10_1016_j_fuel_2022_123604
crossref_primary_10_1016_j_jtice_2020_08_015
crossref_primary_10_1016_j_scitotenv_2021_150332
crossref_primary_10_3389_fmicb_2022_982047
crossref_primary_10_3389_fmicb_2022_820989
crossref_primary_10_1016_j_biortech_2021_126579
crossref_primary_10_1016_j_ibiod_2019_104838
crossref_primary_10_1021_acs_nanolett_1c01062
crossref_primary_10_1021_acsenergylett_9b02596
crossref_primary_10_1016_j_jhazmat_2023_133127
crossref_primary_10_1016_j_psep_2024_05_139
crossref_primary_10_1080_17451000_2023_2282429
crossref_primary_10_1016_j_biortech_2024_130522
crossref_primary_10_1016_j_jhazmat_2020_123362
crossref_primary_10_1016_j_bioelechem_2025_108902
crossref_primary_10_3389_fmicb_2022_1084530
crossref_primary_10_1002_slct_202103972
crossref_primary_10_1016_j_cclet_2021_06_064
crossref_primary_10_1016_j_cej_2022_139145
crossref_primary_10_1016_j_coelec_2021_100830
crossref_primary_10_1016_j_eti_2023_103183
crossref_primary_10_1016_j_fuel_2022_124237
crossref_primary_10_1016_j_jhazmat_2023_131830
crossref_primary_10_1016_j_scitotenv_2022_159721
crossref_primary_10_1016_j_scitotenv_2022_156217
crossref_primary_10_3390_w15223981
crossref_primary_10_1016_j_cej_2021_130856
crossref_primary_10_1016_j_jwpe_2025_107413
crossref_primary_10_1016_j_bioelechem_2023_108455
crossref_primary_10_1016_j_scitotenv_2020_140768
crossref_primary_10_1016_j_biortech_2019_121924
crossref_primary_10_1016_j_bej_2019_107318
crossref_primary_10_1007_s11427_018_9464_3
crossref_primary_10_1016_j_csbj_2021_01_013
crossref_primary_10_1016_j_jenvman_2023_119286
crossref_primary_10_1016_j_bios_2020_112725
crossref_primary_10_1016_j_rser_2021_111069
crossref_primary_10_1016_j_jece_2023_110965
crossref_primary_10_3390_microorganisms7050122
crossref_primary_10_1016_j_cej_2019_121960
crossref_primary_10_1016_j_envpol_2020_115154
crossref_primary_10_1016_j_cej_2020_124464
crossref_primary_10_1016_j_corsci_2024_112234
crossref_primary_10_1016_j_scitotenv_2022_153154
crossref_primary_10_1016_j_scitotenv_2024_176278
crossref_primary_10_1039_C9CC03847G
crossref_primary_10_1016_j_jclepro_2022_133527
crossref_primary_10_1016_j_scitotenv_2019_136128
crossref_primary_10_1016_j_scitotenv_2020_137277
crossref_primary_10_1016_j_cej_2024_150848
crossref_primary_10_3389_fmicb_2019_02938
crossref_primary_10_1016_j_cclet_2021_06_055
crossref_primary_10_1016_j_cej_2020_127604
crossref_primary_10_1073_pnas_2008741117
crossref_primary_10_1016_j_biortech_2020_123519
crossref_primary_10_3389_fbioe_2020_592939
crossref_primary_10_1016_j_enzmictec_2021_109767
crossref_primary_10_3390_molecules29040834
crossref_primary_10_3390_en17030752
crossref_primary_10_1016_j_bios_2020_112865
crossref_primary_10_1039_D2EN00156J
crossref_primary_10_1016_j_jclepro_2022_133895
crossref_primary_10_1016_j_corsci_2019_108215
crossref_primary_10_1016_j_enzmictec_2018_08_004
crossref_primary_10_1016_j_scitotenv_2021_150140
crossref_primary_10_1016_j_ibiod_2019_05_026
crossref_primary_10_1016_j_jece_2025_115484
crossref_primary_10_1080_10826068_2019_1591989
crossref_primary_10_1002_jctb_6332
crossref_primary_10_1016_j_synbio_2020_08_004
crossref_primary_10_1016_j_scitotenv_2021_146447
crossref_primary_10_1016_j_envpol_2022_120772
crossref_primary_10_1007_s00775_024_02076_8
crossref_primary_10_1016_j_biortech_2024_131381
crossref_primary_10_1016_j_jhazmat_2023_130943
crossref_primary_10_1016_j_bios_2020_112470
crossref_primary_10_1016_j_bioelechem_2024_108679
crossref_primary_10_1021_acssynbio_2c00636
crossref_primary_10_1016_j_cej_2019_04_130
crossref_primary_10_1016_j_bej_2019_04_018
crossref_primary_10_3389_fbioe_2020_00819
crossref_primary_10_1016_j_bioelechem_2024_108889
crossref_primary_10_1016_j_cej_2020_127652
crossref_primary_10_1016_j_jclepro_2020_120214
crossref_primary_10_1038_s41467_024_52498_w
crossref_primary_10_1016_j_bej_2020_107714
crossref_primary_10_1016_j_ibiod_2020_105165
crossref_primary_10_1016_j_ibiod_2021_105248
crossref_primary_10_1007_s13205_021_02686_y
crossref_primary_10_1016_j_scitotenv_2020_140080
crossref_primary_10_2139_ssrn_4075851
crossref_primary_10_1016_j_jclepro_2020_121313
crossref_primary_10_1088_1361_6528_ab8767
crossref_primary_10_1016_j_bios_2019_111769
crossref_primary_10_1016_j_btre_2020_e00486
crossref_primary_10_1007_s42773_024_00384_5
crossref_primary_10_1016_j_bioelechem_2022_108173
crossref_primary_10_1016_j_cej_2023_144867
crossref_primary_10_3389_fmicb_2022_895409
crossref_primary_10_1016_j_coelec_2019_08_004
crossref_primary_10_1039_D4RA01510J
crossref_primary_10_1016_j_jhazmat_2024_133940
crossref_primary_10_1016_j_scitotenv_2023_166549
crossref_primary_10_1016_j_ijhydene_2025_01_299
crossref_primary_10_1016_j_bios_2020_112269
crossref_primary_10_1016_j_scitotenv_2023_164486
crossref_primary_10_1007_s10646_020_02305_1
crossref_primary_10_1016_j_jbiosc_2022_12_003
crossref_primary_10_1016_j_biotechadv_2023_108170
crossref_primary_10_1016_j_fbio_2024_103837
crossref_primary_10_1016_j_scitotenv_2022_153857
Cites_doi 10.1021/ja4015343
10.1073/pnas.1220823110
10.1002/anie.201501420
10.3389/fmicb.2015.01075
10.1128/JB.00925-09
10.1007/s12678-014-0198-x
10.1128/JB.180.23.6292-6297.1998
10.1038/70051
10.1080/09593330.2013.781198
10.1038/srep17067
10.1021/jp302232p
10.1021/es991181b
10.1002/cssc.201100733
10.1128/JB.01966-05
10.1021/es702290a
10.1126/science.1066771
10.1016/j.bioelechem.2015.08.003
10.1128/AEM.70.6.3467-3474.2004
10.1016/j.bpj.2010.04.017
10.1128/mBio.02034-14
10.1039/b816647a
10.1073/pnas.0710525105
10.1038/ncomms4391
10.1016/j.gca.2015.03.039
10.1128/AEM.00544-09
10.1039/C3EE42189A
10.1039/C5RA28092C
10.1007/s00253-010-2820-z
10.1007/s00253-007-1027-4
10.1016/j.biortech.2014.09.009
10.1007/BF00165883
10.1016/j.fuel.2014.02.018
10.1038/nature15512
10.1111/j.1462-2920.2011.02611.x
10.1529/biophysj.108.134411
10.1038/ismej.2016.136
10.1111/j.1365-2958.2010.07266.x
10.1021/acsomega.7b00450
10.1111/j.1462-2920.2005.00696.x
10.1111/j.1365-2958.2012.08088.x
10.1021/acs.est.5b00131
10.1039/c2ee02613a
10.1128/JB.185.7.2096-2103.2003
10.1128/AEM.69.3.1548-1555.2003
10.1002/cphc.201300117
10.1021/ac000358d
10.1128/JB.184.6.1806-1810.2002
10.1016/j.pep.2008.06.014
10.1073/pnas.1108616108
10.1046/j.1365-2958.2001.02257.x
10.1073/pnas.0900086106
10.1128/AEM.70.2.921-928.2004
10.1002/elan.201200351
10.1016/j.copbio.2014.03.003
10.1128/JB.00843-13
10.1016/j.biortech.2016.03.005
10.1038/339297a0
10.1126/science.1196526
10.1111/j.1574-6968.2007.00915.x
10.3389/fmicb.2012.00037
10.1039/c1ee01753e
10.1038/nnano.2011.119
10.1016/0022-2836(90)90240-M
10.1038/nature11586
10.1016/S0005-2728(00)00171-7
10.1042/BJ20121467
10.1021/es071389u
10.1038/ismej.2014.264
10.1071/SR08036
10.1038/ismej.2015.250
10.1021/nl400237p
10.1016/j.jenvman.2011.06.009
10.1021/jacs.7b07460
10.1016/j.chemosphere.2014.09.070
10.1128/AEM.02469-12
10.1002/anie.201409163
10.1128/AEM.71.8.4487-4496.2005
10.1073/pnas.1510152112
10.1042/bj3330117
10.1128/AEM.68.11.5585-5594.2002
10.1016/j.jpba.2015.04.013
10.1021/acs.est.5b04369
10.1128/JB.182.1.67-75.2000
10.1007/s12257-011-0493-9
10.1073/pnas.1220074110
10.1007/s00253-011-3653-0
10.1128/AEM.63.12.4784-4792.1997
10.1016/j.gca.2014.04.047
10.1128/AEM.00895-14
10.1016/j.scitotenv.2015.02.047
10.1099/ijs.0.020909-0
10.1371/journal.pone.0016649
10.1021/es0605016
10.1038/nature15733
10.1021/es301544b
10.1016/j.watres.2005.02.021
10.1080/09593330902984751
10.1038/ncomms1053
10.1016/j.chemosphere.2007.02.062
10.1016/j.biortech.2013.02.072
10.1111/1758-2229.12204
10.1016/j.jpowsour.2017.03.109
10.1128/mBio.00210-13
10.3389/fmicb.2015.00332
10.1126/science.aaa4834
10.1016/S0968-0004(02)02086-8
10.1021/es2046266
10.1073/pnas.1117592109
10.1038/nnano.2014.236
10.1016/j.gca.2012.05.036
10.1073/pnas.1017200108
10.1146/annurev-micro-030117-020420
10.1111/1462-2920.12485
10.1042/bj20020597
10.1039/C6EE02106A
10.1016/S0964-8305(02)00177-4
10.1038/s41570-017-0024
10.1021/bi00183a015
10.1038/nrmicro.2016.93
10.1016/j.jhazmat.2008.08.097
10.1128/JB.00776-06
10.1128/mBio.00084-15
10.3389/fmicb.2017.00892
10.1038/nature03661
10.1021/es5016789
10.1039/C5CP03432A
10.1074/jbc.M113.498527
10.1042/bj2900103
10.1039/C4EE03359K
10.1111/j.1365-2958.2007.05783.x
10.1128/AEM.66.4.1292-1297.2000
10.1002/adma.201404167
10.1146/annurev-micro-090816-093913
10.1016/j.jclepro.2016.04.004
10.1016/j.tibtech.2017.02.005
10.1039/c2ee22459c
10.1016/j.gca.2014.12.014
10.1021/acs.est.6b02963
ContentType Journal Article
Copyright 2018
Copyright © 2018. Published by Elsevier Inc.
Copyright Elsevier Science Ltd. Nov 15, 2018
Copyright_xml – notice: 2018
– notice: Copyright © 2018. Published by Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. Nov 15, 2018
DBID AAYXX
CITATION
NPM
7QQ
7SE
7TA
7TB
8FD
FR3
H8G
JG9
7X8
7S9
L.6
DOI 10.1016/j.biotechadv.2018.07.001
DatabaseName CrossRef
PubMed
Ceramic Abstracts
Corrosion Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Copper Technical Reference Library
Materials Research Database
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Copper Technical Reference Library
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Ceramic Abstracts
Engineering Research Database
Corrosion Abstracts
Materials Business File
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed
Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1873-1899
EndPage 1827
ExternalDocumentID 30196813
10_1016_j_biotechadv_2018_07_001
S0734975018301253
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
AAAJQ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARKO
AAXUO
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CJTIS
CNWQP
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LUGTX
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSI
SSU
SSZ
T5K
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLW
HMG
HVGLF
HZ~
MVM
R2-
RIG
SBG
SEW
SIN
SSH
WUQ
XPP
Y6R
NPM
7QQ
7SE
7TA
7TB
8FD
EFKBS
FR3
H8G
JG9
7X8
7S9
L.6
ID FETCH-LOGICAL-c538t-611029c0156eeccd1d4762337640df1bdf2a0c59b94ecee7b0f817d739b4de333
IEDL.DBID .~1
ISSN 0734-9750
1873-1899
IngestDate Fri Jul 11 03:22:14 EDT 2025
Thu Aug 07 14:53:39 EDT 2025
Mon Jul 14 08:22:06 EDT 2025
Wed Feb 19 02:34:41 EST 2025
Thu Apr 24 23:06:03 EDT 2025
Tue Jul 01 03:01:18 EDT 2025
Fri Feb 23 02:25:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Microbial electrocatalysis
Biodegradation
Electrochemically active bacteria
Redox mediator
Extracellular electron transfer
Electron
Language English
License Copyright © 2018. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c538t-611029c0156eeccd1d4762337640df1bdf2a0c59b94ecee7b0f817d739b4de333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1865-4403
0000-0002-7082-9784
PMID 30196813
PQID 2117377482
PQPubID 2047478
PageCount 13
ParticipantIDs proquest_miscellaneous_2131880552
proquest_miscellaneous_2101915857
proquest_journals_2117377482
pubmed_primary_30196813
crossref_primary_10_1016_j_biotechadv_2018_07_001
crossref_citationtrail_10_1016_j_biotechadv_2018_07_001
elsevier_sciencedirect_doi_10_1016_j_biotechadv_2018_07_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-15
PublicationDateYYYYMMDD 2018-11-15
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Biotechnology advances
PublicationTitleAlternate Biotechnol Adv
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Science Ltd
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
References Hartshorne, Reardon, Ross, Nuester, Clarke, Gates, Mills, Fredrickson, Zachara, Shi, Beliaev, Marshall, Tien, Brantley, Butt, Richardson (bb0185) 2009; 106
Wang, Newman (bb0620) 2008; 42
Xia, Mathews (bb0665) 1990; 212
Pearce, Pattrick, Law, Charnock, Coker, Fellowes, Oremland, Lloyd (bb0450) 2009; 30
Schröder, Harnisch, Angenent (bb0530) 2015; 8
Lee, Han, Choi, Hur (bb0245) 2007; 68
Adhikari, Malvankar, Tuominen, Lovley (bb0005) 2016; 6
Smékal, Yasin, Fewson, Reid, Chapman (bb0580) 1993; 290
Emerson, Moyer (bb0140) 1997; 63
Vargas, Malvankar, Tremblay, Leang, Smith, Patel, Synoeyenbos-West, Nevin, Lovley (bb0610) 2013; 4
Kumar, Hsu, Kavanagh, Barriere, Lens, Lapinsonniere, Lienhard, Schroder, Jiang, Leech (bb0230) 2017; 1
McKinlay, Zeikus (bb0385) 2004; 70
Lovley (bb0340) 2017; 71
Li, Cui, Feng, Xie, Gu (bb0270) 2005; 39
Beckwith, Edwards, Lawes, Shi, Butt, Richardson, Clarke (bb0020) 2015; 6
Kato, Hashimoto, Watanabe (bb0220) 2012; 109
Liu, Fredrickson, Zachara, Shi (bb0305) 2015; 6
Okamoto, Hashimoto, Nealson, Nakamura (bb0435) 2013; 110
Sulu-Gambari, Seitaj, Meysman, Schauer, Polerecky, Slomp (bb0595) 2016; 50
Liu, Wang, Liu, Levar, Edwards, Babauta, Kennedy, Shi, Beyenal, Bond, Clarke, Butt, Richardson, Rosso, Zachara, Fredrickson, Shi (bb0300) 2014; 6
Malvankar, Vargas, Nevin, Tremblay, Evans-Lutterodt, Nykypanchuk, Martz, Tuominen, Lovley (bb0370) 2015; 6
Shi, Dong, Reguera, Beyenal, Lu, Liu, Yu, Fredrickson (bb0565) 2016; 14
Chahrour, Cobice, Malone (bb0075) 2015; 113
Ertl, Unterladstaetter, Bayer, Mikkelsen (bb0145) 2000; 72
Londer, Giuliani, Peppler, Collart (bb0330) 2008; 62
Reardon, Mueller (bb0475) 2013; 288
Liu, Rotaru, Shrestha, Malvankar, Nevin, Lovley (bb0310) 2015; 17
Park, Zeikus (bb0445) 2000; 66
De Windt, Aelterman, Verstraete (bb0115) 2005; 7
Whittaker, Bergmann, Arciero, Hooper (bb0645) 2000; 1459
Beliaev, Saffarini, McLaughlin, Hunnicutt (bb0030) 2001; 39
Emde, Swain, Schink (bb0135) 1989; 32
Lovley, Baedecker, Lonergan, Cozzarelli, Phillips, Siegel (bb0345) 1989; 339
Shi, Squier, Zachara, Fredrickson (bb0555) 2007; 65
White, Shi, Shi, Wang, Dohnalkova, Marshall, Fredrickson, Zachara, Butt, Richardson, Clarke (bb0640) 2013; 110
Lloyd, Leang, Myerson, Coppi, Cuifo, Methe, Sandler, Lovley (bb0320) 2003; 369
Ross, Brantley, Tien (bb0505) 2009; 75
Hallenbeck, Grogger, Veverka (bb0180) 2014; 5
Müller, Bosch, Griebler, Damgaard, Nielsen, Lueders, Meckenstock (bb0405) 2016; 10
Kim, Chang, Gadd (bb0225) 2007; 76
Glasser, Saunders, Newman (bb0170) 2017; 71
Xiao, Malvankar, Shu, Martz, Lovley, Sun (bb0670) 2016; 6
Ratasuk, Nanny (bb0470) 2007; 41
Rotaru, Shrestha, Liu, Markovaite, Chen, Nevin, Lovley (bb0515) 2014; 80
Zhao, Zhang, Holmes, Dang, Woodard, Nevin, Lovley (bb0710) 2016; 209
Hernandez, Kappler, Newman (bb0195) 2004; 70
Feliciano, Steidl, Reguera (bb0155) 2015; 17
Kato, Hashimoto, Watanabe (bb0215) 2012; 14
Chan, Van Zwieten, Meszaros, Downie, Joseph (bb0080) 2008; 46
Zhang, Xu (bb0695) 2016; 127
Lovley (bb0335) 2017; 11
Myers, Myers (bb0420) 2002; 68
Bose, Gardel, Vidoudez, Parra, Girguis (bb0050) 2014; 5
Ross, Flynn, Baron, Gralnick, Bond (bb0510) 2011; 6
Yu, Guo, Yong, Li, Song (bb0685) 2015; 140
Levar, Chan, Mehta-Kolte, Bond (bb0255) 2014; 5
Sharp, White, Chapman, Reid (bb0540) 1994; 33
Clarke, Edwards, Gates, Hall, White, Bradley, Reardon, Shi, Beliaev, Marshall, Wang, Watmough, Fredrickson, Zachara, Butt, Richardson (bb0095) 2011; 108
Meysman, Risgaard-Petersen, Malkin, Nielsen (bb0390) 2015; 152
Seitaj, Schauer, Sulu-Gambari, Hidalgo-Martinez, Malkin, Burdorf, Slomp, Meysman (bb0535) 2015; 112
Viggi, Rossetti, Fazi, Paiano, Majone, Aulenta (bb0615) 2014; 48
Zacharoff, Chan, Bond (bb0690) 2016; 107
Richter, Nevin, Jia, Lowy, Lovley, Tender (bb0490) 2009; 2
Leung, Wanger, El-Naggar, Gorby, Southam, Lau, Yang (bb0250) 2013; 13
Yan, Chuang, Zhugayevych, Tretiak, Dahlquist, Bazan (bb0675) 2015; 27
Coursolle, Gralnick (bb0105) 2010; 77
Dippon, Pantke, Porsch, Larese-Casanova, Kappler (bb0125) 2012; 46
Gu (bb0175) 2003; 52
Nevin, Lovley (bb0425) 2000; 34
Summers, Fogarty, Leang, Franks, Malvankar, Lovley (bb0600) 2010; 330
Logan, Hamelers, Rozendal, Schrorder, Keller, Freguia, Aelterman, Verstraete, Rabaey (bb0325) 2006; 40
Hashim, Mukhopadhyay, Sahu, Sengupta (bb0190) 2011; 92
Strycharz-Glaven, Snider, Guiseppi-Elie, Tender (bb0585) 2011; 4
Wang, Wu, Wang, Zhou (bb0625) 2009; 164
Miot, Li, Benzerara, Sougrati, Ona-Nguema, Bernard, Jumas, Guyot (bb0395) 2014; 139
Yates, Eddie, Kotloski, Lebedev, Malanoski, Lin, Strycharz-Glaven, Tender (bb0680) 2016; 9
Coursolle, Baron, Bond, Gralnick (bb0110) 2010; 192
Qian, Reguera, Mester, Lovley (bb0465) 2007; 277
Lapinsonniere, Picot, Poriel, Barriere (bb0235) 2013; 25
Calaza, Stiehler, Fujimori, Sterrer, Beeg, Ruiz-Oses, Nilius, Heyde, Parviainen, Honkala (bb0070) 2015; 54
Marsili, Baron, Shikhare, Coursolle, Gralnick, Bond (bb0375) 2008; 105
Chen, Rotaru, Shrestha, Malvankar, Liu, Fan, Nevin, Lovley (bb0090) 2014; 4
El-Naggar, Gorby, Xia, Nealson (bb0130) 2008; 95
Sturm, Richter, Doetsch, Heide, Louro, Gescher (bb0590) 2015; 9
Al-Sid-Cheikh, Pédrot, Dia, Guenet, Vantelon, Davranche, Gruau, Delhaye (bb0010) 2015; 515–516
Rotaru, Shrestha, Liu, Shrestha, Shrestha, Embree, Zengler, Wardman, Nevin, Lovley (bb0520) 2014; 7
Chen, Rotaru, Liu, Philips, Woodard, Nevin, Lovley (bb0085) 2014; 173
Brutinel, Gralnick (bb0060) 2012; 93
Wu, Cheng, Li, Li, Li, Yu (bb0660) 2013; 136
Sheng, Liu, Shi, Liu (bb0545) 2016; 50
Malvankar, Vargas, Nevin, Franks, Leang, Kim, Inoue, Mester, Covalla, Johnson, Rotello, Tuominen, Lovley (bb0355) 2011; 6
Risgaard-Petersen, Revil, Meister, Nielsen (bb0495) 2012; 92
Wegener, Krukenberg, Riedel, Tegetmeyer, Boetius (bb0635) 2015; 526
Baker, Girvan, Matthews, McLean, Golovanova, Waltham, Rigby, Nelson, Blankley, Munro (bb0015) 2017; 2
Bosire, Rosenbaum (bb0055) 2017; 8
Ding, Lv, Zhu, Jiang, Liu (bb0120) 2015; 54
Zhou, Chen, Yuan, Lu (bb0715) 2015; 5
Malvankar, Yalcin, Tuominen, Lovley (bb0365) 2014; 9
Paquete, Fonseca, Cruz, Pereira, Pacheco, Soares, Louro (bb0440) 2014; 5
Liu, Rotaru, Shrestha, Malvankar, Nevin, Lovley (bb0285) 2012; 5
Pfeffer, Larsen, Song, Dong, Besenbacher, Meyer, Kjeldsen, Schreiber, Gorby, El-Naggar, Leung, Schramm, Risgaard-Petersen, Nielsen (bb0455) 2012; 491
Shi, Zachara, Shi, Wang, Moore, Kennedy, Fredrickson (bb0560) 2012; 46
Reguera, McCarthy, Mehta, Nicoll, Tuominen, Lovley (bb0480) 2005; 435
Malvankar, Tuominen, Lovley (bb0360) 2012; 5
Hong, Gu (bb0200) 2010; 88
Richardson, Butt, Fredrickson, Zachara, Shi, Edwards, White, Baiden, Gates, Marritt, Clarke (bb0485) 2012; 85
Liu, Pearce, Liu, Wang, Shi, Arenholz, Rosso (bb0295) 2013; 135
Beliaev, Saffarini (bb0025) 1998; 180
Myers, Myers (bb0415) 2000; 182
Tian, Li, Zhu, Chen, Wang, An, Zhang, Dong, Guan, Liu, Zhou, Liu, Tian, Yu (bb0605) 2017; 139
Zhang, Bain, Nevin, Barlett, Lovley (bb0700) 2012; 78
Liu, Wang, Belchik, Edwards, Liu, Kennedy, Merkley, Lipton, Butt, Richardson, Zachara, Fredrickson, Rosso, Shi (bb0290) 2012; 3
Byrne, Klueglein, Pearce, Rosso, Appel, Kappler (bb0065) 2015; 347
Leys, Tsapin, Nealson, Meyer, Cusanovich, Van Beeumen (bb0260) 1999; 6
Popov, Kim, Dinsdale, Esteves, Guwy, Premier (bb0460) 2012; 17
Nishio, Nakamura, Lin, Konno, Ishihara, Nakanishi, Hashimoto (bb0430) 2013; 14
Jiao, Kappler, Croal, Newman (bb0210) 2005; 71
Shyu, Lies, Newman (bb0570) 2002; 184
Fonseca, Paquete, Neto, Pacheco, Soares, Louro (bb0160) 2013; 449
Gildemyn, Rozendal, Rabaey (bb0165) 2017; 35
Morgado, Bruix, Pessanha, Londer, Salgueiro (bb0400) 2010; 99
Zhao, Dong, Kukkadapu, Zeng, Edelmann, Pentrak, Agrawal (bb0705) 2015; 49
Bond, Lovley (bb0040) 2003; 69
Leys, Tsapin, Nealson, Meyer, Cusanovich, Van Beeumen (bb0265) 1999; 6
Lin, Wu, Chiu, Tsai (bb0280) 2014; 125
Malvankar, Lovley (bb0350) 2012; 5
Rosenbaum, Henrich (bb0500) 2014; 29
Wu, Zhuang, Zhou, Li, He (bb0655) 2011; 61
Shi, Chen, Wang, Elias, Mayer, Gorby, Ni, Lower, Kennedy, Wunschel (bb0550) 2006; 188
Feliciano, da Silva, Reguera, Artacho (bb0150) 2012; 116
Leang, Coppi, Lovley (bb0240) 2003; 185
Jiao, Newman (bb0205) 2007; 189
Bird, Saraiva, Park, Calçada, Salgueiro, Nitschke, Louro, Newman (bb0035) 2014; 196
Munro, Leys, McLean, Marshall, Ost, Daff, Miles, Chapman, Lysek, Moser (bb0410) 2002; 27
Santoro, Arbizzani, Erable, Ieropoulos (bb0525) 2017; 356
Bond, Holmes, Tender, Lovley (bb0045) 2002; 295
Sinclair, Reid, Chapman (bb0575) 1998; 333
Woolf, Amonette, Street-Perrott, Lehmann, Joseph (bb0650) 2010; 1
Cologgi, Lampa-Pastirk, Speers, Kelly, Reguera (bb0100) 2011; 108
McGlynn, Chadwick, Kempes, Orphan (bb0380) 2015; 526
Wang, Shi, Shi, White, Richardson, Clarke, Fredrickson, Zachara (bb0630) 2015; 163
Liu, Rotaru, Shrestha, Malvankar, Nevin, Lovley (bb0315) 2015; 17
Li, Guo, Lian, Zhao, Xi, Du, Yang (bb0275) 2013; 34
Qian (10.1016/j.biotechadv.2018.07.001_bb0465) 2007; 277
Wegener (10.1016/j.biotechadv.2018.07.001_bb0635) 2015; 526
Summers (10.1016/j.biotechadv.2018.07.001_bb0600) 2010; 330
Zacharoff (10.1016/j.biotechadv.2018.07.001_bb0690) 2016; 107
Zhang (10.1016/j.biotechadv.2018.07.001_bb0700) 2012; 78
Sheng (10.1016/j.biotechadv.2018.07.001_bb0545) 2016; 50
Ratasuk (10.1016/j.biotechadv.2018.07.001_bb0470) 2007; 41
Kato (10.1016/j.biotechadv.2018.07.001_bb0220) 2012; 109
Liu (10.1016/j.biotechadv.2018.07.001_bb0300) 2014; 6
Richter (10.1016/j.biotechadv.2018.07.001_bb0490) 2009; 2
Ding (10.1016/j.biotechadv.2018.07.001_bb0120) 2015; 54
Sturm (10.1016/j.biotechadv.2018.07.001_bb0590) 2015; 9
Lloyd (10.1016/j.biotechadv.2018.07.001_bb0320) 2003; 369
Viggi (10.1016/j.biotechadv.2018.07.001_bb0615) 2014; 48
Liu (10.1016/j.biotechadv.2018.07.001_bb0310) 2015; 17
Jiao (10.1016/j.biotechadv.2018.07.001_bb0210) 2005; 71
Seitaj (10.1016/j.biotechadv.2018.07.001_bb0535) 2015; 112
Paquete (10.1016/j.biotechadv.2018.07.001_bb0440) 2014; 5
De Windt (10.1016/j.biotechadv.2018.07.001_bb0115) 2005; 7
Rotaru (10.1016/j.biotechadv.2018.07.001_bb0520) 2014; 7
Wu (10.1016/j.biotechadv.2018.07.001_bb0660) 2013; 136
Lovley (10.1016/j.biotechadv.2018.07.001_bb0340) 2017; 71
Marsili (10.1016/j.biotechadv.2018.07.001_bb0375) 2008; 105
Sharp (10.1016/j.biotechadv.2018.07.001_bb0540) 1994; 33
Shyu (10.1016/j.biotechadv.2018.07.001_bb0570) 2002; 184
Emerson (10.1016/j.biotechadv.2018.07.001_bb0140) 1997; 63
Myers (10.1016/j.biotechadv.2018.07.001_bb0420) 2002; 68
Ross (10.1016/j.biotechadv.2018.07.001_bb0505) 2009; 75
Yu (10.1016/j.biotechadv.2018.07.001_bb0685) 2015; 140
Chen (10.1016/j.biotechadv.2018.07.001_bb0090) 2014; 4
Bond (10.1016/j.biotechadv.2018.07.001_bb0045) 2002; 295
Malvankar (10.1016/j.biotechadv.2018.07.001_bb0355) 2011; 6
Shi (10.1016/j.biotechadv.2018.07.001_bb0565) 2016; 14
Chen (10.1016/j.biotechadv.2018.07.001_bb0085) 2014; 173
Clarke (10.1016/j.biotechadv.2018.07.001_bb0095) 2011; 108
Dippon (10.1016/j.biotechadv.2018.07.001_bb0125) 2012; 46
White (10.1016/j.biotechadv.2018.07.001_bb0640) 2013; 110
Miot (10.1016/j.biotechadv.2018.07.001_bb0395) 2014; 139
Zhao (10.1016/j.biotechadv.2018.07.001_bb0710) 2016; 209
Malvankar (10.1016/j.biotechadv.2018.07.001_bb0360) 2012; 5
Schröder (10.1016/j.biotechadv.2018.07.001_bb0530) 2015; 8
Levar (10.1016/j.biotechadv.2018.07.001_bb0255) 2014; 5
Liu (10.1016/j.biotechadv.2018.07.001_bb0295) 2013; 135
Nevin (10.1016/j.biotechadv.2018.07.001_bb0425) 2000; 34
Hashim (10.1016/j.biotechadv.2018.07.001_bb0190) 2011; 92
Lin (10.1016/j.biotechadv.2018.07.001_bb0280) 2014; 125
Popov (10.1016/j.biotechadv.2018.07.001_bb0460) 2012; 17
Smékal (10.1016/j.biotechadv.2018.07.001_bb0580) 1993; 290
Cologgi (10.1016/j.biotechadv.2018.07.001_bb0100) 2011; 108
Liu (10.1016/j.biotechadv.2018.07.001_bb0290) 2012; 3
Shi (10.1016/j.biotechadv.2018.07.001_bb0555) 2007; 65
Byrne (10.1016/j.biotechadv.2018.07.001_bb0065) 2015; 347
Risgaard-Petersen (10.1016/j.biotechadv.2018.07.001_bb0495) 2012; 92
Beliaev (10.1016/j.biotechadv.2018.07.001_bb0025) 1998; 180
Santoro (10.1016/j.biotechadv.2018.07.001_bb0525) 2017; 356
Pfeffer (10.1016/j.biotechadv.2018.07.001_bb0455) 2012; 491
Okamoto (10.1016/j.biotechadv.2018.07.001_bb0435) 2013; 110
Sinclair (10.1016/j.biotechadv.2018.07.001_bb0575) 1998; 333
Yan (10.1016/j.biotechadv.2018.07.001_bb0675) 2015; 27
Bose (10.1016/j.biotechadv.2018.07.001_bb0050) 2014; 5
Feliciano (10.1016/j.biotechadv.2018.07.001_bb0155) 2015; 17
Hartshorne (10.1016/j.biotechadv.2018.07.001_bb0185) 2009; 106
Munro (10.1016/j.biotechadv.2018.07.001_bb0410) 2002; 27
Emde (10.1016/j.biotechadv.2018.07.001_bb0135) 1989; 32
Pearce (10.1016/j.biotechadv.2018.07.001_bb0450) 2009; 30
Wang (10.1016/j.biotechadv.2018.07.001_bb0625) 2009; 164
Richardson (10.1016/j.biotechadv.2018.07.001_bb0485) 2012; 85
Myers (10.1016/j.biotechadv.2018.07.001_bb0415) 2000; 182
Shi (10.1016/j.biotechadv.2018.07.001_bb0560) 2012; 46
McKinlay (10.1016/j.biotechadv.2018.07.001_bb0385) 2004; 70
Meysman (10.1016/j.biotechadv.2018.07.001_bb0390) 2015; 152
Nishio (10.1016/j.biotechadv.2018.07.001_bb0430) 2013; 14
Leung (10.1016/j.biotechadv.2018.07.001_bb0250) 2013; 13
Xiao (10.1016/j.biotechadv.2018.07.001_bb0670) 2016; 6
Liu (10.1016/j.biotechadv.2018.07.001_bb0315) 2015; 17
Feliciano (10.1016/j.biotechadv.2018.07.001_bb0150) 2012; 116
Li (10.1016/j.biotechadv.2018.07.001_bb0275) 2013; 34
Coursolle (10.1016/j.biotechadv.2018.07.001_bb0105) 2010; 77
Lee (10.1016/j.biotechadv.2018.07.001_bb0245) 2007; 68
Gildemyn (10.1016/j.biotechadv.2018.07.001_bb0165) 2017; 35
Zhang (10.1016/j.biotechadv.2018.07.001_bb0695) 2016; 127
Jiao (10.1016/j.biotechadv.2018.07.001_bb0205) 2007; 189
Strycharz-Glaven (10.1016/j.biotechadv.2018.07.001_bb0585) 2011; 4
Beliaev (10.1016/j.biotechadv.2018.07.001_bb0030) 2001; 39
Ertl (10.1016/j.biotechadv.2018.07.001_bb0145) 2000; 72
Shi (10.1016/j.biotechadv.2018.07.001_bb0550) 2006; 188
Hallenbeck (10.1016/j.biotechadv.2018.07.001_bb0180) 2014; 5
Londer (10.1016/j.biotechadv.2018.07.001_bb0330) 2008; 62
Al-Sid-Cheikh (10.1016/j.biotechadv.2018.07.001_bb0010) 2015; 515–516
El-Naggar (10.1016/j.biotechadv.2018.07.001_bb0130) 2008; 95
Hong (10.1016/j.biotechadv.2018.07.001_bb0200) 2010; 88
Coursolle (10.1016/j.biotechadv.2018.07.001_bb0110) 2010; 192
Rosenbaum (10.1016/j.biotechadv.2018.07.001_bb0500) 2014; 29
Lovley (10.1016/j.biotechadv.2018.07.001_bb0335) 2017; 11
Malvankar (10.1016/j.biotechadv.2018.07.001_bb0350) 2012; 5
Liu (10.1016/j.biotechadv.2018.07.001_bb0305) 2015; 6
Tian (10.1016/j.biotechadv.2018.07.001_bb0605) 2017; 139
Liu (10.1016/j.biotechadv.2018.07.001_bb0285) 2012; 5
Rotaru (10.1016/j.biotechadv.2018.07.001_bb0515) 2014; 80
Chahrour (10.1016/j.biotechadv.2018.07.001_bb0075) 2015; 113
Whittaker (10.1016/j.biotechadv.2018.07.001_bb0645) 2000; 1459
Woolf (10.1016/j.biotechadv.2018.07.001_bb0650) 2010; 1
Sulu-Gambari (10.1016/j.biotechadv.2018.07.001_bb0595) 2016; 50
Yates (10.1016/j.biotechadv.2018.07.001_bb0680) 2016; 9
Li (10.1016/j.biotechadv.2018.07.001_bb0270) 2005; 39
Baker (10.1016/j.biotechadv.2018.07.001_bb0015) 2017; 2
Vargas (10.1016/j.biotechadv.2018.07.001_bb0610) 2013; 4
Hernandez (10.1016/j.biotechadv.2018.07.001_bb0195) 2004; 70
Brutinel (10.1016/j.biotechadv.2018.07.001_bb0060) 2012; 93
Lapinsonniere (10.1016/j.biotechadv.2018.07.001_bb0235) 2013; 25
Lovley (10.1016/j.biotechadv.2018.07.001_bb0345) 1989; 339
Wang (10.1016/j.biotechadv.2018.07.001_bb0620) 2008; 42
Logan (10.1016/j.biotechadv.2018.07.001_bb0325) 2006; 40
Zhou (10.1016/j.biotechadv.2018.07.001_bb0715) 2015; 5
Xia (10.1016/j.biotechadv.2018.07.001_bb0665) 1990; 212
Leys (10.1016/j.biotechadv.2018.07.001_bb0260) 1999; 6
Kumar (10.1016/j.biotechadv.2018.07.001_bb0230) 2017; 1
McGlynn (10.1016/j.biotechadv.2018.07.001_bb0380) 2015; 526
Adhikari (10.1016/j.biotechadv.2018.07.001_bb0005) 2016; 6
Glasser (10.1016/j.biotechadv.2018.07.001_bb0170) 2017; 71
Beckwith (10.1016/j.biotechadv.2018.07.001_bb0020) 2015; 6
Malvankar (10.1016/j.biotechadv.2018.07.001_bb0365) 2014; 9
Malvankar (10.1016/j.biotechadv.2018.07.001_bb0370) 2015; 6
Bird (10.1016/j.biotechadv.2018.07.001_bb0035) 2014; 196
Park (10.1016/j.biotechadv.2018.07.001_bb0445) 2000; 66
Müller (10.1016/j.biotechadv.2018.07.001_bb0405) 2016; 10
Chan (10.1016/j.biotechadv.2018.07.001_bb0080) 2008; 46
Kim (10.1016/j.biotechadv.2018.07.001_bb0225) 2007; 76
Reguera (10.1016/j.biotechadv.2018.07.001_bb0480) 2005; 435
Zhao (10.1016/j.biotechadv.2018.07.001_bb0705) 2015; 49
Kato (10.1016/j.biotechadv.2018.07.001_bb0215) 2012; 14
Wang (10.1016/j.biotechadv.2018.07.001_bb0630) 2015; 163
Fonseca (10.1016/j.biotechadv.2018.07.001_bb0160) 2013; 449
Bosire (10.1016/j.biotechadv.2018.07.001_bb0055) 2017; 8
Leys (10.1016/j.biotechadv.2018.07.001_bb0265) 1999; 6
Ross (10.1016/j.biotechadv.2018.07.001_bb0510) 2011; 6
Calaza (10.1016/j.biotechadv.2018.07.001_bb0070) 2015; 54
Reardon (10.1016/j.biotechadv.2018.07.001_bb0475) 2013; 288
Bond (10.1016/j.biotechadv.2018.07.001_bb0040) 2003; 69
Gu (10.1016/j.biotechadv.2018.07.001_bb0175) 2003; 52
Leang (10.1016/j.biotechadv.2018.07.001_bb0240) 2003; 185
Wu (10.1016/j.biotechadv.2018.07.001_bb0655) 2011; 61
Morgado (10.1016/j.biotechadv.2018.07.001_bb0400) 2010; 99
References_xml – volume: 8
  start-page: 513
  year: 2015
  end-page: 519
  ident: bb0530
  article-title: Microbial electrochemistry and technology: terminology and classification
  publication-title: Energy Environ. Sci.
– volume: 48
  start-page: 7536
  year: 2014
  end-page: 7543
  ident: bb0615
  article-title: Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation
  publication-title: Environ. Sci. Technol.
– volume: 139
  start-page: 12149
  year: 2017
  end-page: 12152
  ident: bb0605
  article-title: Directed bio-fabrication of nanoparticles through regulating extracellular electron transfer
  publication-title: J. Am. Chem. Soc.
– volume: 295
  start-page: 483
  year: 2002
  end-page: 485
  ident: bb0045
  article-title: Electrode-reducing microorganisms that harvest energy from marine sediments
  publication-title: Science
– volume: 40
  start-page: 5181
  year: 2006
  end-page: 5192
  ident: bb0325
  article-title: Microbial fuel cells: Methodology and technology
  publication-title: Environ. Sci. Technol.
– volume: 1459
  start-page: 346
  year: 2000
  end-page: 355
  ident: bb0645
  article-title: Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea
  publication-title: BBA-Bioenergetics
– volume: 5
  start-page: 319
  year: 2014
  end-page: 329
  ident: bb0180
  article-title: Recent advances in microbial electrocatalysis
  publication-title: Electrocatalysis
– volume: 339
  start-page: 297
  year: 1989
  end-page: 300
  ident: bb0345
  article-title: Oxidation of aromatic contaminants coupled to microbial iron reduction
  publication-title: Nature
– volume: 95
  start-page: L10
  year: 2008
  end-page: L12
  ident: bb0130
  article-title: The molecular density of states in bacterial nanowires
  publication-title: Biophys. J.
– volume: 209
  start-page: 148
  year: 2016
  end-page: 156
  ident: bb0710
  article-title: Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors
  publication-title: Bioresour. Technol.
– volume: 5
  start-page: 6247
  year: 2012
  end-page: 6249
  ident: bb0360
  article-title: Comment on "On electrical conductivity of microbial nanowires and biofilms" by S. M. Strycharz-Glaven, R. M. Snider, A. Guiseppi-Elie and L. M. Tender, Energy Environ. Sci., 2011, 4, 4366
  publication-title: Energy Environ. Sci.
– volume: 50
  start-page: 1227
  year: 2016
  end-page: 1233
  ident: bb0595
  article-title: Cable bacteria control iron-phosphorus dynamics in sediments of a coastal hypoxic basin
  publication-title: Environ. Sci. Technol.
– volume: 152
  start-page: 122
  year: 2015
  end-page: 142
  ident: bb0390
  article-title: The geochemical fingerprint of microbial long-distance electron transport in the seafloor
  publication-title: Geochim. Cosmochim. Acta
– volume: 88
  start-page: 637
  year: 2010
  end-page: 643
  ident: bb0200
  article-title: Physiology and biochemistry of reduction of azo compounds by
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 27
  start-page: 1908
  year: 2015
  end-page: 1911
  ident: bb0675
  article-title: Inter-aromatic distances in Geobacter sulfurreducens pili relevant to biofilm charge transport
  publication-title: Adv. Mater.
– volume: 110
  start-page: 7856
  year: 2013
  end-page: 7861
  ident: bb0435
  article-title: Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 17
  start-page: 648
  year: 2015
  end-page: 655
  ident: bb0310
  article-title: Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange
  publication-title: Environ. Microbiol.
– volume: 347
  start-page: 1473
  year: 2015
  end-page: 1476
  ident: bb0065
  article-title: Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria
  publication-title: Science
– volume: 369
  start-page: 153
  year: 2003
  end-page: 161
  ident: bb0320
  article-title: Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in
  publication-title: Biochem. J.
– volume: 17
  start-page: 648
  year: 2015
  end-page: 655
  ident: bb0315
  article-title: Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange
  publication-title: Environ. Microbiol.
– volume: 4
  start-page: 4366
  year: 2011
  end-page: 4379
  ident: bb0585
  article-title: On the electrical conductivity of microbial nanowires and biofilms
  publication-title: Energy Environ. Sci.
– volume: 164
  start-page: 941
  year: 2009
  end-page: 947
  ident: bb0625
  article-title: The role of humic substances in the anaerobic reductive dechlorination of 2,4-dichlorophenoxyacetic acid by
  publication-title: J. Hazard. Mater.
– volume: 14
  start-page: 2159
  year: 2013
  end-page: 2163
  ident: bb0430
  article-title: Extracellular electron transfer across bacterial cell membranes via a cytocompatible redox-active polymer
  publication-title: ChemPhysChem
– volume: 139
  start-page: 327
  year: 2014
  end-page: 343
  ident: bb0395
  article-title: Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation
  publication-title: Geochim. Cosmochim. Acta
– volume: 77
  start-page: 995
  year: 2010
  end-page: 1008
  ident: bb0105
  article-title: Modularity of the Mtr respiratory pathway of
  publication-title: Mol. Microbiol.
– volume: 107
  start-page: 7
  year: 2016
  end-page: 13
  ident: bb0690
  article-title: Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens
  publication-title: Bioelectrochemistry
– volume: 125
  start-page: 30
  year: 2014
  end-page: 35
  ident: bb0280
  article-title: Effects of different mediators on electricity generation and microbial structure of a toluene powered microbial fuel cell
  publication-title: Fuel
– volume: 1
  year: 2017
  ident: bb0230
  article-title: The ins and outs of microorganism-electrode electron transfer reactions
  publication-title: Nat. Rev. Chem.
– volume: 184
  start-page: 1806
  year: 2002
  end-page: 1810
  ident: bb0570
  article-title: Protective role of tolC in efflux of the electron shuttle anthraquinone-2, 6-disulfonate
  publication-title: J. Bacteriol.
– volume: 35
  start-page: 393
  year: 2017
  end-page: 406
  ident: bb0165
  article-title: A Gibbs free energy-based assessment of microbial electrocatalysis
  publication-title: Trends Biotechnol.
– volume: 136
  start-page: 711
  year: 2013
  end-page: 714
  ident: bb0660
  article-title: Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by
  publication-title: Bioresour. Technol.
– volume: 49
  start-page: 5493
  year: 2015
  end-page: 5501
  ident: bb0705
  article-title: Biological redox cycling of iron in nontronite and its potential application in nitrate removal
  publication-title: Environ. Sci. Technol.
– volume: 32
  start-page: 170
  year: 1989
  end-page: 175
  ident: bb0135
  article-title: Anaerobic oxidation of glycerol by
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 50
  start-page: 11016
  year: 2016
  end-page: 11024
  ident: bb0545
  article-title: Aggregation kinetics of hematite particles in the presence of outer membrane cytochrome OmcA of
  publication-title: Environ. Sci. Technol.
– volume: 135
  start-page: 8896
  year: 2013
  end-page: 8907
  ident: bb0295
  article-title: Fe
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 408
  year: 2014
  end-page: 415
  ident: bb0520
  article-title: A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 651
  year: 2016
  end-page: 662
  ident: bb0565
  article-title: Extracellular electron transfer mechanisms between microorganisms and minerals
  publication-title: Nat. Rev. Microbiol.
– volume: 6
  year: 2016
  ident: bb0670
  article-title: Low energy atomic models suggesting a pilus structure that could account for electrical conductivity of
  publication-title: Sci. Rep.
– volume: 39
  start-page: 1972
  year: 2005
  end-page: 1981
  ident: bb0270
  article-title: Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes
  publication-title: Water Res.
– volume: 196
  start-page: 850
  year: 2014
  end-page: 858
  ident: bb0035
  article-title: Nonredundant roles for cytochrome c2 and two high-potential iron-sulfur proteins in the photoferrotroph
  publication-title: J. Bacteriol.
– volume: 61
  start-page: 882
  year: 2011
  end-page: 887
  ident: bb0655
  article-title: sp. nov., an alkaliphilic, humic acid-reducing bacterium isolated from a microbial fuel cell
  publication-title: Int. J. Syst. Evol. Microbiol.
– volume: 356
  start-page: 225
  year: 2017
  end-page: 244
  ident: bb0525
  article-title: Microbial fuel cells: From fundamentals to applications. A review
  publication-title: J. Power Sources
– volume: 46
  start-page: 437
  year: 2008
  end-page: 444
  ident: bb0080
  article-title: Using poultry litter biochars as soil amendments
  publication-title: Soil Res.
– volume: 69
  start-page: 1548
  year: 2003
  end-page: 1555
  ident: bb0040
  article-title: Electricity production by
  publication-title: Appl. Environ. Microbiol.
– volume: 62
  start-page: 128
  year: 2008
  end-page: 137
  ident: bb0330
  article-title: Addressing
  publication-title: Protein Expr. Purif.
– volume: 78
  start-page: 8304
  year: 2012
  end-page: 8310
  ident: bb0700
  article-title: Anaerobic benzene oxidation by
  publication-title: Appl. Environ. Microbiol.
– volume: 6
  start-page: 776
  year: 2014
  end-page: 785
  ident: bb0300
  article-title: A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by
  publication-title: Environ. Microbiol. Rep.
– volume: 6
  year: 2015
  ident: bb0370
  article-title: Structural basis for metallic-like conductivity in microbial nanowires
  publication-title: MBio
– volume: 34
  start-page: 2563
  year: 2013
  end-page: 2570
  ident: bb0275
  article-title: Effective and characteristics of anthraquinone-2, 6-disulfonate (AQDS) on denitrification by
  publication-title: Environ. Technol.
– volume: 72
  start-page: 4949
  year: 2000
  end-page: 4956
  ident: bb0145
  article-title: Ferricyanide reduction by
  publication-title: Anal. Chem.
– volume: 449
  start-page: 101
  year: 2013
  end-page: 108
  ident: bb0160
  article-title: Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of
  publication-title: Biochem. J.
– volume: 52
  start-page: 69
  year: 2003
  end-page: 91
  ident: bb0175
  article-title: Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances
  publication-title: Int. Biodeterior. Biodegrad.
– volume: 185
  start-page: 2096
  year: 2003
  end-page: 2103
  ident: bb0240
  article-title: OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in
  publication-title: J. Bacteriol.
– volume: 8
  year: 2017
  ident: bb0055
  article-title: Electrochemical potential influences phenazine production, electron transfer and consequently electric current generation by
  publication-title: Front. Microbiol.
– volume: 5
  year: 2014
  ident: bb0050
  article-title: Electron uptake by iron-oxidizing phototrophic bacteria
  publication-title: Nat. Commun.
– volume: 75
  start-page: 5218
  year: 2009
  end-page: 5226
  ident: bb0505
  article-title: Kinetic characterization of OmcA and MtrC, terminal reductases involved in respiratory electron transfer for dissimilatory iron reduction in
  publication-title: Appl. Environ. Microbiol.
– volume: 277
  start-page: 21
  year: 2007
  end-page: 27
  ident: bb0465
  article-title: Evidence that OmcB and OmpB of
  publication-title: FEMS Microbiol. Lett.
– volume: 5
  start-page: 1039
  year: 2012
  end-page: 1046
  ident: bb0350
  article-title: Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics
  publication-title: ChemSusChem
– volume: 25
  start-page: 601
  year: 2013
  end-page: 605
  ident: bb0235
  article-title: Phenylboronic acid modified anodes promote faster biofilm adhesion and increase microbial fuel cell performances
  publication-title: Electroanalysis
– volume: 105
  start-page: 3968
  year: 2008
  end-page: 3973
  ident: bb0375
  article-title: secretes flavins that mediate extracellular electron transfer
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 46
  start-page: 6556
  year: 2012
  end-page: 6565
  ident: bb0125
  article-title: Potential function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe (II)-oxidizer
  publication-title: Environ. Sci. Technol.
– volume: 9
  start-page: 1802
  year: 2015
  end-page: 1811
  ident: bb0590
  article-title: A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime
  publication-title: ISME J.
– volume: 5
  year: 2014
  ident: bb0255
  article-title: An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors
  publication-title: MBio
– volume: 17
  start-page: 361
  year: 2012
  end-page: 370
  ident: bb0460
  article-title: The effect of physico-chemically immobilized methylene blue and neutral red on the anode of microbial fuel cell
  publication-title: Biotechnol. Bioprocess Eng.
– volume: 2
  start-page: 4705
  year: 2017
  end-page: 4724
  ident: bb0015
  article-title: Expression, purification, and biochemical characterization of the flavocytochrome P450 CYP505A30 from
  publication-title: ACS Omega
– volume: 290
  start-page: 103
  year: 1993
  ident: bb0580
  article-title: L-mandelate dehydrogenase from Rhodotorula graminis: comparisons with the L-lactate dehydrogenase (flavocytochrome b2) from Saccharomyces cerevisiae
  publication-title: Biochem. J.
– volume: 42
  start-page: 2380
  year: 2008
  end-page: 2386
  ident: bb0620
  article-title: Redox reactions of phenazine antibiotics with ferric (hydr) oxides and molecular oxygen
  publication-title: Environ. Sci. Technol.
– volume: 6
  start-page: 1113
  year: 1999
  end-page: 1117
  ident: bb0260
  article-title: Structure and mechanism of the flavocytochrome c fumarate reductase of
  publication-title: Nat. Struct. Biol.
– volume: 39
  start-page: 722
  year: 2001
  end-page: 730
  ident: bb0030
  article-title: MtrC, an outer membrane decahaem
  publication-title: Mol. Microbiol.
– volume: 333
  start-page: 117
  year: 1998
  ident: bb0575
  article-title: Re-design of Saccharomyces cerevisiae flavocytochrome b2: introduction of L-mandelate dehydrogenase activity
  publication-title: Biochem. J.
– volume: 4
  year: 2014
  ident: bb0090
  article-title: Promoting interspecies electron transfer with biochar
  publication-title: Sci. Rep.
– volume: 7
  start-page: 314
  year: 2005
  end-page: 325
  ident: bb0115
  article-title: Bioreductive deposition of palladium (0) nanoparticles on
  publication-title: Environ. Microbiol.
– volume: 515–516
  start-page: 118
  year: 2015
  end-page: 128
  ident: bb0010
  article-title: Interactions between natural organic matter, sulfur, arsenic and iron oxides in re-oxidation compounds within riparian wetlands: NanoSIMS and X-ray adsorption spectroscopy evidences
  publication-title: Sci. Total Environ.
– volume: 127
  start-page: 19
  year: 2016
  end-page: 36
  ident: bb0695
  article-title: A review of current progress of recycling technologies for metals from waste electrical and electronic equipment
  publication-title: J. Clean. Prod.
– volume: 2
  start-page: 506
  year: 2009
  end-page: 516
  ident: bb0490
  article-title: Cyclic voltammetry of biofilms of wild type and mutant
  publication-title: Energy Environ. Sci.
– volume: 93
  start-page: 41
  year: 2012
  end-page: 48
  ident: bb0060
  article-title: Shuttling happens: soluble flavin mediators of extracellular electron transfer in
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 68
  start-page: 5585
  year: 2002
  end-page: 5594
  ident: bb0420
  article-title: MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of
  publication-title: Appl. Environ. Microbiol.
– volume: 10
  start-page: 2010
  year: 2016
  ident: bb0405
  article-title: Long-distance electron transfer by cable bacteria in aquifer sediments
  publication-title: ISME J.
– volume: 92
  start-page: 1
  year: 2012
  end-page: 13
  ident: bb0495
  article-title: Sulfur, iron-, and calcium cycling associated with natural electric currents running through marine sediment
  publication-title: Geochim. Cosmochim. Acta
– volume: 526
  year: 2015
  ident: bb0380
  article-title: Single cell activity reveals direct electron transfer in methanotrophic consortia
  publication-title: Nature
– volume: 5
  start-page: 8982
  year: 2012
  end-page: 8989
  ident: bb0285
  article-title: Promoting direct interspecies electron transfer with activated carbon
  publication-title: Energy Environ. Sci.
– volume: 41
  start-page: 7844
  year: 2007
  end-page: 7850
  ident: bb0470
  article-title: Characterization and quantification of reversible redox sites in humic substances
  publication-title: Environ. Sci. Technol.
– volume: 6
  year: 2015
  ident: bb0305
  article-title: Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by
  publication-title: Front. Microbiol.
– volume: 116
  start-page: 8023
  year: 2012
  end-page: 8030
  ident: bb0150
  article-title: Molecular and electronic structure of the peptide subunit of
  publication-title: J. Phys. Chem. A
– volume: 17
  start-page: 22217
  year: 2015
  end-page: 22226
  ident: bb0155
  article-title: Structural and functional insights into the conductive pili of
  publication-title: Phys. Chem. Chem. Phys.
– volume: 14
  start-page: 1646
  year: 2012
  end-page: 1654
  ident: bb0215
  article-title: Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals
  publication-title: Environ. Microbiol.
– volume: 180
  start-page: 6292
  year: 1998
  end-page: 6297
  ident: bb0025
  article-title: mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction
  publication-title: J. Bacteriol.
– volume: 192
  start-page: 467
  year: 2010
  end-page: 474
  ident: bb0110
  article-title: The Mtr respiratory pathway is essential for reducing flavins and electrodes in
  publication-title: J. Bacteriol.
– volume: 288
  start-page: 29260
  year: 2013
  end-page: 29266
  ident: bb0475
  article-title: Structure of the type IVa major pilin from the electrically conductive bacterial nanowires of
  publication-title: J. Biol. Chem.
– volume: 27
  start-page: 250
  year: 2002
  end-page: 257
  ident: bb0410
  article-title: P450 BM3: the very model of a modern flavocytochrome
  publication-title: Trends Biochem. Sci.
– volume: 54
  start-page: 1446
  year: 2015
  end-page: 1451
  ident: bb0120
  article-title: Wettability-regulated extracellular electron transfer from the living organism of
  publication-title: Angewandte Chemie-Int. Ed.
– volume: 526
  year: 2015
  ident: bb0635
  article-title: Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria
  publication-title: Nature
– volume: 65
  start-page: 12
  year: 2007
  end-page: 20
  ident: bb0555
  article-title: Respiration of metal (hydr)oxides by
  publication-title: Mol. Microbiol.
– volume: 71
  start-page: 4487
  year: 2005
  end-page: 4496
  ident: bb0210
  article-title: Isolation and characterization of a genetically tractable photo autotrophic Fe(II)-oxidizing bacterium,
  publication-title: Appl. Environ. Microbiol.
– volume: 6
  start-page: 8363
  year: 2016
  end-page: 8366
  ident: bb0005
  article-title: Conductivity of individual
  publication-title: RSC Adv.
– volume: 70
  start-page: 3467
  year: 2004
  end-page: 3474
  ident: bb0385
  article-title: Extracellular iron reduction is mediated in part by neutral red and hydrogenase in
  publication-title: Appl. Environ. Microbiol.
– volume: 85
  start-page: 201
  year: 2012
  end-page: 212
  ident: bb0485
  article-title: The porin-cytochrome' model for microbe-to-mineral electron transfer
  publication-title: Mol. Microbiol.
– volume: 173
  start-page: 82
  year: 2014
  end-page: 86
  ident: bb0085
  article-title: Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures
  publication-title: Bioresour. Technol.
– volume: 189
  start-page: 1765
  year: 2007
  end-page: 1773
  ident: bb0205
  article-title: The pio operon is essential for phototrophic Fe(II) oxidation in
  publication-title: J. Bacteriol.
– volume: 112
  start-page: 13278
  year: 2015
  end-page: 13283
  ident: bb0535
  article-title: Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 212
  start-page: 837
  year: 1990
  end-page: 863
  ident: bb0665
  article-title: Molecular structure of flavocytochrome b2 at 24 Å resolution
  publication-title: J. Mol. Biol.
– volume: 99
  start-page: 293
  year: 2010
  end-page: 301
  ident: bb0400
  article-title: Thermodynamic characterization of a triheme cytochrome family from
  publication-title: Biophys. J.
– volume: 491
  start-page: 218
  year: 2012
  end-page: 221
  ident: bb0455
  article-title: Filamentous bacteria transport electrons over centimetre distances
  publication-title: Nature
– volume: 182
  start-page: 67
  year: 2000
  end-page: 75
  ident: bb0415
  article-title: Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of
  publication-title: J. Bacteriol.
– volume: 29
  start-page: 93
  year: 2014
  end-page: 98
  ident: bb0500
  article-title: Engineering microbial electrocatalysis for chemical and fuel production
  publication-title: Curr. Opin. Biotechnol.
– volume: 66
  start-page: 1292
  year: 2000
  end-page: 1297
  ident: bb0445
  article-title: Electricity generation in microbial fuel cells using neutral red as an electronophore
  publication-title: Appl. Environ. Microbiol.
– volume: 6
  year: 2011
  ident: bb0510
  article-title: Towards electrosynthesis in
  publication-title: PLoS One
– volume: 109
  start-page: 10042
  year: 2012
  end-page: 10046
  ident: bb0220
  article-title: Microbial interspecies electron transfer via electric currents through conductive minerals
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 76
  start-page: 485
  year: 2007
  end-page: 494
  ident: bb0225
  article-title: Challenges in microbial fuel cell development and operation
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 30
  start-page: 1313
  year: 2009
  end-page: 1326
  ident: bb0450
  article-title: Investigating different mechanisms for biogenic selenite transformations:
  publication-title: Environ. Technol.
– volume: 140
  start-page: 26
  year: 2015
  end-page: 33
  ident: bb0685
  article-title: Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode
  publication-title: Chemosphere
– volume: 5
  year: 2015
  ident: bb0715
  article-title: Influence of humic acid complexation with metal ions on extracellular electron transfer activity
  publication-title: Sci. Rep.
– volume: 6
  start-page: 1113
  year: 1999
  ident: bb0265
  article-title: Structure and mechanism of the flavocytochrome c fumarate reductase of
  publication-title: Nat. Struct. Mol. Biol.
– volume: 33
  start-page: 5115
  year: 1994
  end-page: 5120
  ident: bb0540
  article-title: Role of the interdomain hinge of flavocytochrome b2 in intra-and inter-protein electron transfer
  publication-title: Biochemistry
– volume: 4
  year: 2013
  ident: bb0610
  article-title: Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in
  publication-title: MBio
– volume: 9
  start-page: 3544
  year: 2016
  end-page: 3558
  ident: bb0680
  article-title: Toward understanding long-distance extracellular electron transport in an electroautotrophic microbial community
  publication-title: Energy Environ. Sci.
– volume: 54
  start-page: 12484
  year: 2015
  end-page: 12487
  ident: bb0070
  article-title: Carbon dioxide activation and reaction induced by electron transfer at an oxide–metal interface
  publication-title: Angew. Chem. Int. Ed.
– volume: 68
  start-page: 1898
  year: 2007
  end-page: 1905
  ident: bb0245
  article-title: Effects of temperature and dissolved oxygen on Se(IV) removal and Se(0) precipitation by
  publication-title: Chemosphere
– volume: 34
  start-page: 2472
  year: 2000
  end-page: 2478
  ident: bb0425
  article-title: Potential for nonenzymatic reduction of Fe(III) via electron shuttling in subsurface sediments
  publication-title: Environ. Sci. Technol.
– volume: 3
  year: 2012
  ident: bb0290
  article-title: Identification and characterization of MtoA: a decaheme c-type cytochrome of the neutrophilic Fe(II)-oxidizing bacterium
  publication-title: Front. Microbiol.
– volume: 6
  start-page: 573
  year: 2011
  end-page: 579
  ident: bb0355
  article-title: Tunable metallic-like conductivity in microbial nanowire networks
  publication-title: Nat. Nanotechnol.
– volume: 330
  start-page: 1413
  year: 2010
  end-page: 1415
  ident: bb0600
  article-title: Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria
  publication-title: Science
– volume: 71
  start-page: 731
  year: 2017
  end-page: 751
  ident: bb0170
  article-title: The colorful world of extracellular electron shuttles
  publication-title: Annu. Rev. Microbiol.
– volume: 13
  start-page: 2407
  year: 2013
  end-page: 2411
  ident: bb0250
  article-title: MR-1 bacterial nanowires exhibit p-type, tunable electronic behavior
  publication-title: Nano Lett.
– volume: 46
  start-page: 11644
  year: 2012
  end-page: 11652
  ident: bb0560
  article-title: Redox reactions of reduced flavin mononucleotide (FMN), riboflavin (RBF), and anthraquinone-2, 6-disulfonate (AQDS) with ferrihydrite and lepidocrocite
  publication-title: Environ. Sci. Technol.
– volume: 6
  year: 2015
  ident: bb0020
  article-title: Characterization of MtoD from
  publication-title: Front. Microbiol.
– volume: 80
  start-page: 4599
  year: 2014
  end-page: 4605
  ident: bb0515
  article-title: Direct Interspecies Electron Transfer between
  publication-title: Appl. Environ. Microbiol.
– volume: 163
  start-page: 299
  year: 2015
  end-page: 310
  ident: bb0630
  article-title: Effects of soluble flavin on heterogeneous electron transfer between surface-exposed bacterial cytochromes and iron oxides
  publication-title: Geochim. Cosmochim. Acta
– volume: 1
  year: 2010
  ident: bb0650
  article-title: Sustainable biochar to mitigate global climate change
  publication-title: Nat. Commun.
– volume: 5
  year: 2014
  ident: bb0440
  article-title: Exploring the molecular mechanisms of electron shuttling across the microbe/metal space
  publication-title: Front. Microbiol.
– volume: 188
  start-page: 4705
  year: 2006
  end-page: 4714
  ident: bb0550
  article-title: Isolation of a high-affinity functional protein complex between OmcA and MtrC: two outer membrane decaheme c-type cytochromes of
  publication-title: J. Bacteriol.
– volume: 9
  start-page: 1012
  year: 2014
  end-page: 1017
  ident: bb0365
  article-title: Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy
  publication-title: Nat. Nanotechnol.
– volume: 70
  start-page: 921
  year: 2004
  end-page: 928
  ident: bb0195
  article-title: Phenazines and other redox-active antibiotics promote microbial mineral reduction
  publication-title: Appl. Environ. Microbiol.
– volume: 108
  start-page: 9384
  year: 2011
  end-page: 9389
  ident: bb0095
  article-title: Structure of a bacterial cell surface decaheme electron conduit
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 71
  start-page: 643
  year: 2017
  end-page: 664
  ident: bb0340
  article-title: Syntrophy goes electric: direct interspecies electron transfer
  publication-title: Annu. Rev. Microbiol.
– volume: 11
  start-page: 327
  year: 2017
  end-page: 336
  ident: bb0335
  article-title: Happy together: microbial communities that hook up to swap electrons
  publication-title: ISME J.
– volume: 435
  start-page: 1098
  year: 2005
  end-page: 1101
  ident: bb0480
  article-title: Extracellular electron transfer via microbial nanowires
  publication-title: Nature
– volume: 108
  start-page: 15248
  year: 2011
  end-page: 15252
  ident: bb0100
  article-title: Extracellular reduction of uranium via
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 113
  start-page: 2
  year: 2015
  end-page: 20
  ident: bb0075
  article-title: Stable isotope labelling methods in mass spectrometry-based quantitative proteomics
  publication-title: J. Pharm. Biomed. Anal.
– volume: 92
  start-page: 2355
  year: 2011
  end-page: 2388
  ident: bb0190
  article-title: Remediation technologies for heavy metal contaminated groundwater
  publication-title: J. Environ. Manag.
– volume: 63
  start-page: 4784
  year: 1997
  end-page: 4792
  ident: bb0140
  article-title: Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH
  publication-title: Appl. Environ. Microbiol.
– volume: 106
  start-page: 22169
  year: 2009
  end-page: 22174
  ident: bb0185
  article-title: Characterization of an electron conduit between bacteria and the extracellular environment
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 110
  start-page: 6346
  year: 2013
  end-page: 6351
  ident: bb0640
  article-title: Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 135
  start-page: 8896
  issue: 24
  year: 2013
  ident: 10.1016/j.biotechadv.2018.07.001_bb0295
  article-title: Fe3-xTixO4 nanoparticles as tunable probes of microbial metal oxidation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4015343
– volume: 110
  start-page: 7856
  issue: 19
  year: 2013
  ident: 10.1016/j.biotechadv.2018.07.001_bb0435
  article-title: Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1220823110
– volume: 54
  start-page: 12484
  issue: 42
  year: 2015
  ident: 10.1016/j.biotechadv.2018.07.001_bb0070
  article-title: Carbon dioxide activation and reaction induced by electron transfer at an oxide–metal interface
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201501420
– volume: 6
  year: 2015
  ident: 10.1016/j.biotechadv.2018.07.001_bb0305
  article-title: Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.01075
– volume: 192
  start-page: 467
  issue: 2
  year: 2010
  ident: 10.1016/j.biotechadv.2018.07.001_bb0110
  article-title: The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00925-09
– volume: 5
  start-page: 319
  issue: 4
  year: 2014
  ident: 10.1016/j.biotechadv.2018.07.001_bb0180
  article-title: Recent advances in microbial electrocatalysis
  publication-title: Electrocatalysis
  doi: 10.1007/s12678-014-0198-x
– volume: 180
  start-page: 6292
  issue: 23
  year: 1998
  ident: 10.1016/j.biotechadv.2018.07.001_bb0025
  article-title: Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.180.23.6292-6297.1998
– volume: 6
  start-page: 1113
  issue: 12
  year: 1999
  ident: 10.1016/j.biotechadv.2018.07.001_bb0260
  article-title: Structure and mechanism of the flavocytochrome c fumarate reductase of Shewanella putrefaciens MR-1
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/70051
– volume: 34
  start-page: 2563
  issue: 17
  year: 2013
  ident: 10.1016/j.biotechadv.2018.07.001_bb0275
  article-title: Effective and characteristics of anthraquinone-2, 6-disulfonate (AQDS) on denitrification by Paracoccus versutus sp. GW1
  publication-title: Environ. Technol.
  doi: 10.1080/09593330.2013.781198
– volume: 5
  year: 2015
  ident: 10.1016/j.biotechadv.2018.07.001_bb0715
  article-title: Influence of humic acid complexation with metal ions on extracellular electron transfer activity
  publication-title: Sci. Rep.
  doi: 10.1038/srep17067
– volume: 116
  start-page: 8023
  issue: 30
  year: 2012
  ident: 10.1016/j.biotechadv.2018.07.001_bb0150
  article-title: Molecular and electronic structure of the peptide subunit of Geobacter sulfurreducens conductive phi from first principles
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp302232p
– volume: 34
  start-page: 2472
  issue: 12
  year: 2000
  ident: 10.1016/j.biotechadv.2018.07.001_bb0425
  article-title: Potential for nonenzymatic reduction of Fe(III) via electron shuttling in subsurface sediments
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es991181b
– volume: 5
  start-page: 1039
  issue: 6
  year: 2012
  ident: 10.1016/j.biotechadv.2018.07.001_bb0350
  article-title: Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201100733
– volume: 188
  start-page: 4705
  issue: 13
  year: 2006
  ident: 10.1016/j.biotechadv.2018.07.001_bb0550
  article-title: Isolation of a high-affinity functional protein complex between OmcA and MtrC: two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01966-05
– volume: 42
  start-page: 2380
  issue: 7
  year: 2008
  ident: 10.1016/j.biotechadv.2018.07.001_bb0620
  article-title: Redox reactions of phenazine antibiotics with ferric (hydr) oxides and molecular oxygen
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es702290a
– volume: 295
  start-page: 483
  issue: 5554
  year: 2002
  ident: 10.1016/j.biotechadv.2018.07.001_bb0045
  article-title: Electrode-reducing microorganisms that harvest energy from marine sediments
  publication-title: Science
  doi: 10.1126/science.1066771
– volume: 107
  start-page: 7
  year: 2016
  ident: 10.1016/j.biotechadv.2018.07.001_bb0690
  article-title: Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2015.08.003
– volume: 70
  start-page: 3467
  issue: 6
  year: 2004
  ident: 10.1016/j.biotechadv.2018.07.001_bb0385
  article-title: Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.70.6.3467-3474.2004
– volume: 99
  start-page: 293
  issue: 1
  year: 2010
  ident: 10.1016/j.biotechadv.2018.07.001_bb0400
  article-title: Thermodynamic characterization of a triheme cytochrome family from Geobacter sulfurreducens reveals mechanistic and functional diversity
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2010.04.017
– volume: 5
  issue: 6
  year: 2014
  ident: 10.1016/j.biotechadv.2018.07.001_bb0255
  article-title: An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors
  publication-title: MBio
  doi: 10.1128/mBio.02034-14
– volume: 2
  start-page: 506
  issue: 5
  year: 2009
  ident: 10.1016/j.biotechadv.2018.07.001_bb0490
  article-title: Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer
  publication-title: Energy Environ. Sci.
  doi: 10.1039/b816647a
– volume: 105
  start-page: 3968
  issue: 10
  year: 2008
  ident: 10.1016/j.biotechadv.2018.07.001_bb0375
  article-title: Shewanella secretes flavins that mediate extracellular electron transfer
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0710525105
– volume: 5
  year: 2014
  ident: 10.1016/j.biotechadv.2018.07.001_bb0050
  article-title: Electron uptake by iron-oxidizing phototrophic bacteria
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4391
– volume: 163
  start-page: 299
  year: 2015
  ident: 10.1016/j.biotechadv.2018.07.001_bb0630
  article-title: Effects of soluble flavin on heterogeneous electron transfer between surface-exposed bacterial cytochromes and iron oxides
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2015.03.039
– volume: 75
  start-page: 5218
  issue: 16
  year: 2009
  ident: 10.1016/j.biotechadv.2018.07.001_bb0505
  article-title: Kinetic characterization of OmcA and MtrC, terminal reductases involved in respiratory electron transfer for dissimilatory iron reduction in Shewanella oneidensis MR-1
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00544-09
– volume: 7
  start-page: 408
  issue: 1
  year: 2014
  ident: 10.1016/j.biotechadv.2018.07.001_bb0520
  article-title: A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE42189A
– volume: 6
  year: 2016
  ident: 10.1016/j.biotechadv.2018.07.001_bb0670
  article-title: Low energy atomic models suggesting a pilus structure that could account for electrical conductivity of Geobacter sulfurreducens pili
  publication-title: Sci. Rep.
– volume: 6
  start-page: 8363
  issue: 10
  year: 2016
  ident: 10.1016/j.biotechadv.2018.07.001_bb0005
  article-title: Conductivity of individual Geobacter pili
  publication-title: RSC Adv.
  doi: 10.1039/C5RA28092C
– volume: 88
  start-page: 637
  issue: 3
  year: 2010
  ident: 10.1016/j.biotechadv.2018.07.001_bb0200
  article-title: Physiology and biochemistry of reduction of azo compounds by Shewanella strains relevant to electron transport chain
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-010-2820-z
– volume: 76
  start-page: 485
  issue: 3
  year: 2007
  ident: 10.1016/j.biotechadv.2018.07.001_bb0225
  article-title: Challenges in microbial fuel cell development and operation
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-007-1027-4
– volume: 173
  start-page: 82
  year: 2014
  ident: 10.1016/j.biotechadv.2018.07.001_bb0085
  article-title: Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.09.009
– volume: 32
  start-page: 170
  issue: 2
  year: 1989
  ident: 10.1016/j.biotechadv.2018.07.001_bb0135
  article-title: Anaerobic oxidation of glycerol by Escherichia coli in an amperometric poised-potential culture system
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/BF00165883
– volume: 4
  year: 2014
  ident: 10.1016/j.biotechadv.2018.07.001_bb0090
  article-title: Promoting interspecies electron transfer with biochar
  publication-title: Sci. Rep.
– volume: 125
  start-page: 30
  year: 2014
  ident: 10.1016/j.biotechadv.2018.07.001_bb0280
  article-title: Effects of different mediators on electricity generation and microbial structure of a toluene powered microbial fuel cell
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.02.018
– volume: 526
  issue: 7574
  year: 2015
  ident: 10.1016/j.biotechadv.2018.07.001_bb0380
  article-title: Single cell activity reveals direct electron transfer in methanotrophic consortia
  publication-title: Nature
  doi: 10.1038/nature15512
– volume: 14
  start-page: 1646
  issue: 7
  year: 2012
  ident: 10.1016/j.biotechadv.2018.07.001_bb0215
  article-title: Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2011.02611.x
– volume: 95
  start-page: L10
  issue: 1
  year: 2008
  ident: 10.1016/j.biotechadv.2018.07.001_bb0130
  article-title: The molecular density of states in bacterial nanowires
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.108.134411
– volume: 11
  start-page: 327
  issue: 2
  year: 2017
  ident: 10.1016/j.biotechadv.2018.07.001_bb0335
  article-title: Happy together: microbial communities that hook up to swap electrons
  publication-title: ISME J.
  doi: 10.1038/ismej.2016.136
– volume: 77
  start-page: 995
  issue: 4
  year: 2010
  ident: 10.1016/j.biotechadv.2018.07.001_bb0105
  article-title: Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2010.07266.x
– volume: 2
  start-page: 4705
  issue: 8
  year: 2017
  ident: 10.1016/j.biotechadv.2018.07.001_bb0015
  article-title: Expression, purification, and biochemical characterization of the flavocytochrome P450 CYP505A30 from Myceliophthora thermophila
  publication-title: ACS Omega
  doi: 10.1021/acsomega.7b00450
– volume: 7
  start-page: 314
  issue: 3
  year: 2005
  ident: 10.1016/j.biotechadv.2018.07.001_bb0115
  article-title: Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2005.00696.x
– volume: 85
  start-page: 201
  issue: 2
  year: 2012
  ident: 10.1016/j.biotechadv.2018.07.001_bb0485
  article-title: The porin-cytochrome' model for microbe-to-mineral electron transfer
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2012.08088.x
– volume: 49
  start-page: 5493
  issue: 9
  year: 2015
  ident: 10.1016/j.biotechadv.2018.07.001_bb0705
  article-title: Biological redox cycling of iron in nontronite and its potential application in nitrate removal
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00131
– volume: 5
  start-page: 6247
  issue: 3
  year: 2012
  ident: 10.1016/j.biotechadv.2018.07.001_bb0360
  article-title: Comment on "On electrical conductivity of microbial nanowires and biofilms" by S. M. Strycharz-Glaven, R. M. Snider, A. Guiseppi-Elie and L. M. Tender, Energy Environ. Sci., 2011, 4, 4366
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee02613a
– volume: 185
  start-page: 2096
  issue: 7
  year: 2003
  ident: 10.1016/j.biotechadv.2018.07.001_bb0240
  article-title: OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.185.7.2096-2103.2003
– volume: 69
  start-page: 1548
  issue: 3
  year: 2003
  ident: 10.1016/j.biotechadv.2018.07.001_bb0040
  article-title: Electricity production by Geobacter sulfurreducens attached to electrodes
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.69.3.1548-1555.2003
– volume: 14
  start-page: 2159
  issue: 10
  year: 2013
  ident: 10.1016/j.biotechadv.2018.07.001_bb0430
  article-title: Extracellular electron transfer across bacterial cell membranes via a cytocompatible redox-active polymer
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201300117
– volume: 72
  start-page: 4949
  issue: 20
  year: 2000
  ident: 10.1016/j.biotechadv.2018.07.001_bb0145
  article-title: Ferricyanide reduction by Escherichia coli: Kinetics, mechanism, and application to the optimization of recombinant fermentations
  publication-title: Anal. Chem.
  doi: 10.1021/ac000358d
– volume: 184
  start-page: 1806
  issue: 6
  year: 2002
  ident: 10.1016/j.biotechadv.2018.07.001_bb0570
  article-title: Protective role of tolC in efflux of the electron shuttle anthraquinone-2, 6-disulfonate
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.184.6.1806-1810.2002
– volume: 62
  start-page: 128
  issue: 1
  year: 2008
  ident: 10.1016/j.biotechadv.2018.07.001_bb0330
  article-title: Addressing Shewanella oneidensis “cytochromome”: The first step towards high-throughput expression of cytochromes c
  publication-title: Protein Expr. Purif.
  doi: 10.1016/j.pep.2008.06.014
– volume: 108
  start-page: 15248
  issue: 37
  year: 2011
  ident: 10.1016/j.biotechadv.2018.07.001_bb0100
  article-title: Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1108616108
– volume: 39
  start-page: 722
  issue: 3
  year: 2001
  ident: 10.1016/j.biotechadv.2018.07.001_bb0030
  article-title: MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2001.02257.x
– volume: 106
  start-page: 22169
  issue: 52
  year: 2009
  ident: 10.1016/j.biotechadv.2018.07.001_bb0185
  article-title: Characterization of an electron conduit between bacteria and the extracellular environment
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0900086106
– volume: 6
  start-page: 1113
  issue: 12
  year: 1999
  ident: 10.1016/j.biotechadv.2018.07.001_bb0265
  article-title: Structure and mechanism of the flavocytochrome c fumarate reductase of Shewanella putrefaciens MR-1
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/70051
– volume: 70
  start-page: 921
  issue: 2
  year: 2004
  ident: 10.1016/j.biotechadv.2018.07.001_bb0195
  article-title: Phenazines and other redox-active antibiotics promote microbial mineral reduction
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.70.2.921-928.2004
– volume: 25
  start-page: 601
  issue: 3
  year: 2013
  ident: 10.1016/j.biotechadv.2018.07.001_bb0235
  article-title: Phenylboronic acid modified anodes promote faster biofilm adhesion and increase microbial fuel cell performances
  publication-title: Electroanalysis
  doi: 10.1002/elan.201200351
– volume: 29
  start-page: 93
  year: 2014
  ident: 10.1016/j.biotechadv.2018.07.001_bb0500
  article-title: Engineering microbial electrocatalysis for chemical and fuel production
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2014.03.003
– volume: 196
  start-page: 850
  issue: 4
  year: 2014
  ident: 10.1016/j.biotechadv.2018.07.001_bb0035
  article-title: Nonredundant roles for cytochrome c2 and two high-potential iron-sulfur proteins in the photoferrotroph Rhodopseudomonas palustris TIE-1
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00843-13
– volume: 209
  start-page: 148
  year: 2016
  ident: 10.1016/j.biotechadv.2018.07.001_bb0710
  article-title: Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.03.005
– volume: 339
  start-page: 297
  issue: 6222
  year: 1989
  ident: 10.1016/j.biotechadv.2018.07.001_bb0345
  article-title: Oxidation of aromatic contaminants coupled to microbial iron reduction
  publication-title: Nature
  doi: 10.1038/339297a0
– volume: 330
  start-page: 1413
  issue: 6009
  year: 2010
  ident: 10.1016/j.biotechadv.2018.07.001_bb0600
  article-title: Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria
  publication-title: Science
  doi: 10.1126/science.1196526
– volume: 277
  start-page: 21
  issue: 1
  year: 2007
  ident: 10.1016/j.biotechadv.2018.07.001_bb0465
  article-title: Evidence that OmcB and OmpB of Geobacter sulfurreducens are outer membrane surface proteins
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2007.00915.x
– volume: 3
  year: 2012
  ident: 10.1016/j.biotechadv.2018.07.001_bb0290
  article-title: Identification and characterization of MtoA: a decaheme c-type cytochrome of the neutrophilic Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2012.00037
– volume: 4
  start-page: 4366
  issue: 11
  year: 2011
  ident: 10.1016/j.biotechadv.2018.07.001_bb0585
  article-title: On the electrical conductivity of microbial nanowires and biofilms
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01753e
– volume: 6
  start-page: 573
  issue: 9
  year: 2011
  ident: 10.1016/j.biotechadv.2018.07.001_bb0355
  article-title: Tunable metallic-like conductivity in microbial nanowire networks
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.119
– volume: 212
  start-page: 837
  issue: 4
  year: 1990
  ident: 10.1016/j.biotechadv.2018.07.001_bb0665
  article-title: Molecular structure of flavocytochrome b2 at 24 Å resolution
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(90)90240-M
– volume: 491
  start-page: 218
  issue: 7423
  year: 2012
  ident: 10.1016/j.biotechadv.2018.07.001_bb0455
  article-title: Filamentous bacteria transport electrons over centimetre distances
  publication-title: Nature
  doi: 10.1038/nature11586
– volume: 1459
  start-page: 346
  issue: 2-3
  year: 2000
  ident: 10.1016/j.biotechadv.2018.07.001_bb0645
  article-title: Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea
  publication-title: BBA-Bioenergetics
  doi: 10.1016/S0005-2728(00)00171-7
– volume: 449
  start-page: 101
  issue: 1
  year: 2013
  ident: 10.1016/j.biotechadv.2018.07.001_bb0160
  article-title: Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1
  publication-title: Biochem. J.
  doi: 10.1042/BJ20121467
– volume: 41
  start-page: 7844
  issue: 22
  year: 2007
  ident: 10.1016/j.biotechadv.2018.07.001_bb0470
  article-title: Characterization and quantification of reversible redox sites in humic substances
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es071389u
– volume: 9
  start-page: 1802
  year: 2015
  ident: 10.1016/j.biotechadv.2018.07.001_bb0590
  article-title: A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime
  publication-title: ISME J.
  doi: 10.1038/ismej.2014.264
– volume: 46
  start-page: 437
  issue: 5
  year: 2008
  ident: 10.1016/j.biotechadv.2018.07.001_bb0080
  article-title: Using poultry litter biochars as soil amendments
  publication-title: Soil Res.
  doi: 10.1071/SR08036
– volume: 10
  start-page: 2010
  year: 2016
  ident: 10.1016/j.biotechadv.2018.07.001_bb0405
  article-title: Long-distance electron transfer by cable bacteria in aquifer sediments
  publication-title: ISME J.
  doi: 10.1038/ismej.2015.250
– volume: 13
  start-page: 2407
  issue: 6
  year: 2013
  ident: 10.1016/j.biotechadv.2018.07.001_bb0250
  article-title: Shewanella oneidensis MR-1 bacterial nanowires exhibit p-type, tunable electronic behavior
  publication-title: Nano Lett.
  doi: 10.1021/nl400237p
– volume: 92
  start-page: 2355
  issue: 10
  year: 2011
  ident: 10.1016/j.biotechadv.2018.07.001_bb0190
  article-title: Remediation technologies for heavy metal contaminated groundwater
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2011.06.009
– volume: 139
  start-page: 12149
  issue: 35
  year: 2017
  ident: 10.1016/j.biotechadv.2018.07.001_bb0605
  article-title: Directed bio-fabrication of nanoparticles through regulating extracellular electron transfer
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07460
– volume: 140
  start-page: 26
  year: 2015
  ident: 10.1016/j.biotechadv.2018.07.001_bb0685
  article-title: Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.09.070
– volume: 78
  start-page: 8304
  issue: 23
  year: 2012
  ident: 10.1016/j.biotechadv.2018.07.001_bb0700
  article-title: Anaerobic benzene oxidation by Geobacter species
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02469-12
– volume: 54
  start-page: 1446
  issue: 5
  year: 2015
  ident: 10.1016/j.biotechadv.2018.07.001_bb0120
  article-title: Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4
  publication-title: Angewandte Chemie-Int. Ed.
  doi: 10.1002/anie.201409163
– volume: 71
  start-page: 4487
  issue: 8
  year: 2005
  ident: 10.1016/j.biotechadv.2018.07.001_bb0210
  article-title: Isolation and characterization of a genetically tractable photo autotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.71.8.4487-4496.2005
– volume: 112
  start-page: 13278
  issue: 43
  year: 2015
  ident: 10.1016/j.biotechadv.2018.07.001_bb0535
  article-title: Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1510152112
– volume: 333
  start-page: 117
  year: 1998
  ident: 10.1016/j.biotechadv.2018.07.001_bb0575
  article-title: Re-design of Saccharomyces cerevisiae flavocytochrome b2: introduction of L-mandelate dehydrogenase activity
  publication-title: Biochem. J.
  doi: 10.1042/bj3330117
– volume: 68
  start-page: 5585
  issue: 11
  year: 2002
  ident: 10.1016/j.biotechadv.2018.07.001_bb0420
  article-title: MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of Shewanella putrefaciens MR-1
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.68.11.5585-5594.2002
– volume: 113
  start-page: 2
  year: 2015
  ident: 10.1016/j.biotechadv.2018.07.001_bb0075
  article-title: Stable isotope labelling methods in mass spectrometry-based quantitative proteomics
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/j.jpba.2015.04.013
– volume: 50
  start-page: 1227
  issue: 3
  year: 2016
  ident: 10.1016/j.biotechadv.2018.07.001_bb0595
  article-title: Cable bacteria control iron-phosphorus dynamics in sediments of a coastal hypoxic basin
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b04369
– volume: 182
  start-page: 67
  issue: 1
  year: 2000
  ident: 10.1016/j.biotechadv.2018.07.001_bb0415
  article-title: Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.182.1.67-75.2000
– volume: 17
  start-page: 361
  issue: 2
  year: 2012
  ident: 10.1016/j.biotechadv.2018.07.001_bb0460
  article-title: The effect of physico-chemically immobilized methylene blue and neutral red on the anode of microbial fuel cell
  publication-title: Biotechnol. Bioprocess Eng.
  doi: 10.1007/s12257-011-0493-9
– volume: 110
  start-page: 6346
  issue: 16
  year: 2013
  ident: 10.1016/j.biotechadv.2018.07.001_bb0640
  article-title: Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1220074110
– volume: 93
  start-page: 41
  issue: 1
  year: 2012
  ident: 10.1016/j.biotechadv.2018.07.001_bb0060
  article-title: Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-011-3653-0
– volume: 63
  start-page: 4784
  issue: 12
  year: 1997
  ident: 10.1016/j.biotechadv.2018.07.001_bb0140
  article-title: Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.63.12.4784-4792.1997
– volume: 139
  start-page: 327
  year: 2014
  ident: 10.1016/j.biotechadv.2018.07.001_bb0395
  article-title: Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2014.04.047
– volume: 80
  start-page: 4599
  issue: 15
  year: 2014
  ident: 10.1016/j.biotechadv.2018.07.001_bb0515
  article-title: Direct Interspecies Electron Transfer between Geobacter metallireducens and Methanosarcina barkeri
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00895-14
– volume: 515–516
  start-page: 118
  year: 2015
  ident: 10.1016/j.biotechadv.2018.07.001_bb0010
  article-title: Interactions between natural organic matter, sulfur, arsenic and iron oxides in re-oxidation compounds within riparian wetlands: NanoSIMS and X-ray adsorption spectroscopy evidences
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.02.047
– volume: 61
  start-page: 882
  year: 2011
  ident: 10.1016/j.biotechadv.2018.07.001_bb0655
  article-title: Corynebacterium humireducens sp. nov., an alkaliphilic, humic acid-reducing bacterium isolated from a microbial fuel cell
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijs.0.020909-0
– volume: 6
  issue: 2
  year: 2011
  ident: 10.1016/j.biotechadv.2018.07.001_bb0510
  article-title: Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0016649
– volume: 40
  start-page: 5181
  issue: 17
  year: 2006
  ident: 10.1016/j.biotechadv.2018.07.001_bb0325
  article-title: Microbial fuel cells: Methodology and technology
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0605016
– volume: 526
  issue: 7574
  year: 2015
  ident: 10.1016/j.biotechadv.2018.07.001_bb0635
  article-title: Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria
  publication-title: Nature
  doi: 10.1038/nature15733
– volume: 46
  start-page: 11644
  issue: 21
  year: 2012
  ident: 10.1016/j.biotechadv.2018.07.001_bb0560
  article-title: Redox reactions of reduced flavin mononucleotide (FMN), riboflavin (RBF), and anthraquinone-2, 6-disulfonate (AQDS) with ferrihydrite and lepidocrocite
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es301544b
– volume: 39
  start-page: 1972
  issue: 10
  year: 2005
  ident: 10.1016/j.biotechadv.2018.07.001_bb0270
  article-title: Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes
  publication-title: Water Res.
  doi: 10.1016/j.watres.2005.02.021
– volume: 30
  start-page: 1313
  issue: 12
  year: 2009
  ident: 10.1016/j.biotechadv.2018.07.001_bb0450
  article-title: Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica
  publication-title: Environ. Technol.
  doi: 10.1080/09593330902984751
– volume: 1
  year: 2010
  ident: 10.1016/j.biotechadv.2018.07.001_bb0650
  article-title: Sustainable biochar to mitigate global climate change
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1053
– volume: 68
  start-page: 1898
  issue: 10
  year: 2007
  ident: 10.1016/j.biotechadv.2018.07.001_bb0245
  article-title: Effects of temperature and dissolved oxygen on Se(IV) removal and Se(0) precipitation by Shewanella sp. HN-41
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.02.062
– volume: 136
  start-page: 711
  year: 2013
  ident: 10.1016/j.biotechadv.2018.07.001_bb0660
  article-title: Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.02.072
– volume: 6
  start-page: 776
  issue: 6
  year: 2014
  ident: 10.1016/j.biotechadv.2018.07.001_bb0300
  article-title: A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA
  publication-title: Environ. Microbiol. Rep.
  doi: 10.1111/1758-2229.12204
– volume: 356
  start-page: 225
  year: 2017
  ident: 10.1016/j.biotechadv.2018.07.001_bb0525
  article-title: Microbial fuel cells: From fundamentals to applications. A review
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.109
– volume: 4
  issue: 2
  year: 2013
  ident: 10.1016/j.biotechadv.2018.07.001_bb0610
  article-title: Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens
  publication-title: MBio
  doi: 10.1128/mBio.00210-13
– volume: 6
  year: 2015
  ident: 10.1016/j.biotechadv.2018.07.001_bb0020
  article-title: Characterization of MtoD from Sideroxydans lithotrophicus: a cytochrome c electron shuttle used in lithoautotrophic growth
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00332
– volume: 347
  start-page: 1473
  issue: 6229
  year: 2015
  ident: 10.1016/j.biotechadv.2018.07.001_bb0065
  article-title: Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria
  publication-title: Science
  doi: 10.1126/science.aaa4834
– volume: 27
  start-page: 250
  issue: 5
  year: 2002
  ident: 10.1016/j.biotechadv.2018.07.001_bb0410
  article-title: P450 BM3: the very model of a modern flavocytochrome
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(02)02086-8
– volume: 46
  start-page: 6556
  issue: 12
  year: 2012
  ident: 10.1016/j.biotechadv.2018.07.001_bb0125
  article-title: Potential function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe (II)-oxidizer Acidovorax sp. BoFeN1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2046266
– volume: 109
  start-page: 10042
  issue: 25
  year: 2012
  ident: 10.1016/j.biotechadv.2018.07.001_bb0220
  article-title: Microbial interspecies electron transfer via electric currents through conductive minerals
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1117592109
– volume: 9
  start-page: 1012
  issue: 12
  year: 2014
  ident: 10.1016/j.biotechadv.2018.07.001_bb0365
  article-title: Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.236
– volume: 92
  start-page: 1
  year: 2012
  ident: 10.1016/j.biotechadv.2018.07.001_bb0495
  article-title: Sulfur, iron-, and calcium cycling associated with natural electric currents running through marine sediment
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2012.05.036
– volume: 108
  start-page: 9384
  issue: 23
  year: 2011
  ident: 10.1016/j.biotechadv.2018.07.001_bb0095
  article-title: Structure of a bacterial cell surface decaheme electron conduit
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1017200108
– volume: 71
  start-page: 643
  year: 2017
  ident: 10.1016/j.biotechadv.2018.07.001_bb0340
  article-title: Syntrophy goes electric: direct interspecies electron transfer
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-030117-020420
– volume: 17
  start-page: 648
  issue: 3
  year: 2015
  ident: 10.1016/j.biotechadv.2018.07.001_bb0310
  article-title: Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12485
– volume: 369
  start-page: 153
  year: 2003
  ident: 10.1016/j.biotechadv.2018.07.001_bb0320
  article-title: Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens
  publication-title: Biochem. J.
  doi: 10.1042/bj20020597
– volume: 9
  start-page: 3544
  issue: 11
  year: 2016
  ident: 10.1016/j.biotechadv.2018.07.001_bb0680
  article-title: Toward understanding long-distance extracellular electron transport in an electroautotrophic microbial community
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE02106A
– volume: 52
  start-page: 69
  issue: 2
  year: 2003
  ident: 10.1016/j.biotechadv.2018.07.001_bb0175
  article-title: Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances
  publication-title: Int. Biodeterior. Biodegrad.
  doi: 10.1016/S0964-8305(02)00177-4
– volume: 1
  issue: 3
  year: 2017
  ident: 10.1016/j.biotechadv.2018.07.001_bb0230
  article-title: The ins and outs of microorganism-electrode electron transfer reactions
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-017-0024
– volume: 33
  start-page: 5115
  issue: 17
  year: 1994
  ident: 10.1016/j.biotechadv.2018.07.001_bb0540
  article-title: Role of the interdomain hinge of flavocytochrome b2 in intra-and inter-protein electron transfer
  publication-title: Biochemistry
  doi: 10.1021/bi00183a015
– volume: 14
  start-page: 651
  issue: 10
  year: 2016
  ident: 10.1016/j.biotechadv.2018.07.001_bb0565
  article-title: Extracellular electron transfer mechanisms between microorganisms and minerals
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2016.93
– volume: 164
  start-page: 941
  issue: 2-3
  year: 2009
  ident: 10.1016/j.biotechadv.2018.07.001_bb0625
  article-title: The role of humic substances in the anaerobic reductive dechlorination of 2,4-dichlorophenoxyacetic acid by Comamonas koreensis strain CY01
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.08.097
– volume: 189
  start-page: 1765
  issue: 5
  year: 2007
  ident: 10.1016/j.biotechadv.2018.07.001_bb0205
  article-title: The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00776-06
– volume: 17
  start-page: 648
  issue: 3
  year: 2015
  ident: 10.1016/j.biotechadv.2018.07.001_bb0315
  article-title: Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12485
– volume: 6
  issue: 2
  year: 2015
  ident: 10.1016/j.biotechadv.2018.07.001_bb0370
  article-title: Structural basis for metallic-like conductivity in microbial nanowires
  publication-title: MBio
  doi: 10.1128/mBio.00084-15
– volume: 8
  year: 2017
  ident: 10.1016/j.biotechadv.2018.07.001_bb0055
  article-title: Electrochemical potential influences phenazine production, electron transfer and consequently electric current generation by Pseudomonas aeruginosa
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00892
– volume: 435
  start-page: 1098
  issue: 7045
  year: 2005
  ident: 10.1016/j.biotechadv.2018.07.001_bb0480
  article-title: Extracellular electron transfer via microbial nanowires
  publication-title: Nature
  doi: 10.1038/nature03661
– volume: 48
  start-page: 7536
  issue: 13
  year: 2014
  ident: 10.1016/j.biotechadv.2018.07.001_bb0615
  article-title: Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5016789
– volume: 17
  start-page: 22217
  issue: 34
  year: 2015
  ident: 10.1016/j.biotechadv.2018.07.001_bb0155
  article-title: Structural and functional insights into the conductive pili of Geobacter sulfurreducens revealed in molecular dynamics simulations
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP03432A
– volume: 288
  start-page: 29260
  issue: 41
  year: 2013
  ident: 10.1016/j.biotechadv.2018.07.001_bb0475
  article-title: Structure of the type IVa major pilin from the electrically conductive bacterial nanowires of Geobacter sulfurreducens
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.498527
– volume: 290
  start-page: 103
  year: 1993
  ident: 10.1016/j.biotechadv.2018.07.001_bb0580
  article-title: L-mandelate dehydrogenase from Rhodotorula graminis: comparisons with the L-lactate dehydrogenase (flavocytochrome b2) from Saccharomyces cerevisiae
  publication-title: Biochem. J.
  doi: 10.1042/bj2900103
– volume: 8
  start-page: 513
  issue: 2
  year: 2015
  ident: 10.1016/j.biotechadv.2018.07.001_bb0530
  article-title: Microbial electrochemistry and technology: terminology and classification
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03359K
– volume: 65
  start-page: 12
  issue: 1
  year: 2007
  ident: 10.1016/j.biotechadv.2018.07.001_bb0555
  article-title: Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2007.05783.x
– volume: 66
  start-page: 1292
  issue: 4
  year: 2000
  ident: 10.1016/j.biotechadv.2018.07.001_bb0445
  article-title: Electricity generation in microbial fuel cells using neutral red as an electronophore
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.66.4.1292-1297.2000
– volume: 27
  start-page: 1908
  issue: 11
  year: 2015
  ident: 10.1016/j.biotechadv.2018.07.001_bb0675
  article-title: Inter-aromatic distances in Geobacter sulfurreducens pili relevant to biofilm charge transport
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404167
– volume: 5
  issue: 318
  year: 2014
  ident: 10.1016/j.biotechadv.2018.07.001_bb0440
  article-title: Exploring the molecular mechanisms of electron shuttling across the microbe/metal space
  publication-title: Front. Microbiol.
– volume: 71
  start-page: 731
  issue: 1
  year: 2017
  ident: 10.1016/j.biotechadv.2018.07.001_bb0170
  article-title: The colorful world of extracellular electron shuttles
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-090816-093913
– volume: 127
  start-page: 19
  year: 2016
  ident: 10.1016/j.biotechadv.2018.07.001_bb0695
  article-title: A review of current progress of recycling technologies for metals from waste electrical and electronic equipment
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.04.004
– volume: 35
  start-page: 393
  issue: 5
  year: 2017
  ident: 10.1016/j.biotechadv.2018.07.001_bb0165
  article-title: A Gibbs free energy-based assessment of microbial electrocatalysis
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2017.02.005
– volume: 5
  start-page: 8982
  issue: 10
  year: 2012
  ident: 10.1016/j.biotechadv.2018.07.001_bb0285
  article-title: Promoting direct interspecies electron transfer with activated carbon
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22459c
– volume: 152
  start-page: 122
  year: 2015
  ident: 10.1016/j.biotechadv.2018.07.001_bb0390
  article-title: The geochemical fingerprint of microbial long-distance electron transport in the seafloor
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2014.12.014
– volume: 50
  start-page: 11016
  issue: 20
  year: 2016
  ident: 10.1016/j.biotechadv.2018.07.001_bb0545
  article-title: Aggregation kinetics of hematite particles in the presence of outer membrane cytochrome OmcA of Shewanella oneidenesis MR-1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b02963
SSID ssj0015053
Score 2.6262603
SecondaryResourceType review_article
Snippet Redox mediator plays an important role in extracellular electron transfer (EET) in many environments wherein microbial electrocatalysis occurs actively....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1815
SubjectTerms Biochemical fuel cells
Biodegradation
Biomining
Bioremediation
Charge transport
Chemical reactions
Electrocatalysis
Electrochemically active bacteria
electrochemistry
Electron
Electron transfer
Electrons
Extracellular electron transfer
Extracellular matrix
industry
Microbial electrocatalysis
microbial fuel cells
Microorganisms
Nanomaterials
Redox mediator
redox potential
Sustainable development
Title Microbial electrocatalysis: Redox mediators responsible for extracellular electron transfer
URI https://dx.doi.org/10.1016/j.biotechadv.2018.07.001
https://www.ncbi.nlm.nih.gov/pubmed/30196813
https://www.proquest.com/docview/2117377482
https://www.proquest.com/docview/2101915857
https://www.proquest.com/docview/2131880552
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5EQfQgvl1fVPBat2kS0-pJRFkVPfgAwUNomhRXlq6sq3jytzvTpquCiuBxdzNLO5nMfGm_fAOwLQqVWBvlYeScCYVjJjRJXoRJZlIrecxlzfK92O3ciNNbeTsGh81ZGKJV-txf5_QqW_tv2t6b7cdut32FwSlSRYJ0GKSxJMVPIRRF-c7biOaBeKdWosTBIY32bJ6a42W6pIVwn9kXInkllYynbw_zTYn6CYJWpeh4FmY8hgwO6sucgzFXzsP0J2XBeZg89-_MF-DuvFuJLaGF73lTPbIhJZK94NLZ_mtQHR-htjvBoKHM9lyAcDbA1D3I6OE-sVUb-zIYVnDXDRbh5vjo-rAT-pYKYY6ZbYgbRQQUaU7npx1OnmUWPRZzzDIisgUztoizKJepSYXD8qlMVCRMWcVTI6zjnC_BeNkv3QoE3GSGFQrxCVb42IjUSVzCuSWxJFdErgWq8aLOvd44tb3o6YZY9qA__K_J_zqil-GsBWxk-VhrbvzBZr-ZKP0lfjSWhj9Yrzdzq_0aftK4NVYc0XESt2Br9DOuPvJ6Vrr-M41BiMxwy6V-G8NJ9E5K_J_lOm5Gt8VJnihhfPVfl78GU_SJjkgyuQ7jw8Gz20CsNDSb1WLYhImDk7POxTsUdBYH
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED6VIsH2MI3CRhmDIPEaNY5tnMATQqvKaPvADwmJByuOHdEJpagUtD-fu8TpQGIT0l5jX-Kc7bvP9vk7gH1RqMTaKA8j50woHDOhSfIiTDKTWsljLuso3_HB4Er8vJbXLThp7sJQWKW3_bVNr6y1f9Lz2uzdTya9CxycIlVESIeDNJZ8CZaJnUq2Yfn49GwwXhwm4OdqNk4uQhLwAT11mJeZEB3CbWafKM4rqZg8fYaYN7zU31Bo5Y36n-GTh5HBcd3SNWi5sgMfX5ALdmBl5I_N1-FmNKn4llDCp72pdm2IjOQwOHd2-juobpBQ5p1g1kTN3rkAEW2A1nuW0f4-Baw28mUwrxCvm23AVf_H5ckg9FkVwhyN2xzXiogp0pyuUDvsP8usQIPI0dCIyBbM2CLOolymJhUOPagyUZEwZRVPjbCOc_4F2uW0dJsQcJMZViiEKOjkYyNSJ3EW55b4klwRuS6oRos695TjlPniTjexZb_0H_1r0r-O6DycdYEtJO9r2o13yBw1HaVfDSGN3uEd0ttN32o_jR80ro4VR4CcxF3YWxTjBCStZ6WbPlIdRMkMV13qX3U48d5Jie_5Wo-bxW9xYihKGN_6r-bvwurgcjTUw9Px2Tf4QCV0Y5LJbWjPZ4_uO0KnudnxU-MZh1MYuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+electrocatalysis%3A+Redox+mediators+responsible+for+extracellular+electron+transfer&rft.jtitle=Biotechnology+advances&rft.au=Liu%2C+Xiaobo&rft.au=Shi%2C+Liang&rft.au=Gu%2C+Ji-Dong&rft.date=2018-11-15&rft.pub=Elsevier+Science+Ltd&rft.issn=0734-9750&rft.eissn=1873-1899&rft.volume=36&rft.issue=7&rft.spage=1815&rft_id=info:doi/10.1016%2Fj.biotechadv.2018.07.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-9750&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-9750&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-9750&client=summon