Microbial electrocatalysis: Redox mediators responsible for extracellular electron transfer
Redox mediator plays an important role in extracellular electron transfer (EET) in many environments wherein microbial electrocatalysis occurs actively. Because of the block of cell envelope and the low difference of redox potential between the intracellular and extracellular surroundings, the proce...
Saved in:
Published in | Biotechnology advances Vol. 36; no. 7; pp. 1815 - 1827 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
15.11.2018
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Redox mediator plays an important role in extracellular electron transfer (EET) in many environments wherein microbial electrocatalysis occurs actively. Because of the block of cell envelope and the low difference of redox potential between the intracellular and extracellular surroundings, the proceeding of EET depends mainly on the help of a variety of mediators that function as an electron carrier or bridge. In this Review, we will summarize a wide range of redox mediators and further discuss their functional mechanisms in EET that drives a series of microbial electrocatalytic reactions. Studying these mediators adds to our knowledge of how charge transport and electrochemical reactions occur at the microorganism-electrode interface. This understanding would promote the widespread applications of microbial electrocatalysis in microbial fuel cells, bioremediation, bioelectrosynthesis, biomining, nanomaterial productions, etc. These improved applications will greatly benefit the sustainable development of the environmental-friendly biochemical industries.
•A diverse redox mediators involved in extracellular electron transfer (EET) are summarized.•The EET mechanisms of redox mediators are discussed.•Advances in biotechnological applications of microbial electrocatalysis are reviewed.•Future perspectives are provided for the EET studies. |
---|---|
AbstractList | Redox mediator plays an important role in extracellular electron transfer (EET) in many environments wherein microbial electrocatalysis occurs actively. Because of the block of cell envelope and the low difference of redox potential between the intracellular and extracellular surroundings, the proceeding of EET depends mainly on the help of a variety of mediators that function as an electron carrier or bridge. In this Review, we will summarize a wide range of redox mediators and further discuss their functional mechanisms in EET that drives a series of microbial electrocatalytic reactions. Studying these mediators adds to our knowledge of how charge transport and electrochemical reactions occur at the microorganism-electrode interface. This understanding would promote the widespread applications of microbial electrocatalysis in microbial fuel cells, bioremediation, bioelectrosynthesis, biomining, nanomaterial productions, etc. These improved applications will greatly benefit the sustainable development of the environmental-friendly biochemical industries. Redox mediator plays an important role in extracellular electron transfer (EET) in many environments wherein microbial electrocatalysis occurs actively. Because of the block of cell envelope and the low difference of redox potential between the intracellular and extracellular surroundings, the proceeding of EET depends mainly on the help of a variety of mediators that function as an electron carrier or bridge. In this Review, we will summarize a wide range of redox mediators and further discuss their functional mechanisms in EET that drives a series of microbial electrocatalytic reactions. Studying these mediators adds to our knowledge of how charge transport and electrochemical reactions occur at the microorganism-electrode interface. This understanding would promote the widespread applications of microbial electrocatalysis in microbial fuel cells, bioremediation, bioelectrosynthesis, biomining, nanomaterial productions, etc. These improved applications will greatly benefit the sustainable development of the environmental-friendly biochemical industries.Redox mediator plays an important role in extracellular electron transfer (EET) in many environments wherein microbial electrocatalysis occurs actively. Because of the block of cell envelope and the low difference of redox potential between the intracellular and extracellular surroundings, the proceeding of EET depends mainly on the help of a variety of mediators that function as an electron carrier or bridge. In this Review, we will summarize a wide range of redox mediators and further discuss their functional mechanisms in EET that drives a series of microbial electrocatalytic reactions. Studying these mediators adds to our knowledge of how charge transport and electrochemical reactions occur at the microorganism-electrode interface. This understanding would promote the widespread applications of microbial electrocatalysis in microbial fuel cells, bioremediation, bioelectrosynthesis, biomining, nanomaterial productions, etc. These improved applications will greatly benefit the sustainable development of the environmental-friendly biochemical industries. Redox mediator plays an important role in extracellular electron transfer (EET) in many environments wherein microbial electrocatalysis occurs actively. Because of the block of cell envelope and the low difference of redox potential between the intracellular and extracellular surroundings, the proceeding of EET depends mainly on the help of a variety of mediators that function as an electron carrier or bridge. In this Review, we will summarize a wide range of redox mediators and further discuss their functional mechanisms in EET that drives a series of microbial electrocatalytic reactions. Studying these mediators adds to our knowledge of how charge transport and electrochemical reactions occur at the microorganism-electrode interface. This understanding would promote the widespread applications of microbial electrocatalysis in microbial fuel cells, bioremediation, bioelectrosynthesis, biomining, nanomaterial productions, etc. These improved applications will greatly benefit the sustainable development of the environmental-friendly biochemical industries. •A diverse redox mediators involved in extracellular electron transfer (EET) are summarized.•The EET mechanisms of redox mediators are discussed.•Advances in biotechnological applications of microbial electrocatalysis are reviewed.•Future perspectives are provided for the EET studies. |
Author | Shi, Liang Liu, Xiaobo Gu, Ji-Dong |
Author_xml | – sequence: 1 givenname: Xiaobo orcidid: 0000-0002-1865-4403 surname: Liu fullname: Liu, Xiaobo email: xbliu123@hku.hk organization: Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, PR China – sequence: 2 givenname: Liang surname: Shi fullname: Shi, Liang email: liang.shi@cug.edu.cn organization: Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geoscience, Wuhan, Hubei 430074, PR China – sequence: 3 givenname: Ji-Dong orcidid: 0000-0002-7082-9784 surname: Gu fullname: Gu, Ji-Dong email: jdgu@hku.hk organization: Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30196813$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1rFTEUhoNU7G31L8iAGzcz5kwmk4wLQYtfUBFEVy5CJjmDueQm1yRT2n9vLrdV6MauAofnvJy8zxk5CTEgIQ3QDiiMr7bd7GJB80vbq66nIDsqOkrhEdmAFKwFOU0nZEMFG9pJcHpKznLeVoBTzp6QU0ZhGiWwDfn5xZkUZ6d9gx5NSdHoov1Ndvl18w1tvG52aJ0uMeUmYd7HkN3ssVliavC6JG3Q-9XrdLcfmjoMecH0lDxetM_47PY9Jz8-vP9-8am9_Prx88Xby9ZwJks7AtB-MvW4EdEYC3YQY8-YGAdqF5jt0mtq-DRPAxpEMdNFgrCCTfNgkTF2Tl4ec_cp_l4xF7Vz-XCWDhjXrHpgICXlvH8AWpsBLrmo6It76DauKdSPVAoEE2KQh8Dnt9Q616LUPrmdTjfqruEKyCNQa8454fIXAaoOMtVW_ZOpDjIVFaq6qqtv7q0aV3RxMdSGnX9IwLtjANb2rxwmlY3DYKrQVF0pG93_Q_4AIVDCPg |
CitedBy_id | crossref_primary_10_1016_j_cej_2019_03_119 crossref_primary_10_1016_j_jbc_2023_105167 crossref_primary_10_1021_acsestwater_3c00329 crossref_primary_10_1039_D0CS00489H crossref_primary_10_3389_fmicb_2022_1004589 crossref_primary_10_1016_j_bios_2020_112435 crossref_primary_10_1016_j_jpowsour_2024_234775 crossref_primary_10_1021_acssuschemeng_4c04119 crossref_primary_10_1016_j_envpol_2023_122107 crossref_primary_10_1155_2024_5866657 crossref_primary_10_1186_s40494_021_00508_1 crossref_primary_10_1016_j_apenergy_2021_116885 crossref_primary_10_1021_acs_iecr_3c03013 crossref_primary_10_1016_j_envres_2023_117712 crossref_primary_10_1007_s11431_019_9509_8 crossref_primary_10_1038_s41545_022_00205_x crossref_primary_10_1016_j_bioelechem_2022_108359 crossref_primary_10_3390_microorganisms11092299 crossref_primary_10_1016_j_rser_2020_110404 crossref_primary_10_1016_j_ibiod_2020_105111 crossref_primary_10_1038_s43246_021_00173_8 crossref_primary_10_1016_j_cej_2024_154932 crossref_primary_10_1080_01496395_2023_2259079 crossref_primary_10_1016_j_apenergy_2020_115292 crossref_primary_10_1016_j_fuproc_2022_107478 crossref_primary_10_1016_j_bios_2019_111594 crossref_primary_10_1016_j_renene_2025_122809 crossref_primary_10_1016_j_scitotenv_2023_167690 crossref_primary_10_1021_acsestengg_4c00848 crossref_primary_10_3390_pr8040424 crossref_primary_10_1016_j_biotechadv_2021_107810 crossref_primary_10_1016_j_watres_2022_119393 crossref_primary_10_1021_acssuschemeng_9b02494 crossref_primary_10_1186_s13068_019_1385_z crossref_primary_10_3390_catal14030208 crossref_primary_10_1016_j_ijhydene_2025_01_087 crossref_primary_10_3389_fenvs_2020_00044 crossref_primary_10_1016_j_chemosphere_2022_133865 crossref_primary_10_1002_smll_202301135 crossref_primary_10_1016_j_jhazmat_2020_124880 crossref_primary_10_1039_D1AN01954F crossref_primary_10_1016_j_scitotenv_2024_174269 crossref_primary_10_1016_j_bioelechem_2019_107329 crossref_primary_10_1016_j_ijhydene_2018_11_111 crossref_primary_10_1016_j_gee_2020_06_026 crossref_primary_10_1021_acssuschemeng_2c06685 crossref_primary_10_1016_j_rser_2021_110950 crossref_primary_10_1039_D0EN00820F crossref_primary_10_1186_s40643_022_00575_7 crossref_primary_10_1021_acs_chemrev_1c00487 crossref_primary_10_1111_1462_2920_16254 crossref_primary_10_1002_adhm_202101819 crossref_primary_10_1016_j_scitotenv_2019_134160 crossref_primary_10_3389_fmicb_2019_01817 crossref_primary_10_1016_j_ibiod_2019_104842 crossref_primary_10_1016_j_bios_2019_111931 crossref_primary_10_1016_j_watres_2024_122708 crossref_primary_10_1016_j_scitotenv_2019_134161 crossref_primary_10_1007_s11814_024_00131_3 crossref_primary_10_1016_j_bios_2021_113725 crossref_primary_10_1016_j_jwpe_2022_102966 crossref_primary_10_3390_app9204251 crossref_primary_10_3390_fermentation10100504 crossref_primary_10_1002_nano_202000291 crossref_primary_10_1007_s00284_022_03148_1 crossref_primary_10_1016_j_bej_2020_107886 crossref_primary_10_1016_j_scitotenv_2021_146606 crossref_primary_10_1007_s11274_018_2576_7 crossref_primary_10_1016_j_chemosphere_2024_141505 crossref_primary_10_1016_j_bioelechem_2024_108829 crossref_primary_10_1016_j_chemosphere_2022_137255 crossref_primary_10_1016_j_jclepro_2023_139353 crossref_primary_10_1016_j_biteb_2023_101402 crossref_primary_10_1016_j_jece_2025_115782 crossref_primary_10_1016_j_jwpe_2023_104458 crossref_primary_10_1016_j_tim_2020_01_008 crossref_primary_10_1016_j_jhazmat_2020_122018 crossref_primary_10_1128_AEM_03109_20 crossref_primary_10_1515_ijcre_2021_0019 crossref_primary_10_1016_j_electacta_2023_141849 crossref_primary_10_1039_D3CS00535F crossref_primary_10_1016_j_cej_2024_158369 crossref_primary_10_1016_j_bios_2020_112652 crossref_primary_10_1016_j_scitotenv_2022_158696 crossref_primary_10_1016_j_algal_2022_102755 crossref_primary_10_1557_mrc_2019_27 crossref_primary_10_1016_j_fuel_2022_123604 crossref_primary_10_1016_j_jtice_2020_08_015 crossref_primary_10_1016_j_scitotenv_2021_150332 crossref_primary_10_3389_fmicb_2022_982047 crossref_primary_10_3389_fmicb_2022_820989 crossref_primary_10_1016_j_biortech_2021_126579 crossref_primary_10_1016_j_ibiod_2019_104838 crossref_primary_10_1021_acs_nanolett_1c01062 crossref_primary_10_1021_acsenergylett_9b02596 crossref_primary_10_1016_j_jhazmat_2023_133127 crossref_primary_10_1016_j_psep_2024_05_139 crossref_primary_10_1080_17451000_2023_2282429 crossref_primary_10_1016_j_biortech_2024_130522 crossref_primary_10_1016_j_jhazmat_2020_123362 crossref_primary_10_1016_j_bioelechem_2025_108902 crossref_primary_10_3389_fmicb_2022_1084530 crossref_primary_10_1002_slct_202103972 crossref_primary_10_1016_j_cclet_2021_06_064 crossref_primary_10_1016_j_cej_2022_139145 crossref_primary_10_1016_j_coelec_2021_100830 crossref_primary_10_1016_j_eti_2023_103183 crossref_primary_10_1016_j_fuel_2022_124237 crossref_primary_10_1016_j_jhazmat_2023_131830 crossref_primary_10_1016_j_scitotenv_2022_159721 crossref_primary_10_1016_j_scitotenv_2022_156217 crossref_primary_10_3390_w15223981 crossref_primary_10_1016_j_cej_2021_130856 crossref_primary_10_1016_j_jwpe_2025_107413 crossref_primary_10_1016_j_bioelechem_2023_108455 crossref_primary_10_1016_j_scitotenv_2020_140768 crossref_primary_10_1016_j_biortech_2019_121924 crossref_primary_10_1016_j_bej_2019_107318 crossref_primary_10_1007_s11427_018_9464_3 crossref_primary_10_1016_j_csbj_2021_01_013 crossref_primary_10_1016_j_jenvman_2023_119286 crossref_primary_10_1016_j_bios_2020_112725 crossref_primary_10_1016_j_rser_2021_111069 crossref_primary_10_1016_j_jece_2023_110965 crossref_primary_10_3390_microorganisms7050122 crossref_primary_10_1016_j_cej_2019_121960 crossref_primary_10_1016_j_envpol_2020_115154 crossref_primary_10_1016_j_cej_2020_124464 crossref_primary_10_1016_j_corsci_2024_112234 crossref_primary_10_1016_j_scitotenv_2022_153154 crossref_primary_10_1016_j_scitotenv_2024_176278 crossref_primary_10_1039_C9CC03847G crossref_primary_10_1016_j_jclepro_2022_133527 crossref_primary_10_1016_j_scitotenv_2019_136128 crossref_primary_10_1016_j_scitotenv_2020_137277 crossref_primary_10_1016_j_cej_2024_150848 crossref_primary_10_3389_fmicb_2019_02938 crossref_primary_10_1016_j_cclet_2021_06_055 crossref_primary_10_1016_j_cej_2020_127604 crossref_primary_10_1073_pnas_2008741117 crossref_primary_10_1016_j_biortech_2020_123519 crossref_primary_10_3389_fbioe_2020_592939 crossref_primary_10_1016_j_enzmictec_2021_109767 crossref_primary_10_3390_molecules29040834 crossref_primary_10_3390_en17030752 crossref_primary_10_1016_j_bios_2020_112865 crossref_primary_10_1039_D2EN00156J crossref_primary_10_1016_j_jclepro_2022_133895 crossref_primary_10_1016_j_corsci_2019_108215 crossref_primary_10_1016_j_enzmictec_2018_08_004 crossref_primary_10_1016_j_scitotenv_2021_150140 crossref_primary_10_1016_j_ibiod_2019_05_026 crossref_primary_10_1016_j_jece_2025_115484 crossref_primary_10_1080_10826068_2019_1591989 crossref_primary_10_1002_jctb_6332 crossref_primary_10_1016_j_synbio_2020_08_004 crossref_primary_10_1016_j_scitotenv_2021_146447 crossref_primary_10_1016_j_envpol_2022_120772 crossref_primary_10_1007_s00775_024_02076_8 crossref_primary_10_1016_j_biortech_2024_131381 crossref_primary_10_1016_j_jhazmat_2023_130943 crossref_primary_10_1016_j_bios_2020_112470 crossref_primary_10_1016_j_bioelechem_2024_108679 crossref_primary_10_1021_acssynbio_2c00636 crossref_primary_10_1016_j_cej_2019_04_130 crossref_primary_10_1016_j_bej_2019_04_018 crossref_primary_10_3389_fbioe_2020_00819 crossref_primary_10_1016_j_bioelechem_2024_108889 crossref_primary_10_1016_j_cej_2020_127652 crossref_primary_10_1016_j_jclepro_2020_120214 crossref_primary_10_1038_s41467_024_52498_w crossref_primary_10_1016_j_bej_2020_107714 crossref_primary_10_1016_j_ibiod_2020_105165 crossref_primary_10_1016_j_ibiod_2021_105248 crossref_primary_10_1007_s13205_021_02686_y crossref_primary_10_1016_j_scitotenv_2020_140080 crossref_primary_10_2139_ssrn_4075851 crossref_primary_10_1016_j_jclepro_2020_121313 crossref_primary_10_1088_1361_6528_ab8767 crossref_primary_10_1016_j_bios_2019_111769 crossref_primary_10_1016_j_btre_2020_e00486 crossref_primary_10_1007_s42773_024_00384_5 crossref_primary_10_1016_j_bioelechem_2022_108173 crossref_primary_10_1016_j_cej_2023_144867 crossref_primary_10_3389_fmicb_2022_895409 crossref_primary_10_1016_j_coelec_2019_08_004 crossref_primary_10_1039_D4RA01510J crossref_primary_10_1016_j_jhazmat_2024_133940 crossref_primary_10_1016_j_scitotenv_2023_166549 crossref_primary_10_1016_j_ijhydene_2025_01_299 crossref_primary_10_1016_j_bios_2020_112269 crossref_primary_10_1016_j_scitotenv_2023_164486 crossref_primary_10_1007_s10646_020_02305_1 crossref_primary_10_1016_j_jbiosc_2022_12_003 crossref_primary_10_1016_j_biotechadv_2023_108170 crossref_primary_10_1016_j_fbio_2024_103837 crossref_primary_10_1016_j_scitotenv_2022_153857 |
Cites_doi | 10.1021/ja4015343 10.1073/pnas.1220823110 10.1002/anie.201501420 10.3389/fmicb.2015.01075 10.1128/JB.00925-09 10.1007/s12678-014-0198-x 10.1128/JB.180.23.6292-6297.1998 10.1038/70051 10.1080/09593330.2013.781198 10.1038/srep17067 10.1021/jp302232p 10.1021/es991181b 10.1002/cssc.201100733 10.1128/JB.01966-05 10.1021/es702290a 10.1126/science.1066771 10.1016/j.bioelechem.2015.08.003 10.1128/AEM.70.6.3467-3474.2004 10.1016/j.bpj.2010.04.017 10.1128/mBio.02034-14 10.1039/b816647a 10.1073/pnas.0710525105 10.1038/ncomms4391 10.1016/j.gca.2015.03.039 10.1128/AEM.00544-09 10.1039/C3EE42189A 10.1039/C5RA28092C 10.1007/s00253-010-2820-z 10.1007/s00253-007-1027-4 10.1016/j.biortech.2014.09.009 10.1007/BF00165883 10.1016/j.fuel.2014.02.018 10.1038/nature15512 10.1111/j.1462-2920.2011.02611.x 10.1529/biophysj.108.134411 10.1038/ismej.2016.136 10.1111/j.1365-2958.2010.07266.x 10.1021/acsomega.7b00450 10.1111/j.1462-2920.2005.00696.x 10.1111/j.1365-2958.2012.08088.x 10.1021/acs.est.5b00131 10.1039/c2ee02613a 10.1128/JB.185.7.2096-2103.2003 10.1128/AEM.69.3.1548-1555.2003 10.1002/cphc.201300117 10.1021/ac000358d 10.1128/JB.184.6.1806-1810.2002 10.1016/j.pep.2008.06.014 10.1073/pnas.1108616108 10.1046/j.1365-2958.2001.02257.x 10.1073/pnas.0900086106 10.1128/AEM.70.2.921-928.2004 10.1002/elan.201200351 10.1016/j.copbio.2014.03.003 10.1128/JB.00843-13 10.1016/j.biortech.2016.03.005 10.1038/339297a0 10.1126/science.1196526 10.1111/j.1574-6968.2007.00915.x 10.3389/fmicb.2012.00037 10.1039/c1ee01753e 10.1038/nnano.2011.119 10.1016/0022-2836(90)90240-M 10.1038/nature11586 10.1016/S0005-2728(00)00171-7 10.1042/BJ20121467 10.1021/es071389u 10.1038/ismej.2014.264 10.1071/SR08036 10.1038/ismej.2015.250 10.1021/nl400237p 10.1016/j.jenvman.2011.06.009 10.1021/jacs.7b07460 10.1016/j.chemosphere.2014.09.070 10.1128/AEM.02469-12 10.1002/anie.201409163 10.1128/AEM.71.8.4487-4496.2005 10.1073/pnas.1510152112 10.1042/bj3330117 10.1128/AEM.68.11.5585-5594.2002 10.1016/j.jpba.2015.04.013 10.1021/acs.est.5b04369 10.1128/JB.182.1.67-75.2000 10.1007/s12257-011-0493-9 10.1073/pnas.1220074110 10.1007/s00253-011-3653-0 10.1128/AEM.63.12.4784-4792.1997 10.1016/j.gca.2014.04.047 10.1128/AEM.00895-14 10.1016/j.scitotenv.2015.02.047 10.1099/ijs.0.020909-0 10.1371/journal.pone.0016649 10.1021/es0605016 10.1038/nature15733 10.1021/es301544b 10.1016/j.watres.2005.02.021 10.1080/09593330902984751 10.1038/ncomms1053 10.1016/j.chemosphere.2007.02.062 10.1016/j.biortech.2013.02.072 10.1111/1758-2229.12204 10.1016/j.jpowsour.2017.03.109 10.1128/mBio.00210-13 10.3389/fmicb.2015.00332 10.1126/science.aaa4834 10.1016/S0968-0004(02)02086-8 10.1021/es2046266 10.1073/pnas.1117592109 10.1038/nnano.2014.236 10.1016/j.gca.2012.05.036 10.1073/pnas.1017200108 10.1146/annurev-micro-030117-020420 10.1111/1462-2920.12485 10.1042/bj20020597 10.1039/C6EE02106A 10.1016/S0964-8305(02)00177-4 10.1038/s41570-017-0024 10.1021/bi00183a015 10.1038/nrmicro.2016.93 10.1016/j.jhazmat.2008.08.097 10.1128/JB.00776-06 10.1128/mBio.00084-15 10.3389/fmicb.2017.00892 10.1038/nature03661 10.1021/es5016789 10.1039/C5CP03432A 10.1074/jbc.M113.498527 10.1042/bj2900103 10.1039/C4EE03359K 10.1111/j.1365-2958.2007.05783.x 10.1128/AEM.66.4.1292-1297.2000 10.1002/adma.201404167 10.1146/annurev-micro-090816-093913 10.1016/j.jclepro.2016.04.004 10.1016/j.tibtech.2017.02.005 10.1039/c2ee22459c 10.1016/j.gca.2014.12.014 10.1021/acs.est.6b02963 |
ContentType | Journal Article |
Copyright | 2018 Copyright © 2018. Published by Elsevier Inc. Copyright Elsevier Science Ltd. Nov 15, 2018 |
Copyright_xml | – notice: 2018 – notice: Copyright © 2018. Published by Elsevier Inc. – notice: Copyright Elsevier Science Ltd. Nov 15, 2018 |
DBID | AAYXX CITATION NPM 7QQ 7SE 7TA 7TB 8FD FR3 H8G JG9 7X8 7S9 L.6 |
DOI | 10.1016/j.biotechadv.2018.07.001 |
DatabaseName | CrossRef PubMed Ceramic Abstracts Corrosion Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Copper Technical Reference Library Materials Research Database MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Copper Technical Reference Library Technology Research Database Mechanical & Transportation Engineering Abstracts Ceramic Abstracts Engineering Research Database Corrosion Abstracts Materials Business File MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1873-1899 |
EndPage | 1827 |
ExternalDocumentID | 30196813 10_1016_j_biotechadv_2018_07_001 S0734975018301253 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM AAAJQ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AAXUO ABFRF ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGEKW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CJTIS CNWQP CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LUGTX LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSI SSU SSZ T5K ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLW HMG HVGLF HZ~ MVM R2- RIG SBG SEW SIN SSH WUQ XPP Y6R NPM 7QQ 7SE 7TA 7TB 8FD EFKBS FR3 H8G JG9 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c538t-611029c0156eeccd1d4762337640df1bdf2a0c59b94ecee7b0f817d739b4de333 |
IEDL.DBID | .~1 |
ISSN | 0734-9750 1873-1899 |
IngestDate | Fri Jul 11 03:22:14 EDT 2025 Thu Aug 07 14:53:39 EDT 2025 Mon Jul 14 08:22:06 EDT 2025 Wed Feb 19 02:34:41 EST 2025 Thu Apr 24 23:06:03 EDT 2025 Tue Jul 01 03:01:18 EDT 2025 Fri Feb 23 02:25:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Microbial electrocatalysis Biodegradation Electrochemically active bacteria Redox mediator Extracellular electron transfer Electron |
Language | English |
License | Copyright © 2018. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c538t-611029c0156eeccd1d4762337640df1bdf2a0c59b94ecee7b0f817d739b4de333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1865-4403 0000-0002-7082-9784 |
PMID | 30196813 |
PQID | 2117377482 |
PQPubID | 2047478 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2131880552 proquest_miscellaneous_2101915857 proquest_journals_2117377482 pubmed_primary_30196813 crossref_primary_10_1016_j_biotechadv_2018_07_001 crossref_citationtrail_10_1016_j_biotechadv_2018_07_001 elsevier_sciencedirect_doi_10_1016_j_biotechadv_2018_07_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-15 |
PublicationDateYYYYMMDD | 2018-11-15 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Biotechnology advances |
PublicationTitleAlternate | Biotechnol Adv |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd |
References | Hartshorne, Reardon, Ross, Nuester, Clarke, Gates, Mills, Fredrickson, Zachara, Shi, Beliaev, Marshall, Tien, Brantley, Butt, Richardson (bb0185) 2009; 106 Wang, Newman (bb0620) 2008; 42 Xia, Mathews (bb0665) 1990; 212 Pearce, Pattrick, Law, Charnock, Coker, Fellowes, Oremland, Lloyd (bb0450) 2009; 30 Schröder, Harnisch, Angenent (bb0530) 2015; 8 Lee, Han, Choi, Hur (bb0245) 2007; 68 Adhikari, Malvankar, Tuominen, Lovley (bb0005) 2016; 6 Smékal, Yasin, Fewson, Reid, Chapman (bb0580) 1993; 290 Emerson, Moyer (bb0140) 1997; 63 Vargas, Malvankar, Tremblay, Leang, Smith, Patel, Synoeyenbos-West, Nevin, Lovley (bb0610) 2013; 4 Kumar, Hsu, Kavanagh, Barriere, Lens, Lapinsonniere, Lienhard, Schroder, Jiang, Leech (bb0230) 2017; 1 McKinlay, Zeikus (bb0385) 2004; 70 Lovley (bb0340) 2017; 71 Li, Cui, Feng, Xie, Gu (bb0270) 2005; 39 Beckwith, Edwards, Lawes, Shi, Butt, Richardson, Clarke (bb0020) 2015; 6 Kato, Hashimoto, Watanabe (bb0220) 2012; 109 Liu, Fredrickson, Zachara, Shi (bb0305) 2015; 6 Okamoto, Hashimoto, Nealson, Nakamura (bb0435) 2013; 110 Sulu-Gambari, Seitaj, Meysman, Schauer, Polerecky, Slomp (bb0595) 2016; 50 Liu, Wang, Liu, Levar, Edwards, Babauta, Kennedy, Shi, Beyenal, Bond, Clarke, Butt, Richardson, Rosso, Zachara, Fredrickson, Shi (bb0300) 2014; 6 Malvankar, Vargas, Nevin, Tremblay, Evans-Lutterodt, Nykypanchuk, Martz, Tuominen, Lovley (bb0370) 2015; 6 Shi, Dong, Reguera, Beyenal, Lu, Liu, Yu, Fredrickson (bb0565) 2016; 14 Chahrour, Cobice, Malone (bb0075) 2015; 113 Ertl, Unterladstaetter, Bayer, Mikkelsen (bb0145) 2000; 72 Londer, Giuliani, Peppler, Collart (bb0330) 2008; 62 Reardon, Mueller (bb0475) 2013; 288 Liu, Rotaru, Shrestha, Malvankar, Nevin, Lovley (bb0310) 2015; 17 Park, Zeikus (bb0445) 2000; 66 De Windt, Aelterman, Verstraete (bb0115) 2005; 7 Whittaker, Bergmann, Arciero, Hooper (bb0645) 2000; 1459 Beliaev, Saffarini, McLaughlin, Hunnicutt (bb0030) 2001; 39 Emde, Swain, Schink (bb0135) 1989; 32 Lovley, Baedecker, Lonergan, Cozzarelli, Phillips, Siegel (bb0345) 1989; 339 Shi, Squier, Zachara, Fredrickson (bb0555) 2007; 65 White, Shi, Shi, Wang, Dohnalkova, Marshall, Fredrickson, Zachara, Butt, Richardson, Clarke (bb0640) 2013; 110 Lloyd, Leang, Myerson, Coppi, Cuifo, Methe, Sandler, Lovley (bb0320) 2003; 369 Ross, Brantley, Tien (bb0505) 2009; 75 Hallenbeck, Grogger, Veverka (bb0180) 2014; 5 Müller, Bosch, Griebler, Damgaard, Nielsen, Lueders, Meckenstock (bb0405) 2016; 10 Kim, Chang, Gadd (bb0225) 2007; 76 Glasser, Saunders, Newman (bb0170) 2017; 71 Xiao, Malvankar, Shu, Martz, Lovley, Sun (bb0670) 2016; 6 Ratasuk, Nanny (bb0470) 2007; 41 Rotaru, Shrestha, Liu, Markovaite, Chen, Nevin, Lovley (bb0515) 2014; 80 Zhao, Zhang, Holmes, Dang, Woodard, Nevin, Lovley (bb0710) 2016; 209 Hernandez, Kappler, Newman (bb0195) 2004; 70 Feliciano, Steidl, Reguera (bb0155) 2015; 17 Kato, Hashimoto, Watanabe (bb0215) 2012; 14 Chan, Van Zwieten, Meszaros, Downie, Joseph (bb0080) 2008; 46 Zhang, Xu (bb0695) 2016; 127 Lovley (bb0335) 2017; 11 Myers, Myers (bb0420) 2002; 68 Bose, Gardel, Vidoudez, Parra, Girguis (bb0050) 2014; 5 Ross, Flynn, Baron, Gralnick, Bond (bb0510) 2011; 6 Yu, Guo, Yong, Li, Song (bb0685) 2015; 140 Levar, Chan, Mehta-Kolte, Bond (bb0255) 2014; 5 Sharp, White, Chapman, Reid (bb0540) 1994; 33 Clarke, Edwards, Gates, Hall, White, Bradley, Reardon, Shi, Beliaev, Marshall, Wang, Watmough, Fredrickson, Zachara, Butt, Richardson (bb0095) 2011; 108 Meysman, Risgaard-Petersen, Malkin, Nielsen (bb0390) 2015; 152 Seitaj, Schauer, Sulu-Gambari, Hidalgo-Martinez, Malkin, Burdorf, Slomp, Meysman (bb0535) 2015; 112 Viggi, Rossetti, Fazi, Paiano, Majone, Aulenta (bb0615) 2014; 48 Zacharoff, Chan, Bond (bb0690) 2016; 107 Richter, Nevin, Jia, Lowy, Lovley, Tender (bb0490) 2009; 2 Leung, Wanger, El-Naggar, Gorby, Southam, Lau, Yang (bb0250) 2013; 13 Yan, Chuang, Zhugayevych, Tretiak, Dahlquist, Bazan (bb0675) 2015; 27 Coursolle, Gralnick (bb0105) 2010; 77 Dippon, Pantke, Porsch, Larese-Casanova, Kappler (bb0125) 2012; 46 Gu (bb0175) 2003; 52 Nevin, Lovley (bb0425) 2000; 34 Summers, Fogarty, Leang, Franks, Malvankar, Lovley (bb0600) 2010; 330 Logan, Hamelers, Rozendal, Schrorder, Keller, Freguia, Aelterman, Verstraete, Rabaey (bb0325) 2006; 40 Hashim, Mukhopadhyay, Sahu, Sengupta (bb0190) 2011; 92 Strycharz-Glaven, Snider, Guiseppi-Elie, Tender (bb0585) 2011; 4 Wang, Wu, Wang, Zhou (bb0625) 2009; 164 Miot, Li, Benzerara, Sougrati, Ona-Nguema, Bernard, Jumas, Guyot (bb0395) 2014; 139 Yates, Eddie, Kotloski, Lebedev, Malanoski, Lin, Strycharz-Glaven, Tender (bb0680) 2016; 9 Coursolle, Baron, Bond, Gralnick (bb0110) 2010; 192 Qian, Reguera, Mester, Lovley (bb0465) 2007; 277 Lapinsonniere, Picot, Poriel, Barriere (bb0235) 2013; 25 Calaza, Stiehler, Fujimori, Sterrer, Beeg, Ruiz-Oses, Nilius, Heyde, Parviainen, Honkala (bb0070) 2015; 54 Marsili, Baron, Shikhare, Coursolle, Gralnick, Bond (bb0375) 2008; 105 Chen, Rotaru, Shrestha, Malvankar, Liu, Fan, Nevin, Lovley (bb0090) 2014; 4 El-Naggar, Gorby, Xia, Nealson (bb0130) 2008; 95 Sturm, Richter, Doetsch, Heide, Louro, Gescher (bb0590) 2015; 9 Al-Sid-Cheikh, Pédrot, Dia, Guenet, Vantelon, Davranche, Gruau, Delhaye (bb0010) 2015; 515–516 Rotaru, Shrestha, Liu, Shrestha, Shrestha, Embree, Zengler, Wardman, Nevin, Lovley (bb0520) 2014; 7 Chen, Rotaru, Liu, Philips, Woodard, Nevin, Lovley (bb0085) 2014; 173 Brutinel, Gralnick (bb0060) 2012; 93 Wu, Cheng, Li, Li, Li, Yu (bb0660) 2013; 136 Sheng, Liu, Shi, Liu (bb0545) 2016; 50 Malvankar, Vargas, Nevin, Franks, Leang, Kim, Inoue, Mester, Covalla, Johnson, Rotello, Tuominen, Lovley (bb0355) 2011; 6 Risgaard-Petersen, Revil, Meister, Nielsen (bb0495) 2012; 92 Wegener, Krukenberg, Riedel, Tegetmeyer, Boetius (bb0635) 2015; 526 Baker, Girvan, Matthews, McLean, Golovanova, Waltham, Rigby, Nelson, Blankley, Munro (bb0015) 2017; 2 Bosire, Rosenbaum (bb0055) 2017; 8 Ding, Lv, Zhu, Jiang, Liu (bb0120) 2015; 54 Zhou, Chen, Yuan, Lu (bb0715) 2015; 5 Malvankar, Yalcin, Tuominen, Lovley (bb0365) 2014; 9 Paquete, Fonseca, Cruz, Pereira, Pacheco, Soares, Louro (bb0440) 2014; 5 Liu, Rotaru, Shrestha, Malvankar, Nevin, Lovley (bb0285) 2012; 5 Pfeffer, Larsen, Song, Dong, Besenbacher, Meyer, Kjeldsen, Schreiber, Gorby, El-Naggar, Leung, Schramm, Risgaard-Petersen, Nielsen (bb0455) 2012; 491 Shi, Zachara, Shi, Wang, Moore, Kennedy, Fredrickson (bb0560) 2012; 46 Reguera, McCarthy, Mehta, Nicoll, Tuominen, Lovley (bb0480) 2005; 435 Malvankar, Tuominen, Lovley (bb0360) 2012; 5 Hong, Gu (bb0200) 2010; 88 Richardson, Butt, Fredrickson, Zachara, Shi, Edwards, White, Baiden, Gates, Marritt, Clarke (bb0485) 2012; 85 Liu, Pearce, Liu, Wang, Shi, Arenholz, Rosso (bb0295) 2013; 135 Beliaev, Saffarini (bb0025) 1998; 180 Myers, Myers (bb0415) 2000; 182 Tian, Li, Zhu, Chen, Wang, An, Zhang, Dong, Guan, Liu, Zhou, Liu, Tian, Yu (bb0605) 2017; 139 Zhang, Bain, Nevin, Barlett, Lovley (bb0700) 2012; 78 Liu, Wang, Belchik, Edwards, Liu, Kennedy, Merkley, Lipton, Butt, Richardson, Zachara, Fredrickson, Rosso, Shi (bb0290) 2012; 3 Byrne, Klueglein, Pearce, Rosso, Appel, Kappler (bb0065) 2015; 347 Leys, Tsapin, Nealson, Meyer, Cusanovich, Van Beeumen (bb0260) 1999; 6 Popov, Kim, Dinsdale, Esteves, Guwy, Premier (bb0460) 2012; 17 Nishio, Nakamura, Lin, Konno, Ishihara, Nakanishi, Hashimoto (bb0430) 2013; 14 Jiao, Kappler, Croal, Newman (bb0210) 2005; 71 Shyu, Lies, Newman (bb0570) 2002; 184 Fonseca, Paquete, Neto, Pacheco, Soares, Louro (bb0160) 2013; 449 Gildemyn, Rozendal, Rabaey (bb0165) 2017; 35 Morgado, Bruix, Pessanha, Londer, Salgueiro (bb0400) 2010; 99 Zhao, Dong, Kukkadapu, Zeng, Edelmann, Pentrak, Agrawal (bb0705) 2015; 49 Bond, Lovley (bb0040) 2003; 69 Leys, Tsapin, Nealson, Meyer, Cusanovich, Van Beeumen (bb0265) 1999; 6 Lin, Wu, Chiu, Tsai (bb0280) 2014; 125 Malvankar, Lovley (bb0350) 2012; 5 Rosenbaum, Henrich (bb0500) 2014; 29 Wu, Zhuang, Zhou, Li, He (bb0655) 2011; 61 Shi, Chen, Wang, Elias, Mayer, Gorby, Ni, Lower, Kennedy, Wunschel (bb0550) 2006; 188 Feliciano, da Silva, Reguera, Artacho (bb0150) 2012; 116 Leang, Coppi, Lovley (bb0240) 2003; 185 Jiao, Newman (bb0205) 2007; 189 Bird, Saraiva, Park, Calçada, Salgueiro, Nitschke, Louro, Newman (bb0035) 2014; 196 Munro, Leys, McLean, Marshall, Ost, Daff, Miles, Chapman, Lysek, Moser (bb0410) 2002; 27 Santoro, Arbizzani, Erable, Ieropoulos (bb0525) 2017; 356 Bond, Holmes, Tender, Lovley (bb0045) 2002; 295 Sinclair, Reid, Chapman (bb0575) 1998; 333 Woolf, Amonette, Street-Perrott, Lehmann, Joseph (bb0650) 2010; 1 Cologgi, Lampa-Pastirk, Speers, Kelly, Reguera (bb0100) 2011; 108 McGlynn, Chadwick, Kempes, Orphan (bb0380) 2015; 526 Wang, Shi, Shi, White, Richardson, Clarke, Fredrickson, Zachara (bb0630) 2015; 163 Liu, Rotaru, Shrestha, Malvankar, Nevin, Lovley (bb0315) 2015; 17 Li, Guo, Lian, Zhao, Xi, Du, Yang (bb0275) 2013; 34 Qian (10.1016/j.biotechadv.2018.07.001_bb0465) 2007; 277 Wegener (10.1016/j.biotechadv.2018.07.001_bb0635) 2015; 526 Summers (10.1016/j.biotechadv.2018.07.001_bb0600) 2010; 330 Zacharoff (10.1016/j.biotechadv.2018.07.001_bb0690) 2016; 107 Zhang (10.1016/j.biotechadv.2018.07.001_bb0700) 2012; 78 Sheng (10.1016/j.biotechadv.2018.07.001_bb0545) 2016; 50 Ratasuk (10.1016/j.biotechadv.2018.07.001_bb0470) 2007; 41 Kato (10.1016/j.biotechadv.2018.07.001_bb0220) 2012; 109 Liu (10.1016/j.biotechadv.2018.07.001_bb0300) 2014; 6 Richter (10.1016/j.biotechadv.2018.07.001_bb0490) 2009; 2 Ding (10.1016/j.biotechadv.2018.07.001_bb0120) 2015; 54 Sturm (10.1016/j.biotechadv.2018.07.001_bb0590) 2015; 9 Lloyd (10.1016/j.biotechadv.2018.07.001_bb0320) 2003; 369 Viggi (10.1016/j.biotechadv.2018.07.001_bb0615) 2014; 48 Liu (10.1016/j.biotechadv.2018.07.001_bb0310) 2015; 17 Jiao (10.1016/j.biotechadv.2018.07.001_bb0210) 2005; 71 Seitaj (10.1016/j.biotechadv.2018.07.001_bb0535) 2015; 112 Paquete (10.1016/j.biotechadv.2018.07.001_bb0440) 2014; 5 De Windt (10.1016/j.biotechadv.2018.07.001_bb0115) 2005; 7 Rotaru (10.1016/j.biotechadv.2018.07.001_bb0520) 2014; 7 Wu (10.1016/j.biotechadv.2018.07.001_bb0660) 2013; 136 Lovley (10.1016/j.biotechadv.2018.07.001_bb0340) 2017; 71 Marsili (10.1016/j.biotechadv.2018.07.001_bb0375) 2008; 105 Sharp (10.1016/j.biotechadv.2018.07.001_bb0540) 1994; 33 Shyu (10.1016/j.biotechadv.2018.07.001_bb0570) 2002; 184 Emerson (10.1016/j.biotechadv.2018.07.001_bb0140) 1997; 63 Myers (10.1016/j.biotechadv.2018.07.001_bb0420) 2002; 68 Ross (10.1016/j.biotechadv.2018.07.001_bb0505) 2009; 75 Yu (10.1016/j.biotechadv.2018.07.001_bb0685) 2015; 140 Chen (10.1016/j.biotechadv.2018.07.001_bb0090) 2014; 4 Bond (10.1016/j.biotechadv.2018.07.001_bb0045) 2002; 295 Malvankar (10.1016/j.biotechadv.2018.07.001_bb0355) 2011; 6 Shi (10.1016/j.biotechadv.2018.07.001_bb0565) 2016; 14 Chen (10.1016/j.biotechadv.2018.07.001_bb0085) 2014; 173 Clarke (10.1016/j.biotechadv.2018.07.001_bb0095) 2011; 108 Dippon (10.1016/j.biotechadv.2018.07.001_bb0125) 2012; 46 White (10.1016/j.biotechadv.2018.07.001_bb0640) 2013; 110 Miot (10.1016/j.biotechadv.2018.07.001_bb0395) 2014; 139 Zhao (10.1016/j.biotechadv.2018.07.001_bb0710) 2016; 209 Malvankar (10.1016/j.biotechadv.2018.07.001_bb0360) 2012; 5 Schröder (10.1016/j.biotechadv.2018.07.001_bb0530) 2015; 8 Levar (10.1016/j.biotechadv.2018.07.001_bb0255) 2014; 5 Liu (10.1016/j.biotechadv.2018.07.001_bb0295) 2013; 135 Nevin (10.1016/j.biotechadv.2018.07.001_bb0425) 2000; 34 Hashim (10.1016/j.biotechadv.2018.07.001_bb0190) 2011; 92 Lin (10.1016/j.biotechadv.2018.07.001_bb0280) 2014; 125 Popov (10.1016/j.biotechadv.2018.07.001_bb0460) 2012; 17 Smékal (10.1016/j.biotechadv.2018.07.001_bb0580) 1993; 290 Cologgi (10.1016/j.biotechadv.2018.07.001_bb0100) 2011; 108 Liu (10.1016/j.biotechadv.2018.07.001_bb0290) 2012; 3 Shi (10.1016/j.biotechadv.2018.07.001_bb0555) 2007; 65 Byrne (10.1016/j.biotechadv.2018.07.001_bb0065) 2015; 347 Risgaard-Petersen (10.1016/j.biotechadv.2018.07.001_bb0495) 2012; 92 Beliaev (10.1016/j.biotechadv.2018.07.001_bb0025) 1998; 180 Santoro (10.1016/j.biotechadv.2018.07.001_bb0525) 2017; 356 Pfeffer (10.1016/j.biotechadv.2018.07.001_bb0455) 2012; 491 Okamoto (10.1016/j.biotechadv.2018.07.001_bb0435) 2013; 110 Sinclair (10.1016/j.biotechadv.2018.07.001_bb0575) 1998; 333 Yan (10.1016/j.biotechadv.2018.07.001_bb0675) 2015; 27 Bose (10.1016/j.biotechadv.2018.07.001_bb0050) 2014; 5 Feliciano (10.1016/j.biotechadv.2018.07.001_bb0155) 2015; 17 Hartshorne (10.1016/j.biotechadv.2018.07.001_bb0185) 2009; 106 Munro (10.1016/j.biotechadv.2018.07.001_bb0410) 2002; 27 Emde (10.1016/j.biotechadv.2018.07.001_bb0135) 1989; 32 Pearce (10.1016/j.biotechadv.2018.07.001_bb0450) 2009; 30 Wang (10.1016/j.biotechadv.2018.07.001_bb0625) 2009; 164 Richardson (10.1016/j.biotechadv.2018.07.001_bb0485) 2012; 85 Myers (10.1016/j.biotechadv.2018.07.001_bb0415) 2000; 182 Shi (10.1016/j.biotechadv.2018.07.001_bb0560) 2012; 46 McKinlay (10.1016/j.biotechadv.2018.07.001_bb0385) 2004; 70 Meysman (10.1016/j.biotechadv.2018.07.001_bb0390) 2015; 152 Nishio (10.1016/j.biotechadv.2018.07.001_bb0430) 2013; 14 Leung (10.1016/j.biotechadv.2018.07.001_bb0250) 2013; 13 Xiao (10.1016/j.biotechadv.2018.07.001_bb0670) 2016; 6 Liu (10.1016/j.biotechadv.2018.07.001_bb0315) 2015; 17 Feliciano (10.1016/j.biotechadv.2018.07.001_bb0150) 2012; 116 Li (10.1016/j.biotechadv.2018.07.001_bb0275) 2013; 34 Coursolle (10.1016/j.biotechadv.2018.07.001_bb0105) 2010; 77 Lee (10.1016/j.biotechadv.2018.07.001_bb0245) 2007; 68 Gildemyn (10.1016/j.biotechadv.2018.07.001_bb0165) 2017; 35 Zhang (10.1016/j.biotechadv.2018.07.001_bb0695) 2016; 127 Jiao (10.1016/j.biotechadv.2018.07.001_bb0205) 2007; 189 Strycharz-Glaven (10.1016/j.biotechadv.2018.07.001_bb0585) 2011; 4 Beliaev (10.1016/j.biotechadv.2018.07.001_bb0030) 2001; 39 Ertl (10.1016/j.biotechadv.2018.07.001_bb0145) 2000; 72 Shi (10.1016/j.biotechadv.2018.07.001_bb0550) 2006; 188 Hallenbeck (10.1016/j.biotechadv.2018.07.001_bb0180) 2014; 5 Londer (10.1016/j.biotechadv.2018.07.001_bb0330) 2008; 62 Al-Sid-Cheikh (10.1016/j.biotechadv.2018.07.001_bb0010) 2015; 515–516 El-Naggar (10.1016/j.biotechadv.2018.07.001_bb0130) 2008; 95 Hong (10.1016/j.biotechadv.2018.07.001_bb0200) 2010; 88 Coursolle (10.1016/j.biotechadv.2018.07.001_bb0110) 2010; 192 Rosenbaum (10.1016/j.biotechadv.2018.07.001_bb0500) 2014; 29 Lovley (10.1016/j.biotechadv.2018.07.001_bb0335) 2017; 11 Malvankar (10.1016/j.biotechadv.2018.07.001_bb0350) 2012; 5 Liu (10.1016/j.biotechadv.2018.07.001_bb0305) 2015; 6 Tian (10.1016/j.biotechadv.2018.07.001_bb0605) 2017; 139 Liu (10.1016/j.biotechadv.2018.07.001_bb0285) 2012; 5 Rotaru (10.1016/j.biotechadv.2018.07.001_bb0515) 2014; 80 Chahrour (10.1016/j.biotechadv.2018.07.001_bb0075) 2015; 113 Whittaker (10.1016/j.biotechadv.2018.07.001_bb0645) 2000; 1459 Woolf (10.1016/j.biotechadv.2018.07.001_bb0650) 2010; 1 Sulu-Gambari (10.1016/j.biotechadv.2018.07.001_bb0595) 2016; 50 Yates (10.1016/j.biotechadv.2018.07.001_bb0680) 2016; 9 Li (10.1016/j.biotechadv.2018.07.001_bb0270) 2005; 39 Baker (10.1016/j.biotechadv.2018.07.001_bb0015) 2017; 2 Vargas (10.1016/j.biotechadv.2018.07.001_bb0610) 2013; 4 Hernandez (10.1016/j.biotechadv.2018.07.001_bb0195) 2004; 70 Brutinel (10.1016/j.biotechadv.2018.07.001_bb0060) 2012; 93 Lapinsonniere (10.1016/j.biotechadv.2018.07.001_bb0235) 2013; 25 Lovley (10.1016/j.biotechadv.2018.07.001_bb0345) 1989; 339 Wang (10.1016/j.biotechadv.2018.07.001_bb0620) 2008; 42 Logan (10.1016/j.biotechadv.2018.07.001_bb0325) 2006; 40 Zhou (10.1016/j.biotechadv.2018.07.001_bb0715) 2015; 5 Xia (10.1016/j.biotechadv.2018.07.001_bb0665) 1990; 212 Leys (10.1016/j.biotechadv.2018.07.001_bb0260) 1999; 6 Kumar (10.1016/j.biotechadv.2018.07.001_bb0230) 2017; 1 McGlynn (10.1016/j.biotechadv.2018.07.001_bb0380) 2015; 526 Adhikari (10.1016/j.biotechadv.2018.07.001_bb0005) 2016; 6 Glasser (10.1016/j.biotechadv.2018.07.001_bb0170) 2017; 71 Beckwith (10.1016/j.biotechadv.2018.07.001_bb0020) 2015; 6 Malvankar (10.1016/j.biotechadv.2018.07.001_bb0365) 2014; 9 Malvankar (10.1016/j.biotechadv.2018.07.001_bb0370) 2015; 6 Bird (10.1016/j.biotechadv.2018.07.001_bb0035) 2014; 196 Park (10.1016/j.biotechadv.2018.07.001_bb0445) 2000; 66 Müller (10.1016/j.biotechadv.2018.07.001_bb0405) 2016; 10 Chan (10.1016/j.biotechadv.2018.07.001_bb0080) 2008; 46 Kim (10.1016/j.biotechadv.2018.07.001_bb0225) 2007; 76 Reguera (10.1016/j.biotechadv.2018.07.001_bb0480) 2005; 435 Zhao (10.1016/j.biotechadv.2018.07.001_bb0705) 2015; 49 Kato (10.1016/j.biotechadv.2018.07.001_bb0215) 2012; 14 Wang (10.1016/j.biotechadv.2018.07.001_bb0630) 2015; 163 Fonseca (10.1016/j.biotechadv.2018.07.001_bb0160) 2013; 449 Bosire (10.1016/j.biotechadv.2018.07.001_bb0055) 2017; 8 Leys (10.1016/j.biotechadv.2018.07.001_bb0265) 1999; 6 Ross (10.1016/j.biotechadv.2018.07.001_bb0510) 2011; 6 Calaza (10.1016/j.biotechadv.2018.07.001_bb0070) 2015; 54 Reardon (10.1016/j.biotechadv.2018.07.001_bb0475) 2013; 288 Bond (10.1016/j.biotechadv.2018.07.001_bb0040) 2003; 69 Gu (10.1016/j.biotechadv.2018.07.001_bb0175) 2003; 52 Leang (10.1016/j.biotechadv.2018.07.001_bb0240) 2003; 185 Wu (10.1016/j.biotechadv.2018.07.001_bb0655) 2011; 61 Morgado (10.1016/j.biotechadv.2018.07.001_bb0400) 2010; 99 |
References_xml | – volume: 8 start-page: 513 year: 2015 end-page: 519 ident: bb0530 article-title: Microbial electrochemistry and technology: terminology and classification publication-title: Energy Environ. Sci. – volume: 48 start-page: 7536 year: 2014 end-page: 7543 ident: bb0615 article-title: Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation publication-title: Environ. Sci. Technol. – volume: 139 start-page: 12149 year: 2017 end-page: 12152 ident: bb0605 article-title: Directed bio-fabrication of nanoparticles through regulating extracellular electron transfer publication-title: J. Am. Chem. Soc. – volume: 295 start-page: 483 year: 2002 end-page: 485 ident: bb0045 article-title: Electrode-reducing microorganisms that harvest energy from marine sediments publication-title: Science – volume: 40 start-page: 5181 year: 2006 end-page: 5192 ident: bb0325 article-title: Microbial fuel cells: Methodology and technology publication-title: Environ. Sci. Technol. – volume: 1459 start-page: 346 year: 2000 end-page: 355 ident: bb0645 article-title: Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea publication-title: BBA-Bioenergetics – volume: 5 start-page: 319 year: 2014 end-page: 329 ident: bb0180 article-title: Recent advances in microbial electrocatalysis publication-title: Electrocatalysis – volume: 339 start-page: 297 year: 1989 end-page: 300 ident: bb0345 article-title: Oxidation of aromatic contaminants coupled to microbial iron reduction publication-title: Nature – volume: 95 start-page: L10 year: 2008 end-page: L12 ident: bb0130 article-title: The molecular density of states in bacterial nanowires publication-title: Biophys. J. – volume: 209 start-page: 148 year: 2016 end-page: 156 ident: bb0710 article-title: Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors publication-title: Bioresour. Technol. – volume: 5 start-page: 6247 year: 2012 end-page: 6249 ident: bb0360 article-title: Comment on "On electrical conductivity of microbial nanowires and biofilms" by S. M. Strycharz-Glaven, R. M. Snider, A. Guiseppi-Elie and L. M. Tender, Energy Environ. Sci., 2011, 4, 4366 publication-title: Energy Environ. Sci. – volume: 50 start-page: 1227 year: 2016 end-page: 1233 ident: bb0595 article-title: Cable bacteria control iron-phosphorus dynamics in sediments of a coastal hypoxic basin publication-title: Environ. Sci. Technol. – volume: 152 start-page: 122 year: 2015 end-page: 142 ident: bb0390 article-title: The geochemical fingerprint of microbial long-distance electron transport in the seafloor publication-title: Geochim. Cosmochim. Acta – volume: 88 start-page: 637 year: 2010 end-page: 643 ident: bb0200 article-title: Physiology and biochemistry of reduction of azo compounds by publication-title: Appl. Microbiol. Biotechnol. – volume: 27 start-page: 1908 year: 2015 end-page: 1911 ident: bb0675 article-title: Inter-aromatic distances in Geobacter sulfurreducens pili relevant to biofilm charge transport publication-title: Adv. Mater. – volume: 110 start-page: 7856 year: 2013 end-page: 7861 ident: bb0435 article-title: Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 17 start-page: 648 year: 2015 end-page: 655 ident: bb0310 article-title: Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange publication-title: Environ. Microbiol. – volume: 347 start-page: 1473 year: 2015 end-page: 1476 ident: bb0065 article-title: Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria publication-title: Science – volume: 369 start-page: 153 year: 2003 end-page: 161 ident: bb0320 article-title: Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in publication-title: Biochem. J. – volume: 17 start-page: 648 year: 2015 end-page: 655 ident: bb0315 article-title: Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange publication-title: Environ. Microbiol. – volume: 4 start-page: 4366 year: 2011 end-page: 4379 ident: bb0585 article-title: On the electrical conductivity of microbial nanowires and biofilms publication-title: Energy Environ. Sci. – volume: 164 start-page: 941 year: 2009 end-page: 947 ident: bb0625 article-title: The role of humic substances in the anaerobic reductive dechlorination of 2,4-dichlorophenoxyacetic acid by publication-title: J. Hazard. Mater. – volume: 14 start-page: 2159 year: 2013 end-page: 2163 ident: bb0430 article-title: Extracellular electron transfer across bacterial cell membranes via a cytocompatible redox-active polymer publication-title: ChemPhysChem – volume: 139 start-page: 327 year: 2014 end-page: 343 ident: bb0395 article-title: Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation publication-title: Geochim. Cosmochim. Acta – volume: 77 start-page: 995 year: 2010 end-page: 1008 ident: bb0105 article-title: Modularity of the Mtr respiratory pathway of publication-title: Mol. Microbiol. – volume: 107 start-page: 7 year: 2016 end-page: 13 ident: bb0690 article-title: Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens publication-title: Bioelectrochemistry – volume: 125 start-page: 30 year: 2014 end-page: 35 ident: bb0280 article-title: Effects of different mediators on electricity generation and microbial structure of a toluene powered microbial fuel cell publication-title: Fuel – volume: 1 year: 2017 ident: bb0230 article-title: The ins and outs of microorganism-electrode electron transfer reactions publication-title: Nat. Rev. Chem. – volume: 184 start-page: 1806 year: 2002 end-page: 1810 ident: bb0570 article-title: Protective role of tolC in efflux of the electron shuttle anthraquinone-2, 6-disulfonate publication-title: J. Bacteriol. – volume: 35 start-page: 393 year: 2017 end-page: 406 ident: bb0165 article-title: A Gibbs free energy-based assessment of microbial electrocatalysis publication-title: Trends Biotechnol. – volume: 136 start-page: 711 year: 2013 end-page: 714 ident: bb0660 article-title: Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by publication-title: Bioresour. Technol. – volume: 49 start-page: 5493 year: 2015 end-page: 5501 ident: bb0705 article-title: Biological redox cycling of iron in nontronite and its potential application in nitrate removal publication-title: Environ. Sci. Technol. – volume: 32 start-page: 170 year: 1989 end-page: 175 ident: bb0135 article-title: Anaerobic oxidation of glycerol by publication-title: Appl. Microbiol. Biotechnol. – volume: 50 start-page: 11016 year: 2016 end-page: 11024 ident: bb0545 article-title: Aggregation kinetics of hematite particles in the presence of outer membrane cytochrome OmcA of publication-title: Environ. Sci. Technol. – volume: 135 start-page: 8896 year: 2013 end-page: 8907 ident: bb0295 article-title: Fe publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 408 year: 2014 end-page: 415 ident: bb0520 article-title: A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane publication-title: Energy Environ. Sci. – volume: 14 start-page: 651 year: 2016 end-page: 662 ident: bb0565 article-title: Extracellular electron transfer mechanisms between microorganisms and minerals publication-title: Nat. Rev. Microbiol. – volume: 6 year: 2016 ident: bb0670 article-title: Low energy atomic models suggesting a pilus structure that could account for electrical conductivity of publication-title: Sci. Rep. – volume: 39 start-page: 1972 year: 2005 end-page: 1981 ident: bb0270 article-title: Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes publication-title: Water Res. – volume: 196 start-page: 850 year: 2014 end-page: 858 ident: bb0035 article-title: Nonredundant roles for cytochrome c2 and two high-potential iron-sulfur proteins in the photoferrotroph publication-title: J. Bacteriol. – volume: 61 start-page: 882 year: 2011 end-page: 887 ident: bb0655 article-title: sp. nov., an alkaliphilic, humic acid-reducing bacterium isolated from a microbial fuel cell publication-title: Int. J. Syst. Evol. Microbiol. – volume: 356 start-page: 225 year: 2017 end-page: 244 ident: bb0525 article-title: Microbial fuel cells: From fundamentals to applications. A review publication-title: J. Power Sources – volume: 46 start-page: 437 year: 2008 end-page: 444 ident: bb0080 article-title: Using poultry litter biochars as soil amendments publication-title: Soil Res. – volume: 69 start-page: 1548 year: 2003 end-page: 1555 ident: bb0040 article-title: Electricity production by publication-title: Appl. Environ. Microbiol. – volume: 62 start-page: 128 year: 2008 end-page: 137 ident: bb0330 article-title: Addressing publication-title: Protein Expr. Purif. – volume: 78 start-page: 8304 year: 2012 end-page: 8310 ident: bb0700 article-title: Anaerobic benzene oxidation by publication-title: Appl. Environ. Microbiol. – volume: 6 start-page: 776 year: 2014 end-page: 785 ident: bb0300 article-title: A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by publication-title: Environ. Microbiol. Rep. – volume: 6 year: 2015 ident: bb0370 article-title: Structural basis for metallic-like conductivity in microbial nanowires publication-title: MBio – volume: 34 start-page: 2563 year: 2013 end-page: 2570 ident: bb0275 article-title: Effective and characteristics of anthraquinone-2, 6-disulfonate (AQDS) on denitrification by publication-title: Environ. Technol. – volume: 72 start-page: 4949 year: 2000 end-page: 4956 ident: bb0145 article-title: Ferricyanide reduction by publication-title: Anal. Chem. – volume: 449 start-page: 101 year: 2013 end-page: 108 ident: bb0160 article-title: Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of publication-title: Biochem. J. – volume: 52 start-page: 69 year: 2003 end-page: 91 ident: bb0175 article-title: Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances publication-title: Int. Biodeterior. Biodegrad. – volume: 185 start-page: 2096 year: 2003 end-page: 2103 ident: bb0240 article-title: OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in publication-title: J. Bacteriol. – volume: 8 year: 2017 ident: bb0055 article-title: Electrochemical potential influences phenazine production, electron transfer and consequently electric current generation by publication-title: Front. Microbiol. – volume: 5 year: 2014 ident: bb0050 article-title: Electron uptake by iron-oxidizing phototrophic bacteria publication-title: Nat. Commun. – volume: 75 start-page: 5218 year: 2009 end-page: 5226 ident: bb0505 article-title: Kinetic characterization of OmcA and MtrC, terminal reductases involved in respiratory electron transfer for dissimilatory iron reduction in publication-title: Appl. Environ. Microbiol. – volume: 277 start-page: 21 year: 2007 end-page: 27 ident: bb0465 article-title: Evidence that OmcB and OmpB of publication-title: FEMS Microbiol. Lett. – volume: 5 start-page: 1039 year: 2012 end-page: 1046 ident: bb0350 article-title: Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics publication-title: ChemSusChem – volume: 25 start-page: 601 year: 2013 end-page: 605 ident: bb0235 article-title: Phenylboronic acid modified anodes promote faster biofilm adhesion and increase microbial fuel cell performances publication-title: Electroanalysis – volume: 105 start-page: 3968 year: 2008 end-page: 3973 ident: bb0375 article-title: secretes flavins that mediate extracellular electron transfer publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 46 start-page: 6556 year: 2012 end-page: 6565 ident: bb0125 article-title: Potential function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe (II)-oxidizer publication-title: Environ. Sci. Technol. – volume: 9 start-page: 1802 year: 2015 end-page: 1811 ident: bb0590 article-title: A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime publication-title: ISME J. – volume: 5 year: 2014 ident: bb0255 article-title: An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors publication-title: MBio – volume: 17 start-page: 361 year: 2012 end-page: 370 ident: bb0460 article-title: The effect of physico-chemically immobilized methylene blue and neutral red on the anode of microbial fuel cell publication-title: Biotechnol. Bioprocess Eng. – volume: 2 start-page: 4705 year: 2017 end-page: 4724 ident: bb0015 article-title: Expression, purification, and biochemical characterization of the flavocytochrome P450 CYP505A30 from publication-title: ACS Omega – volume: 290 start-page: 103 year: 1993 ident: bb0580 article-title: L-mandelate dehydrogenase from Rhodotorula graminis: comparisons with the L-lactate dehydrogenase (flavocytochrome b2) from Saccharomyces cerevisiae publication-title: Biochem. J. – volume: 42 start-page: 2380 year: 2008 end-page: 2386 ident: bb0620 article-title: Redox reactions of phenazine antibiotics with ferric (hydr) oxides and molecular oxygen publication-title: Environ. Sci. Technol. – volume: 6 start-page: 1113 year: 1999 end-page: 1117 ident: bb0260 article-title: Structure and mechanism of the flavocytochrome c fumarate reductase of publication-title: Nat. Struct. Biol. – volume: 39 start-page: 722 year: 2001 end-page: 730 ident: bb0030 article-title: MtrC, an outer membrane decahaem publication-title: Mol. Microbiol. – volume: 333 start-page: 117 year: 1998 ident: bb0575 article-title: Re-design of Saccharomyces cerevisiae flavocytochrome b2: introduction of L-mandelate dehydrogenase activity publication-title: Biochem. J. – volume: 4 year: 2014 ident: bb0090 article-title: Promoting interspecies electron transfer with biochar publication-title: Sci. Rep. – volume: 7 start-page: 314 year: 2005 end-page: 325 ident: bb0115 article-title: Bioreductive deposition of palladium (0) nanoparticles on publication-title: Environ. Microbiol. – volume: 515–516 start-page: 118 year: 2015 end-page: 128 ident: bb0010 article-title: Interactions between natural organic matter, sulfur, arsenic and iron oxides in re-oxidation compounds within riparian wetlands: NanoSIMS and X-ray adsorption spectroscopy evidences publication-title: Sci. Total Environ. – volume: 127 start-page: 19 year: 2016 end-page: 36 ident: bb0695 article-title: A review of current progress of recycling technologies for metals from waste electrical and electronic equipment publication-title: J. Clean. Prod. – volume: 2 start-page: 506 year: 2009 end-page: 516 ident: bb0490 article-title: Cyclic voltammetry of biofilms of wild type and mutant publication-title: Energy Environ. Sci. – volume: 93 start-page: 41 year: 2012 end-page: 48 ident: bb0060 article-title: Shuttling happens: soluble flavin mediators of extracellular electron transfer in publication-title: Appl. Microbiol. Biotechnol. – volume: 68 start-page: 5585 year: 2002 end-page: 5594 ident: bb0420 article-title: MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of publication-title: Appl. Environ. Microbiol. – volume: 10 start-page: 2010 year: 2016 ident: bb0405 article-title: Long-distance electron transfer by cable bacteria in aquifer sediments publication-title: ISME J. – volume: 92 start-page: 1 year: 2012 end-page: 13 ident: bb0495 article-title: Sulfur, iron-, and calcium cycling associated with natural electric currents running through marine sediment publication-title: Geochim. Cosmochim. Acta – volume: 526 year: 2015 ident: bb0380 article-title: Single cell activity reveals direct electron transfer in methanotrophic consortia publication-title: Nature – volume: 5 start-page: 8982 year: 2012 end-page: 8989 ident: bb0285 article-title: Promoting direct interspecies electron transfer with activated carbon publication-title: Energy Environ. Sci. – volume: 41 start-page: 7844 year: 2007 end-page: 7850 ident: bb0470 article-title: Characterization and quantification of reversible redox sites in humic substances publication-title: Environ. Sci. Technol. – volume: 6 year: 2015 ident: bb0305 article-title: Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by publication-title: Front. Microbiol. – volume: 116 start-page: 8023 year: 2012 end-page: 8030 ident: bb0150 article-title: Molecular and electronic structure of the peptide subunit of publication-title: J. Phys. Chem. A – volume: 17 start-page: 22217 year: 2015 end-page: 22226 ident: bb0155 article-title: Structural and functional insights into the conductive pili of publication-title: Phys. Chem. Chem. Phys. – volume: 14 start-page: 1646 year: 2012 end-page: 1654 ident: bb0215 article-title: Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals publication-title: Environ. Microbiol. – volume: 180 start-page: 6292 year: 1998 end-page: 6297 ident: bb0025 article-title: mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction publication-title: J. Bacteriol. – volume: 192 start-page: 467 year: 2010 end-page: 474 ident: bb0110 article-title: The Mtr respiratory pathway is essential for reducing flavins and electrodes in publication-title: J. Bacteriol. – volume: 288 start-page: 29260 year: 2013 end-page: 29266 ident: bb0475 article-title: Structure of the type IVa major pilin from the electrically conductive bacterial nanowires of publication-title: J. Biol. Chem. – volume: 27 start-page: 250 year: 2002 end-page: 257 ident: bb0410 article-title: P450 BM3: the very model of a modern flavocytochrome publication-title: Trends Biochem. Sci. – volume: 54 start-page: 1446 year: 2015 end-page: 1451 ident: bb0120 article-title: Wettability-regulated extracellular electron transfer from the living organism of publication-title: Angewandte Chemie-Int. Ed. – volume: 526 year: 2015 ident: bb0635 article-title: Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria publication-title: Nature – volume: 65 start-page: 12 year: 2007 end-page: 20 ident: bb0555 article-title: Respiration of metal (hydr)oxides by publication-title: Mol. Microbiol. – volume: 71 start-page: 4487 year: 2005 end-page: 4496 ident: bb0210 article-title: Isolation and characterization of a genetically tractable photo autotrophic Fe(II)-oxidizing bacterium, publication-title: Appl. Environ. Microbiol. – volume: 6 start-page: 8363 year: 2016 end-page: 8366 ident: bb0005 article-title: Conductivity of individual publication-title: RSC Adv. – volume: 70 start-page: 3467 year: 2004 end-page: 3474 ident: bb0385 article-title: Extracellular iron reduction is mediated in part by neutral red and hydrogenase in publication-title: Appl. Environ. Microbiol. – volume: 85 start-page: 201 year: 2012 end-page: 212 ident: bb0485 article-title: The porin-cytochrome' model for microbe-to-mineral electron transfer publication-title: Mol. Microbiol. – volume: 173 start-page: 82 year: 2014 end-page: 86 ident: bb0085 article-title: Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures publication-title: Bioresour. Technol. – volume: 189 start-page: 1765 year: 2007 end-page: 1773 ident: bb0205 article-title: The pio operon is essential for phototrophic Fe(II) oxidation in publication-title: J. Bacteriol. – volume: 112 start-page: 13278 year: 2015 end-page: 13283 ident: bb0535 article-title: Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 212 start-page: 837 year: 1990 end-page: 863 ident: bb0665 article-title: Molecular structure of flavocytochrome b2 at 24 Å resolution publication-title: J. Mol. Biol. – volume: 99 start-page: 293 year: 2010 end-page: 301 ident: bb0400 article-title: Thermodynamic characterization of a triheme cytochrome family from publication-title: Biophys. J. – volume: 491 start-page: 218 year: 2012 end-page: 221 ident: bb0455 article-title: Filamentous bacteria transport electrons over centimetre distances publication-title: Nature – volume: 182 start-page: 67 year: 2000 end-page: 75 ident: bb0415 article-title: Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of publication-title: J. Bacteriol. – volume: 29 start-page: 93 year: 2014 end-page: 98 ident: bb0500 article-title: Engineering microbial electrocatalysis for chemical and fuel production publication-title: Curr. Opin. Biotechnol. – volume: 66 start-page: 1292 year: 2000 end-page: 1297 ident: bb0445 article-title: Electricity generation in microbial fuel cells using neutral red as an electronophore publication-title: Appl. Environ. Microbiol. – volume: 6 year: 2011 ident: bb0510 article-title: Towards electrosynthesis in publication-title: PLoS One – volume: 109 start-page: 10042 year: 2012 end-page: 10046 ident: bb0220 article-title: Microbial interspecies electron transfer via electric currents through conductive minerals publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 76 start-page: 485 year: 2007 end-page: 494 ident: bb0225 article-title: Challenges in microbial fuel cell development and operation publication-title: Appl. Microbiol. Biotechnol. – volume: 30 start-page: 1313 year: 2009 end-page: 1326 ident: bb0450 article-title: Investigating different mechanisms for biogenic selenite transformations: publication-title: Environ. Technol. – volume: 140 start-page: 26 year: 2015 end-page: 33 ident: bb0685 article-title: Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode publication-title: Chemosphere – volume: 5 year: 2015 ident: bb0715 article-title: Influence of humic acid complexation with metal ions on extracellular electron transfer activity publication-title: Sci. Rep. – volume: 6 start-page: 1113 year: 1999 ident: bb0265 article-title: Structure and mechanism of the flavocytochrome c fumarate reductase of publication-title: Nat. Struct. Mol. Biol. – volume: 33 start-page: 5115 year: 1994 end-page: 5120 ident: bb0540 article-title: Role of the interdomain hinge of flavocytochrome b2 in intra-and inter-protein electron transfer publication-title: Biochemistry – volume: 4 year: 2013 ident: bb0610 article-title: Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in publication-title: MBio – volume: 9 start-page: 3544 year: 2016 end-page: 3558 ident: bb0680 article-title: Toward understanding long-distance extracellular electron transport in an electroautotrophic microbial community publication-title: Energy Environ. Sci. – volume: 54 start-page: 12484 year: 2015 end-page: 12487 ident: bb0070 article-title: Carbon dioxide activation and reaction induced by electron transfer at an oxide–metal interface publication-title: Angew. Chem. Int. Ed. – volume: 68 start-page: 1898 year: 2007 end-page: 1905 ident: bb0245 article-title: Effects of temperature and dissolved oxygen on Se(IV) removal and Se(0) precipitation by publication-title: Chemosphere – volume: 34 start-page: 2472 year: 2000 end-page: 2478 ident: bb0425 article-title: Potential for nonenzymatic reduction of Fe(III) via electron shuttling in subsurface sediments publication-title: Environ. Sci. Technol. – volume: 3 year: 2012 ident: bb0290 article-title: Identification and characterization of MtoA: a decaheme c-type cytochrome of the neutrophilic Fe(II)-oxidizing bacterium publication-title: Front. Microbiol. – volume: 6 start-page: 573 year: 2011 end-page: 579 ident: bb0355 article-title: Tunable metallic-like conductivity in microbial nanowire networks publication-title: Nat. Nanotechnol. – volume: 330 start-page: 1413 year: 2010 end-page: 1415 ident: bb0600 article-title: Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria publication-title: Science – volume: 71 start-page: 731 year: 2017 end-page: 751 ident: bb0170 article-title: The colorful world of extracellular electron shuttles publication-title: Annu. Rev. Microbiol. – volume: 13 start-page: 2407 year: 2013 end-page: 2411 ident: bb0250 article-title: MR-1 bacterial nanowires exhibit p-type, tunable electronic behavior publication-title: Nano Lett. – volume: 46 start-page: 11644 year: 2012 end-page: 11652 ident: bb0560 article-title: Redox reactions of reduced flavin mononucleotide (FMN), riboflavin (RBF), and anthraquinone-2, 6-disulfonate (AQDS) with ferrihydrite and lepidocrocite publication-title: Environ. Sci. Technol. – volume: 6 year: 2015 ident: bb0020 article-title: Characterization of MtoD from publication-title: Front. Microbiol. – volume: 80 start-page: 4599 year: 2014 end-page: 4605 ident: bb0515 article-title: Direct Interspecies Electron Transfer between publication-title: Appl. Environ. Microbiol. – volume: 163 start-page: 299 year: 2015 end-page: 310 ident: bb0630 article-title: Effects of soluble flavin on heterogeneous electron transfer between surface-exposed bacterial cytochromes and iron oxides publication-title: Geochim. Cosmochim. Acta – volume: 1 year: 2010 ident: bb0650 article-title: Sustainable biochar to mitigate global climate change publication-title: Nat. Commun. – volume: 5 year: 2014 ident: bb0440 article-title: Exploring the molecular mechanisms of electron shuttling across the microbe/metal space publication-title: Front. Microbiol. – volume: 188 start-page: 4705 year: 2006 end-page: 4714 ident: bb0550 article-title: Isolation of a high-affinity functional protein complex between OmcA and MtrC: two outer membrane decaheme c-type cytochromes of publication-title: J. Bacteriol. – volume: 9 start-page: 1012 year: 2014 end-page: 1017 ident: bb0365 article-title: Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy publication-title: Nat. Nanotechnol. – volume: 70 start-page: 921 year: 2004 end-page: 928 ident: bb0195 article-title: Phenazines and other redox-active antibiotics promote microbial mineral reduction publication-title: Appl. Environ. Microbiol. – volume: 108 start-page: 9384 year: 2011 end-page: 9389 ident: bb0095 article-title: Structure of a bacterial cell surface decaheme electron conduit publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 71 start-page: 643 year: 2017 end-page: 664 ident: bb0340 article-title: Syntrophy goes electric: direct interspecies electron transfer publication-title: Annu. Rev. Microbiol. – volume: 11 start-page: 327 year: 2017 end-page: 336 ident: bb0335 article-title: Happy together: microbial communities that hook up to swap electrons publication-title: ISME J. – volume: 435 start-page: 1098 year: 2005 end-page: 1101 ident: bb0480 article-title: Extracellular electron transfer via microbial nanowires publication-title: Nature – volume: 108 start-page: 15248 year: 2011 end-page: 15252 ident: bb0100 article-title: Extracellular reduction of uranium via publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 113 start-page: 2 year: 2015 end-page: 20 ident: bb0075 article-title: Stable isotope labelling methods in mass spectrometry-based quantitative proteomics publication-title: J. Pharm. Biomed. Anal. – volume: 92 start-page: 2355 year: 2011 end-page: 2388 ident: bb0190 article-title: Remediation technologies for heavy metal contaminated groundwater publication-title: J. Environ. Manag. – volume: 63 start-page: 4784 year: 1997 end-page: 4792 ident: bb0140 article-title: Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH publication-title: Appl. Environ. Microbiol. – volume: 106 start-page: 22169 year: 2009 end-page: 22174 ident: bb0185 article-title: Characterization of an electron conduit between bacteria and the extracellular environment publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 110 start-page: 6346 year: 2013 end-page: 6351 ident: bb0640 article-title: Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 135 start-page: 8896 issue: 24 year: 2013 ident: 10.1016/j.biotechadv.2018.07.001_bb0295 article-title: Fe3-xTixO4 nanoparticles as tunable probes of microbial metal oxidation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4015343 – volume: 110 start-page: 7856 issue: 19 year: 2013 ident: 10.1016/j.biotechadv.2018.07.001_bb0435 article-title: Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1220823110 – volume: 54 start-page: 12484 issue: 42 year: 2015 ident: 10.1016/j.biotechadv.2018.07.001_bb0070 article-title: Carbon dioxide activation and reaction induced by electron transfer at an oxide–metal interface publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201501420 – volume: 6 year: 2015 ident: 10.1016/j.biotechadv.2018.07.001_bb0305 article-title: Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.01075 – volume: 192 start-page: 467 issue: 2 year: 2010 ident: 10.1016/j.biotechadv.2018.07.001_bb0110 article-title: The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis publication-title: J. Bacteriol. doi: 10.1128/JB.00925-09 – volume: 5 start-page: 319 issue: 4 year: 2014 ident: 10.1016/j.biotechadv.2018.07.001_bb0180 article-title: Recent advances in microbial electrocatalysis publication-title: Electrocatalysis doi: 10.1007/s12678-014-0198-x – volume: 180 start-page: 6292 issue: 23 year: 1998 ident: 10.1016/j.biotechadv.2018.07.001_bb0025 article-title: Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction publication-title: J. Bacteriol. doi: 10.1128/JB.180.23.6292-6297.1998 – volume: 6 start-page: 1113 issue: 12 year: 1999 ident: 10.1016/j.biotechadv.2018.07.001_bb0260 article-title: Structure and mechanism of the flavocytochrome c fumarate reductase of Shewanella putrefaciens MR-1 publication-title: Nat. Struct. Biol. doi: 10.1038/70051 – volume: 34 start-page: 2563 issue: 17 year: 2013 ident: 10.1016/j.biotechadv.2018.07.001_bb0275 article-title: Effective and characteristics of anthraquinone-2, 6-disulfonate (AQDS) on denitrification by Paracoccus versutus sp. GW1 publication-title: Environ. Technol. doi: 10.1080/09593330.2013.781198 – volume: 5 year: 2015 ident: 10.1016/j.biotechadv.2018.07.001_bb0715 article-title: Influence of humic acid complexation with metal ions on extracellular electron transfer activity publication-title: Sci. Rep. doi: 10.1038/srep17067 – volume: 116 start-page: 8023 issue: 30 year: 2012 ident: 10.1016/j.biotechadv.2018.07.001_bb0150 article-title: Molecular and electronic structure of the peptide subunit of Geobacter sulfurreducens conductive phi from first principles publication-title: J. Phys. Chem. A doi: 10.1021/jp302232p – volume: 34 start-page: 2472 issue: 12 year: 2000 ident: 10.1016/j.biotechadv.2018.07.001_bb0425 article-title: Potential for nonenzymatic reduction of Fe(III) via electron shuttling in subsurface sediments publication-title: Environ. Sci. Technol. doi: 10.1021/es991181b – volume: 5 start-page: 1039 issue: 6 year: 2012 ident: 10.1016/j.biotechadv.2018.07.001_bb0350 article-title: Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics publication-title: ChemSusChem doi: 10.1002/cssc.201100733 – volume: 188 start-page: 4705 issue: 13 year: 2006 ident: 10.1016/j.biotechadv.2018.07.001_bb0550 article-title: Isolation of a high-affinity functional protein complex between OmcA and MtrC: two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1 publication-title: J. Bacteriol. doi: 10.1128/JB.01966-05 – volume: 42 start-page: 2380 issue: 7 year: 2008 ident: 10.1016/j.biotechadv.2018.07.001_bb0620 article-title: Redox reactions of phenazine antibiotics with ferric (hydr) oxides and molecular oxygen publication-title: Environ. Sci. Technol. doi: 10.1021/es702290a – volume: 295 start-page: 483 issue: 5554 year: 2002 ident: 10.1016/j.biotechadv.2018.07.001_bb0045 article-title: Electrode-reducing microorganisms that harvest energy from marine sediments publication-title: Science doi: 10.1126/science.1066771 – volume: 107 start-page: 7 year: 2016 ident: 10.1016/j.biotechadv.2018.07.001_bb0690 article-title: Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2015.08.003 – volume: 70 start-page: 3467 issue: 6 year: 2004 ident: 10.1016/j.biotechadv.2018.07.001_bb0385 article-title: Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.70.6.3467-3474.2004 – volume: 99 start-page: 293 issue: 1 year: 2010 ident: 10.1016/j.biotechadv.2018.07.001_bb0400 article-title: Thermodynamic characterization of a triheme cytochrome family from Geobacter sulfurreducens reveals mechanistic and functional diversity publication-title: Biophys. J. doi: 10.1016/j.bpj.2010.04.017 – volume: 5 issue: 6 year: 2014 ident: 10.1016/j.biotechadv.2018.07.001_bb0255 article-title: An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors publication-title: MBio doi: 10.1128/mBio.02034-14 – volume: 2 start-page: 506 issue: 5 year: 2009 ident: 10.1016/j.biotechadv.2018.07.001_bb0490 article-title: Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer publication-title: Energy Environ. Sci. doi: 10.1039/b816647a – volume: 105 start-page: 3968 issue: 10 year: 2008 ident: 10.1016/j.biotechadv.2018.07.001_bb0375 article-title: Shewanella secretes flavins that mediate extracellular electron transfer publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0710525105 – volume: 5 year: 2014 ident: 10.1016/j.biotechadv.2018.07.001_bb0050 article-title: Electron uptake by iron-oxidizing phototrophic bacteria publication-title: Nat. Commun. doi: 10.1038/ncomms4391 – volume: 163 start-page: 299 year: 2015 ident: 10.1016/j.biotechadv.2018.07.001_bb0630 article-title: Effects of soluble flavin on heterogeneous electron transfer between surface-exposed bacterial cytochromes and iron oxides publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2015.03.039 – volume: 75 start-page: 5218 issue: 16 year: 2009 ident: 10.1016/j.biotechadv.2018.07.001_bb0505 article-title: Kinetic characterization of OmcA and MtrC, terminal reductases involved in respiratory electron transfer for dissimilatory iron reduction in Shewanella oneidensis MR-1 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00544-09 – volume: 7 start-page: 408 issue: 1 year: 2014 ident: 10.1016/j.biotechadv.2018.07.001_bb0520 article-title: A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane publication-title: Energy Environ. Sci. doi: 10.1039/C3EE42189A – volume: 6 year: 2016 ident: 10.1016/j.biotechadv.2018.07.001_bb0670 article-title: Low energy atomic models suggesting a pilus structure that could account for electrical conductivity of Geobacter sulfurreducens pili publication-title: Sci. Rep. – volume: 6 start-page: 8363 issue: 10 year: 2016 ident: 10.1016/j.biotechadv.2018.07.001_bb0005 article-title: Conductivity of individual Geobacter pili publication-title: RSC Adv. doi: 10.1039/C5RA28092C – volume: 88 start-page: 637 issue: 3 year: 2010 ident: 10.1016/j.biotechadv.2018.07.001_bb0200 article-title: Physiology and biochemistry of reduction of azo compounds by Shewanella strains relevant to electron transport chain publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-010-2820-z – volume: 76 start-page: 485 issue: 3 year: 2007 ident: 10.1016/j.biotechadv.2018.07.001_bb0225 article-title: Challenges in microbial fuel cell development and operation publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-007-1027-4 – volume: 173 start-page: 82 year: 2014 ident: 10.1016/j.biotechadv.2018.07.001_bb0085 article-title: Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.09.009 – volume: 32 start-page: 170 issue: 2 year: 1989 ident: 10.1016/j.biotechadv.2018.07.001_bb0135 article-title: Anaerobic oxidation of glycerol by Escherichia coli in an amperometric poised-potential culture system publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/BF00165883 – volume: 4 year: 2014 ident: 10.1016/j.biotechadv.2018.07.001_bb0090 article-title: Promoting interspecies electron transfer with biochar publication-title: Sci. Rep. – volume: 125 start-page: 30 year: 2014 ident: 10.1016/j.biotechadv.2018.07.001_bb0280 article-title: Effects of different mediators on electricity generation and microbial structure of a toluene powered microbial fuel cell publication-title: Fuel doi: 10.1016/j.fuel.2014.02.018 – volume: 526 issue: 7574 year: 2015 ident: 10.1016/j.biotechadv.2018.07.001_bb0380 article-title: Single cell activity reveals direct electron transfer in methanotrophic consortia publication-title: Nature doi: 10.1038/nature15512 – volume: 14 start-page: 1646 issue: 7 year: 2012 ident: 10.1016/j.biotechadv.2018.07.001_bb0215 article-title: Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2011.02611.x – volume: 95 start-page: L10 issue: 1 year: 2008 ident: 10.1016/j.biotechadv.2018.07.001_bb0130 article-title: The molecular density of states in bacterial nanowires publication-title: Biophys. J. doi: 10.1529/biophysj.108.134411 – volume: 11 start-page: 327 issue: 2 year: 2017 ident: 10.1016/j.biotechadv.2018.07.001_bb0335 article-title: Happy together: microbial communities that hook up to swap electrons publication-title: ISME J. doi: 10.1038/ismej.2016.136 – volume: 77 start-page: 995 issue: 4 year: 2010 ident: 10.1016/j.biotechadv.2018.07.001_bb0105 article-title: Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2010.07266.x – volume: 2 start-page: 4705 issue: 8 year: 2017 ident: 10.1016/j.biotechadv.2018.07.001_bb0015 article-title: Expression, purification, and biochemical characterization of the flavocytochrome P450 CYP505A30 from Myceliophthora thermophila publication-title: ACS Omega doi: 10.1021/acsomega.7b00450 – volume: 7 start-page: 314 issue: 3 year: 2005 ident: 10.1016/j.biotechadv.2018.07.001_bb0115 article-title: Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2005.00696.x – volume: 85 start-page: 201 issue: 2 year: 2012 ident: 10.1016/j.biotechadv.2018.07.001_bb0485 article-title: The porin-cytochrome' model for microbe-to-mineral electron transfer publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2012.08088.x – volume: 49 start-page: 5493 issue: 9 year: 2015 ident: 10.1016/j.biotechadv.2018.07.001_bb0705 article-title: Biological redox cycling of iron in nontronite and its potential application in nitrate removal publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00131 – volume: 5 start-page: 6247 issue: 3 year: 2012 ident: 10.1016/j.biotechadv.2018.07.001_bb0360 article-title: Comment on "On electrical conductivity of microbial nanowires and biofilms" by S. M. Strycharz-Glaven, R. M. Snider, A. Guiseppi-Elie and L. M. Tender, Energy Environ. Sci., 2011, 4, 4366 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee02613a – volume: 185 start-page: 2096 issue: 7 year: 2003 ident: 10.1016/j.biotechadv.2018.07.001_bb0240 article-title: OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens publication-title: J. Bacteriol. doi: 10.1128/JB.185.7.2096-2103.2003 – volume: 69 start-page: 1548 issue: 3 year: 2003 ident: 10.1016/j.biotechadv.2018.07.001_bb0040 article-title: Electricity production by Geobacter sulfurreducens attached to electrodes publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.69.3.1548-1555.2003 – volume: 14 start-page: 2159 issue: 10 year: 2013 ident: 10.1016/j.biotechadv.2018.07.001_bb0430 article-title: Extracellular electron transfer across bacterial cell membranes via a cytocompatible redox-active polymer publication-title: ChemPhysChem doi: 10.1002/cphc.201300117 – volume: 72 start-page: 4949 issue: 20 year: 2000 ident: 10.1016/j.biotechadv.2018.07.001_bb0145 article-title: Ferricyanide reduction by Escherichia coli: Kinetics, mechanism, and application to the optimization of recombinant fermentations publication-title: Anal. Chem. doi: 10.1021/ac000358d – volume: 184 start-page: 1806 issue: 6 year: 2002 ident: 10.1016/j.biotechadv.2018.07.001_bb0570 article-title: Protective role of tolC in efflux of the electron shuttle anthraquinone-2, 6-disulfonate publication-title: J. Bacteriol. doi: 10.1128/JB.184.6.1806-1810.2002 – volume: 62 start-page: 128 issue: 1 year: 2008 ident: 10.1016/j.biotechadv.2018.07.001_bb0330 article-title: Addressing Shewanella oneidensis “cytochromome”: The first step towards high-throughput expression of cytochromes c publication-title: Protein Expr. Purif. doi: 10.1016/j.pep.2008.06.014 – volume: 108 start-page: 15248 issue: 37 year: 2011 ident: 10.1016/j.biotechadv.2018.07.001_bb0100 article-title: Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1108616108 – volume: 39 start-page: 722 issue: 3 year: 2001 ident: 10.1016/j.biotechadv.2018.07.001_bb0030 article-title: MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1 publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2001.02257.x – volume: 106 start-page: 22169 issue: 52 year: 2009 ident: 10.1016/j.biotechadv.2018.07.001_bb0185 article-title: Characterization of an electron conduit between bacteria and the extracellular environment publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0900086106 – volume: 6 start-page: 1113 issue: 12 year: 1999 ident: 10.1016/j.biotechadv.2018.07.001_bb0265 article-title: Structure and mechanism of the flavocytochrome c fumarate reductase of Shewanella putrefaciens MR-1 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/70051 – volume: 70 start-page: 921 issue: 2 year: 2004 ident: 10.1016/j.biotechadv.2018.07.001_bb0195 article-title: Phenazines and other redox-active antibiotics promote microbial mineral reduction publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.70.2.921-928.2004 – volume: 25 start-page: 601 issue: 3 year: 2013 ident: 10.1016/j.biotechadv.2018.07.001_bb0235 article-title: Phenylboronic acid modified anodes promote faster biofilm adhesion and increase microbial fuel cell performances publication-title: Electroanalysis doi: 10.1002/elan.201200351 – volume: 29 start-page: 93 year: 2014 ident: 10.1016/j.biotechadv.2018.07.001_bb0500 article-title: Engineering microbial electrocatalysis for chemical and fuel production publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2014.03.003 – volume: 196 start-page: 850 issue: 4 year: 2014 ident: 10.1016/j.biotechadv.2018.07.001_bb0035 article-title: Nonredundant roles for cytochrome c2 and two high-potential iron-sulfur proteins in the photoferrotroph Rhodopseudomonas palustris TIE-1 publication-title: J. Bacteriol. doi: 10.1128/JB.00843-13 – volume: 209 start-page: 148 year: 2016 ident: 10.1016/j.biotechadv.2018.07.001_bb0710 article-title: Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.03.005 – volume: 339 start-page: 297 issue: 6222 year: 1989 ident: 10.1016/j.biotechadv.2018.07.001_bb0345 article-title: Oxidation of aromatic contaminants coupled to microbial iron reduction publication-title: Nature doi: 10.1038/339297a0 – volume: 330 start-page: 1413 issue: 6009 year: 2010 ident: 10.1016/j.biotechadv.2018.07.001_bb0600 article-title: Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria publication-title: Science doi: 10.1126/science.1196526 – volume: 277 start-page: 21 issue: 1 year: 2007 ident: 10.1016/j.biotechadv.2018.07.001_bb0465 article-title: Evidence that OmcB and OmpB of Geobacter sulfurreducens are outer membrane surface proteins publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2007.00915.x – volume: 3 year: 2012 ident: 10.1016/j.biotechadv.2018.07.001_bb0290 article-title: Identification and characterization of MtoA: a decaheme c-type cytochrome of the neutrophilic Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2012.00037 – volume: 4 start-page: 4366 issue: 11 year: 2011 ident: 10.1016/j.biotechadv.2018.07.001_bb0585 article-title: On the electrical conductivity of microbial nanowires and biofilms publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01753e – volume: 6 start-page: 573 issue: 9 year: 2011 ident: 10.1016/j.biotechadv.2018.07.001_bb0355 article-title: Tunable metallic-like conductivity in microbial nanowire networks publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.119 – volume: 212 start-page: 837 issue: 4 year: 1990 ident: 10.1016/j.biotechadv.2018.07.001_bb0665 article-title: Molecular structure of flavocytochrome b2 at 24 Å resolution publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(90)90240-M – volume: 491 start-page: 218 issue: 7423 year: 2012 ident: 10.1016/j.biotechadv.2018.07.001_bb0455 article-title: Filamentous bacteria transport electrons over centimetre distances publication-title: Nature doi: 10.1038/nature11586 – volume: 1459 start-page: 346 issue: 2-3 year: 2000 ident: 10.1016/j.biotechadv.2018.07.001_bb0645 article-title: Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea publication-title: BBA-Bioenergetics doi: 10.1016/S0005-2728(00)00171-7 – volume: 449 start-page: 101 issue: 1 year: 2013 ident: 10.1016/j.biotechadv.2018.07.001_bb0160 article-title: Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1 publication-title: Biochem. J. doi: 10.1042/BJ20121467 – volume: 41 start-page: 7844 issue: 22 year: 2007 ident: 10.1016/j.biotechadv.2018.07.001_bb0470 article-title: Characterization and quantification of reversible redox sites in humic substances publication-title: Environ. Sci. Technol. doi: 10.1021/es071389u – volume: 9 start-page: 1802 year: 2015 ident: 10.1016/j.biotechadv.2018.07.001_bb0590 article-title: A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime publication-title: ISME J. doi: 10.1038/ismej.2014.264 – volume: 46 start-page: 437 issue: 5 year: 2008 ident: 10.1016/j.biotechadv.2018.07.001_bb0080 article-title: Using poultry litter biochars as soil amendments publication-title: Soil Res. doi: 10.1071/SR08036 – volume: 10 start-page: 2010 year: 2016 ident: 10.1016/j.biotechadv.2018.07.001_bb0405 article-title: Long-distance electron transfer by cable bacteria in aquifer sediments publication-title: ISME J. doi: 10.1038/ismej.2015.250 – volume: 13 start-page: 2407 issue: 6 year: 2013 ident: 10.1016/j.biotechadv.2018.07.001_bb0250 article-title: Shewanella oneidensis MR-1 bacterial nanowires exhibit p-type, tunable electronic behavior publication-title: Nano Lett. doi: 10.1021/nl400237p – volume: 92 start-page: 2355 issue: 10 year: 2011 ident: 10.1016/j.biotechadv.2018.07.001_bb0190 article-title: Remediation technologies for heavy metal contaminated groundwater publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2011.06.009 – volume: 139 start-page: 12149 issue: 35 year: 2017 ident: 10.1016/j.biotechadv.2018.07.001_bb0605 article-title: Directed bio-fabrication of nanoparticles through regulating extracellular electron transfer publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07460 – volume: 140 start-page: 26 year: 2015 ident: 10.1016/j.biotechadv.2018.07.001_bb0685 article-title: Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.09.070 – volume: 78 start-page: 8304 issue: 23 year: 2012 ident: 10.1016/j.biotechadv.2018.07.001_bb0700 article-title: Anaerobic benzene oxidation by Geobacter species publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02469-12 – volume: 54 start-page: 1446 issue: 5 year: 2015 ident: 10.1016/j.biotechadv.2018.07.001_bb0120 article-title: Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4 publication-title: Angewandte Chemie-Int. Ed. doi: 10.1002/anie.201409163 – volume: 71 start-page: 4487 issue: 8 year: 2005 ident: 10.1016/j.biotechadv.2018.07.001_bb0210 article-title: Isolation and characterization of a genetically tractable photo autotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.71.8.4487-4496.2005 – volume: 112 start-page: 13278 issue: 43 year: 2015 ident: 10.1016/j.biotechadv.2018.07.001_bb0535 article-title: Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1510152112 – volume: 333 start-page: 117 year: 1998 ident: 10.1016/j.biotechadv.2018.07.001_bb0575 article-title: Re-design of Saccharomyces cerevisiae flavocytochrome b2: introduction of L-mandelate dehydrogenase activity publication-title: Biochem. J. doi: 10.1042/bj3330117 – volume: 68 start-page: 5585 issue: 11 year: 2002 ident: 10.1016/j.biotechadv.2018.07.001_bb0420 article-title: MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of Shewanella putrefaciens MR-1 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.68.11.5585-5594.2002 – volume: 113 start-page: 2 year: 2015 ident: 10.1016/j.biotechadv.2018.07.001_bb0075 article-title: Stable isotope labelling methods in mass spectrometry-based quantitative proteomics publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2015.04.013 – volume: 50 start-page: 1227 issue: 3 year: 2016 ident: 10.1016/j.biotechadv.2018.07.001_bb0595 article-title: Cable bacteria control iron-phosphorus dynamics in sediments of a coastal hypoxic basin publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b04369 – volume: 182 start-page: 67 issue: 1 year: 2000 ident: 10.1016/j.biotechadv.2018.07.001_bb0415 article-title: Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone publication-title: J. Bacteriol. doi: 10.1128/JB.182.1.67-75.2000 – volume: 17 start-page: 361 issue: 2 year: 2012 ident: 10.1016/j.biotechadv.2018.07.001_bb0460 article-title: The effect of physico-chemically immobilized methylene blue and neutral red on the anode of microbial fuel cell publication-title: Biotechnol. Bioprocess Eng. doi: 10.1007/s12257-011-0493-9 – volume: 110 start-page: 6346 issue: 16 year: 2013 ident: 10.1016/j.biotechadv.2018.07.001_bb0640 article-title: Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1220074110 – volume: 93 start-page: 41 issue: 1 year: 2012 ident: 10.1016/j.biotechadv.2018.07.001_bb0060 article-title: Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-011-3653-0 – volume: 63 start-page: 4784 issue: 12 year: 1997 ident: 10.1016/j.biotechadv.2018.07.001_bb0140 article-title: Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.63.12.4784-4792.1997 – volume: 139 start-page: 327 year: 2014 ident: 10.1016/j.biotechadv.2018.07.001_bb0395 article-title: Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2014.04.047 – volume: 80 start-page: 4599 issue: 15 year: 2014 ident: 10.1016/j.biotechadv.2018.07.001_bb0515 article-title: Direct Interspecies Electron Transfer between Geobacter metallireducens and Methanosarcina barkeri publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00895-14 – volume: 515–516 start-page: 118 year: 2015 ident: 10.1016/j.biotechadv.2018.07.001_bb0010 article-title: Interactions between natural organic matter, sulfur, arsenic and iron oxides in re-oxidation compounds within riparian wetlands: NanoSIMS and X-ray adsorption spectroscopy evidences publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.02.047 – volume: 61 start-page: 882 year: 2011 ident: 10.1016/j.biotechadv.2018.07.001_bb0655 article-title: Corynebacterium humireducens sp. nov., an alkaliphilic, humic acid-reducing bacterium isolated from a microbial fuel cell publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.020909-0 – volume: 6 issue: 2 year: 2011 ident: 10.1016/j.biotechadv.2018.07.001_bb0510 article-title: Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism publication-title: PLoS One doi: 10.1371/journal.pone.0016649 – volume: 40 start-page: 5181 issue: 17 year: 2006 ident: 10.1016/j.biotechadv.2018.07.001_bb0325 article-title: Microbial fuel cells: Methodology and technology publication-title: Environ. Sci. Technol. doi: 10.1021/es0605016 – volume: 526 issue: 7574 year: 2015 ident: 10.1016/j.biotechadv.2018.07.001_bb0635 article-title: Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria publication-title: Nature doi: 10.1038/nature15733 – volume: 46 start-page: 11644 issue: 21 year: 2012 ident: 10.1016/j.biotechadv.2018.07.001_bb0560 article-title: Redox reactions of reduced flavin mononucleotide (FMN), riboflavin (RBF), and anthraquinone-2, 6-disulfonate (AQDS) with ferrihydrite and lepidocrocite publication-title: Environ. Sci. Technol. doi: 10.1021/es301544b – volume: 39 start-page: 1972 issue: 10 year: 2005 ident: 10.1016/j.biotechadv.2018.07.001_bb0270 article-title: Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes publication-title: Water Res. doi: 10.1016/j.watres.2005.02.021 – volume: 30 start-page: 1313 issue: 12 year: 2009 ident: 10.1016/j.biotechadv.2018.07.001_bb0450 article-title: Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica publication-title: Environ. Technol. doi: 10.1080/09593330902984751 – volume: 1 year: 2010 ident: 10.1016/j.biotechadv.2018.07.001_bb0650 article-title: Sustainable biochar to mitigate global climate change publication-title: Nat. Commun. doi: 10.1038/ncomms1053 – volume: 68 start-page: 1898 issue: 10 year: 2007 ident: 10.1016/j.biotechadv.2018.07.001_bb0245 article-title: Effects of temperature and dissolved oxygen on Se(IV) removal and Se(0) precipitation by Shewanella sp. HN-41 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.02.062 – volume: 136 start-page: 711 year: 2013 ident: 10.1016/j.biotechadv.2018.07.001_bb0660 article-title: Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.02.072 – volume: 6 start-page: 776 issue: 6 year: 2014 ident: 10.1016/j.biotechadv.2018.07.001_bb0300 article-title: A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA publication-title: Environ. Microbiol. Rep. doi: 10.1111/1758-2229.12204 – volume: 356 start-page: 225 year: 2017 ident: 10.1016/j.biotechadv.2018.07.001_bb0525 article-title: Microbial fuel cells: From fundamentals to applications. A review publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.03.109 – volume: 4 issue: 2 year: 2013 ident: 10.1016/j.biotechadv.2018.07.001_bb0610 article-title: Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens publication-title: MBio doi: 10.1128/mBio.00210-13 – volume: 6 year: 2015 ident: 10.1016/j.biotechadv.2018.07.001_bb0020 article-title: Characterization of MtoD from Sideroxydans lithotrophicus: a cytochrome c electron shuttle used in lithoautotrophic growth publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00332 – volume: 347 start-page: 1473 issue: 6229 year: 2015 ident: 10.1016/j.biotechadv.2018.07.001_bb0065 article-title: Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria publication-title: Science doi: 10.1126/science.aaa4834 – volume: 27 start-page: 250 issue: 5 year: 2002 ident: 10.1016/j.biotechadv.2018.07.001_bb0410 article-title: P450 BM3: the very model of a modern flavocytochrome publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(02)02086-8 – volume: 46 start-page: 6556 issue: 12 year: 2012 ident: 10.1016/j.biotechadv.2018.07.001_bb0125 article-title: Potential function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe (II)-oxidizer Acidovorax sp. BoFeN1 publication-title: Environ. Sci. Technol. doi: 10.1021/es2046266 – volume: 109 start-page: 10042 issue: 25 year: 2012 ident: 10.1016/j.biotechadv.2018.07.001_bb0220 article-title: Microbial interspecies electron transfer via electric currents through conductive minerals publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1117592109 – volume: 9 start-page: 1012 issue: 12 year: 2014 ident: 10.1016/j.biotechadv.2018.07.001_bb0365 article-title: Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.236 – volume: 92 start-page: 1 year: 2012 ident: 10.1016/j.biotechadv.2018.07.001_bb0495 article-title: Sulfur, iron-, and calcium cycling associated with natural electric currents running through marine sediment publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2012.05.036 – volume: 108 start-page: 9384 issue: 23 year: 2011 ident: 10.1016/j.biotechadv.2018.07.001_bb0095 article-title: Structure of a bacterial cell surface decaheme electron conduit publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1017200108 – volume: 71 start-page: 643 year: 2017 ident: 10.1016/j.biotechadv.2018.07.001_bb0340 article-title: Syntrophy goes electric: direct interspecies electron transfer publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-030117-020420 – volume: 17 start-page: 648 issue: 3 year: 2015 ident: 10.1016/j.biotechadv.2018.07.001_bb0310 article-title: Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12485 – volume: 369 start-page: 153 year: 2003 ident: 10.1016/j.biotechadv.2018.07.001_bb0320 article-title: Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens publication-title: Biochem. J. doi: 10.1042/bj20020597 – volume: 9 start-page: 3544 issue: 11 year: 2016 ident: 10.1016/j.biotechadv.2018.07.001_bb0680 article-title: Toward understanding long-distance extracellular electron transport in an electroautotrophic microbial community publication-title: Energy Environ. Sci. doi: 10.1039/C6EE02106A – volume: 52 start-page: 69 issue: 2 year: 2003 ident: 10.1016/j.biotechadv.2018.07.001_bb0175 article-title: Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances publication-title: Int. Biodeterior. Biodegrad. doi: 10.1016/S0964-8305(02)00177-4 – volume: 1 issue: 3 year: 2017 ident: 10.1016/j.biotechadv.2018.07.001_bb0230 article-title: The ins and outs of microorganism-electrode electron transfer reactions publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-017-0024 – volume: 33 start-page: 5115 issue: 17 year: 1994 ident: 10.1016/j.biotechadv.2018.07.001_bb0540 article-title: Role of the interdomain hinge of flavocytochrome b2 in intra-and inter-protein electron transfer publication-title: Biochemistry doi: 10.1021/bi00183a015 – volume: 14 start-page: 651 issue: 10 year: 2016 ident: 10.1016/j.biotechadv.2018.07.001_bb0565 article-title: Extracellular electron transfer mechanisms between microorganisms and minerals publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2016.93 – volume: 164 start-page: 941 issue: 2-3 year: 2009 ident: 10.1016/j.biotechadv.2018.07.001_bb0625 article-title: The role of humic substances in the anaerobic reductive dechlorination of 2,4-dichlorophenoxyacetic acid by Comamonas koreensis strain CY01 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.08.097 – volume: 189 start-page: 1765 issue: 5 year: 2007 ident: 10.1016/j.biotechadv.2018.07.001_bb0205 article-title: The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1 publication-title: J. Bacteriol. doi: 10.1128/JB.00776-06 – volume: 17 start-page: 648 issue: 3 year: 2015 ident: 10.1016/j.biotechadv.2018.07.001_bb0315 article-title: Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12485 – volume: 6 issue: 2 year: 2015 ident: 10.1016/j.biotechadv.2018.07.001_bb0370 article-title: Structural basis for metallic-like conductivity in microbial nanowires publication-title: MBio doi: 10.1128/mBio.00084-15 – volume: 8 year: 2017 ident: 10.1016/j.biotechadv.2018.07.001_bb0055 article-title: Electrochemical potential influences phenazine production, electron transfer and consequently electric current generation by Pseudomonas aeruginosa publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.00892 – volume: 435 start-page: 1098 issue: 7045 year: 2005 ident: 10.1016/j.biotechadv.2018.07.001_bb0480 article-title: Extracellular electron transfer via microbial nanowires publication-title: Nature doi: 10.1038/nature03661 – volume: 48 start-page: 7536 issue: 13 year: 2014 ident: 10.1016/j.biotechadv.2018.07.001_bb0615 article-title: Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation publication-title: Environ. Sci. Technol. doi: 10.1021/es5016789 – volume: 17 start-page: 22217 issue: 34 year: 2015 ident: 10.1016/j.biotechadv.2018.07.001_bb0155 article-title: Structural and functional insights into the conductive pili of Geobacter sulfurreducens revealed in molecular dynamics simulations publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP03432A – volume: 288 start-page: 29260 issue: 41 year: 2013 ident: 10.1016/j.biotechadv.2018.07.001_bb0475 article-title: Structure of the type IVa major pilin from the electrically conductive bacterial nanowires of Geobacter sulfurreducens publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.498527 – volume: 290 start-page: 103 year: 1993 ident: 10.1016/j.biotechadv.2018.07.001_bb0580 article-title: L-mandelate dehydrogenase from Rhodotorula graminis: comparisons with the L-lactate dehydrogenase (flavocytochrome b2) from Saccharomyces cerevisiae publication-title: Biochem. J. doi: 10.1042/bj2900103 – volume: 8 start-page: 513 issue: 2 year: 2015 ident: 10.1016/j.biotechadv.2018.07.001_bb0530 article-title: Microbial electrochemistry and technology: terminology and classification publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03359K – volume: 65 start-page: 12 issue: 1 year: 2007 ident: 10.1016/j.biotechadv.2018.07.001_bb0555 article-title: Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2007.05783.x – volume: 66 start-page: 1292 issue: 4 year: 2000 ident: 10.1016/j.biotechadv.2018.07.001_bb0445 article-title: Electricity generation in microbial fuel cells using neutral red as an electronophore publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.66.4.1292-1297.2000 – volume: 27 start-page: 1908 issue: 11 year: 2015 ident: 10.1016/j.biotechadv.2018.07.001_bb0675 article-title: Inter-aromatic distances in Geobacter sulfurreducens pili relevant to biofilm charge transport publication-title: Adv. Mater. doi: 10.1002/adma.201404167 – volume: 5 issue: 318 year: 2014 ident: 10.1016/j.biotechadv.2018.07.001_bb0440 article-title: Exploring the molecular mechanisms of electron shuttling across the microbe/metal space publication-title: Front. Microbiol. – volume: 71 start-page: 731 issue: 1 year: 2017 ident: 10.1016/j.biotechadv.2018.07.001_bb0170 article-title: The colorful world of extracellular electron shuttles publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-090816-093913 – volume: 127 start-page: 19 year: 2016 ident: 10.1016/j.biotechadv.2018.07.001_bb0695 article-title: A review of current progress of recycling technologies for metals from waste electrical and electronic equipment publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.04.004 – volume: 35 start-page: 393 issue: 5 year: 2017 ident: 10.1016/j.biotechadv.2018.07.001_bb0165 article-title: A Gibbs free energy-based assessment of microbial electrocatalysis publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2017.02.005 – volume: 5 start-page: 8982 issue: 10 year: 2012 ident: 10.1016/j.biotechadv.2018.07.001_bb0285 article-title: Promoting direct interspecies electron transfer with activated carbon publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22459c – volume: 152 start-page: 122 year: 2015 ident: 10.1016/j.biotechadv.2018.07.001_bb0390 article-title: The geochemical fingerprint of microbial long-distance electron transport in the seafloor publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2014.12.014 – volume: 50 start-page: 11016 issue: 20 year: 2016 ident: 10.1016/j.biotechadv.2018.07.001_bb0545 article-title: Aggregation kinetics of hematite particles in the presence of outer membrane cytochrome OmcA of Shewanella oneidenesis MR-1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b02963 |
SSID | ssj0015053 |
Score | 2.6262603 |
SecondaryResourceType | review_article |
Snippet | Redox mediator plays an important role in extracellular electron transfer (EET) in many environments wherein microbial electrocatalysis occurs actively.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1815 |
SubjectTerms | Biochemical fuel cells Biodegradation Biomining Bioremediation Charge transport Chemical reactions Electrocatalysis Electrochemically active bacteria electrochemistry Electron Electron transfer Electrons Extracellular electron transfer Extracellular matrix industry Microbial electrocatalysis microbial fuel cells Microorganisms Nanomaterials Redox mediator redox potential Sustainable development |
Title | Microbial electrocatalysis: Redox mediators responsible for extracellular electron transfer |
URI | https://dx.doi.org/10.1016/j.biotechadv.2018.07.001 https://www.ncbi.nlm.nih.gov/pubmed/30196813 https://www.proquest.com/docview/2117377482 https://www.proquest.com/docview/2101915857 https://www.proquest.com/docview/2131880552 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5EQfQgvl1fVPBat2kS0-pJRFkVPfgAwUNomhRXlq6sq3jytzvTpquCiuBxdzNLO5nMfGm_fAOwLQqVWBvlYeScCYVjJjRJXoRJZlIrecxlzfK92O3ciNNbeTsGh81ZGKJV-txf5_QqW_tv2t6b7cdut32FwSlSRYJ0GKSxJMVPIRRF-c7biOaBeKdWosTBIY32bJ6a42W6pIVwn9kXInkllYynbw_zTYn6CYJWpeh4FmY8hgwO6sucgzFXzsP0J2XBeZg89-_MF-DuvFuJLaGF73lTPbIhJZK94NLZ_mtQHR-htjvBoKHM9lyAcDbA1D3I6OE-sVUb-zIYVnDXDRbh5vjo-rAT-pYKYY6ZbYgbRQQUaU7npx1OnmUWPRZzzDIisgUztoizKJepSYXD8qlMVCRMWcVTI6zjnC_BeNkv3QoE3GSGFQrxCVb42IjUSVzCuSWxJFdErgWq8aLOvd44tb3o6YZY9qA__K_J_zqil-GsBWxk-VhrbvzBZr-ZKP0lfjSWhj9Yrzdzq_0aftK4NVYc0XESt2Br9DOuPvJ6Vrr-M41BiMxwy6V-G8NJ9E5K_J_lOm5Gt8VJnihhfPVfl78GU_SJjkgyuQ7jw8Gz20CsNDSb1WLYhImDk7POxTsUdBYH |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED6VIsH2MI3CRhmDIPEaNY5tnMATQqvKaPvADwmJByuOHdEJpagUtD-fu8TpQGIT0l5jX-Kc7bvP9vk7gH1RqMTaKA8j50woHDOhSfIiTDKTWsljLuso3_HB4Er8vJbXLThp7sJQWKW3_bVNr6y1f9Lz2uzdTya9CxycIlVESIeDNJZ8CZaJnUq2Yfn49GwwXhwm4OdqNk4uQhLwAT11mJeZEB3CbWafKM4rqZg8fYaYN7zU31Bo5Y36n-GTh5HBcd3SNWi5sgMfX5ALdmBl5I_N1-FmNKn4llDCp72pdm2IjOQwOHd2-juobpBQ5p1g1kTN3rkAEW2A1nuW0f4-Baw28mUwrxCvm23AVf_H5ckg9FkVwhyN2xzXiogp0pyuUDvsP8usQIPI0dCIyBbM2CLOolymJhUOPagyUZEwZRVPjbCOc_4F2uW0dJsQcJMZViiEKOjkYyNSJ3EW55b4klwRuS6oRos695TjlPniTjexZb_0H_1r0r-O6DycdYEtJO9r2o13yBw1HaVfDSGN3uEd0ttN32o_jR80ro4VR4CcxF3YWxTjBCStZ6WbPlIdRMkMV13qX3U48d5Jie_5Wo-bxW9xYihKGN_6r-bvwurgcjTUw9Px2Tf4QCV0Y5LJbWjPZ4_uO0KnudnxU-MZh1MYuA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+electrocatalysis%3A+Redox+mediators+responsible+for+extracellular+electron+transfer&rft.jtitle=Biotechnology+advances&rft.au=Liu%2C+Xiaobo&rft.au=Shi%2C+Liang&rft.au=Gu%2C+Ji-Dong&rft.date=2018-11-15&rft.pub=Elsevier+Science+Ltd&rft.issn=0734-9750&rft.eissn=1873-1899&rft.volume=36&rft.issue=7&rft.spage=1815&rft_id=info:doi/10.1016%2Fj.biotechadv.2018.07.001&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-9750&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-9750&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-9750&client=summon |