Silicate-based bioceramic scaffolds for dual-lineage regeneration of osteochondral defect

Osteochondral defects are most commonly characterized by damages to both cartilage and bone tissues as a result of serious traumas or physical diseases; because these two tissues have their own unique biological properties, developing a single monophasic scaffold that can concurrently regenerate the...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 192; pp. 323 - 333
Main Authors Bunpetch, Varitsara, Zhang, Xiaoan, Li, Tian, Lin, Junxin, Maswikiti, Ewetse Paul, Wu, Yan, Cai, Dandan, Li, Jun, Zhang, Shufang, Wu, Chengtie, Ouyang, Hongwei
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Osteochondral defects are most commonly characterized by damages to both cartilage and bone tissues as a result of serious traumas or physical diseases; because these two tissues have their own unique biological properties, developing a single monophasic scaffold that can concurrently regenerate these two specific lineages becomes a challenge. To address this concern, a silicon-based bioceramic (SiCP) scaffold was fabricated. The efficiency and underlying mechanisms of SiCP for osteochondral defect regeneration were investigated. At 8 and 16 weeks post-implantation in a rabbit model of osteochondral defect, gross morphology, histological, and micro-CT images showed that SiCP scaffolds distinctly promoted subchondral bone and cartilage regeneration when compared to calcium-phosphate based bioceramics (CP) scaffolds without silicon. In vitro, SiCP was also shown to promote bone marrow stem cells (BMSC) osteogenesis (ALP, RUNX2, OCN) and help maintain chondrocytes phenotype (Acan, Sox9, Col2a1), validated by qPCR, western blot, and RNA-sequencing (RNA-seq). Additionally, the descriptive analysis of RNA-seq using Gene Ontology (GO) and KEGG pathway analysis revealed biological processes related to cartilage and bone development and extracellular matrices in chondrocytes, as well as related to early osteogenesis in BMSC, indicating that Si ions play an important role in the regeneration of both tissues. Conclusively, the development of silicon-based bioceramic scaffolds may be a promising approach for osteochondral defect regeneration due to their unique dual-lineage bioactivity.
AbstractList Osteochondral defects are most commonly characterized by damages to both cartilage and bone tissues as a result of serious traumas or physical diseases; because these two tissues have their own unique biological properties, developing a single monophasic scaffold that can concurrently regenerate these two specific lineages becomes a challenge. To address this concern, a silicon-based bioceramic (SiCP) scaffold was fabricated. The efficiency and underlying mechanisms of SiCP for osteochondral defect regeneration were investigated. At 8 and 16 weeks post-implantation in a rabbit model of osteochondral defect, gross morphology, histological, and micro-CT images showed that SiCP scaffolds distinctly promoted subchondral bone and cartilage regeneration when compared to calcium-phosphate based bioceramics (CP) scaffolds without silicon. In vitro, SiCP was also shown to promote bone marrow stem cells (BMSC) osteogenesis (ALP, RUNX2, OCN) and help maintain chondrocytes phenotype (Acan, Sox9, Col2a1), validated by qPCR, western blot, and RNA-sequencing (RNA-seq). Additionally, the descriptive analysis of RNA-seq using Gene Ontology (GO) and KEGG pathway analysis revealed biological processes related to cartilage and bone development and extracellular matrices in chondrocytes, as well as related to early osteogenesis in BMSC, indicating that Si ions play an important role in the regeneration of both tissues. Conclusively, the development of silicon-based bioceramic scaffolds may be a promising approach for osteochondral defect regeneration due to their unique dual-lineage bioactivity.
Osteochondral defects are most commonly characterized by damages to both cartilage and bone tissues as a result of serious traumas or physical diseases; because these two tissues have their own unique biological properties, developing a single monophasic scaffold that can concurrently regenerate these two specific lineages becomes a challenge. To address this concern, a silicon-based bioceramic (SiCP) scaffold was fabricated. The efficiency and underlying mechanisms of SiCP for osteochondral defect regeneration were investigated. At 8 and 16 weeks post-implantation in a rabbit model of osteochondral defect, gross morphology, histological, and micro-CT images showed that SiCP scaffolds distinctly promoted subchondral bone and cartilage regeneration when compared to calcium-phosphate based bioceramics (CP) scaffolds without silicon. In vitro, SiCP was also shown to promote bone marrow stem cells (BMSC) osteogenesis (ALP, RUNX2, OCN) and help maintain chondrocytes phenotype (Acan, Sox9, Col2a1), validated by qPCR, western blot, and RNA-sequencing (RNA-seq). Additionally, the descriptive analysis of RNA-seq using Gene Ontology (GO) and KEGG pathway analysis revealed biological processes related to cartilage and bone development and extracellular matrices in chondrocytes, as well as related to early osteogenesis in BMSC, indicating that Si ions play an important role in the regeneration of both tissues. Conclusively, the development of silicon-based bioceramic scaffolds may be a promising approach for osteochondral defect regeneration due to their unique dual-lineage bioactivity.Osteochondral defects are most commonly characterized by damages to both cartilage and bone tissues as a result of serious traumas or physical diseases; because these two tissues have their own unique biological properties, developing a single monophasic scaffold that can concurrently regenerate these two specific lineages becomes a challenge. To address this concern, a silicon-based bioceramic (SiCP) scaffold was fabricated. The efficiency and underlying mechanisms of SiCP for osteochondral defect regeneration were investigated. At 8 and 16 weeks post-implantation in a rabbit model of osteochondral defect, gross morphology, histological, and micro-CT images showed that SiCP scaffolds distinctly promoted subchondral bone and cartilage regeneration when compared to calcium-phosphate based bioceramics (CP) scaffolds without silicon. In vitro, SiCP was also shown to promote bone marrow stem cells (BMSC) osteogenesis (ALP, RUNX2, OCN) and help maintain chondrocytes phenotype (Acan, Sox9, Col2a1), validated by qPCR, western blot, and RNA-sequencing (RNA-seq). Additionally, the descriptive analysis of RNA-seq using Gene Ontology (GO) and KEGG pathway analysis revealed biological processes related to cartilage and bone development and extracellular matrices in chondrocytes, as well as related to early osteogenesis in BMSC, indicating that Si ions play an important role in the regeneration of both tissues. Conclusively, the development of silicon-based bioceramic scaffolds may be a promising approach for osteochondral defect regeneration due to their unique dual-lineage bioactivity.
Author Cai, Dandan
Li, Jun
Ouyang, Hongwei
Bunpetch, Varitsara
Li, Tian
Wu, Yan
Maswikiti, Ewetse Paul
Wu, Chengtie
Zhang, Xiaoan
Lin, Junxin
Zhang, Shufang
Author_xml – sequence: 1
  givenname: Varitsara
  surname: Bunpetch
  fullname: Bunpetch, Varitsara
  organization: Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Zhejiang, China
– sequence: 2
  givenname: Xiaoan
  surname: Zhang
  fullname: Zhang, Xiaoan
  organization: Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Zhejiang, China
– sequence: 3
  givenname: Tian
  surname: Li
  fullname: Li, Tian
  organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institutes of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
– sequence: 4
  givenname: Junxin
  surname: Lin
  fullname: Lin, Junxin
  organization: Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Zhejiang, China
– sequence: 5
  givenname: Ewetse Paul
  surname: Maswikiti
  fullname: Maswikiti, Ewetse Paul
  organization: Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Zhejiang, China
– sequence: 6
  givenname: Yan
  surname: Wu
  fullname: Wu, Yan
  organization: Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
– sequence: 7
  givenname: Dandan
  surname: Cai
  fullname: Cai, Dandan
  organization: Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Zhejiang, China
– sequence: 8
  givenname: Jun
  surname: Li
  fullname: Li, Jun
  organization: Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Zhejiang, China
– sequence: 9
  givenname: Shufang
  surname: Zhang
  fullname: Zhang, Shufang
  organization: Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Zhejiang, China
– sequence: 10
  givenname: Chengtie
  surname: Wu
  fullname: Wu, Chengtie
  email: chengtiewu@mail.sic.ac.cn
  organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institutes of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
– sequence: 11
  givenname: Hongwei
  surname: Ouyang
  fullname: Ouyang, Hongwei
  email: hwoy@zju.edu.cn
  organization: Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Zhejiang, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30468999$$D View this record in MEDLINE/PubMed
BookMark eNqNksFu1DAQhi1URLeFV0ARJy5JbceJbU7QAgWpEgfgwMlyxuPixYmLnUXq2-OyBaGe9jSy9M2n0f_7hBwtaUFCXjDaMcrGs203hTTbFXOwsXScMtUx1lE-PCIbpqRqB02HI7KhTPBWj4wfk5NStrS-qeBPyHFPxai01hvy7XOIAaqrnWxB11QzYLZzgKaA9T5FVxqfcuN2NrYxLGivscl4jUvF1pCWJvkmlRUTfE-LyzY2Dj3C-pQ89vU8fHY_T8nX9---XHxorz5dfrx4c9XC0Ku1HbxSsgc9cmW151pLh0wDRztpIZhQTnvrLDBmpZSTdco6Dl5y0G4csO9Pycu99yannzssq5lDAYzRLph2xXDOGR1HQQ9AWS-FHASXFX1-j-6mGZ25yWG2-db8Ta4Cr_YA5FRKRv8PYdTc1WS25v-azF1NhjFTa6rLrx8sQ1j_pLlmG-Jhird7BdZsfwXMpkDABdCFXNM3LoXDNOcPNFBLrj8i_sDbQyW_Abg1z-0
CitedBy_id crossref_primary_10_1016_j_bioactmat_2022_04_030
crossref_primary_10_1039_D0BM00599A
crossref_primary_10_1186_s13287_024_03905_y
crossref_primary_10_1093_rb_rbaa004
crossref_primary_10_1111_jcmm_70135
crossref_primary_10_1002_adma_202407040
crossref_primary_10_1002_mabi_202000028
crossref_primary_10_3389_fmats_2021_738430
crossref_primary_10_3390_ijms24032032
crossref_primary_10_1016_j_apmt_2022_101433
crossref_primary_10_1088_2631_7990_ad5806
crossref_primary_10_1016_j_bioactmat_2024_05_004
crossref_primary_10_1302_2046_3758_127_BJR_2022_0279_R2
crossref_primary_10_1016_j_matlet_2024_136059
crossref_primary_10_1002_advs_202404534
crossref_primary_10_1136_rmdopen_2022_002617
crossref_primary_10_3389_fbioe_2024_1273541
crossref_primary_10_1016_j_bioactmat_2023_03_008
crossref_primary_10_1088_1758_5090_ab7ab5
crossref_primary_10_1016_j_apmt_2021_101145
crossref_primary_10_1002_advs_202300038
crossref_primary_10_3139_146_111937
crossref_primary_10_1016_j_mtbio_2023_100728
crossref_primary_10_1186_s13036_023_00389_x
crossref_primary_10_1557_s43578_023_01101_x
crossref_primary_10_3390_polym14102003
crossref_primary_10_1002_adfm_202404549
crossref_primary_10_1016_j_biomaterials_2025_123084
crossref_primary_10_1002_smll_202406069
crossref_primary_10_1186_s13287_019_1441_4
crossref_primary_10_1016_j_colsurfb_2020_111083
crossref_primary_10_1016_j_ceramint_2025_02_146
crossref_primary_10_1016_j_matdes_2020_108947
crossref_primary_10_1039_D0NR05608A
crossref_primary_10_1016_j_bioactmat_2024_10_001
crossref_primary_10_1016_j_apmt_2019_100548
crossref_primary_10_1002_VIW_20210018
crossref_primary_10_1016_j_jot_2023_11_003
crossref_primary_10_1021_acs_biomac_3c00655
crossref_primary_10_2174_1573413716999201022191909
crossref_primary_10_1016_j_bioadv_2024_214089
crossref_primary_10_1002_adma_202404842
crossref_primary_10_1038_s41578_020_0204_2
crossref_primary_10_1021_acsabm_8b00700
crossref_primary_10_1016_j_cej_2020_126821
crossref_primary_10_1007_s42765_022_00223_x
crossref_primary_10_1016_j_carbpol_2021_118382
crossref_primary_10_1016_j_actbio_2020_06_046
crossref_primary_10_1186_s40779_020_00280_6
crossref_primary_10_15541_jim20200664
crossref_primary_10_3390_jfb16010031
crossref_primary_10_2478_bsmm_2023_0007
crossref_primary_10_1039_D0BM02071K
crossref_primary_10_1002_mba2_61
crossref_primary_10_1016_j_mattod_2023_01_018
crossref_primary_10_3390_nano11092456
crossref_primary_10_3389_fcell_2021_639006
crossref_primary_10_3390_nano11123215
crossref_primary_10_1016_j_pmatsci_2023_101072
crossref_primary_10_1016_j_carbpol_2020_117574
crossref_primary_10_1039_D3TB02031B
crossref_primary_10_1002_adhm_202200602
crossref_primary_10_1016_j_dental_2020_01_011
crossref_primary_10_1002_adma_202210517
crossref_primary_10_1002_adma_202210637
crossref_primary_10_1016_j_msec_2020_111167
crossref_primary_10_1016_j_tibtech_2019_06_003
crossref_primary_10_1039_D2TB00687A
crossref_primary_10_1186_s12951_022_01361_5
crossref_primary_10_4012_dmj_2020_214
crossref_primary_10_1002_adhm_202102837
crossref_primary_10_1016_j_matt_2024_01_016
crossref_primary_10_3390_organoids2030010
crossref_primary_10_1016_j_apmt_2022_101370
crossref_primary_10_1016_j_ceramint_2025_01_427
crossref_primary_10_3390_app13031328
crossref_primary_10_1039_C9TB02855B
crossref_primary_10_1016_j_ceramint_2024_09_294
crossref_primary_10_1016_j_colsurfb_2020_111041
crossref_primary_10_1055_a_1183_4532
crossref_primary_10_1016_j_ceramint_2022_02_102
crossref_primary_10_1002_adma_202107922
crossref_primary_10_1016_j_bioactmat_2021_05_029
crossref_primary_10_1002_adhm_202000208
crossref_primary_10_1186_s13045_024_01636_4
crossref_primary_10_1016_j_biomaterials_2019_119366
crossref_primary_10_3390_met12060931
crossref_primary_10_15541_jim20200657
crossref_primary_10_1039_D2TB02280J
crossref_primary_10_2147_IJN_S247088
crossref_primary_10_1002_admi_202300224
crossref_primary_10_1088_1748_605X_ab49e2
crossref_primary_10_1016_j_compositesb_2023_110871
crossref_primary_10_1021_acsami_3c00192
crossref_primary_10_1016_j_cej_2020_125989
crossref_primary_10_1016_j_cej_2025_159985
crossref_primary_10_1016_j_jot_2021_11_006
crossref_primary_10_1016_j_mattod_2021_04_016
crossref_primary_10_1016_j_bioactmat_2021_05_011
crossref_primary_10_1016_j_carbpol_2021_118224
crossref_primary_10_1016_j_ijbiomac_2023_123659
crossref_primary_10_3389_fbioe_2020_00083
crossref_primary_10_1002_adhm_202202008
crossref_primary_10_1016_j_mtcomm_2021_102365
crossref_primary_10_1016_j_jot_2021_07_008
crossref_primary_10_1016_j_carbpol_2022_119575
crossref_primary_10_3389_fbioe_2022_1053944
crossref_primary_10_1016_j_apmt_2019_06_011
crossref_primary_10_1016_j_compositesb_2020_107937
crossref_primary_10_1016_j_msec_2021_112215
Cites_doi 10.1007/s00167-011-1655-1
10.1016/j.jss.2012.11.036
10.1016/j.actbio.2012.03.012
10.1359/JBMR.0301225
10.1016/j.injury.2005.07.029
10.1016/j.joca.2011.12.003
10.1038/nmeth.2639
10.1053/jars.2003.50112
10.1146/annurev.cellbio.22.010605.093554
10.1016/j.devcel.2016.11.008
10.1161/CIRCRESAHA.110.219840
10.1097/00003086-200110001-00011
10.1038/s41598-018-22991-6
10.1016/j.knee.2011.03.011
10.1002/jbm.a.31324
10.7150/thno.23674
10.1002/jor.20442
10.3390/ijms15058667
10.1016/j.joca.2008.06.014
10.1186/s12891-016-1085-9
10.1002/acr.21640
10.2106/00004623-200300002-00007
10.1016/j.ijbiomac.2015.05.005
10.1016/j.orthres.2004.11.003
10.1016/j.nano.2014.02.003
10.1002/jtra.20004
10.1177/1759720X12466608
10.1016/j.biomaterials.2003.09.086
10.1007/BF02409409
10.1242/dev.023788
10.1097/01.moo.0000170526.51393.c5
10.1016/j.stemcr.2017.02.018
10.1038/srep04493
10.1371/journal.pone.0120857
10.1038/nm.3143
10.1002/adma.200801957
10.1002/art.22921
10.1007/s00198-012-2162-z
10.1093/bioinformatics/btu638
10.1155/2016/2545214
10.2106/00004623-200300002-00004
10.1089/ten.2004.10.1818
10.1002/bdrc.21058
10.1136/ard.52.3.185
10.1016/j.joca.2014.02.652
10.1007/BF02785389
10.1007/BF01321834
10.1007/s12178-009-9048-5
10.1083/jcb.153.1.35
10.1111/j.1749-6632.2009.05240.x
10.1038/nprot.2008.95
10.1186/ar4405
10.1093/rb/rbv015
10.1371/journal.pone.0032481
ContentType Journal Article
Copyright 2018
Copyright © 2018. Published by Elsevier Ltd.
Copyright_xml – notice: 2018
– notice: Copyright © 2018. Published by Elsevier Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biomaterials.2018.11.025
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1878-5905
EndPage 333
ExternalDocumentID 30468999
10_1016_j_biomaterials_2018_11_025
S0142961218308020
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAIAV
AAYOK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
RIG
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
7S9
L.6
ID FETCH-LOGICAL-c538t-5f8873c9628a9f2997de19c2eab944148d9fadac11a777bad8ad2cf72c9d65e33
IEDL.DBID .~1
ISSN 0142-9612
1878-5905
IngestDate Thu Jul 10 18:32:06 EDT 2025
Wed Aug 20 00:26:30 EDT 2025
Wed Feb 19 02:30:58 EST 2025
Thu Apr 24 22:58:42 EDT 2025
Tue Jul 01 01:19:37 EDT 2025
Fri Feb 23 02:49:02 EST 2024
Tue Aug 26 20:00:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2018. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c538t-5f8873c9628a9f2997de19c2eab944148d9fadac11a777bad8ad2cf72c9d65e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30468999
PQID 2137475427
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2221066403
proquest_miscellaneous_2137475427
pubmed_primary_30468999
crossref_primary_10_1016_j_biomaterials_2018_11_025
crossref_citationtrail_10_1016_j_biomaterials_2018_11_025
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2018_11_025
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2018_11_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2019
2019-02-00
20190201
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Valerio, Pereira, Goes, Leite (bib24) 2004; 25
Nielsen, Poellot (bib23) 2004; 17
Gosset, Berenbaum, Thirion, Jacques (bib31) 2008; 3
Kim, Liu, Wang, Chen, Zhang, Kim, Cui, Li, Zhang, Kong, Zhang, Shui, Lamplot, Rogers, Zhao, Wang, Rajan, Tomal, Statz, Wu, Luu, Haydon, He (bib57) 2013; 5
Pustjens, Mastbergen, Noort-Van der Laan, Van Heerwaarden, Lafeber (bib61) 2014; 22
Ng, Tan, Phang, Aziyati, Tan, Isa, Aminuddin, Naseem, Fauziah, Ruszymah (bib27) 2008; 85A
Giannoudis, Dinopoulos, Tsiridis (bib6) 2005; 36
Rao, Kühl (bib56) 2010
Sun, Chou, Hsu, Chen (bib5) 2009; 2
Okamoto, Udagawa, Uehara, Maeda, Yamashita, Nakamichi, Kato, Saito, Minami, Takahashi, Kobayashi (bib58) 2014; 4
Rux, Song, Swinehart, Pineault, Schlientz, Trulik, Goldstein, Kozloff, Lucas, Wellik (bib54) 2016; 39
Guo, Wang, Zhang, Xia, Hu, Duan, Zhao, Dong, Lu, Qing Song (bib42) 2004; 10
Mainil-Varlet, Aigner, Brittberg, Bullough, Hollander, Hunziker, Kandel, Nehrer, Pritzker, Roberts, Stauffer (bib30) 2003
Jugdaohsingh (bib20) 2007; 11
Leucht, Kim, Amasha, James, Girod, Helms (bib55) 2008; 135
Calomme, Vanden Berghe (bib21) 1997; 56
Zhang, Zheng, Jiang, Tu, Jiang, Yang (bib1) 2012; 64
Steadman, Briggs, Rodrigo, Kocher, Gill, Rodkey (bib10) 2003; 19
Algul, Sipahi, Aydin, Kelleci, Ozdatli, Yener (bib28) 2015; 79
Yang, Chen, Xu, Li, Huang, Deng (bib39) 2001; 153
Rux, Wellik (bib53) 2016
Van der Kraan, Van den Berg (bib49) 2012
van de Peppel, Strini, Tilburg, Westerhoff, van Wijnen, van Leeuwen (bib36) 2017; 8
Hunziker (bib12) 2009; 21
Zhen, Wen, Jia, Li, Crane, Mears, Askin, Frassica, Chang, Yao, Carrino, Cosgarea, Artemov, Chen, Zhao, Zhou, Riley, Sponseller, Wan, Lu, Cao (bib48) 2013; 19
Henrotin, Pesesse, Sanchez (bib14) 2012; 23
Mariani, Pulsatelli, Facchini (bib47) 2014; 15
Jugdaohsingh, Tucker, Qiao, Cupples, Kiel, Powell (bib25) 2004; 19
Wang, Rigueur, Lyons (bib45) 2014; 102
Baltzer, Moser, Jansen, Krauspe (bib4) 2009; 17
Robert, Angulski, Spangenberg, Shigunov, Pereira, Bettes, Naya, Correa, Dallagiovanna, Stimamiglio (bib35) 2018; 8
Picelli, Björklund, Faridani, Sagasser, Winberg, Sandberg (bib32) 2013; 10
Zhou, Wu, Xiao (bib29) 2012; 8
Hott, de Pollak, Modrowski, Marie (bib22) 1993; 53
Freitag, Bates, Boyd, Shah, Barnard, Huguenin, Tenen (bib8) 2016; 17
Arosarena (bib7) 2005; 13
Kolde (bib34) 2018
Nejaddehbashi, Soleimani, Khorsandi, Atashi (bib43) 2014; 16
Carlisle (bib19) 1986; 121
Muraoka, Hagino, Okano, Enokida, Teshima (bib13) 2007; 56
Deng, Zhu, Li, Feng, Yao, Wang, Chang, Wu (bib44) 2018; 8
Tekari, Luginbuehl, Hofstetter, Egli (bib46) 2015; 10
Van Beuningen, Van Der Kraan, Arntz, Van Den Berg (bib38) 1993; 52
Jiang, Chiang, Liao, Lin, Kuo, Shieh, Huang, Tuan (bib18) 2007; 25
Liu, Tan, Zhou, Zhou, Chen, Wei, Chen, Xu, Zhang, Yang, Song (bib52) 2016
Panseri, Russo, Cunha, Bondi, Di Martino, Patella, Kon (bib3) 2012
Lotz (bib2) 2001
Carlisle (bib26) 1981; 33
Schleicher, Lips, Sommer, Schappat, Martin, Szalay, Hartmann, Schnettler (bib16) 2013; 183
Li, Ding, Wang, Zhuang, Chen (bib15) 2015
Goldring, Goldring (bib41) 2010
Hangody, Fules, Füles (bib11) 2003
Getgood, Kew, Brooks, Aberman, Simon, Lynn, Rushton (bib17) 2012; 19
Liu, Yi, Fong, Jin, Wang, Yu, Sun, Zhao, Yang (bib60) 2014; 10
Anders, Pyl, Huber (bib33) 2015; 31
Tran, Kolodkin, Bharadwaj (bib50) 2007; 23
James (bib59) 2013; 1
Li, Yin, Gao, Cheng, Pavlos, Zhang, Zheng (bib40) 2013
Monaco, Bionaz, Rodriguez-Zas, Hurley, Wheeler (bib37) 2012; 7
Chiang, Kuo, Tsai, Lin, She, Huang, Lee, Shieh, Chen, Ramshaw, Werkmeister, Tuan, Jiang (bib9) 2005; 23
Liu, Wang, Song, Zhu, Shen, Zhang (bib51) 2018; 15
Van der Kraan (10.1016/j.biomaterials.2018.11.025_bib49) 2012
Henrotin (10.1016/j.biomaterials.2018.11.025_bib14) 2012; 23
Okamoto (10.1016/j.biomaterials.2018.11.025_bib58) 2014; 4
Mainil-Varlet (10.1016/j.biomaterials.2018.11.025_bib30) 2003
Liu (10.1016/j.biomaterials.2018.11.025_bib51) 2018; 15
Leucht (10.1016/j.biomaterials.2018.11.025_bib55) 2008; 135
Gosset (10.1016/j.biomaterials.2018.11.025_bib31) 2008; 3
Arosarena (10.1016/j.biomaterials.2018.11.025_bib7) 2005; 13
Rux (10.1016/j.biomaterials.2018.11.025_bib54) 2016; 39
Li (10.1016/j.biomaterials.2018.11.025_bib15) 2015
Zhang (10.1016/j.biomaterials.2018.11.025_bib1) 2012; 64
Valerio (10.1016/j.biomaterials.2018.11.025_bib24) 2004; 25
Van Beuningen (10.1016/j.biomaterials.2018.11.025_bib38) 1993; 52
Muraoka (10.1016/j.biomaterials.2018.11.025_bib13) 2007; 56
Chiang (10.1016/j.biomaterials.2018.11.025_bib9) 2005; 23
Baltzer (10.1016/j.biomaterials.2018.11.025_bib4) 2009; 17
Deng (10.1016/j.biomaterials.2018.11.025_bib44) 2018; 8
Li (10.1016/j.biomaterials.2018.11.025_bib40) 2013
Panseri (10.1016/j.biomaterials.2018.11.025_bib3) 2012
Carlisle (10.1016/j.biomaterials.2018.11.025_bib26) 1981; 33
Kim (10.1016/j.biomaterials.2018.11.025_bib57) 2013; 5
Goldring (10.1016/j.biomaterials.2018.11.025_bib41) 2010
Giannoudis (10.1016/j.biomaterials.2018.11.025_bib6) 2005; 36
Jugdaohsingh (10.1016/j.biomaterials.2018.11.025_bib20) 2007; 11
Ng (10.1016/j.biomaterials.2018.11.025_bib27) 2008; 85A
Picelli (10.1016/j.biomaterials.2018.11.025_bib32) 2013; 10
Guo (10.1016/j.biomaterials.2018.11.025_bib42) 2004; 10
Monaco (10.1016/j.biomaterials.2018.11.025_bib37) 2012; 7
Sun (10.1016/j.biomaterials.2018.11.025_bib5) 2009; 2
Jugdaohsingh (10.1016/j.biomaterials.2018.11.025_bib25) 2004; 19
Zhen (10.1016/j.biomaterials.2018.11.025_bib48) 2013; 19
Jiang (10.1016/j.biomaterials.2018.11.025_bib18) 2007; 25
Hangody (10.1016/j.biomaterials.2018.11.025_bib11) 2003
Getgood (10.1016/j.biomaterials.2018.11.025_bib17) 2012; 19
Rux (10.1016/j.biomaterials.2018.11.025_bib53) 2016
Zhou (10.1016/j.biomaterials.2018.11.025_bib29) 2012; 8
Liu (10.1016/j.biomaterials.2018.11.025_bib52) 2016
Schleicher (10.1016/j.biomaterials.2018.11.025_bib16) 2013; 183
Lotz (10.1016/j.biomaterials.2018.11.025_bib2) 2001
James (10.1016/j.biomaterials.2018.11.025_bib59) 2013; 1
Tran (10.1016/j.biomaterials.2018.11.025_bib50) 2007; 23
Mariani (10.1016/j.biomaterials.2018.11.025_bib47) 2014; 15
Yang (10.1016/j.biomaterials.2018.11.025_bib39) 2001; 153
Hott (10.1016/j.biomaterials.2018.11.025_bib22) 1993; 53
Anders (10.1016/j.biomaterials.2018.11.025_bib33) 2015; 31
Robert (10.1016/j.biomaterials.2018.11.025_bib35) 2018; 8
Hunziker (10.1016/j.biomaterials.2018.11.025_bib12) 2009; 21
Pustjens (10.1016/j.biomaterials.2018.11.025_bib61) 2014; 22
Algul (10.1016/j.biomaterials.2018.11.025_bib28) 2015; 79
Rao (10.1016/j.biomaterials.2018.11.025_bib56) 2010
Kolde (10.1016/j.biomaterials.2018.11.025_bib34) 2018
van de Peppel (10.1016/j.biomaterials.2018.11.025_bib36) 2017; 8
Tekari (10.1016/j.biomaterials.2018.11.025_bib46) 2015; 10
Liu (10.1016/j.biomaterials.2018.11.025_bib60) 2014; 10
Nejaddehbashi (10.1016/j.biomaterials.2018.11.025_bib43) 2014; 16
Calomme (10.1016/j.biomaterials.2018.11.025_bib21) 1997; 56
Steadman (10.1016/j.biomaterials.2018.11.025_bib10) 2003; 19
Carlisle (10.1016/j.biomaterials.2018.11.025_bib19) 1986; 121
Wang (10.1016/j.biomaterials.2018.11.025_bib45) 2014; 102
Nielsen (10.1016/j.biomaterials.2018.11.025_bib23) 2004; 17
Freitag (10.1016/j.biomaterials.2018.11.025_bib8) 2016; 17
References_xml – volume: 11
  start-page: 99
  year: 2007
  ident: bib20
  article-title: Silicon and bone health
  publication-title: J. Nutr. Health Aging
– start-page: 223
  year: 2012
  end-page: 232
  ident: bib49
  article-title: Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration?
  publication-title: Osteoarthr. Cartil.
– volume: 85A
  start-page: 301
  year: 2008
  end-page: 312
  ident: bib27
  article-title: Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone
  publication-title: J. Biomed. Mater. Res.
– volume: 52
  start-page: 185
  year: 1993
  end-page: 191
  ident: bib38
  article-title: Protection from interleukin 1 induced destruction of articular cartilage by transforming growth factor β: studies in anatomically intact cartilage in vitro and in vivo
  publication-title: Ann. Rheum. Dis.
– volume: 8
  start-page: 2307
  year: 2012
  end-page: 2316
  ident: bib29
  article-title: The stimulation of proliferation and differentiation of periodontal ligament cells by the ionic products from Ca7Si2P2O16 bioceramics
  publication-title: Acta Biomater.
– volume: 25
  start-page: 1277
  year: 2007
  end-page: 1290
  ident: bib18
  article-title: Repair of porcine articular cartilage defect with a biphasic osteochondral composite
  publication-title: J. Orthop. Res.
– volume: 31
  start-page: 166
  year: 2015
  end-page: 169
  ident: bib33
  article-title: HTSeq-A Python framework to work with high-throughput sequencing data
  publication-title: Bioinformatics
– volume: 79
  start-page: 363
  year: 2015
  end-page: 369
  ident: bib28
  article-title: Biocompatibility of biomimetic multilayered alginate-chitosan/β-TCP scaffold for osteochondral tissue
  publication-title: Int. J. Biol. Macromol.
– volume: 23
  start-page: 584
  year: 2005
  end-page: 593
  ident: bib9
  article-title: Repair of porcine articular cartilage defect with autologous chondrocyte transplantation
  publication-title: J. Orthop. Res.
– volume: 64
  start-page: 960
  year: 2012
  end-page: 967
  ident: bib1
  article-title: Mechanical and biologic link between cartilage and subchondral bone in osteoarthritis
  publication-title: Arthritis Care Res.
– volume: 121
  start-page: 123
  year: 1986
  end-page: 139
  ident: bib19
  article-title: Silicon as an essential trace element in animal nutrition
  publication-title: Ciba Found. Symp.
– volume: 23
  start-page: 263
  year: 2007
  ident: bib50
  article-title: Semaphorin regulation of cellular morphology
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 13
  start-page: 233
  year: 2005
  end-page: 241
  ident: bib7
  article-title: Tissue engineering
  publication-title: Curr. Opin. Otolaryngol. Head Neck Surg.
– volume: 8
  start-page: 1940
  year: 2018
  end-page: 1955
  ident: bib44
  article-title: Bioactive scaffolds for regeneration of cartilage and subchondral bone interface
  publication-title: Theranostics
– volume: 17
  start-page: 137
  year: 2004
  end-page: 149
  ident: bib23
  article-title: Dietary silicon affects bone turnover differently in ovariectomized and sham-operated growing rats
  publication-title: J. Trace Elem. Exp. Med.
– volume: 8
  start-page: 1
  year: 2018
  ident: bib35
  article-title: Gene expression analysis of human adipose tissue-derived stem cells during the initial steps of in vitro osteogenesis
  publication-title: Sci. Rep.
– year: 2016
  ident: bib52
  article-title: Semaphorin 3A shifts adipose mesenchymal stem cells towards osteogenic phenotype and promotes bone regeneration in vivo
  publication-title: Stem Cell. Int.
– start-page: 45
  year: 2003
  end-page: 57
  ident: bib30
  article-title: Histological assessment of cartilage repair: a report by the histology endpoint committee of the international cartilage repair society (ICRS)
  publication-title: J. Bone Jt. Surg. - Ser. A
– volume: 10
  start-page: 1818
  year: 2004
  end-page: 1829
  ident: bib42
  article-title: Repair of large articular cartilage defects with implants of autologous mesenchymal stem cells seeded into beta-tricalcium phosphate in a sheep model
  publication-title: Tissue Eng.
– volume: 17
  start-page: 1
  year: 2016
  end-page: 13
  ident: bib8
  article-title: Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy - a review
  publication-title: BMC Musculoskelet. Disord.
– volume: 19
  start-page: 704
  year: 2013
  end-page: 712
  ident: bib48
  article-title: Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis
  publication-title: Nat. Med.
– volume: 102
  start-page: 37
  year: 2014
  end-page: 51
  ident: bib45
  article-title: TGFβ signaling in cartilage development and maintenance
  publication-title: Birth Defects Res. Part C Embryo Today - Rev.
– volume: 19
  start-page: 477
  year: 2003
  end-page: 484
  ident: bib10
  article-title: Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up
  publication-title: Arthrosc. J. Arthrosc. Relat. Surg.
– volume: 3
  start-page: 1253
  year: 2008
  end-page: 1260
  ident: bib31
  article-title: Primary culture and phenotyping of murine chondrocytes
  publication-title: Nat. Protoc.
– volume: 10
  start-page: e0120857
  year: 2015
  ident: bib46
  article-title: Transforming growth factor beta signaling is essential for the autonomous formation of cartilage-like tissue by expanded chondrocytes
  publication-title: PloS One
– volume: 56
  start-page: 153
  year: 1997
  end-page: 165
  ident: bib21
  article-title: Supplementation of calves with stabilized orthosilicic acid: effect on the Si, Ca, Mg, and P concentrations in serum and the collagen concentration in skin and cartilage
  publication-title: Biol. Trace Elem. Res.
– volume: 8
  start-page: 947
  year: 2017
  ident: bib36
  article-title: Identification of three early phases of cell-fate determination during osteogenic and adipogenic differentiation by transcription factor dynamics
  publication-title: Stem Cell Reports
– volume: 19
  start-page: 422
  year: 2012
  end-page: 430
  ident: bib17
  article-title: Evaluation of early-stage osteochondral defect repair using a biphasic scaffold based on a collagen-glycosaminoglycan biopolymer in a caprine model
  publication-title: Knee
– volume: 19
  start-page: 297
  year: 2004
  end-page: 307
  ident: bib25
  article-title: Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the framingham offspring cohort
  publication-title: J. Bone Miner. Res.
– volume: 23
  start-page: 847
  year: 2012
  end-page: 851
  ident: bib14
  article-title: Subchondral bone and osteoarthritis: biological and cellular aspects
  publication-title: Osteoporos. Int.
– start-page: 310
  year: 2016
  end-page: 317
  ident: bib53
  article-title: Hox genes in the adult skeleton: novel functions beyond embryonic development
  publication-title: Dev. Dynam.
– volume: 25
  start-page: 2941
  year: 2004
  end-page: 2948
  ident: bib24
  article-title: The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production
  publication-title: Biomaterials
– start-page: 1182
  year: 2012
  end-page: 1191
  ident: bib3
  article-title: Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration, Knee Surgery, Sport
  publication-title: Traumatol. Arthrosc.
– volume: 10
  start-page: 1153
  year: 2014
  end-page: 1163
  ident: bib60
  article-title: Activation of multiple signaling pathways during the differentiation of mesenchymal stem cells cultured in a silicon nanowire microenvironment
  publication-title: Nanomed. Nanotechnol. Biol. Med.
– volume: 15
  start-page: 8667
  year: 2014
  end-page: 8698
  ident: bib47
  article-title: Signaling pathways in cartilage repair
  publication-title: Int. J. Mol. Sci.
– start-page: 25
  year: 2003
  end-page: 32
  ident: bib11
  article-title: Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience
  publication-title: J Bone Jt. Surg Am.
– volume: 39
  start-page: 653
  year: 2016
  end-page: 666
  ident: bib54
  article-title: Regionally restricted hox function in adult bone marrow multipotent mesenchymal stem/stromal cells
  publication-title: Dev. Cell
– volume: 5
  start-page: 13
  year: 2013
  end-page: 31
  ident: bib57
  article-title: Wnt signaling in bone formation and its therapeutic potential for bone diseases
  publication-title: Ther. Adv. Musculoskelet. Dis.
– volume: 1
  start-page: 684736
  year: 2013
  ident: bib59
  article-title: Review of signaling pathways governing MSC osteogenic and adipogenic differentiation
  publication-title: Scientifica (Cairo)
– volume: 17
  start-page: 152
  year: 2009
  end-page: 160
  ident: bib4
  article-title: Autologous conditioned serum (Orthokine) is an effective treatment for knee osteoarthritis
  publication-title: Osteoarthr. Cartil.
– volume: 16
  start-page: 43
  year: 2014
  end-page: 52
  ident: bib43
  article-title: Chondrogenic differentiation of human umbilical cord blood-derived unrestricted somatic stem cells on a 3D beta-tricalcium phosphate-alginate-gelatin scaffold
  publication-title: Cell J.
– start-page: 221
  year: 2015
  end-page: 228
  ident: bib15
  article-title: Biomimetic biphasic scaffolds for osteochondral defect repair
  publication-title: Regen. Biomater.
– year: 2018
  ident: bib34
  article-title: Pheatmap: Pretty Heatmaps, R Packag. Version 1.0.10
– volume: 22
  start-page: S352
  year: 2014
  end-page: S353
  ident: bib61
  article-title: The biochemical interaction between subchondral bone and cartilage in osteoarthritis
  publication-title: Osteoarthr. Cartil.
– volume: 33
  start-page: 27
  year: 1981
  ident: bib26
  article-title: Silicon: a requirement in bone formation independent of vitamin D1
  publication-title: Calcif. Tissue Int.
– volume: 4
  start-page: 1
  year: 2014
  end-page: 8
  ident: bib58
  article-title: Noncanonical Wnt5a enhances Wnt/β-catenin signaling during osteoblastogenesis
  publication-title: Sci. Rep.
– start-page: 1798
  year: 2010
  end-page: 1806
  ident: bib56
  article-title: An updated overview on wnt signaling pathways: a prelude for more
  publication-title: Circ. Res.
– volume: 36
  start-page: S20
  year: 2005
  end-page: S27
  ident: bib6
  article-title: Bone substitutes: an update
  publication-title: Injury
– volume: 135
  start-page: 2845
  year: 2008
  end-page: 2854
  ident: bib55
  article-title: Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration
  publication-title: Development
– volume: 183
  start-page: 184
  year: 2013
  end-page: 192
  ident: bib16
  article-title: Biphasic scaffolds for repair of deep osteochondral defects in a sheep model
  publication-title: J. Surg. Res.
– start-page: 223
  year: 2013
  ident: bib40
  article-title: Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes
  publication-title: Arthritis Res. Ther.
– volume: 10
  start-page: 1096
  year: 2013
  end-page: 1098
  ident: bib32
  article-title: Smart-seq2 for sensitive full-length transcriptome profiling in single cells
  publication-title: Nat. Methods
– volume: 53
  start-page: 174
  year: 1993
  end-page: 179
  ident: bib22
  article-title: Short-term effects of organic silicon on trabecular bone in mature ovariectomized rats
  publication-title: Calcif. Tissue Int.
– volume: 21
  start-page: 3419
  year: 2009
  end-page: 3424
  ident: bib12
  article-title: The elusive path to cartilage regeneration
  publication-title: Adv. Mater.
– start-page: 230
  year: 2010
  end-page: 237
  ident: bib41
  article-title: Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 153
  start-page: 35
  year: 2001
  end-page: 46
  ident: bib39
  article-title: TGF-β/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage
  publication-title: J. Cell Biol.
– volume: 2
  start-page: 78
  year: 2009
  end-page: 82
  ident: bib5
  article-title: Hyaluronic acid as a treatment for ankle osteoarthritis
  publication-title: Curr. Rev. Musculoskelet. Med.
– volume: 7
  start-page: e32481
  year: 2012
  ident: bib37
  article-title: Transcriptomics comparison between porcine adipose and bone marrow mesenchymal stem cells during in vitro osteogenic and adipogenic differentiation
  publication-title: PloS One
– volume: 15
  start-page: 3489
  year: 2018
  end-page: 3494
  ident: bib51
  article-title: Semaphorin 3A promotes osteogenic differentiation in human alveolar bone marrow mesenchymal stem cells
  publication-title: Exp. Ther. Med.
– volume: 56
  start-page: 3366
  year: 2007
  end-page: 3374
  ident: bib13
  article-title: Role of subchondral bone in osteoarthritis development: a comparative study of two strains of Guinea pigs with and without spontaneously occurring osteoarthritis
  publication-title: Arthritis Rheum.
– year: 2001
  ident: bib2
  article-title: Cytokines in cartilage injury and repair
  publication-title: Clin. Orthop. Relat. Res.
– start-page: 1182
  year: 2012
  ident: 10.1016/j.biomaterials.2018.11.025_bib3
  article-title: Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration, Knee Surgery, Sport
  publication-title: Traumatol. Arthrosc.
  doi: 10.1007/s00167-011-1655-1
– volume: 183
  start-page: 184
  year: 2013
  ident: 10.1016/j.biomaterials.2018.11.025_bib16
  article-title: Biphasic scaffolds for repair of deep osteochondral defects in a sheep model
  publication-title: J. Surg. Res.
  doi: 10.1016/j.jss.2012.11.036
– volume: 8
  start-page: 2307
  year: 2012
  ident: 10.1016/j.biomaterials.2018.11.025_bib29
  article-title: The stimulation of proliferation and differentiation of periodontal ligament cells by the ionic products from Ca7Si2P2O16 bioceramics
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2012.03.012
– volume: 19
  start-page: 297
  year: 2004
  ident: 10.1016/j.biomaterials.2018.11.025_bib25
  article-title: Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the framingham offspring cohort
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/JBMR.0301225
– volume: 36
  start-page: S20
  year: 2005
  ident: 10.1016/j.biomaterials.2018.11.025_bib6
  article-title: Bone substitutes: an update
  publication-title: Injury
  doi: 10.1016/j.injury.2005.07.029
– start-page: 223
  year: 2012
  ident: 10.1016/j.biomaterials.2018.11.025_bib49
  article-title: Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration?
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2011.12.003
– volume: 10
  start-page: 1096
  year: 2013
  ident: 10.1016/j.biomaterials.2018.11.025_bib32
  article-title: Smart-seq2 for sensitive full-length transcriptome profiling in single cells
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2639
– volume: 15
  start-page: 3489
  year: 2018
  ident: 10.1016/j.biomaterials.2018.11.025_bib51
  article-title: Semaphorin 3A promotes osteogenic differentiation in human alveolar bone marrow mesenchymal stem cells
  publication-title: Exp. Ther. Med.
– volume: 19
  start-page: 477
  year: 2003
  ident: 10.1016/j.biomaterials.2018.11.025_bib10
  article-title: Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up
  publication-title: Arthrosc. J. Arthrosc. Relat. Surg.
  doi: 10.1053/jars.2003.50112
– volume: 23
  start-page: 263
  year: 2007
  ident: 10.1016/j.biomaterials.2018.11.025_bib50
  article-title: Semaphorin regulation of cellular morphology
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.22.010605.093554
– volume: 39
  start-page: 653
  year: 2016
  ident: 10.1016/j.biomaterials.2018.11.025_bib54
  article-title: Regionally restricted hox function in adult bone marrow multipotent mesenchymal stem/stromal cells
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2016.11.008
– start-page: 1798
  year: 2010
  ident: 10.1016/j.biomaterials.2018.11.025_bib56
  article-title: An updated overview on wnt signaling pathways: a prelude for more
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.110.219840
– year: 2001
  ident: 10.1016/j.biomaterials.2018.11.025_bib2
  article-title: Cytokines in cartilage injury and repair
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1097/00003086-200110001-00011
– volume: 16
  start-page: 43
  year: 2014
  ident: 10.1016/j.biomaterials.2018.11.025_bib43
  article-title: Chondrogenic differentiation of human umbilical cord blood-derived unrestricted somatic stem cells on a 3D beta-tricalcium phosphate-alginate-gelatin scaffold
  publication-title: Cell J.
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2018.11.025_bib35
  article-title: Gene expression analysis of human adipose tissue-derived stem cells during the initial steps of in vitro osteogenesis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22991-6
– volume: 19
  start-page: 422
  year: 2012
  ident: 10.1016/j.biomaterials.2018.11.025_bib17
  article-title: Evaluation of early-stage osteochondral defect repair using a biphasic scaffold based on a collagen-glycosaminoglycan biopolymer in a caprine model
  publication-title: Knee
  doi: 10.1016/j.knee.2011.03.011
– volume: 85A
  start-page: 301
  year: 2008
  ident: 10.1016/j.biomaterials.2018.11.025_bib27
  article-title: Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.a.31324
– volume: 8
  start-page: 1940
  year: 2018
  ident: 10.1016/j.biomaterials.2018.11.025_bib44
  article-title: Bioactive scaffolds for regeneration of cartilage and subchondral bone interface
  publication-title: Theranostics
  doi: 10.7150/thno.23674
– start-page: 310
  year: 2016
  ident: 10.1016/j.biomaterials.2018.11.025_bib53
  article-title: Hox genes in the adult skeleton: novel functions beyond embryonic development
  publication-title: Dev. Dynam.
– volume: 25
  start-page: 1277
  year: 2007
  ident: 10.1016/j.biomaterials.2018.11.025_bib18
  article-title: Repair of porcine articular cartilage defect with a biphasic osteochondral composite
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.20442
– volume: 11
  start-page: 99
  year: 2007
  ident: 10.1016/j.biomaterials.2018.11.025_bib20
  article-title: Silicon and bone health
  publication-title: J. Nutr. Health Aging
– volume: 15
  start-page: 8667
  year: 2014
  ident: 10.1016/j.biomaterials.2018.11.025_bib47
  article-title: Signaling pathways in cartilage repair
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms15058667
– volume: 17
  start-page: 152
  year: 2009
  ident: 10.1016/j.biomaterials.2018.11.025_bib4
  article-title: Autologous conditioned serum (Orthokine) is an effective treatment for knee osteoarthritis
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2008.06.014
– volume: 17
  start-page: 1
  year: 2016
  ident: 10.1016/j.biomaterials.2018.11.025_bib8
  article-title: Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy - a review
  publication-title: BMC Musculoskelet. Disord.
  doi: 10.1186/s12891-016-1085-9
– volume: 64
  start-page: 960
  year: 2012
  ident: 10.1016/j.biomaterials.2018.11.025_bib1
  article-title: Mechanical and biologic link between cartilage and subchondral bone in osteoarthritis
  publication-title: Arthritis Care Res.
  doi: 10.1002/acr.21640
– start-page: 45
  year: 2003
  ident: 10.1016/j.biomaterials.2018.11.025_bib30
  article-title: Histological assessment of cartilage repair: a report by the histology endpoint committee of the international cartilage repair society (ICRS)
  publication-title: J. Bone Jt. Surg. - Ser. A
  doi: 10.2106/00004623-200300002-00007
– volume: 79
  start-page: 363
  year: 2015
  ident: 10.1016/j.biomaterials.2018.11.025_bib28
  article-title: Biocompatibility of biomimetic multilayered alginate-chitosan/β-TCP scaffold for osteochondral tissue
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2015.05.005
– volume: 23
  start-page: 584
  year: 2005
  ident: 10.1016/j.biomaterials.2018.11.025_bib9
  article-title: Repair of porcine articular cartilage defect with autologous chondrocyte transplantation
  publication-title: J. Orthop. Res.
  doi: 10.1016/j.orthres.2004.11.003
– volume: 10
  start-page: 1153
  year: 2014
  ident: 10.1016/j.biomaterials.2018.11.025_bib60
  article-title: Activation of multiple signaling pathways during the differentiation of mesenchymal stem cells cultured in a silicon nanowire microenvironment
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2014.02.003
– volume: 17
  start-page: 137
  year: 2004
  ident: 10.1016/j.biomaterials.2018.11.025_bib23
  article-title: Dietary silicon affects bone turnover differently in ovariectomized and sham-operated growing rats
  publication-title: J. Trace Elem. Exp. Med.
  doi: 10.1002/jtra.20004
– volume: 5
  start-page: 13
  year: 2013
  ident: 10.1016/j.biomaterials.2018.11.025_bib57
  article-title: Wnt signaling in bone formation and its therapeutic potential for bone diseases
  publication-title: Ther. Adv. Musculoskelet. Dis.
  doi: 10.1177/1759720X12466608
– volume: 25
  start-page: 2941
  year: 2004
  ident: 10.1016/j.biomaterials.2018.11.025_bib24
  article-title: The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2003.09.086
– volume: 33
  start-page: 27
  year: 1981
  ident: 10.1016/j.biomaterials.2018.11.025_bib26
  article-title: Silicon: a requirement in bone formation independent of vitamin D1
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/BF02409409
– volume: 135
  start-page: 2845
  year: 2008
  ident: 10.1016/j.biomaterials.2018.11.025_bib55
  article-title: Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration
  publication-title: Development
  doi: 10.1242/dev.023788
– volume: 13
  start-page: 233
  year: 2005
  ident: 10.1016/j.biomaterials.2018.11.025_bib7
  article-title: Tissue engineering
  publication-title: Curr. Opin. Otolaryngol. Head Neck Surg.
  doi: 10.1097/01.moo.0000170526.51393.c5
– volume: 8
  start-page: 947
  year: 2017
  ident: 10.1016/j.biomaterials.2018.11.025_bib36
  article-title: Identification of three early phases of cell-fate determination during osteogenic and adipogenic differentiation by transcription factor dynamics
  publication-title: Stem Cell Reports
  doi: 10.1016/j.stemcr.2017.02.018
– volume: 4
  start-page: 1
  year: 2014
  ident: 10.1016/j.biomaterials.2018.11.025_bib58
  article-title: Noncanonical Wnt5a enhances Wnt/β-catenin signaling during osteoblastogenesis
  publication-title: Sci. Rep.
  doi: 10.1038/srep04493
– volume: 10
  start-page: e0120857
  year: 2015
  ident: 10.1016/j.biomaterials.2018.11.025_bib46
  article-title: Transforming growth factor beta signaling is essential for the autonomous formation of cartilage-like tissue by expanded chondrocytes
  publication-title: PloS One
  doi: 10.1371/journal.pone.0120857
– volume: 19
  start-page: 704
  year: 2013
  ident: 10.1016/j.biomaterials.2018.11.025_bib48
  article-title: Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis
  publication-title: Nat. Med.
  doi: 10.1038/nm.3143
– volume: 21
  start-page: 3419
  year: 2009
  ident: 10.1016/j.biomaterials.2018.11.025_bib12
  article-title: The elusive path to cartilage regeneration
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200801957
– volume: 121
  start-page: 123
  year: 1986
  ident: 10.1016/j.biomaterials.2018.11.025_bib19
  article-title: Silicon as an essential trace element in animal nutrition
  publication-title: Ciba Found. Symp.
– volume: 56
  start-page: 3366
  year: 2007
  ident: 10.1016/j.biomaterials.2018.11.025_bib13
  article-title: Role of subchondral bone in osteoarthritis development: a comparative study of two strains of Guinea pigs with and without spontaneously occurring osteoarthritis
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.22921
– volume: 23
  start-page: 847
  year: 2012
  ident: 10.1016/j.biomaterials.2018.11.025_bib14
  article-title: Subchondral bone and osteoarthritis: biological and cellular aspects
  publication-title: Osteoporos. Int.
  doi: 10.1007/s00198-012-2162-z
– volume: 31
  start-page: 166
  year: 2015
  ident: 10.1016/j.biomaterials.2018.11.025_bib33
  article-title: HTSeq-A Python framework to work with high-throughput sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu638
– year: 2016
  ident: 10.1016/j.biomaterials.2018.11.025_bib52
  article-title: Semaphorin 3A shifts adipose mesenchymal stem cells towards osteogenic phenotype and promotes bone regeneration in vivo
  publication-title: Stem Cell. Int.
  doi: 10.1155/2016/2545214
– start-page: 25
  year: 2003
  ident: 10.1016/j.biomaterials.2018.11.025_bib11
  article-title: Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience
  publication-title: J Bone Jt. Surg Am.
  doi: 10.2106/00004623-200300002-00004
– volume: 10
  start-page: 1818
  year: 2004
  ident: 10.1016/j.biomaterials.2018.11.025_bib42
  article-title: Repair of large articular cartilage defects with implants of autologous mesenchymal stem cells seeded into beta-tricalcium phosphate in a sheep model
  publication-title: Tissue Eng.
  doi: 10.1089/ten.2004.10.1818
– volume: 102
  start-page: 37
  year: 2014
  ident: 10.1016/j.biomaterials.2018.11.025_bib45
  article-title: TGFβ signaling in cartilage development and maintenance
  publication-title: Birth Defects Res. Part C Embryo Today - Rev.
  doi: 10.1002/bdrc.21058
– volume: 52
  start-page: 185
  year: 1993
  ident: 10.1016/j.biomaterials.2018.11.025_bib38
  article-title: Protection from interleukin 1 induced destruction of articular cartilage by transforming growth factor β: studies in anatomically intact cartilage in vitro and in vivo
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/ard.52.3.185
– volume: 1
  start-page: 684736
  year: 2013
  ident: 10.1016/j.biomaterials.2018.11.025_bib59
  article-title: Review of signaling pathways governing MSC osteogenic and adipogenic differentiation
  publication-title: Scientifica (Cairo)
– volume: 22
  start-page: S352
  year: 2014
  ident: 10.1016/j.biomaterials.2018.11.025_bib61
  article-title: The biochemical interaction between subchondral bone and cartilage in osteoarthritis
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2014.02.652
– volume: 56
  start-page: 153
  year: 1997
  ident: 10.1016/j.biomaterials.2018.11.025_bib21
  article-title: Supplementation of calves with stabilized orthosilicic acid: effect on the Si, Ca, Mg, and P concentrations in serum and the collagen concentration in skin and cartilage
  publication-title: Biol. Trace Elem. Res.
  doi: 10.1007/BF02785389
– volume: 53
  start-page: 174
  year: 1993
  ident: 10.1016/j.biomaterials.2018.11.025_bib22
  article-title: Short-term effects of organic silicon on trabecular bone in mature ovariectomized rats
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/BF01321834
– volume: 2
  start-page: 78
  year: 2009
  ident: 10.1016/j.biomaterials.2018.11.025_bib5
  article-title: Hyaluronic acid as a treatment for ankle osteoarthritis
  publication-title: Curr. Rev. Musculoskelet. Med.
  doi: 10.1007/s12178-009-9048-5
– year: 2018
  ident: 10.1016/j.biomaterials.2018.11.025_bib34
– volume: 153
  start-page: 35
  year: 2001
  ident: 10.1016/j.biomaterials.2018.11.025_bib39
  article-title: TGF-β/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.153.1.35
– start-page: 230
  year: 2010
  ident: 10.1016/j.biomaterials.2018.11.025_bib41
  article-title: Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2009.05240.x
– volume: 3
  start-page: 1253
  year: 2008
  ident: 10.1016/j.biomaterials.2018.11.025_bib31
  article-title: Primary culture and phenotyping of murine chondrocytes
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.95
– start-page: 223
  year: 2013
  ident: 10.1016/j.biomaterials.2018.11.025_bib40
  article-title: Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes
  publication-title: Arthritis Res. Ther.
  doi: 10.1186/ar4405
– start-page: 221
  year: 2015
  ident: 10.1016/j.biomaterials.2018.11.025_bib15
  article-title: Biomimetic biphasic scaffolds for osteochondral defect repair
  publication-title: Regen. Biomater.
  doi: 10.1093/rb/rbv015
– volume: 7
  start-page: e32481
  year: 2012
  ident: 10.1016/j.biomaterials.2018.11.025_bib37
  article-title: Transcriptomics comparison between porcine adipose and bone marrow mesenchymal stem cells during in vitro osteogenic and adipogenic differentiation
  publication-title: PloS One
  doi: 10.1371/journal.pone.0032481
SSID ssj0014042
Score 2.600608
Snippet Osteochondral defects are most commonly characterized by damages to both cartilage and bone tissues as a result of serious traumas or physical diseases;...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 323
SubjectTerms animal models
Animals
bioactive properties
bone formation
bone marrow
Bone Regeneration
calcium phosphates
cartilage
Cells, Cultured
Ceramics - chemistry
chondrocytes
Chondrogenesis
gene ontology
histology
Humans
ions
Mesenchymal Stem Cells - cytology
micro-computed tomography
Osteogenesis
phenotype
quantitative polymerase chain reaction
Rabbits
sequence analysis
Silicates - chemistry
silicon
skeletal development
stem cells
Tissue Engineering
Tissue Scaffolds - chemistry
Western blotting
Title Silicate-based bioceramic scaffolds for dual-lineage regeneration of osteochondral defect
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961218308020
https://dx.doi.org/10.1016/j.biomaterials.2018.11.025
https://www.ncbi.nlm.nih.gov/pubmed/30468999
https://www.proquest.com/docview/2137475427
https://www.proquest.com/docview/2221066403
Volume 192
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9KCmN9GF23tWm3okJfncSSbFmUPZSykK60L10hezKyPkZKsIubvu5v750_QgfbCPTRQRfLp9N9oN_vBHAaMGoaR7wt6XkkneKREbgfuU-UsHySmQmRk69v0tmd_D5P5ltw0XNhCFbZ-f7Wpzfeuvtl3Glz_LBYjAmWxDU1wMoEEUapbpdSkZWPfq9hHtQ9hrcwRh7R6L7xaIPxIoq7WbVLTTCvbEQdPena7L8HqX8loU0wmu7Cuy6LZOftRN_Dli_3YOdFb8E9eHPdnZp_gJ-3i5bqFlHMcgznY31NF9GzR2tCqJbukWHyyoiXFVHeiU6G1f5X05KaVo5VgREbpEJnWboaX-084UA-wt3024-LWdRdqRBZ9GyrKAnoVITVKc-MDhiKlPOxttybQmNiJDOng3HGxrFRShXGZcZxGxS32qWJF-ITDMqq9AfAnBJG6QLLF-8kJT74rxKLS20zzDLjMATd6zC3Xb9xuvZimffAsvv8pf5z0j8WJDnqfwhiLfvQdt3YSOqsX6q855WiJ8wxOGwk_XUt_YcFbix_0ltHjluUzl1M6asnHBQLLNoSydV_xnCsvdNUTsQQ9lvTWn85HV5jWawPXznDI3iLT7rFnH-Gwap-8l8wpVoVx82eOYbt88ur2c0ze4gi5Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6hILX0UFEKbaAtRup1Sdb2rteqOCBUFArJpSDByXL8QKnQLgrh_zOzj4hKLYrEdePJesf2zDfyfDMA3yN6TeuJtyUDT6RXPLECzyMPmRKODws7JHLyeJKPruSv6-x6DU46LgylVba2v7HptbVunwxabQ7uZ7MBpSVxTQWwCkGEUYzb16k6VdaD9eOz89FkeZkgh3UPHRqfkEBXe7RO8yKWu100q02ZXsUhFfWkztn_9lP_w6G1PzrdhPctkGTHzVw_wFoot-Dds_KCW_Bm3F6cf4Sb37OG7ZaQ2_IM5-PCnHrRswdnY6zu_AND_MqImpUQ9EQ7w-bhtq5KTYvHqsiIEFKhvSz9HF_tA6WCbMPV6c_Lk1HSdlVIHBq3RZJFtCvC6ZwXVkf0RsqHVDse7FQjNpKF19F669LUKqWm1hfWcxcVd9rnWRBiB3plVYbPwLwSVukpRjDBS8I--K8S40vtCgSaaeyD7nRoXFtynDpf3Jkut-yPea5_Q_rHmMSg_vsglrL3TeGNlaR-dEtlOmopGkOD_mEl6aOl9F-bcGX5g253GDyldPViy1A94qBUYNyWSa5eGMMx_M5zORR9-NRsreWX0_01RsZ695Uz3Ie3o8vxhbk4m5zvwQb-opsU9C_QW8wfw1dEWIvpt_YEPQFWvCWW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silicate-based+bioceramic+scaffolds+for+dual-lineage+regeneration+of+osteochondral+defect&rft.jtitle=Biomaterials&rft.au=Bunpetch%2C+Varitsara&rft.au=Zhang%2C+Xiaoan&rft.au=Li%2C+Tian&rft.au=Lin%2C+Junxin&rft.date=2019-02-01&rft.issn=0142-9612&rft.volume=192+p.323-333&rft.spage=323&rft.epage=333&rft_id=info:doi/10.1016%2Fj.biomaterials.2018.11.025&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon