Silicate-based bioceramic scaffolds for dual-lineage regeneration of osteochondral defect
Osteochondral defects are most commonly characterized by damages to both cartilage and bone tissues as a result of serious traumas or physical diseases; because these two tissues have their own unique biological properties, developing a single monophasic scaffold that can concurrently regenerate the...
Saved in:
Published in | Biomaterials Vol. 192; pp. 323 - 333 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Osteochondral defects are most commonly characterized by damages to both cartilage and bone tissues as a result of serious traumas or physical diseases; because these two tissues have their own unique biological properties, developing a single monophasic scaffold that can concurrently regenerate these two specific lineages becomes a challenge. To address this concern, a silicon-based bioceramic (SiCP) scaffold was fabricated. The efficiency and underlying mechanisms of SiCP for osteochondral defect regeneration were investigated. At 8 and 16 weeks post-implantation in a rabbit model of osteochondral defect, gross morphology, histological, and micro-CT images showed that SiCP scaffolds distinctly promoted subchondral bone and cartilage regeneration when compared to calcium-phosphate based bioceramics (CP) scaffolds without silicon. In vitro, SiCP was also shown to promote bone marrow stem cells (BMSC) osteogenesis (ALP, RUNX2, OCN) and help maintain chondrocytes phenotype (Acan, Sox9, Col2a1), validated by qPCR, western blot, and RNA-sequencing (RNA-seq). Additionally, the descriptive analysis of RNA-seq using Gene Ontology (GO) and KEGG pathway analysis revealed biological processes related to cartilage and bone development and extracellular matrices in chondrocytes, as well as related to early osteogenesis in BMSC, indicating that Si ions play an important role in the regeneration of both tissues. Conclusively, the development of silicon-based bioceramic scaffolds may be a promising approach for osteochondral defect regeneration due to their unique dual-lineage bioactivity. |
---|---|
AbstractList | Osteochondral defects are most commonly characterized by damages to both cartilage and bone tissues as a result of serious traumas or physical diseases; because these two tissues have their own unique biological properties, developing a single monophasic scaffold that can concurrently regenerate these two specific lineages becomes a challenge. To address this concern, a silicon-based bioceramic (SiCP) scaffold was fabricated. The efficiency and underlying mechanisms of SiCP for osteochondral defect regeneration were investigated. At 8 and 16 weeks post-implantation in a rabbit model of osteochondral defect, gross morphology, histological, and micro-CT images showed that SiCP scaffolds distinctly promoted subchondral bone and cartilage regeneration when compared to calcium-phosphate based bioceramics (CP) scaffolds without silicon. In vitro, SiCP was also shown to promote bone marrow stem cells (BMSC) osteogenesis (ALP, RUNX2, OCN) and help maintain chondrocytes phenotype (Acan, Sox9, Col2a1), validated by qPCR, western blot, and RNA-sequencing (RNA-seq). Additionally, the descriptive analysis of RNA-seq using Gene Ontology (GO) and KEGG pathway analysis revealed biological processes related to cartilage and bone development and extracellular matrices in chondrocytes, as well as related to early osteogenesis in BMSC, indicating that Si ions play an important role in the regeneration of both tissues. Conclusively, the development of silicon-based bioceramic scaffolds may be a promising approach for osteochondral defect regeneration due to their unique dual-lineage bioactivity. Osteochondral defects are most commonly characterized by damages to both cartilage and bone tissues as a result of serious traumas or physical diseases; because these two tissues have their own unique biological properties, developing a single monophasic scaffold that can concurrently regenerate these two specific lineages becomes a challenge. To address this concern, a silicon-based bioceramic (SiCP) scaffold was fabricated. The efficiency and underlying mechanisms of SiCP for osteochondral defect regeneration were investigated. At 8 and 16 weeks post-implantation in a rabbit model of osteochondral defect, gross morphology, histological, and micro-CT images showed that SiCP scaffolds distinctly promoted subchondral bone and cartilage regeneration when compared to calcium-phosphate based bioceramics (CP) scaffolds without silicon. In vitro, SiCP was also shown to promote bone marrow stem cells (BMSC) osteogenesis (ALP, RUNX2, OCN) and help maintain chondrocytes phenotype (Acan, Sox9, Col2a1), validated by qPCR, western blot, and RNA-sequencing (RNA-seq). Additionally, the descriptive analysis of RNA-seq using Gene Ontology (GO) and KEGG pathway analysis revealed biological processes related to cartilage and bone development and extracellular matrices in chondrocytes, as well as related to early osteogenesis in BMSC, indicating that Si ions play an important role in the regeneration of both tissues. Conclusively, the development of silicon-based bioceramic scaffolds may be a promising approach for osteochondral defect regeneration due to their unique dual-lineage bioactivity.Osteochondral defects are most commonly characterized by damages to both cartilage and bone tissues as a result of serious traumas or physical diseases; because these two tissues have their own unique biological properties, developing a single monophasic scaffold that can concurrently regenerate these two specific lineages becomes a challenge. To address this concern, a silicon-based bioceramic (SiCP) scaffold was fabricated. The efficiency and underlying mechanisms of SiCP for osteochondral defect regeneration were investigated. At 8 and 16 weeks post-implantation in a rabbit model of osteochondral defect, gross morphology, histological, and micro-CT images showed that SiCP scaffolds distinctly promoted subchondral bone and cartilage regeneration when compared to calcium-phosphate based bioceramics (CP) scaffolds without silicon. In vitro, SiCP was also shown to promote bone marrow stem cells (BMSC) osteogenesis (ALP, RUNX2, OCN) and help maintain chondrocytes phenotype (Acan, Sox9, Col2a1), validated by qPCR, western blot, and RNA-sequencing (RNA-seq). Additionally, the descriptive analysis of RNA-seq using Gene Ontology (GO) and KEGG pathway analysis revealed biological processes related to cartilage and bone development and extracellular matrices in chondrocytes, as well as related to early osteogenesis in BMSC, indicating that Si ions play an important role in the regeneration of both tissues. Conclusively, the development of silicon-based bioceramic scaffolds may be a promising approach for osteochondral defect regeneration due to their unique dual-lineage bioactivity. |
Author | Cai, Dandan Li, Jun Ouyang, Hongwei Bunpetch, Varitsara Li, Tian Wu, Yan Maswikiti, Ewetse Paul Wu, Chengtie Zhang, Xiaoan Lin, Junxin Zhang, Shufang |
Author_xml | – sequence: 1 givenname: Varitsara surname: Bunpetch fullname: Bunpetch, Varitsara organization: Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Zhejiang, China – sequence: 2 givenname: Xiaoan surname: Zhang fullname: Zhang, Xiaoan organization: Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Zhejiang, China – sequence: 3 givenname: Tian surname: Li fullname: Li, Tian organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institutes of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China – sequence: 4 givenname: Junxin surname: Lin fullname: Lin, Junxin organization: Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Zhejiang, China – sequence: 5 givenname: Ewetse Paul surname: Maswikiti fullname: Maswikiti, Ewetse Paul organization: Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Zhejiang, China – sequence: 6 givenname: Yan surname: Wu fullname: Wu, Yan organization: Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China – sequence: 7 givenname: Dandan surname: Cai fullname: Cai, Dandan organization: Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Zhejiang, China – sequence: 8 givenname: Jun surname: Li fullname: Li, Jun organization: Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Zhejiang, China – sequence: 9 givenname: Shufang surname: Zhang fullname: Zhang, Shufang organization: Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Zhejiang, China – sequence: 10 givenname: Chengtie surname: Wu fullname: Wu, Chengtie email: chengtiewu@mail.sic.ac.cn organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institutes of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China – sequence: 11 givenname: Hongwei surname: Ouyang fullname: Ouyang, Hongwei email: hwoy@zju.edu.cn organization: Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Zhejiang, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30468999$$D View this record in MEDLINE/PubMed |
BookMark | eNqNksFu1DAQhi1URLeFV0ARJy5JbceJbU7QAgWpEgfgwMlyxuPixYmLnUXq2-OyBaGe9jSy9M2n0f_7hBwtaUFCXjDaMcrGs203hTTbFXOwsXScMtUx1lE-PCIbpqRqB02HI7KhTPBWj4wfk5NStrS-qeBPyHFPxai01hvy7XOIAaqrnWxB11QzYLZzgKaA9T5FVxqfcuN2NrYxLGivscl4jUvF1pCWJvkmlRUTfE-LyzY2Dj3C-pQ89vU8fHY_T8nX9---XHxorz5dfrx4c9XC0Ku1HbxSsgc9cmW151pLh0wDRztpIZhQTnvrLDBmpZSTdco6Dl5y0G4csO9Pycu99yannzssq5lDAYzRLph2xXDOGR1HQQ9AWS-FHASXFX1-j-6mGZ25yWG2-db8Ta4Cr_YA5FRKRv8PYdTc1WS25v-azF1NhjFTa6rLrx8sQ1j_pLlmG-Jhird7BdZsfwXMpkDABdCFXNM3LoXDNOcPNFBLrj8i_sDbQyW_Abg1z-0 |
CitedBy_id | crossref_primary_10_1016_j_bioactmat_2022_04_030 crossref_primary_10_1039_D0BM00599A crossref_primary_10_1186_s13287_024_03905_y crossref_primary_10_1093_rb_rbaa004 crossref_primary_10_1111_jcmm_70135 crossref_primary_10_1002_adma_202407040 crossref_primary_10_1002_mabi_202000028 crossref_primary_10_3389_fmats_2021_738430 crossref_primary_10_3390_ijms24032032 crossref_primary_10_1016_j_apmt_2022_101433 crossref_primary_10_1088_2631_7990_ad5806 crossref_primary_10_1016_j_bioactmat_2024_05_004 crossref_primary_10_1302_2046_3758_127_BJR_2022_0279_R2 crossref_primary_10_1016_j_matlet_2024_136059 crossref_primary_10_1002_advs_202404534 crossref_primary_10_1136_rmdopen_2022_002617 crossref_primary_10_3389_fbioe_2024_1273541 crossref_primary_10_1016_j_bioactmat_2023_03_008 crossref_primary_10_1088_1758_5090_ab7ab5 crossref_primary_10_1016_j_apmt_2021_101145 crossref_primary_10_1002_advs_202300038 crossref_primary_10_3139_146_111937 crossref_primary_10_1016_j_mtbio_2023_100728 crossref_primary_10_1186_s13036_023_00389_x crossref_primary_10_1557_s43578_023_01101_x crossref_primary_10_3390_polym14102003 crossref_primary_10_1002_adfm_202404549 crossref_primary_10_1016_j_biomaterials_2025_123084 crossref_primary_10_1002_smll_202406069 crossref_primary_10_1186_s13287_019_1441_4 crossref_primary_10_1016_j_colsurfb_2020_111083 crossref_primary_10_1016_j_ceramint_2025_02_146 crossref_primary_10_1016_j_matdes_2020_108947 crossref_primary_10_1039_D0NR05608A crossref_primary_10_1016_j_bioactmat_2024_10_001 crossref_primary_10_1016_j_apmt_2019_100548 crossref_primary_10_1002_VIW_20210018 crossref_primary_10_1016_j_jot_2023_11_003 crossref_primary_10_1021_acs_biomac_3c00655 crossref_primary_10_2174_1573413716999201022191909 crossref_primary_10_1016_j_bioadv_2024_214089 crossref_primary_10_1002_adma_202404842 crossref_primary_10_1038_s41578_020_0204_2 crossref_primary_10_1021_acsabm_8b00700 crossref_primary_10_1016_j_cej_2020_126821 crossref_primary_10_1007_s42765_022_00223_x crossref_primary_10_1016_j_carbpol_2021_118382 crossref_primary_10_1016_j_actbio_2020_06_046 crossref_primary_10_1186_s40779_020_00280_6 crossref_primary_10_15541_jim20200664 crossref_primary_10_3390_jfb16010031 crossref_primary_10_2478_bsmm_2023_0007 crossref_primary_10_1039_D0BM02071K crossref_primary_10_1002_mba2_61 crossref_primary_10_1016_j_mattod_2023_01_018 crossref_primary_10_3390_nano11092456 crossref_primary_10_3389_fcell_2021_639006 crossref_primary_10_3390_nano11123215 crossref_primary_10_1016_j_pmatsci_2023_101072 crossref_primary_10_1016_j_carbpol_2020_117574 crossref_primary_10_1039_D3TB02031B crossref_primary_10_1002_adhm_202200602 crossref_primary_10_1016_j_dental_2020_01_011 crossref_primary_10_1002_adma_202210517 crossref_primary_10_1002_adma_202210637 crossref_primary_10_1016_j_msec_2020_111167 crossref_primary_10_1016_j_tibtech_2019_06_003 crossref_primary_10_1039_D2TB00687A crossref_primary_10_1186_s12951_022_01361_5 crossref_primary_10_4012_dmj_2020_214 crossref_primary_10_1002_adhm_202102837 crossref_primary_10_1016_j_matt_2024_01_016 crossref_primary_10_3390_organoids2030010 crossref_primary_10_1016_j_apmt_2022_101370 crossref_primary_10_1016_j_ceramint_2025_01_427 crossref_primary_10_3390_app13031328 crossref_primary_10_1039_C9TB02855B crossref_primary_10_1016_j_ceramint_2024_09_294 crossref_primary_10_1016_j_colsurfb_2020_111041 crossref_primary_10_1055_a_1183_4532 crossref_primary_10_1016_j_ceramint_2022_02_102 crossref_primary_10_1002_adma_202107922 crossref_primary_10_1016_j_bioactmat_2021_05_029 crossref_primary_10_1002_adhm_202000208 crossref_primary_10_1186_s13045_024_01636_4 crossref_primary_10_1016_j_biomaterials_2019_119366 crossref_primary_10_3390_met12060931 crossref_primary_10_15541_jim20200657 crossref_primary_10_1039_D2TB02280J crossref_primary_10_2147_IJN_S247088 crossref_primary_10_1002_admi_202300224 crossref_primary_10_1088_1748_605X_ab49e2 crossref_primary_10_1016_j_compositesb_2023_110871 crossref_primary_10_1021_acsami_3c00192 crossref_primary_10_1016_j_cej_2020_125989 crossref_primary_10_1016_j_cej_2025_159985 crossref_primary_10_1016_j_jot_2021_11_006 crossref_primary_10_1016_j_mattod_2021_04_016 crossref_primary_10_1016_j_bioactmat_2021_05_011 crossref_primary_10_1016_j_carbpol_2021_118224 crossref_primary_10_1016_j_ijbiomac_2023_123659 crossref_primary_10_3389_fbioe_2020_00083 crossref_primary_10_1002_adhm_202202008 crossref_primary_10_1016_j_mtcomm_2021_102365 crossref_primary_10_1016_j_jot_2021_07_008 crossref_primary_10_1016_j_carbpol_2022_119575 crossref_primary_10_3389_fbioe_2022_1053944 crossref_primary_10_1016_j_apmt_2019_06_011 crossref_primary_10_1016_j_compositesb_2020_107937 crossref_primary_10_1016_j_msec_2021_112215 |
Cites_doi | 10.1007/s00167-011-1655-1 10.1016/j.jss.2012.11.036 10.1016/j.actbio.2012.03.012 10.1359/JBMR.0301225 10.1016/j.injury.2005.07.029 10.1016/j.joca.2011.12.003 10.1038/nmeth.2639 10.1053/jars.2003.50112 10.1146/annurev.cellbio.22.010605.093554 10.1016/j.devcel.2016.11.008 10.1161/CIRCRESAHA.110.219840 10.1097/00003086-200110001-00011 10.1038/s41598-018-22991-6 10.1016/j.knee.2011.03.011 10.1002/jbm.a.31324 10.7150/thno.23674 10.1002/jor.20442 10.3390/ijms15058667 10.1016/j.joca.2008.06.014 10.1186/s12891-016-1085-9 10.1002/acr.21640 10.2106/00004623-200300002-00007 10.1016/j.ijbiomac.2015.05.005 10.1016/j.orthres.2004.11.003 10.1016/j.nano.2014.02.003 10.1002/jtra.20004 10.1177/1759720X12466608 10.1016/j.biomaterials.2003.09.086 10.1007/BF02409409 10.1242/dev.023788 10.1097/01.moo.0000170526.51393.c5 10.1016/j.stemcr.2017.02.018 10.1038/srep04493 10.1371/journal.pone.0120857 10.1038/nm.3143 10.1002/adma.200801957 10.1002/art.22921 10.1007/s00198-012-2162-z 10.1093/bioinformatics/btu638 10.1155/2016/2545214 10.2106/00004623-200300002-00004 10.1089/ten.2004.10.1818 10.1002/bdrc.21058 10.1136/ard.52.3.185 10.1016/j.joca.2014.02.652 10.1007/BF02785389 10.1007/BF01321834 10.1007/s12178-009-9048-5 10.1083/jcb.153.1.35 10.1111/j.1749-6632.2009.05240.x 10.1038/nprot.2008.95 10.1186/ar4405 10.1093/rb/rbv015 10.1371/journal.pone.0032481 |
ContentType | Journal Article |
Copyright | 2018 Copyright © 2018. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2018 – notice: Copyright © 2018. Published by Elsevier Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biomaterials.2018.11.025 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1878-5905 |
EndPage | 333 |
ExternalDocumentID | 30468999 10_1016_j_biomaterials_2018_11_025 S0142961218308020 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAIAV AAYOK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG RIG AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM PKN 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c538t-5f8873c9628a9f2997de19c2eab944148d9fadac11a777bad8ad2cf72c9d65e33 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 1878-5905 |
IngestDate | Thu Jul 10 18:32:06 EDT 2025 Wed Aug 20 00:26:30 EDT 2025 Wed Feb 19 02:30:58 EST 2025 Thu Apr 24 22:58:42 EDT 2025 Tue Jul 01 01:19:37 EDT 2025 Fri Feb 23 02:49:02 EST 2024 Tue Aug 26 20:00:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | Copyright © 2018. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c538t-5f8873c9628a9f2997de19c2eab944148d9fadac11a777bad8ad2cf72c9d65e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 30468999 |
PQID | 2137475427 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2221066403 proquest_miscellaneous_2137475427 pubmed_primary_30468999 crossref_primary_10_1016_j_biomaterials_2018_11_025 crossref_citationtrail_10_1016_j_biomaterials_2018_11_025 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2018_11_025 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2018_11_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2019 2019-02-00 20190201 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Valerio, Pereira, Goes, Leite (bib24) 2004; 25 Nielsen, Poellot (bib23) 2004; 17 Gosset, Berenbaum, Thirion, Jacques (bib31) 2008; 3 Kim, Liu, Wang, Chen, Zhang, Kim, Cui, Li, Zhang, Kong, Zhang, Shui, Lamplot, Rogers, Zhao, Wang, Rajan, Tomal, Statz, Wu, Luu, Haydon, He (bib57) 2013; 5 Pustjens, Mastbergen, Noort-Van der Laan, Van Heerwaarden, Lafeber (bib61) 2014; 22 Ng, Tan, Phang, Aziyati, Tan, Isa, Aminuddin, Naseem, Fauziah, Ruszymah (bib27) 2008; 85A Giannoudis, Dinopoulos, Tsiridis (bib6) 2005; 36 Rao, Kühl (bib56) 2010 Sun, Chou, Hsu, Chen (bib5) 2009; 2 Okamoto, Udagawa, Uehara, Maeda, Yamashita, Nakamichi, Kato, Saito, Minami, Takahashi, Kobayashi (bib58) 2014; 4 Rux, Song, Swinehart, Pineault, Schlientz, Trulik, Goldstein, Kozloff, Lucas, Wellik (bib54) 2016; 39 Guo, Wang, Zhang, Xia, Hu, Duan, Zhao, Dong, Lu, Qing Song (bib42) 2004; 10 Mainil-Varlet, Aigner, Brittberg, Bullough, Hollander, Hunziker, Kandel, Nehrer, Pritzker, Roberts, Stauffer (bib30) 2003 Jugdaohsingh (bib20) 2007; 11 Leucht, Kim, Amasha, James, Girod, Helms (bib55) 2008; 135 Calomme, Vanden Berghe (bib21) 1997; 56 Zhang, Zheng, Jiang, Tu, Jiang, Yang (bib1) 2012; 64 Steadman, Briggs, Rodrigo, Kocher, Gill, Rodkey (bib10) 2003; 19 Algul, Sipahi, Aydin, Kelleci, Ozdatli, Yener (bib28) 2015; 79 Yang, Chen, Xu, Li, Huang, Deng (bib39) 2001; 153 Rux, Wellik (bib53) 2016 Van der Kraan, Van den Berg (bib49) 2012 van de Peppel, Strini, Tilburg, Westerhoff, van Wijnen, van Leeuwen (bib36) 2017; 8 Hunziker (bib12) 2009; 21 Zhen, Wen, Jia, Li, Crane, Mears, Askin, Frassica, Chang, Yao, Carrino, Cosgarea, Artemov, Chen, Zhao, Zhou, Riley, Sponseller, Wan, Lu, Cao (bib48) 2013; 19 Henrotin, Pesesse, Sanchez (bib14) 2012; 23 Mariani, Pulsatelli, Facchini (bib47) 2014; 15 Jugdaohsingh, Tucker, Qiao, Cupples, Kiel, Powell (bib25) 2004; 19 Wang, Rigueur, Lyons (bib45) 2014; 102 Baltzer, Moser, Jansen, Krauspe (bib4) 2009; 17 Robert, Angulski, Spangenberg, Shigunov, Pereira, Bettes, Naya, Correa, Dallagiovanna, Stimamiglio (bib35) 2018; 8 Picelli, Björklund, Faridani, Sagasser, Winberg, Sandberg (bib32) 2013; 10 Zhou, Wu, Xiao (bib29) 2012; 8 Hott, de Pollak, Modrowski, Marie (bib22) 1993; 53 Freitag, Bates, Boyd, Shah, Barnard, Huguenin, Tenen (bib8) 2016; 17 Arosarena (bib7) 2005; 13 Kolde (bib34) 2018 Nejaddehbashi, Soleimani, Khorsandi, Atashi (bib43) 2014; 16 Carlisle (bib19) 1986; 121 Muraoka, Hagino, Okano, Enokida, Teshima (bib13) 2007; 56 Deng, Zhu, Li, Feng, Yao, Wang, Chang, Wu (bib44) 2018; 8 Tekari, Luginbuehl, Hofstetter, Egli (bib46) 2015; 10 Van Beuningen, Van Der Kraan, Arntz, Van Den Berg (bib38) 1993; 52 Jiang, Chiang, Liao, Lin, Kuo, Shieh, Huang, Tuan (bib18) 2007; 25 Liu, Tan, Zhou, Zhou, Chen, Wei, Chen, Xu, Zhang, Yang, Song (bib52) 2016 Panseri, Russo, Cunha, Bondi, Di Martino, Patella, Kon (bib3) 2012 Lotz (bib2) 2001 Carlisle (bib26) 1981; 33 Schleicher, Lips, Sommer, Schappat, Martin, Szalay, Hartmann, Schnettler (bib16) 2013; 183 Li, Ding, Wang, Zhuang, Chen (bib15) 2015 Goldring, Goldring (bib41) 2010 Hangody, Fules, Füles (bib11) 2003 Getgood, Kew, Brooks, Aberman, Simon, Lynn, Rushton (bib17) 2012; 19 Liu, Yi, Fong, Jin, Wang, Yu, Sun, Zhao, Yang (bib60) 2014; 10 Anders, Pyl, Huber (bib33) 2015; 31 Tran, Kolodkin, Bharadwaj (bib50) 2007; 23 James (bib59) 2013; 1 Li, Yin, Gao, Cheng, Pavlos, Zhang, Zheng (bib40) 2013 Monaco, Bionaz, Rodriguez-Zas, Hurley, Wheeler (bib37) 2012; 7 Chiang, Kuo, Tsai, Lin, She, Huang, Lee, Shieh, Chen, Ramshaw, Werkmeister, Tuan, Jiang (bib9) 2005; 23 Liu, Wang, Song, Zhu, Shen, Zhang (bib51) 2018; 15 Van der Kraan (10.1016/j.biomaterials.2018.11.025_bib49) 2012 Henrotin (10.1016/j.biomaterials.2018.11.025_bib14) 2012; 23 Okamoto (10.1016/j.biomaterials.2018.11.025_bib58) 2014; 4 Mainil-Varlet (10.1016/j.biomaterials.2018.11.025_bib30) 2003 Liu (10.1016/j.biomaterials.2018.11.025_bib51) 2018; 15 Leucht (10.1016/j.biomaterials.2018.11.025_bib55) 2008; 135 Gosset (10.1016/j.biomaterials.2018.11.025_bib31) 2008; 3 Arosarena (10.1016/j.biomaterials.2018.11.025_bib7) 2005; 13 Rux (10.1016/j.biomaterials.2018.11.025_bib54) 2016; 39 Li (10.1016/j.biomaterials.2018.11.025_bib15) 2015 Zhang (10.1016/j.biomaterials.2018.11.025_bib1) 2012; 64 Valerio (10.1016/j.biomaterials.2018.11.025_bib24) 2004; 25 Van Beuningen (10.1016/j.biomaterials.2018.11.025_bib38) 1993; 52 Muraoka (10.1016/j.biomaterials.2018.11.025_bib13) 2007; 56 Chiang (10.1016/j.biomaterials.2018.11.025_bib9) 2005; 23 Baltzer (10.1016/j.biomaterials.2018.11.025_bib4) 2009; 17 Deng (10.1016/j.biomaterials.2018.11.025_bib44) 2018; 8 Li (10.1016/j.biomaterials.2018.11.025_bib40) 2013 Panseri (10.1016/j.biomaterials.2018.11.025_bib3) 2012 Carlisle (10.1016/j.biomaterials.2018.11.025_bib26) 1981; 33 Kim (10.1016/j.biomaterials.2018.11.025_bib57) 2013; 5 Goldring (10.1016/j.biomaterials.2018.11.025_bib41) 2010 Giannoudis (10.1016/j.biomaterials.2018.11.025_bib6) 2005; 36 Jugdaohsingh (10.1016/j.biomaterials.2018.11.025_bib20) 2007; 11 Ng (10.1016/j.biomaterials.2018.11.025_bib27) 2008; 85A Picelli (10.1016/j.biomaterials.2018.11.025_bib32) 2013; 10 Guo (10.1016/j.biomaterials.2018.11.025_bib42) 2004; 10 Monaco (10.1016/j.biomaterials.2018.11.025_bib37) 2012; 7 Sun (10.1016/j.biomaterials.2018.11.025_bib5) 2009; 2 Jugdaohsingh (10.1016/j.biomaterials.2018.11.025_bib25) 2004; 19 Zhen (10.1016/j.biomaterials.2018.11.025_bib48) 2013; 19 Jiang (10.1016/j.biomaterials.2018.11.025_bib18) 2007; 25 Hangody (10.1016/j.biomaterials.2018.11.025_bib11) 2003 Getgood (10.1016/j.biomaterials.2018.11.025_bib17) 2012; 19 Rux (10.1016/j.biomaterials.2018.11.025_bib53) 2016 Zhou (10.1016/j.biomaterials.2018.11.025_bib29) 2012; 8 Liu (10.1016/j.biomaterials.2018.11.025_bib52) 2016 Schleicher (10.1016/j.biomaterials.2018.11.025_bib16) 2013; 183 Lotz (10.1016/j.biomaterials.2018.11.025_bib2) 2001 James (10.1016/j.biomaterials.2018.11.025_bib59) 2013; 1 Tran (10.1016/j.biomaterials.2018.11.025_bib50) 2007; 23 Mariani (10.1016/j.biomaterials.2018.11.025_bib47) 2014; 15 Yang (10.1016/j.biomaterials.2018.11.025_bib39) 2001; 153 Hott (10.1016/j.biomaterials.2018.11.025_bib22) 1993; 53 Anders (10.1016/j.biomaterials.2018.11.025_bib33) 2015; 31 Robert (10.1016/j.biomaterials.2018.11.025_bib35) 2018; 8 Hunziker (10.1016/j.biomaterials.2018.11.025_bib12) 2009; 21 Pustjens (10.1016/j.biomaterials.2018.11.025_bib61) 2014; 22 Algul (10.1016/j.biomaterials.2018.11.025_bib28) 2015; 79 Rao (10.1016/j.biomaterials.2018.11.025_bib56) 2010 Kolde (10.1016/j.biomaterials.2018.11.025_bib34) 2018 van de Peppel (10.1016/j.biomaterials.2018.11.025_bib36) 2017; 8 Tekari (10.1016/j.biomaterials.2018.11.025_bib46) 2015; 10 Liu (10.1016/j.biomaterials.2018.11.025_bib60) 2014; 10 Nejaddehbashi (10.1016/j.biomaterials.2018.11.025_bib43) 2014; 16 Calomme (10.1016/j.biomaterials.2018.11.025_bib21) 1997; 56 Steadman (10.1016/j.biomaterials.2018.11.025_bib10) 2003; 19 Carlisle (10.1016/j.biomaterials.2018.11.025_bib19) 1986; 121 Wang (10.1016/j.biomaterials.2018.11.025_bib45) 2014; 102 Nielsen (10.1016/j.biomaterials.2018.11.025_bib23) 2004; 17 Freitag (10.1016/j.biomaterials.2018.11.025_bib8) 2016; 17 |
References_xml | – volume: 11 start-page: 99 year: 2007 ident: bib20 article-title: Silicon and bone health publication-title: J. Nutr. Health Aging – start-page: 223 year: 2012 end-page: 232 ident: bib49 article-title: Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? publication-title: Osteoarthr. Cartil. – volume: 85A start-page: 301 year: 2008 end-page: 312 ident: bib27 article-title: Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone publication-title: J. Biomed. Mater. Res. – volume: 52 start-page: 185 year: 1993 end-page: 191 ident: bib38 article-title: Protection from interleukin 1 induced destruction of articular cartilage by transforming growth factor β: studies in anatomically intact cartilage in vitro and in vivo publication-title: Ann. Rheum. Dis. – volume: 8 start-page: 2307 year: 2012 end-page: 2316 ident: bib29 article-title: The stimulation of proliferation and differentiation of periodontal ligament cells by the ionic products from Ca7Si2P2O16 bioceramics publication-title: Acta Biomater. – volume: 25 start-page: 1277 year: 2007 end-page: 1290 ident: bib18 article-title: Repair of porcine articular cartilage defect with a biphasic osteochondral composite publication-title: J. Orthop. Res. – volume: 31 start-page: 166 year: 2015 end-page: 169 ident: bib33 article-title: HTSeq-A Python framework to work with high-throughput sequencing data publication-title: Bioinformatics – volume: 79 start-page: 363 year: 2015 end-page: 369 ident: bib28 article-title: Biocompatibility of biomimetic multilayered alginate-chitosan/β-TCP scaffold for osteochondral tissue publication-title: Int. J. Biol. Macromol. – volume: 23 start-page: 584 year: 2005 end-page: 593 ident: bib9 article-title: Repair of porcine articular cartilage defect with autologous chondrocyte transplantation publication-title: J. Orthop. Res. – volume: 64 start-page: 960 year: 2012 end-page: 967 ident: bib1 article-title: Mechanical and biologic link between cartilage and subchondral bone in osteoarthritis publication-title: Arthritis Care Res. – volume: 121 start-page: 123 year: 1986 end-page: 139 ident: bib19 article-title: Silicon as an essential trace element in animal nutrition publication-title: Ciba Found. Symp. – volume: 23 start-page: 263 year: 2007 ident: bib50 article-title: Semaphorin regulation of cellular morphology publication-title: Annu. Rev. Cell Dev. Biol. – volume: 13 start-page: 233 year: 2005 end-page: 241 ident: bib7 article-title: Tissue engineering publication-title: Curr. Opin. Otolaryngol. Head Neck Surg. – volume: 8 start-page: 1940 year: 2018 end-page: 1955 ident: bib44 article-title: Bioactive scaffolds for regeneration of cartilage and subchondral bone interface publication-title: Theranostics – volume: 17 start-page: 137 year: 2004 end-page: 149 ident: bib23 article-title: Dietary silicon affects bone turnover differently in ovariectomized and sham-operated growing rats publication-title: J. Trace Elem. Exp. Med. – volume: 8 start-page: 1 year: 2018 ident: bib35 article-title: Gene expression analysis of human adipose tissue-derived stem cells during the initial steps of in vitro osteogenesis publication-title: Sci. Rep. – year: 2016 ident: bib52 article-title: Semaphorin 3A shifts adipose mesenchymal stem cells towards osteogenic phenotype and promotes bone regeneration in vivo publication-title: Stem Cell. Int. – start-page: 45 year: 2003 end-page: 57 ident: bib30 article-title: Histological assessment of cartilage repair: a report by the histology endpoint committee of the international cartilage repair society (ICRS) publication-title: J. Bone Jt. Surg. - Ser. A – volume: 10 start-page: 1818 year: 2004 end-page: 1829 ident: bib42 article-title: Repair of large articular cartilage defects with implants of autologous mesenchymal stem cells seeded into beta-tricalcium phosphate in a sheep model publication-title: Tissue Eng. – volume: 17 start-page: 1 year: 2016 end-page: 13 ident: bib8 article-title: Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy - a review publication-title: BMC Musculoskelet. Disord. – volume: 19 start-page: 704 year: 2013 end-page: 712 ident: bib48 article-title: Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis publication-title: Nat. Med. – volume: 102 start-page: 37 year: 2014 end-page: 51 ident: bib45 article-title: TGFβ signaling in cartilage development and maintenance publication-title: Birth Defects Res. Part C Embryo Today - Rev. – volume: 19 start-page: 477 year: 2003 end-page: 484 ident: bib10 article-title: Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up publication-title: Arthrosc. J. Arthrosc. Relat. Surg. – volume: 3 start-page: 1253 year: 2008 end-page: 1260 ident: bib31 article-title: Primary culture and phenotyping of murine chondrocytes publication-title: Nat. Protoc. – volume: 10 start-page: e0120857 year: 2015 ident: bib46 article-title: Transforming growth factor beta signaling is essential for the autonomous formation of cartilage-like tissue by expanded chondrocytes publication-title: PloS One – volume: 56 start-page: 153 year: 1997 end-page: 165 ident: bib21 article-title: Supplementation of calves with stabilized orthosilicic acid: effect on the Si, Ca, Mg, and P concentrations in serum and the collagen concentration in skin and cartilage publication-title: Biol. Trace Elem. Res. – volume: 8 start-page: 947 year: 2017 ident: bib36 article-title: Identification of three early phases of cell-fate determination during osteogenic and adipogenic differentiation by transcription factor dynamics publication-title: Stem Cell Reports – volume: 19 start-page: 422 year: 2012 end-page: 430 ident: bib17 article-title: Evaluation of early-stage osteochondral defect repair using a biphasic scaffold based on a collagen-glycosaminoglycan biopolymer in a caprine model publication-title: Knee – volume: 19 start-page: 297 year: 2004 end-page: 307 ident: bib25 article-title: Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the framingham offspring cohort publication-title: J. Bone Miner. Res. – volume: 23 start-page: 847 year: 2012 end-page: 851 ident: bib14 article-title: Subchondral bone and osteoarthritis: biological and cellular aspects publication-title: Osteoporos. Int. – start-page: 310 year: 2016 end-page: 317 ident: bib53 article-title: Hox genes in the adult skeleton: novel functions beyond embryonic development publication-title: Dev. Dynam. – volume: 25 start-page: 2941 year: 2004 end-page: 2948 ident: bib24 article-title: The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production publication-title: Biomaterials – start-page: 1182 year: 2012 end-page: 1191 ident: bib3 article-title: Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration, Knee Surgery, Sport publication-title: Traumatol. Arthrosc. – volume: 10 start-page: 1153 year: 2014 end-page: 1163 ident: bib60 article-title: Activation of multiple signaling pathways during the differentiation of mesenchymal stem cells cultured in a silicon nanowire microenvironment publication-title: Nanomed. Nanotechnol. Biol. Med. – volume: 15 start-page: 8667 year: 2014 end-page: 8698 ident: bib47 article-title: Signaling pathways in cartilage repair publication-title: Int. J. Mol. Sci. – start-page: 25 year: 2003 end-page: 32 ident: bib11 article-title: Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience publication-title: J Bone Jt. Surg Am. – volume: 39 start-page: 653 year: 2016 end-page: 666 ident: bib54 article-title: Regionally restricted hox function in adult bone marrow multipotent mesenchymal stem/stromal cells publication-title: Dev. Cell – volume: 5 start-page: 13 year: 2013 end-page: 31 ident: bib57 article-title: Wnt signaling in bone formation and its therapeutic potential for bone diseases publication-title: Ther. Adv. Musculoskelet. Dis. – volume: 1 start-page: 684736 year: 2013 ident: bib59 article-title: Review of signaling pathways governing MSC osteogenic and adipogenic differentiation publication-title: Scientifica (Cairo) – volume: 17 start-page: 152 year: 2009 end-page: 160 ident: bib4 article-title: Autologous conditioned serum (Orthokine) is an effective treatment for knee osteoarthritis publication-title: Osteoarthr. Cartil. – volume: 16 start-page: 43 year: 2014 end-page: 52 ident: bib43 article-title: Chondrogenic differentiation of human umbilical cord blood-derived unrestricted somatic stem cells on a 3D beta-tricalcium phosphate-alginate-gelatin scaffold publication-title: Cell J. – start-page: 221 year: 2015 end-page: 228 ident: bib15 article-title: Biomimetic biphasic scaffolds for osteochondral defect repair publication-title: Regen. Biomater. – year: 2018 ident: bib34 article-title: Pheatmap: Pretty Heatmaps, R Packag. Version 1.0.10 – volume: 22 start-page: S352 year: 2014 end-page: S353 ident: bib61 article-title: The biochemical interaction between subchondral bone and cartilage in osteoarthritis publication-title: Osteoarthr. Cartil. – volume: 33 start-page: 27 year: 1981 ident: bib26 article-title: Silicon: a requirement in bone formation independent of vitamin D1 publication-title: Calcif. Tissue Int. – volume: 4 start-page: 1 year: 2014 end-page: 8 ident: bib58 article-title: Noncanonical Wnt5a enhances Wnt/β-catenin signaling during osteoblastogenesis publication-title: Sci. Rep. – start-page: 1798 year: 2010 end-page: 1806 ident: bib56 article-title: An updated overview on wnt signaling pathways: a prelude for more publication-title: Circ. Res. – volume: 36 start-page: S20 year: 2005 end-page: S27 ident: bib6 article-title: Bone substitutes: an update publication-title: Injury – volume: 135 start-page: 2845 year: 2008 end-page: 2854 ident: bib55 article-title: Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration publication-title: Development – volume: 183 start-page: 184 year: 2013 end-page: 192 ident: bib16 article-title: Biphasic scaffolds for repair of deep osteochondral defects in a sheep model publication-title: J. Surg. Res. – start-page: 223 year: 2013 ident: bib40 article-title: Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes publication-title: Arthritis Res. Ther. – volume: 10 start-page: 1096 year: 2013 end-page: 1098 ident: bib32 article-title: Smart-seq2 for sensitive full-length transcriptome profiling in single cells publication-title: Nat. Methods – volume: 53 start-page: 174 year: 1993 end-page: 179 ident: bib22 article-title: Short-term effects of organic silicon on trabecular bone in mature ovariectomized rats publication-title: Calcif. Tissue Int. – volume: 21 start-page: 3419 year: 2009 end-page: 3424 ident: bib12 article-title: The elusive path to cartilage regeneration publication-title: Adv. Mater. – start-page: 230 year: 2010 end-page: 237 ident: bib41 article-title: Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis publication-title: Ann. N. Y. Acad. Sci. – volume: 153 start-page: 35 year: 2001 end-page: 46 ident: bib39 article-title: TGF-β/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage publication-title: J. Cell Biol. – volume: 2 start-page: 78 year: 2009 end-page: 82 ident: bib5 article-title: Hyaluronic acid as a treatment for ankle osteoarthritis publication-title: Curr. Rev. Musculoskelet. Med. – volume: 7 start-page: e32481 year: 2012 ident: bib37 article-title: Transcriptomics comparison between porcine adipose and bone marrow mesenchymal stem cells during in vitro osteogenic and adipogenic differentiation publication-title: PloS One – volume: 15 start-page: 3489 year: 2018 end-page: 3494 ident: bib51 article-title: Semaphorin 3A promotes osteogenic differentiation in human alveolar bone marrow mesenchymal stem cells publication-title: Exp. Ther. Med. – volume: 56 start-page: 3366 year: 2007 end-page: 3374 ident: bib13 article-title: Role of subchondral bone in osteoarthritis development: a comparative study of two strains of Guinea pigs with and without spontaneously occurring osteoarthritis publication-title: Arthritis Rheum. – year: 2001 ident: bib2 article-title: Cytokines in cartilage injury and repair publication-title: Clin. Orthop. Relat. Res. – start-page: 1182 year: 2012 ident: 10.1016/j.biomaterials.2018.11.025_bib3 article-title: Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration, Knee Surgery, Sport publication-title: Traumatol. Arthrosc. doi: 10.1007/s00167-011-1655-1 – volume: 183 start-page: 184 year: 2013 ident: 10.1016/j.biomaterials.2018.11.025_bib16 article-title: Biphasic scaffolds for repair of deep osteochondral defects in a sheep model publication-title: J. Surg. Res. doi: 10.1016/j.jss.2012.11.036 – volume: 8 start-page: 2307 year: 2012 ident: 10.1016/j.biomaterials.2018.11.025_bib29 article-title: The stimulation of proliferation and differentiation of periodontal ligament cells by the ionic products from Ca7Si2P2O16 bioceramics publication-title: Acta Biomater. doi: 10.1016/j.actbio.2012.03.012 – volume: 19 start-page: 297 year: 2004 ident: 10.1016/j.biomaterials.2018.11.025_bib25 article-title: Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the framingham offspring cohort publication-title: J. Bone Miner. Res. doi: 10.1359/JBMR.0301225 – volume: 36 start-page: S20 year: 2005 ident: 10.1016/j.biomaterials.2018.11.025_bib6 article-title: Bone substitutes: an update publication-title: Injury doi: 10.1016/j.injury.2005.07.029 – start-page: 223 year: 2012 ident: 10.1016/j.biomaterials.2018.11.025_bib49 article-title: Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2011.12.003 – volume: 10 start-page: 1096 year: 2013 ident: 10.1016/j.biomaterials.2018.11.025_bib32 article-title: Smart-seq2 for sensitive full-length transcriptome profiling in single cells publication-title: Nat. Methods doi: 10.1038/nmeth.2639 – volume: 15 start-page: 3489 year: 2018 ident: 10.1016/j.biomaterials.2018.11.025_bib51 article-title: Semaphorin 3A promotes osteogenic differentiation in human alveolar bone marrow mesenchymal stem cells publication-title: Exp. Ther. Med. – volume: 19 start-page: 477 year: 2003 ident: 10.1016/j.biomaterials.2018.11.025_bib10 article-title: Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up publication-title: Arthrosc. J. Arthrosc. Relat. Surg. doi: 10.1053/jars.2003.50112 – volume: 23 start-page: 263 year: 2007 ident: 10.1016/j.biomaterials.2018.11.025_bib50 article-title: Semaphorin regulation of cellular morphology publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.22.010605.093554 – volume: 39 start-page: 653 year: 2016 ident: 10.1016/j.biomaterials.2018.11.025_bib54 article-title: Regionally restricted hox function in adult bone marrow multipotent mesenchymal stem/stromal cells publication-title: Dev. Cell doi: 10.1016/j.devcel.2016.11.008 – start-page: 1798 year: 2010 ident: 10.1016/j.biomaterials.2018.11.025_bib56 article-title: An updated overview on wnt signaling pathways: a prelude for more publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.110.219840 – year: 2001 ident: 10.1016/j.biomaterials.2018.11.025_bib2 article-title: Cytokines in cartilage injury and repair publication-title: Clin. Orthop. Relat. Res. doi: 10.1097/00003086-200110001-00011 – volume: 16 start-page: 43 year: 2014 ident: 10.1016/j.biomaterials.2018.11.025_bib43 article-title: Chondrogenic differentiation of human umbilical cord blood-derived unrestricted somatic stem cells on a 3D beta-tricalcium phosphate-alginate-gelatin scaffold publication-title: Cell J. – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.biomaterials.2018.11.025_bib35 article-title: Gene expression analysis of human adipose tissue-derived stem cells during the initial steps of in vitro osteogenesis publication-title: Sci. Rep. doi: 10.1038/s41598-018-22991-6 – volume: 19 start-page: 422 year: 2012 ident: 10.1016/j.biomaterials.2018.11.025_bib17 article-title: Evaluation of early-stage osteochondral defect repair using a biphasic scaffold based on a collagen-glycosaminoglycan biopolymer in a caprine model publication-title: Knee doi: 10.1016/j.knee.2011.03.011 – volume: 85A start-page: 301 year: 2008 ident: 10.1016/j.biomaterials.2018.11.025_bib27 article-title: Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.a.31324 – volume: 8 start-page: 1940 year: 2018 ident: 10.1016/j.biomaterials.2018.11.025_bib44 article-title: Bioactive scaffolds for regeneration of cartilage and subchondral bone interface publication-title: Theranostics doi: 10.7150/thno.23674 – start-page: 310 year: 2016 ident: 10.1016/j.biomaterials.2018.11.025_bib53 article-title: Hox genes in the adult skeleton: novel functions beyond embryonic development publication-title: Dev. Dynam. – volume: 25 start-page: 1277 year: 2007 ident: 10.1016/j.biomaterials.2018.11.025_bib18 article-title: Repair of porcine articular cartilage defect with a biphasic osteochondral composite publication-title: J. Orthop. Res. doi: 10.1002/jor.20442 – volume: 11 start-page: 99 year: 2007 ident: 10.1016/j.biomaterials.2018.11.025_bib20 article-title: Silicon and bone health publication-title: J. Nutr. Health Aging – volume: 15 start-page: 8667 year: 2014 ident: 10.1016/j.biomaterials.2018.11.025_bib47 article-title: Signaling pathways in cartilage repair publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms15058667 – volume: 17 start-page: 152 year: 2009 ident: 10.1016/j.biomaterials.2018.11.025_bib4 article-title: Autologous conditioned serum (Orthokine) is an effective treatment for knee osteoarthritis publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2008.06.014 – volume: 17 start-page: 1 year: 2016 ident: 10.1016/j.biomaterials.2018.11.025_bib8 article-title: Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy - a review publication-title: BMC Musculoskelet. Disord. doi: 10.1186/s12891-016-1085-9 – volume: 64 start-page: 960 year: 2012 ident: 10.1016/j.biomaterials.2018.11.025_bib1 article-title: Mechanical and biologic link between cartilage and subchondral bone in osteoarthritis publication-title: Arthritis Care Res. doi: 10.1002/acr.21640 – start-page: 45 year: 2003 ident: 10.1016/j.biomaterials.2018.11.025_bib30 article-title: Histological assessment of cartilage repair: a report by the histology endpoint committee of the international cartilage repair society (ICRS) publication-title: J. Bone Jt. Surg. - Ser. A doi: 10.2106/00004623-200300002-00007 – volume: 79 start-page: 363 year: 2015 ident: 10.1016/j.biomaterials.2018.11.025_bib28 article-title: Biocompatibility of biomimetic multilayered alginate-chitosan/β-TCP scaffold for osteochondral tissue publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2015.05.005 – volume: 23 start-page: 584 year: 2005 ident: 10.1016/j.biomaterials.2018.11.025_bib9 article-title: Repair of porcine articular cartilage defect with autologous chondrocyte transplantation publication-title: J. Orthop. Res. doi: 10.1016/j.orthres.2004.11.003 – volume: 10 start-page: 1153 year: 2014 ident: 10.1016/j.biomaterials.2018.11.025_bib60 article-title: Activation of multiple signaling pathways during the differentiation of mesenchymal stem cells cultured in a silicon nanowire microenvironment publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2014.02.003 – volume: 17 start-page: 137 year: 2004 ident: 10.1016/j.biomaterials.2018.11.025_bib23 article-title: Dietary silicon affects bone turnover differently in ovariectomized and sham-operated growing rats publication-title: J. Trace Elem. Exp. Med. doi: 10.1002/jtra.20004 – volume: 5 start-page: 13 year: 2013 ident: 10.1016/j.biomaterials.2018.11.025_bib57 article-title: Wnt signaling in bone formation and its therapeutic potential for bone diseases publication-title: Ther. Adv. Musculoskelet. Dis. doi: 10.1177/1759720X12466608 – volume: 25 start-page: 2941 year: 2004 ident: 10.1016/j.biomaterials.2018.11.025_bib24 article-title: The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production publication-title: Biomaterials doi: 10.1016/j.biomaterials.2003.09.086 – volume: 33 start-page: 27 year: 1981 ident: 10.1016/j.biomaterials.2018.11.025_bib26 article-title: Silicon: a requirement in bone formation independent of vitamin D1 publication-title: Calcif. Tissue Int. doi: 10.1007/BF02409409 – volume: 135 start-page: 2845 year: 2008 ident: 10.1016/j.biomaterials.2018.11.025_bib55 article-title: Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration publication-title: Development doi: 10.1242/dev.023788 – volume: 13 start-page: 233 year: 2005 ident: 10.1016/j.biomaterials.2018.11.025_bib7 article-title: Tissue engineering publication-title: Curr. Opin. Otolaryngol. Head Neck Surg. doi: 10.1097/01.moo.0000170526.51393.c5 – volume: 8 start-page: 947 year: 2017 ident: 10.1016/j.biomaterials.2018.11.025_bib36 article-title: Identification of three early phases of cell-fate determination during osteogenic and adipogenic differentiation by transcription factor dynamics publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2017.02.018 – volume: 4 start-page: 1 year: 2014 ident: 10.1016/j.biomaterials.2018.11.025_bib58 article-title: Noncanonical Wnt5a enhances Wnt/β-catenin signaling during osteoblastogenesis publication-title: Sci. Rep. doi: 10.1038/srep04493 – volume: 10 start-page: e0120857 year: 2015 ident: 10.1016/j.biomaterials.2018.11.025_bib46 article-title: Transforming growth factor beta signaling is essential for the autonomous formation of cartilage-like tissue by expanded chondrocytes publication-title: PloS One doi: 10.1371/journal.pone.0120857 – volume: 19 start-page: 704 year: 2013 ident: 10.1016/j.biomaterials.2018.11.025_bib48 article-title: Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis publication-title: Nat. Med. doi: 10.1038/nm.3143 – volume: 21 start-page: 3419 year: 2009 ident: 10.1016/j.biomaterials.2018.11.025_bib12 article-title: The elusive path to cartilage regeneration publication-title: Adv. Mater. doi: 10.1002/adma.200801957 – volume: 121 start-page: 123 year: 1986 ident: 10.1016/j.biomaterials.2018.11.025_bib19 article-title: Silicon as an essential trace element in animal nutrition publication-title: Ciba Found. Symp. – volume: 56 start-page: 3366 year: 2007 ident: 10.1016/j.biomaterials.2018.11.025_bib13 article-title: Role of subchondral bone in osteoarthritis development: a comparative study of two strains of Guinea pigs with and without spontaneously occurring osteoarthritis publication-title: Arthritis Rheum. doi: 10.1002/art.22921 – volume: 23 start-page: 847 year: 2012 ident: 10.1016/j.biomaterials.2018.11.025_bib14 article-title: Subchondral bone and osteoarthritis: biological and cellular aspects publication-title: Osteoporos. Int. doi: 10.1007/s00198-012-2162-z – volume: 31 start-page: 166 year: 2015 ident: 10.1016/j.biomaterials.2018.11.025_bib33 article-title: HTSeq-A Python framework to work with high-throughput sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – year: 2016 ident: 10.1016/j.biomaterials.2018.11.025_bib52 article-title: Semaphorin 3A shifts adipose mesenchymal stem cells towards osteogenic phenotype and promotes bone regeneration in vivo publication-title: Stem Cell. Int. doi: 10.1155/2016/2545214 – start-page: 25 year: 2003 ident: 10.1016/j.biomaterials.2018.11.025_bib11 article-title: Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience publication-title: J Bone Jt. Surg Am. doi: 10.2106/00004623-200300002-00004 – volume: 10 start-page: 1818 year: 2004 ident: 10.1016/j.biomaterials.2018.11.025_bib42 article-title: Repair of large articular cartilage defects with implants of autologous mesenchymal stem cells seeded into beta-tricalcium phosphate in a sheep model publication-title: Tissue Eng. doi: 10.1089/ten.2004.10.1818 – volume: 102 start-page: 37 year: 2014 ident: 10.1016/j.biomaterials.2018.11.025_bib45 article-title: TGFβ signaling in cartilage development and maintenance publication-title: Birth Defects Res. Part C Embryo Today - Rev. doi: 10.1002/bdrc.21058 – volume: 52 start-page: 185 year: 1993 ident: 10.1016/j.biomaterials.2018.11.025_bib38 article-title: Protection from interleukin 1 induced destruction of articular cartilage by transforming growth factor β: studies in anatomically intact cartilage in vitro and in vivo publication-title: Ann. Rheum. Dis. doi: 10.1136/ard.52.3.185 – volume: 1 start-page: 684736 year: 2013 ident: 10.1016/j.biomaterials.2018.11.025_bib59 article-title: Review of signaling pathways governing MSC osteogenic and adipogenic differentiation publication-title: Scientifica (Cairo) – volume: 22 start-page: S352 year: 2014 ident: 10.1016/j.biomaterials.2018.11.025_bib61 article-title: The biochemical interaction between subchondral bone and cartilage in osteoarthritis publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2014.02.652 – volume: 56 start-page: 153 year: 1997 ident: 10.1016/j.biomaterials.2018.11.025_bib21 article-title: Supplementation of calves with stabilized orthosilicic acid: effect on the Si, Ca, Mg, and P concentrations in serum and the collagen concentration in skin and cartilage publication-title: Biol. Trace Elem. Res. doi: 10.1007/BF02785389 – volume: 53 start-page: 174 year: 1993 ident: 10.1016/j.biomaterials.2018.11.025_bib22 article-title: Short-term effects of organic silicon on trabecular bone in mature ovariectomized rats publication-title: Calcif. Tissue Int. doi: 10.1007/BF01321834 – volume: 2 start-page: 78 year: 2009 ident: 10.1016/j.biomaterials.2018.11.025_bib5 article-title: Hyaluronic acid as a treatment for ankle osteoarthritis publication-title: Curr. Rev. Musculoskelet. Med. doi: 10.1007/s12178-009-9048-5 – year: 2018 ident: 10.1016/j.biomaterials.2018.11.025_bib34 – volume: 153 start-page: 35 year: 2001 ident: 10.1016/j.biomaterials.2018.11.025_bib39 article-title: TGF-β/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage publication-title: J. Cell Biol. doi: 10.1083/jcb.153.1.35 – start-page: 230 year: 2010 ident: 10.1016/j.biomaterials.2018.11.025_bib41 article-title: Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2009.05240.x – volume: 3 start-page: 1253 year: 2008 ident: 10.1016/j.biomaterials.2018.11.025_bib31 article-title: Primary culture and phenotyping of murine chondrocytes publication-title: Nat. Protoc. doi: 10.1038/nprot.2008.95 – start-page: 223 year: 2013 ident: 10.1016/j.biomaterials.2018.11.025_bib40 article-title: Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes publication-title: Arthritis Res. Ther. doi: 10.1186/ar4405 – start-page: 221 year: 2015 ident: 10.1016/j.biomaterials.2018.11.025_bib15 article-title: Biomimetic biphasic scaffolds for osteochondral defect repair publication-title: Regen. Biomater. doi: 10.1093/rb/rbv015 – volume: 7 start-page: e32481 year: 2012 ident: 10.1016/j.biomaterials.2018.11.025_bib37 article-title: Transcriptomics comparison between porcine adipose and bone marrow mesenchymal stem cells during in vitro osteogenic and adipogenic differentiation publication-title: PloS One doi: 10.1371/journal.pone.0032481 |
SSID | ssj0014042 |
Score | 2.600608 |
Snippet | Osteochondral defects are most commonly characterized by damages to both cartilage and bone tissues as a result of serious traumas or physical diseases;... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 323 |
SubjectTerms | animal models Animals bioactive properties bone formation bone marrow Bone Regeneration calcium phosphates cartilage Cells, Cultured Ceramics - chemistry chondrocytes Chondrogenesis gene ontology histology Humans ions Mesenchymal Stem Cells - cytology micro-computed tomography Osteogenesis phenotype quantitative polymerase chain reaction Rabbits sequence analysis Silicates - chemistry silicon skeletal development stem cells Tissue Engineering Tissue Scaffolds - chemistry Western blotting |
Title | Silicate-based bioceramic scaffolds for dual-lineage regeneration of osteochondral defect |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961218308020 https://dx.doi.org/10.1016/j.biomaterials.2018.11.025 https://www.ncbi.nlm.nih.gov/pubmed/30468999 https://www.proquest.com/docview/2137475427 https://www.proquest.com/docview/2221066403 |
Volume | 192 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9KCmN9GF23tWm3okJfncSSbFmUPZSykK60L10hezKyPkZKsIubvu5v750_QgfbCPTRQRfLp9N9oN_vBHAaMGoaR7wt6XkkneKREbgfuU-UsHySmQmRk69v0tmd_D5P5ltw0XNhCFbZ-f7Wpzfeuvtl3Glz_LBYjAmWxDU1wMoEEUapbpdSkZWPfq9hHtQ9hrcwRh7R6L7xaIPxIoq7WbVLTTCvbEQdPena7L8HqX8loU0wmu7Cuy6LZOftRN_Dli_3YOdFb8E9eHPdnZp_gJ-3i5bqFlHMcgznY31NF9GzR2tCqJbukWHyyoiXFVHeiU6G1f5X05KaVo5VgREbpEJnWboaX-084UA-wt3024-LWdRdqRBZ9GyrKAnoVITVKc-MDhiKlPOxttybQmNiJDOng3HGxrFRShXGZcZxGxS32qWJF-ITDMqq9AfAnBJG6QLLF-8kJT74rxKLS20zzDLjMATd6zC3Xb9xuvZimffAsvv8pf5z0j8WJDnqfwhiLfvQdt3YSOqsX6q855WiJ8wxOGwk_XUt_YcFbix_0ltHjluUzl1M6asnHBQLLNoSydV_xnCsvdNUTsQQ9lvTWn85HV5jWawPXznDI3iLT7rFnH-Gwap-8l8wpVoVx82eOYbt88ur2c0ze4gi5Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6hILX0UFEKbaAtRup1Sdb2rteqOCBUFArJpSDByXL8QKnQLgrh_zOzj4hKLYrEdePJesf2zDfyfDMA3yN6TeuJtyUDT6RXPLECzyMPmRKODws7JHLyeJKPruSv6-x6DU46LgylVba2v7HptbVunwxabQ7uZ7MBpSVxTQWwCkGEUYzb16k6VdaD9eOz89FkeZkgh3UPHRqfkEBXe7RO8yKWu100q02ZXsUhFfWkztn_9lP_w6G1PzrdhPctkGTHzVw_wFoot-Dds_KCW_Bm3F6cf4Sb37OG7ZaQ2_IM5-PCnHrRswdnY6zu_AND_MqImpUQ9EQ7w-bhtq5KTYvHqsiIEFKhvSz9HF_tA6WCbMPV6c_Lk1HSdlVIHBq3RZJFtCvC6ZwXVkf0RsqHVDse7FQjNpKF19F669LUKqWm1hfWcxcVd9rnWRBiB3plVYbPwLwSVukpRjDBS8I--K8S40vtCgSaaeyD7nRoXFtynDpf3Jkut-yPea5_Q_rHmMSg_vsglrL3TeGNlaR-dEtlOmopGkOD_mEl6aOl9F-bcGX5g253GDyldPViy1A94qBUYNyWSa5eGMMx_M5zORR9-NRsreWX0_01RsZ695Uz3Ie3o8vxhbk4m5zvwQb-opsU9C_QW8wfw1dEWIvpt_YEPQFWvCWW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silicate-based+bioceramic+scaffolds+for+dual-lineage+regeneration+of+osteochondral+defect&rft.jtitle=Biomaterials&rft.au=Bunpetch%2C+Varitsara&rft.au=Zhang%2C+Xiaoan&rft.au=Li%2C+Tian&rft.au=Lin%2C+Junxin&rft.date=2019-02-01&rft.issn=0142-9612&rft.volume=192+p.323-333&rft.spage=323&rft.epage=333&rft_id=info:doi/10.1016%2Fj.biomaterials.2018.11.025&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |