Radiation Resistance in KRAS-Mutated Lung Cancer Is Enabled by Stem-like Properties Mediated by an Osteopontin–EGFR Pathway

Lung cancers with activating KRAS mutations are characterized by treatment resistance and poor prognosis. In particular, the basis for their resistance to radiation therapy is poorly understood. Here, we describe a radiation resistance phenotype conferred by a stem-like subpopulation characterized b...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 77; no. 8; pp. 2018 - 2028
Main Authors Wang, Meng, Han, Jing, Marcar, Lynnette, Black, Josh, Liu, Qi, Li, Xiangyong, Nagulapalli, Kshithija, Sequist, Lecia V., Mak, Raymond H., Benes, Cyril H., Hong, Theodore S., Gurtner, Kristin, Krause, Mechthild, Baumann, Michael, Kang, Jing X., Whetstine, Johnathan R., Willers, Henning
Format Journal Article
LanguageEnglish
Published United States American Association for Cancer Research, Inc 15.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lung cancers with activating KRAS mutations are characterized by treatment resistance and poor prognosis. In particular, the basis for their resistance to radiation therapy is poorly understood. Here, we describe a radiation resistance phenotype conferred by a stem-like subpopulation characterized by mitosis-like condensed chromatin (MLCC), high CD133 expression, invasive potential, and tumor-initiating properties. Mechanistic investigations defined a pathway involving osteopontin and the EGFR in promoting this phenotype. Osteopontin/EGFR–dependent MLCC protected cells against radiation-induced DNA double-strand breaks and repressed putative negative regulators of stem-like properties, such as CRMP1 and BIM. The MLCC-positive phenotype defined a subset of KRAS-mutated lung cancers that were enriched for co-occurring genomic alterations in TP53 and CDKN2A. Our results illuminate the basis for the radiation resistance of KRAS-mutated lung cancers, with possible implications for prognostic and therapeutic strategies. Cancer Res; 77(8); 2018–28. ©2017 AACR.
AbstractList Lung cancers with activating KRAS mutations are characterized by treatment resistance and poor prognosis. In particular, the basis for their resistance to radiation therapy is poorly understood. Here we describe a radiation resistance phenotype conferred by a stem-like subpopulation characterized by mitosis-like condensed chromatin (MLCC), high CD133 expression, invasive potential, and tumor-initiating properties. Mechanistic investigations defined a pathway involving osteopontin and the EGFR in promoting this phenotype. Osteopontin/EGFR-dependent MLCC protected cells against radiation-induced DNA double-strand breaks and repressed putative negative regulators of stem-like properties such as CRMP1 and BIM. The MLCC-positive phenotype defined a subset of KRAS-mutated lung cancers that were enriched for co-occurring genomic alterations in TP53 and CDKN2A. Our results illuminate the basis for the radiation resistance of KRAS-mutated lung cancers with possible implications for prognostic and therapeutic strategies.
In elucidating mechanisms that link the stem-like phenotype of KRAS-mutated lung cancer cells to radiation resistance, this study identifies potential therapeutic targets to overcome this resistance.Lung cancers with activating KRAS mutations are characterized by treatment resistance and poor prognosis. In particular, the basis for their resistance to radiation therapy is poorly understood. Here, we describe a radiation resistance phenotype conferred by a stem-like subpopulation characterized by mitosis-like condensed chromatin (MLCC), high CD133 expression, invasive potential, and tumor-initiating properties. Mechanistic investigations defined a pathway involving osteopontin and the EGFR in promoting this phenotype. Osteopontin/EGFR–dependent MLCC protected cells against radiation-induced DNA double-strand breaks and repressed putative negative regulators of stem-like properties, such as CRMP1 and BIM. The MLCC-positive phenotype defined a subset of KRAS-mutated lung cancers that were enriched for co-occurring genomic alterations in TP53 and CDKN2A. Our results illuminate the basis for the radiation resistance of KRAS-mutated lung cancers, with possible implications for prognostic and therapeutic strategies. Cancer Res; 77(8); 2018–28. ©2017 AACR.
Lung cancers with activating KRAS mutations are characterized by treatment resistance and poor prognosis. In particular, the basis for their resistance to radiation therapy is poorly understood. Here, we describe a radiation resistance phenotype conferred by a stem-like subpopulation characterized by mitosis-like condensed chromatin (MLCC), high CD133 expression, invasive potential, and tumor-initiating properties. Mechanistic investigations defined a pathway involving osteopontin and the EGFR in promoting this phenotype. Osteopontin/EGFR-dependent MLCC protected cells against radiation-induced DNA double-strand breaks and repressed putative negative regulators of stem-like properties, such as CRMP1 and BIM. The MLCC-positive phenotype defined a subset of KRAS-mutated lung cancers that were enriched for co-occurring genomic alterations in TP53 and CDKN2A. Our results illuminate the basis for the radiation resistance of KRAS-mutated lung cancers, with possible implications for prognostic and therapeutic strategies. Cancer Res; 77(8); 2018-28. ©2017 AACR.
In elucidating mechanisms that link the stem-like phenotype of KRAS-mutated lung cancer cells to radiation resistance, this study identifies potential therapeutic targets to overcome this resistance. Lung cancers with activating KRAS mutations are characterized by treatment resistance and poor prognosis. In particular, the basis for their resistance to radiation therapy is poorly understood. Here, we describe a radiation resistance phenotype conferred by a stem-like subpopulation characterized by mitosis-like condensed chromatin (MLCC), high CD133 expression, invasive potential, and tumor-initiating properties. Mechanistic investigations defined a pathway involving osteopontin and the EGFR in promoting this phenotype. Osteopontin/EGFR-dependent MLCC protected cells against radiation-induced DNA double-strand breaks and repressed putative negative regulators of stem-like properties, such as CRMP1 and BIM. The MLCC-positive phenotype defined a subset of KRAS-mutated lung cancers that were enriched for co-occurring genomic alterations in TP53 and CDKN2A. Our results illuminate the basis for the radiation resistance of KRAS-mutated lung cancers, with possible implications for prognostic and therapeutic strategies. Cancer Res; 77(8); 2018-28. [copy2017 AACR.
Lung cancers with activating KRAS mutations are characterized by treatment resistance and poor prognosis. In particular, the basis for their resistance to radiation therapy is poorly understood. Here, we describe a radiation resistance phenotype conferred by a stem-like subpopulation characterized by mitosis-like condensed chromatin (MLCC), high CD133 expression, invasive potential, and tumor-initiating properties. Mechanistic investigations defined a pathway involving osteopontin and the EGFR in promoting this phenotype. Osteopontin/EGFR-dependent MLCC protected cells against radiation-induced DNA double-strand breaks and repressed putative negative regulators of stem-like properties, such as CRMP1 and BIM. The MLCC-positive phenotype defined a subset of KRAS-mutated lung cancers that were enriched for co-occurring genomic alterations in TP53 and CDKN2A. Our results illuminate the basis for the radiation resistance of KRAS-mutated lung cancers, with possible implications for prognostic and therapeutic strategies. .
Author Willers, Henning
Black, Josh
Krause, Mechthild
Baumann, Michael
Whetstine, Johnathan R.
Wang, Meng
Gurtner, Kristin
Liu, Qi
Li, Xiangyong
Marcar, Lynnette
Mak, Raymond H.
Benes, Cyril H.
Nagulapalli, Kshithija
Kang, Jing X.
Han, Jing
Sequist, Lecia V.
Hong, Theodore S.
AuthorAffiliation 8 Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
5 Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
6 Center for Computational Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
2 Jinan Municipal Center for Disease Control and Prevention, Shandong, China
4 Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
7 Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
3 University of Colorado School of Medicine, Aurora, Colorado
1 Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
9 Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden; OncoRay National Center for Radiation Research in Oncology; Medical Facul
AuthorAffiliation_xml – name: 7 Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
– name: 8 Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
– name: 3 University of Colorado School of Medicine, Aurora, Colorado
– name: 4 Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
– name: 1 Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
– name: 2 Jinan Municipal Center for Disease Control and Prevention, Shandong, China
– name: 5 Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
– name: 6 Center for Computational Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
– name: 9 Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden; OncoRay National Center for Radiation Research in Oncology; Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden; Helmholtz-Zentrum Dresden-Rossendorf; Institute of Radiation Oncology, Helmholtz-Zentrum Dresden-Rossendorf; and Cancer Consortium (DKTK) partner site Dresden and German Cancer Research Center (DKFZ) Heidelberg, Dresden, Germany
Author_xml – sequence: 1
  givenname: Meng
  surname: Wang
  fullname: Wang, Meng
– sequence: 2
  givenname: Jing
  surname: Han
  fullname: Han, Jing
– sequence: 3
  givenname: Lynnette
  surname: Marcar
  fullname: Marcar, Lynnette
– sequence: 4
  givenname: Josh
  surname: Black
  fullname: Black, Josh
– sequence: 5
  givenname: Qi
  surname: Liu
  fullname: Liu, Qi
– sequence: 6
  givenname: Xiangyong
  surname: Li
  fullname: Li, Xiangyong
– sequence: 7
  givenname: Kshithija
  surname: Nagulapalli
  fullname: Nagulapalli, Kshithija
– sequence: 8
  givenname: Lecia V.
  surname: Sequist
  fullname: Sequist, Lecia V.
– sequence: 9
  givenname: Raymond H.
  surname: Mak
  fullname: Mak, Raymond H.
– sequence: 10
  givenname: Cyril H.
  surname: Benes
  fullname: Benes, Cyril H.
– sequence: 11
  givenname: Theodore S.
  surname: Hong
  fullname: Hong, Theodore S.
– sequence: 12
  givenname: Kristin
  surname: Gurtner
  fullname: Gurtner, Kristin
– sequence: 13
  givenname: Mechthild
  surname: Krause
  fullname: Krause, Mechthild
– sequence: 14
  givenname: Michael
  surname: Baumann
  fullname: Baumann, Michael
– sequence: 15
  givenname: Jing X.
  surname: Kang
  fullname: Kang, Jing X.
– sequence: 16
  givenname: Johnathan R.
  surname: Whetstine
  fullname: Whetstine, Johnathan R.
– sequence: 17
  givenname: Henning
  surname: Willers
  fullname: Willers, Henning
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28202526$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAUhi1URKeFRwBZYsMmxU7iS4SENBpNL2JKqymsLSc5aV0y9tR2QLNA6jvwhjwJDtNW0AViZdnnO_-5-N9DO9ZZQOglJQeUMvmWECIzVor8YDb9mFGeEUnkEzShrJCZKEu2gyYPzC7aC-E6XRkl7BnazWVOcpbzCfq-1K3R0TiLlxBMiNo2gI3FH5bTi-x0iDpCixeDvcSzMeTxScBzq-s-PdcbfBFhlfXmC-Bz79bgo4GAT2HU3ALa4rMQwa2djcb-vP0xPzpc4nMdr77pzXP0tNN9gBd35z76fDj_NDvOFmdHJ7PpImvSNDFjDe1IXfKuKrngpBO15iIHIkHoqhJEQwEN62qR521RkbZiFeGEdp2Elmumi330fqu7HuoVtA3Y6HWv1t6stN8op436O2LNlbp0XxVLi6xIngTe3Al4dzNAiGplQgN9ry24ISgqK5EqC1b-B8oTWBaUJPT1I_TaDd6mTShayaLgZUFool792fxD1_efmIB3W6DxLgQPnWpM_P2naRbTK0rUaBk12kGNdlDJMopyNVomZbNH2fcF_p33C4MZxRg
CitedBy_id crossref_primary_10_1016_j_prro_2024_07_004
crossref_primary_10_1038_s41598_021_83142_y
crossref_primary_10_1002_ijc_32598
crossref_primary_10_1158_1078_0432_CCR_20_2859
crossref_primary_10_1016_j_lungcan_2020_03_012
crossref_primary_10_1038_s12276_020_00511_9
crossref_primary_10_1080_14737140_2023_2245140
crossref_primary_10_1016_j_trsl_2022_08_005
crossref_primary_10_3389_fonc_2022_1016217
crossref_primary_10_1016_j_hoc_2019_07_001
crossref_primary_10_3390_ijms232415576
crossref_primary_10_1002_jcb_28148
crossref_primary_10_1038_s41392_021_00780_4
crossref_primary_10_1007_s10549_018_05079_7
crossref_primary_10_1186_s11658_022_00336_6
crossref_primary_10_1186_s41016_020_00207_z
crossref_primary_10_3390_ijms25116249
crossref_primary_10_1186_s13578_022_00778_7
crossref_primary_10_3390_cancers12113379
crossref_primary_10_1158_1078_0432_CCR_18_1489
crossref_primary_10_3390_biomedicines11071824
crossref_primary_10_1016_j_omtn_2023_07_027
crossref_primary_10_1186_s12929_020_00676_5
crossref_primary_10_1016_j_ijrobp_2021_07_1694
crossref_primary_10_3892_ijo_2018_4656
crossref_primary_10_14309_ctg_0000000000000053
crossref_primary_10_3390_cancers14092202
crossref_primary_10_1016_j_ijrobp_2017_04_005
crossref_primary_10_1007_s00270_020_02463_z
crossref_primary_10_1016_j_bbrc_2018_03_185
crossref_primary_10_1016_j_ctro_2023_100686
crossref_primary_10_37549_ARO1246
crossref_primary_10_1016_j_bbcan_2020_188461
crossref_primary_10_1016_j_ctrv_2023_102573
crossref_primary_10_1016_j_ijrobp_2019_07_026
crossref_primary_10_1093_nar_gkab871
crossref_primary_10_1016_j_ejro_2019_04_006
crossref_primary_10_3390_cancers12051278
crossref_primary_10_1016_j_semradonc_2020_11_009
crossref_primary_10_1002_pros_24721
crossref_primary_10_1084_jem_20240587
crossref_primary_10_3892_ol_2019_9905
crossref_primary_10_1158_1078_0432_CCR_22_1914
crossref_primary_10_1080_09553002_2023_2232019
crossref_primary_10_18632_oncotarget_27881
crossref_primary_10_1016_j_actatropica_2022_106328
crossref_primary_10_1200_PO_18_00034
crossref_primary_10_1158_1078_0432_CCR_19_0908
crossref_primary_10_3390_ijms21186957
crossref_primary_10_1021_acsnano_2c07440
crossref_primary_10_1007_s40778_017_0102_8
crossref_primary_10_3389_fonc_2021_761901
crossref_primary_10_1371_journal_pone_0258951
crossref_primary_10_1038_s42003_021_01898_5
crossref_primary_10_3389_fimmu_2023_1133899
crossref_primary_10_1016_j_radonc_2020_02_008
crossref_primary_10_1093_jnci_djaa095
crossref_primary_10_1093_carcin_bgz190
crossref_primary_10_1158_0008_5472_CAN_20_4191
crossref_primary_10_3390_cancers14184374
crossref_primary_10_1016_j_xpro_2021_100391
crossref_primary_10_1177_1758834017719829
crossref_primary_10_1007_s12253_019_00690_5
crossref_primary_10_1186_s12943_024_02069_w
crossref_primary_10_1016_j_jcmgh_2019_09_001
crossref_primary_10_1007_s00066_023_02086_6
crossref_primary_10_1186_s12931_018_0740_0
crossref_primary_10_3390_cancers15082250
crossref_primary_10_1002_ijc_32065
crossref_primary_10_1038_s41419_017_0226_x
crossref_primary_10_3390_cancers14122829
crossref_primary_10_1007_s10585_019_09984_z
Cites_doi 10.1016/j.ijrobp.2011.05.057
10.1016/j.cllc.2014.09.005
10.1002/ijc.29454
10.1158/0008-5472.CAN-13-1750
10.1038/ncb2953
10.1158/0008-5472.CAN-13-3728
10.1056/NEJMoa043623
10.1016/j.radonc.2013.06.002
10.1016/j.stem.2012.05.007
10.1016/j.cell.2015.10.041
10.1080/09553009414550901
10.1091/mbc.e13-10-0628
10.1038/nature05236
10.3109/09553002.2014.892227
10.1016/j.radonc.2011.05.035
10.1016/S1476-5586(04)80047-2
10.1158/0008-5472.CAN-11-0213
10.1200/JCO.2005.02.857
10.1158/1078-0432.CCR-10-2639
10.1093/jnci/djj495
10.1016/0169-5002(95)00595-1
10.1158/2159-8290.CD-12-0095
10.1093/jnci/93.18.1392
10.1038/srep10194
10.1074/jbc.M310256200
10.1097/JTO.0000000000000028
10.1158/0008-5472.CAN-14-3790
10.1038/onc.2014.313
10.1016/j.ccr.2014.02.017
10.1158/0008-5472.CAN-14-1623
10.1593/neo.06823
10.4161/cc.27305
10.1038/nrc2419
10.18632/oncotarget.3113
10.1038/nature07733
10.1158/1541-7786.MCR-14-0570
10.1158/0008-5472.CAN-13-3157
10.1093/jnci/djt373
10.1158/1535-7163.MCT-12-0098
10.1158/1078-0432.CCR-05-2845
10.1038/onc.2012.320
10.1016/j.lungcan.2009.03.006
10.1016/j.ccr.2013.08.005
10.1158/0008-5472.CAN-05-0513
10.1200/JCO.2007.12.6953
10.1371/journal.pone.0082982
10.1073/pnas.1411848112
10.1093/carcin/bgr007
10.1016/j.stem.2014.01.005
10.4161/cbt.12.8.16440
10.1016/j.ijrobp.2015.07.266
ContentType Journal Article
Copyright 2017 American Association for Cancer Research.
Copyright American Association for Cancer Research, Inc. Apr 15, 2017
Copyright_xml – notice: 2017 American Association for Cancer Research.
– notice: Copyright American Association for Cancer Research, Inc. Apr 15, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TM
7TO
7U9
8FD
FR3
H94
P64
RC3
7X8
7U7
C1K
5PM
DOI 10.1158/0008-5472.CAN-16-0808
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Toxicology Abstracts
Environmental Sciences and Pollution Management
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Toxicology Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Genetics Abstracts
MEDLINE - Academic
Toxicology Abstracts
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 2028
ExternalDocumentID PMC5445902
28202526
10_1158_0008_5472_CAN_16_0808
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM097360
– fundername: NCI NIH HHS
  grantid: C06 CA059267
– fundername: NCI NIH HHS
  grantid: P50 CA090578
– fundername: Wellcome Trust
– fundername: NCI NIH HHS
  grantid: P30 CA006516
GroupedDBID ---
-ET
18M
29B
2WC
34G
39C
53G
5GY
5RE
5VS
6J9
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
ADNWM
AENEX
AETEA
AFHIN
AFOSN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
OK1
P0W
P2P
PQQKQ
RCR
RHI
RNS
SJN
TR2
W2D
W8F
WH7
WOQ
YKV
YZZ
CGR
CUY
CVF
ECM
EIF
NPM
RHF
7T5
7TM
7TO
7U9
8FD
FR3
H94
P64
RC3
7X8
7U7
C1K
5PM
ID FETCH-LOGICAL-c538t-5c1f0b46f946760f7ba672e08e7a9970ae3ec5fb722d390d9590601ff8ed6a5a3
ISSN 0008-5472
IngestDate Thu Aug 21 18:22:20 EDT 2025
Fri Jul 11 10:09:59 EDT 2025
Thu Aug 07 15:02:38 EDT 2025
Sun Jul 13 05:08:51 EDT 2025
Wed Feb 19 02:40:22 EST 2025
Tue Jul 01 01:12:29 EDT 2025
Thu Apr 24 23:08:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License 2017 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c538t-5c1f0b46f946760f7ba672e08e7a9970ae3ec5fb722d390d9590601ff8ed6a5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work
OpenAccessLink https://cancerres.aacrjournals.org/content/canres/77/8/2018.full.pdf
PMID 28202526
PQID 1983364301
PQPubID 105549
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5445902
proquest_miscellaneous_1897390754
proquest_miscellaneous_1869074310
proquest_journals_1983364301
pubmed_primary_28202526
crossref_citationtrail_10_1158_0008_5472_CAN_16_0808
crossref_primary_10_1158_0008_5472_CAN_16_0808
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-15
PublicationDateYYYYMMDD 2017-04-15
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Baltimore
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2017
Publisher American Association for Cancer Research, Inc
Publisher_xml – name: American Association for Cancer Research, Inc
References Faber (2022061706170078900_bib40) 2015; 112
Singhal (2022061706170078900_bib36) 1997; 3
Sourisseau (2022061706170078900_bib43) 2014; 9
Han (2022061706170078900_bib3) 2006; 12
Ahmed (2022061706170078900_bib55) 2015; 75
Bao (2022061706170078900_bib18) 2006; 444
Thalmann (2022061706170078900_bib37) 1999; 5
Thakur (2022061706170078900_bib50) 2015; 5
Phillips (2022061706170078900_bib19) 2006; 98
Kleiman (2022061706170078900_bib13) 2013; 8
Tam (2022061706170078900_bib34) 2013; 24
Liu (2022061706170078900_bib29) 2015; 13
Merino (2022061706170078900_bib53) 2015; 34
Visvader (2022061706170078900_bib16) 2012; 10
Stephen (2022061706170078900_bib1) 2014; 25
Antoniou (2022061706170078900_bib44) 2013; 12
Minjgee (2022061706170078900_bib11) 2011; 81
Shih (2022061706170078900_bib39) 2001; 93
Lamour (2022061706170078900_bib47) 2015; 137
Wang (2022061706170078900_bib26) 2015; 163
Tsao (2022061706170078900_bib4) 2007; 25
Hata (2022061706170078900_bib54) 2014; 74
Cengel (2022061706170078900_bib7) 2007; 9
Elia (2022061706170078900_bib41) 1992; 52
Rycaj (2022061706170078900_bib22) 2014; 90
Seguin (2022061706170078900_bib23) 2014; 16
Sabbattini (2022061706170078900_bib28) 2014; 25
Mutrie (2022061706170078900_bib51) 2011; 12
Pan (2022061706170078900_bib52) 2010; 67
Eberhard (2022061706170078900_bib2) 2005; 23
Pietras (2022061706170078900_bib48) 2014; 14
Williams (2022061706170078900_bib12) 2012; 11
Xue (2022061706170078900_bib42) 1994; 66
Mak (2022061706170078900_bib9) 2015; 16
Krause (2022061706170078900_bib21) 2011; 17
Wo (2022061706170078900_bib10) 2015; 93
Xu (2022061706170078900_bib14) 2011; 32
Das (2022061706170078900_bib38) 2004; 279
Kim (2022061706170078900_bib8) 2005; 65
Wang (2022061706170078900_bib27) 2014; 74
Rhodes (2022061706170078900_bib33) 2004; 6
Winton (2022061706170078900_bib5) 2005; 352
Butof (2022061706170078900_bib15) 2013; 108
Cao (2022061706170078900_bib46) 2015; 6
Chambers (2022061706170078900_bib35) 1996; 15
Fujita-Sato (2022061706170078900_bib45) 2015; 75
Barcelo (2022061706170078900_bib25) 2013; 74
Baumann (2022061706170078900_bib17) 2008; 8
Gurtner (2022061706170078900_bib31) 2011; 99
Bianchi-Smiraglia (2022061706170078900_bib49) 2013; 32
Wang (2022061706170078900_bib30) 2011; 71
Bernhard (2022061706170078900_bib6) 2000; 60
Cerami (2022061706170078900_bib32) 2012; 2
Diehn (2022061706170078900_bib20) 2009; 458
Moon (2022061706170078900_bib24) 2014; 106
10473115 - Clin Cancer Res. 1999 Aug;5(8):2271-7
24747441 - Nat Cell Biol. 2014 May;16(5):457-68
15068665 - Neoplasia. 2004 Jan-Feb;6(1):1-6
26590425 - Cell. 2015 Nov 19;163(5):1237-51
18024870 - J Clin Oncol. 2007 Nov 20;25(33):5240-7
24651010 - Cancer Cell. 2014 Mar 17;25(3):272-81
24675361 - Cancer Res. 2014 Jun 1;74(11):3146-56
21976536 - Clin Cancer Res. 2011 Dec 1;17(23):7224-9
11562390 - J Natl Cancer Inst. 2001 Sep 19;93(18):1392-400
8959677 - Lung Cancer. 1996 Nov;15(3):311-23
16140961 - Cancer Res. 2005 Sep 1;65(17 ):7902-10
23830466 - Radiother Oncol. 2013 Sep;108(3):388-96
19194462 - Nature. 2009 Apr 9;458(7239):780-3
21795853 - Cancer Biol Ther. 2011 Oct 15;12(8):680-90
9815727 - Clin Cancer Res. 1997 Apr;3(4):605-11
25737542 - Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1288-96
24349411 - PLoS One. 2013 Dec 12;8(12 ):e82982
24491301 - J Natl Cancer Inst. 2014 Feb;106(2):djt373
25620078 - Int J Cancer. 2015 Sep 1;137(5):1047-57
26282173 - Cancer Res. 2015 Oct 15;75(20):4416-28
25973915 - Sci Rep. 2015 May 14;5:10194
24371225 - Cancer Res. 2014 Feb 15;74(4):1190-9
22824793 - Oncogene. 2013 Jun 20;32(25):3049-58
24527669 - Int J Radiat Biol. 2014 Aug;90(8):615-21
8027606 - Int J Radiat Biol. 1994 Jul;66(1):11-21
17051156 - Nature. 2006 Dec 7;444(7120):756-60
14704150 - J Biol Chem. 2004 Mar 19;279(12):11051-64
25977330 - Cancer Res. 2015 Jul 15;75(14):2851-62
22411900 - Mol Cancer Ther. 2012 May;11(5):1193-202
24029232 - Cancer Cell. 2013 Sep 9;24(3):347-64
24648348 - Cancer Res. 2014 May 15;74(10 ):2825-34
21852385 - Cancer Res. 2011 Oct 1;71(19):6261-9
22704512 - Cell Stem Cell. 2012 Jun 14;10(6):717-28
15972865 - N Engl J Med. 2005 Jun 23;352(25):2589-97
25749383 - Oncotarget. 2015 Mar 30;6(9):6627-40
16043828 - J Clin Oncol. 2005 Sep 1;23(25):5900-9
11118040 - Cancer Res. 2000 Dec 1;60(23):6597-600
25263453 - Oncogene. 2015 Jul 23;34(30):3926-34
17460778 - Neoplasia. 2007 Apr;9(4):341-8
22588877 - Cancer Discov. 2012 May;2(5):401-4
19362386 - Lung Cancer. 2010 Jan;67(1):93-100
25450872 - Clin Lung Cancer. 2015 Jan;16(1):24-32
1540967 - Cancer Res. 1992 Mar 15;52(6):1580-6
24607407 - Cell Stem Cell. 2014 Mar 6;14(3):357-69
18511937 - Nat Rev Cancer. 2008 Jul;8(7):545-54
24270846 - Cell Cycle. 2013 Dec 15;12(24):3743-8
21985943 - Int J Radiat Oncol Biol Phys. 2011 Dec 1;81(5):1506-14
25667133 - Mol Cancer Res. 2015 Apr;13(4):713-20
24430871 - Mol Biol Cell. 2014 Mar;25(6):904-15
21262926 - Carcinogenesis. 2011 Apr;32(4):488-95
21665304 - Radiother Oncol. 2011 Jun;99(3):323-30
17179479 - J Natl Cancer Inst. 2006 Dec 20;98 (24):1777-85
16638863 - Clin Cancer Res. 2006 Apr 15;12 (8):2538-44
24346089 - J Thorac Oncol. 2014 Jan;9(1):7-17
References_xml – volume: 81
  start-page: 1506
  year: 2011
  ident: 2022061706170078900_bib11
  article-title: K-RAS(V12) induces autocrine production of EGFR ligands and mediates radioresistance through EGFR-dependent Akt signaling and activation of DNA-PKcs
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2011.05.057
– volume: 16
  start-page: 24
  year: 2015
  ident: 2022061706170078900_bib9
  article-title: Outcomes by tumor histology and KRAS mutation status after lung stereotactic body radiation therapy for early-stage non-small-cell lung cancer
  publication-title: Clin Lung Cancer
  doi: 10.1016/j.cllc.2014.09.005
– volume: 137
  start-page: 1047
  year: 2015
  ident: 2022061706170078900_bib47
  article-title: Targeting osteopontin suppresses glioblastoma stem-like cell character and tumorigenicity in vivo
  publication-title: Int J Cancer
  doi: 10.1002/ijc.29454
– volume: 60
  start-page: 6597
  year: 2000
  ident: 2022061706170078900_bib6
  article-title: Direct evidence for the contribution of activated N-ras and K-ras oncogenes to increased intrinsic radiation resistance in human tumor cell lines
  publication-title: Cancer Res
– volume: 74
  start-page: 1190
  year: 2013
  ident: 2022061706170078900_bib25
  article-title: Phosphorylation at Ser-181 of oncogenic KRAS is required for tumor growth
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-13-1750
– volume: 16
  start-page: 457
  year: 2014
  ident: 2022061706170078900_bib23
  article-title: An integrin beta(3)-KRAS-RalB complex drives tumour stemness and resistance to EGFR inhibition
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2953
– volume: 52
  start-page: 1580
  year: 1992
  ident: 2022061706170078900_bib41
  article-title: Influence of chromatin structure on the induction of DNA double strand breaks by ionizing radiation
  publication-title: Cancer Res
– volume: 74
  start-page: 3146
  year: 2014
  ident: 2022061706170078900_bib54
  article-title: Failure to induce apoptosis via BCL-2 family proteins underlies lack of efficacy of combined MEK and PI3K inhibitors for KRAS-mutant lung cancers
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-13-3728
– volume: 352
  start-page: 2589
  year: 2005
  ident: 2022061706170078900_bib5
  article-title: Vinorelbine plus cisplatin vs. observation in resected non-small-cell lung cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa043623
– volume: 108
  start-page: 388
  year: 2013
  ident: 2022061706170078900_bib15
  article-title: Clinical perspectives of cancer stem cell research in radiation oncology
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2013.06.002
– volume: 10
  start-page: 717
  year: 2012
  ident: 2022061706170078900_bib16
  article-title: Cancer stem cells: current status and evolving complexities
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.05.007
– volume: 163
  start-page: 1237
  year: 2015
  ident: 2022061706170078900_bib26
  article-title: K-Ras promotes tumorigenicity through suppression of non-canonical Wnt Signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2015.10.041
– volume: 66
  start-page: 11
  year: 1994
  ident: 2022061706170078900_bib42
  article-title: Induction of DNA damage in gamma-irradiated nuclei stripped of nuclear protein classes: differential modulation of double-strand break and DNA-protein crosslink formation
  publication-title: Int J Radiat Biol
  doi: 10.1080/09553009414550901
– volume: 25
  start-page: 904
  year: 2014
  ident: 2022061706170078900_bib28
  article-title: An H3K9/S10 methyl-phospho switch modulates Polycomb and Pol II binding at repressed genes during differentiation
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e13-10-0628
– volume: 444
  start-page: 756
  year: 2006
  ident: 2022061706170078900_bib18
  article-title: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response
  publication-title: Nature
  doi: 10.1038/nature05236
– volume: 90
  start-page: 615
  year: 2014
  ident: 2022061706170078900_bib22
  article-title: Cancer stem cells and radioresistance
  publication-title: Int J Radiat Biol
  doi: 10.3109/09553002.2014.892227
– volume: 99
  start-page: 323
  year: 2011
  ident: 2022061706170078900_bib31
  article-title: Diverse effects of combined radiotherapy and EGFR inhibition with antibodies or TK inhibitors on local tumour control and correlation with EGFR gene expression
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2011.05.035
– volume: 6
  start-page: 1
  year: 2004
  ident: 2022061706170078900_bib33
  article-title: ONCOMINE: a cancer microarray database and integrated data-mining platform
  publication-title: Neoplasia
  doi: 10.1016/S1476-5586(04)80047-2
– volume: 71
  start-page: 6261
  year: 2011
  ident: 2022061706170078900_bib30
  article-title: EGF receptor inhibition radiosensitizes NSCLC cells by inducing senescence in cells sustaining DNA double-strand breaks
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-0213
– volume: 23
  start-page: 5900
  year: 2005
  ident: 2022061706170078900_bib2
  article-title: Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2005.02.857
– volume: 17
  start-page: 7224
  year: 2011
  ident: 2022061706170078900_bib21
  article-title: Cancer stem cells: targets and potential biomarkers for radiotherapy
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-10-2639
– volume: 98
  start-page: 1777
  year: 2006
  ident: 2022061706170078900_bib19
  article-title: The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djj495
– volume: 15
  start-page: 311
  year: 1996
  ident: 2022061706170078900_bib35
  article-title: Osteopontin expression in lung cancer
  publication-title: Lung Cancer
  doi: 10.1016/0169-5002(95)00595-1
– volume: 2
  start-page: 401
  year: 2012
  ident: 2022061706170078900_bib32
  article-title: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-12-0095
– volume: 93
  start-page: 1392
  year: 2001
  ident: 2022061706170078900_bib39
  article-title: Collapsin response mediator protein-1 and the invasion and metastasis of cancer cells
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/93.18.1392
– volume: 5
  start-page: 10194
  year: 2015
  ident: 2022061706170078900_bib50
  article-title: Inhibition of STAT3, FAK and Src mediated signaling reduces cancer stem cell load, tumorigenic potential and metastasis in breast cancer
  publication-title: Sci Rep
  doi: 10.1038/srep10194
– volume: 279
  start-page: 11051
  year: 2004
  ident: 2022061706170078900_bib38
  article-title: Osteopontin induces AP-1-mediated secretion of urokinase-type plasminogen activator through c-Src-dependent epidermal growth factor receptor transactivation in breast cancer cells
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M310256200
– volume: 9
  start-page: 7
  year: 2014
  ident: 2022061706170078900_bib43
  article-title: Lung cancer stem cell: fancy conceptual model of tumor biology or cornerstone of a forthcoming therapeutic breakthrough?
  publication-title: J Thorac Oncol
  doi: 10.1097/JTO.0000000000000028
– volume: 75
  start-page: 4416
  year: 2015
  ident: 2022061706170078900_bib55
  article-title: Selective inhibition of parallel DNA damage response pathways optimizes radiosensitization of glioblastoma stem-like cells
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-14-3790
– volume: 34
  start-page: 3926
  year: 2015
  ident: 2022061706170078900_bib53
  article-title: Pro-apoptotic Bim suppresses breast tumor cell metastasis and is a target gene of SNAI2
  publication-title: Oncogene
  doi: 10.1038/onc.2014.313
– volume: 25
  start-page: 272
  year: 2014
  ident: 2022061706170078900_bib1
  article-title: Dragging ras back in the ring
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2014.02.017
– volume: 75
  start-page: 2851
  year: 2015
  ident: 2022061706170078900_bib45
  article-title: Enhanced MET translation and signaling sustains K-Ras-driven proliferation under anchorage-independent growth conditions
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-14-1623
– volume: 9
  start-page: 341
  year: 2007
  ident: 2022061706170078900_bib7
  article-title: Oncogenic K-Ras signals through epidermal growth factor receptor and wild-type H-Ras to promote radiation survival in pancreatic and colorectal carcinoma cells
  publication-title: Neoplasia
  doi: 10.1593/neo.06823
– volume: 12
  start-page: 3743
  year: 2013
  ident: 2022061706170078900_bib44
  article-title: Cancer stem cells, a fuzzy evolving concept: a cell population or a cell property?
  publication-title: Cell Cycle
  doi: 10.4161/cc.27305
– volume: 8
  start-page: 545
  year: 2008
  ident: 2022061706170078900_bib17
  article-title: Exploring the role of cancer stem cells in radioresistance
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2419
– volume: 6
  start-page: 6627
  year: 2015
  ident: 2022061706170078900_bib46
  article-title: Osteopontin promotes a cancer stem cell-like phenotype in hepatocellular carcinoma cells via an integrin-NF-kappaB-HIF-1alpha pathway
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.3113
– volume: 458
  start-page: 780
  year: 2009
  ident: 2022061706170078900_bib20
  article-title: Association of reactive oxygen species levels and radioresistance in cancer stem cells
  publication-title: Nature
  doi: 10.1038/nature07733
– volume: 13
  start-page: 713
  year: 2015
  ident: 2022061706170078900_bib29
  article-title: Adapting a drug screening platform to discover associations of molecular targeted radiosensitizers with genomic biomarkers
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-14-0570
– volume: 74
  start-page: 2825
  year: 2014
  ident: 2022061706170078900_bib27
  article-title: EGFR-mediated chromatin condensation protects KRAS-mutant cancer cells against ionizing radiation
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-13-3157
– volume: 106
  start-page: djt373
  year: 2014
  ident: 2022061706170078900_bib24
  article-title: Role of oncogenic K-Ras in cancer stem cell activation by aberrant Wnt/beta-catenin signaling
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djt373
– volume: 11
  start-page: 1193
  year: 2012
  ident: 2022061706170078900_bib12
  article-title: Cotargeting MAPK and PI3K signaling with concurrent radiotherapy as a strategy for the treatment of pancreatic cancer
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-12-0098
– volume: 12
  start-page: 2538
  year: 2006
  ident: 2022061706170078900_bib3
  article-title: Optimization of patient selection for gefitinib in non-small cell lung cancer by combined analysis of epidermal growth factor receptor mutation, K-ras mutation, and Akt phosphorylation
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-05-2845
– volume: 32
  start-page: 3049
  year: 2013
  ident: 2022061706170078900_bib49
  article-title: Integrin beta5 contributes to the tumorigenic potential of breast cancer cells through the Src-FAK and MEK-ERK signaling pathways
  publication-title: Oncogene
  doi: 10.1038/onc.2012.320
– volume: 67
  start-page: 93
  year: 2010
  ident: 2022061706170078900_bib52
  article-title: Long form collapsin response mediator protein-1 (LCRMP-1) expression is associated with clinical outcome and lymph node metastasis in non-small cell lung cancer patients
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2009.03.006
– volume: 24
  start-page: 347
  year: 2013
  ident: 2022061706170078900_bib34
  article-title: Protein kinase C alpha is a central signaling node and therapeutic target for breast cancer stem cells
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2013.08.005
– volume: 65
  start-page: 7902
  year: 2005
  ident: 2022061706170078900_bib8
  article-title: Selective inhibition of Ras, phosphoinositide 3 kinase, and Akt isoforms increases the radiosensitivity of human carcinoma cell lines
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-0513
– volume: 25
  start-page: 5240
  year: 2007
  ident: 2022061706170078900_bib4
  article-title: Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2007.12.6953
– volume: 8
  start-page: e82982
  year: 2013
  ident: 2022061706170078900_bib13
  article-title: Comparative analysis of radiosensitizers for K-RAS mutant rectal cancers
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0082982
– volume: 3
  start-page: 605
  year: 1997
  ident: 2022061706170078900_bib36
  article-title: Elevated plasma osteopontin in metastatic breast cancer associated with increased tumor burden and decreased survival
  publication-title: Clin Cancer Res
– volume: 112
  start-page: E1288
  year: 2015
  ident: 2022061706170078900_bib40
  article-title: Assessment of ABT-263 activity across a cancer cell line collection leads to a potent combination therapy for small-cell lung cancer
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1411848112
– volume: 32
  start-page: 488
  year: 2011
  ident: 2022061706170078900_bib14
  article-title: The oncogenic kinase Pim-1 is modulated by K-Ras signaling and mediates transformed growth and radioresistance in human pancreatic ductal adenocarcinoma cells
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgr007
– volume: 5
  start-page: 2271
  year: 1999
  ident: 2022061706170078900_bib37
  article-title: Osteopontin: possible role in prostate cancer progression
  publication-title: Clin Cancer Res
– volume: 14
  start-page: 357
  year: 2014
  ident: 2022061706170078900_bib48
  article-title: Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.01.005
– volume: 12
  start-page: 680
  year: 2011
  ident: 2022061706170078900_bib51
  article-title: Osteopontin increases breast cancer cell sensitivity to specific signaling pathway inhibitors in preclinical models
  publication-title: Cancer Biol Ther
  doi: 10.4161/cbt.12.8.16440
– volume: 93
  start-page: S111
  year: 2015
  ident: 2022061706170078900_bib10
  article-title: Clinical and molecular predictors of local failure after SBRT for liver metastases: a secondary analysis of a prospective phase II trial
  publication-title: Int J Rad Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2015.07.266
– reference: 24430871 - Mol Biol Cell. 2014 Mar;25(6):904-15
– reference: 21665304 - Radiother Oncol. 2011 Jun;99(3):323-30
– reference: 24648348 - Cancer Res. 2014 May 15;74(10 ):2825-34
– reference: 14704150 - J Biol Chem. 2004 Mar 19;279(12):11051-64
– reference: 24029232 - Cancer Cell. 2013 Sep 9;24(3):347-64
– reference: 24675361 - Cancer Res. 2014 Jun 1;74(11):3146-56
– reference: 24747441 - Nat Cell Biol. 2014 May;16(5):457-68
– reference: 17179479 - J Natl Cancer Inst. 2006 Dec 20;98 (24):1777-85
– reference: 24349411 - PLoS One. 2013 Dec 12;8(12 ):e82982
– reference: 25263453 - Oncogene. 2015 Jul 23;34(30):3926-34
– reference: 17051156 - Nature. 2006 Dec 7;444(7120):756-60
– reference: 8959677 - Lung Cancer. 1996 Nov;15(3):311-23
– reference: 24270846 - Cell Cycle. 2013 Dec 15;12(24):3743-8
– reference: 1540967 - Cancer Res. 1992 Mar 15;52(6):1580-6
– reference: 11562390 - J Natl Cancer Inst. 2001 Sep 19;93(18):1392-400
– reference: 24371225 - Cancer Res. 2014 Feb 15;74(4):1190-9
– reference: 15972865 - N Engl J Med. 2005 Jun 23;352(25):2589-97
– reference: 21976536 - Clin Cancer Res. 2011 Dec 1;17(23):7224-9
– reference: 22824793 - Oncogene. 2013 Jun 20;32(25):3049-58
– reference: 22411900 - Mol Cancer Ther. 2012 May;11(5):1193-202
– reference: 24527669 - Int J Radiat Biol. 2014 Aug;90(8):615-21
– reference: 26282173 - Cancer Res. 2015 Oct 15;75(20):4416-28
– reference: 11118040 - Cancer Res. 2000 Dec 1;60(23):6597-600
– reference: 10473115 - Clin Cancer Res. 1999 Aug;5(8):2271-7
– reference: 16140961 - Cancer Res. 2005 Sep 1;65(17 ):7902-10
– reference: 8027606 - Int J Radiat Biol. 1994 Jul;66(1):11-21
– reference: 25973915 - Sci Rep. 2015 May 14;5:10194
– reference: 25620078 - Int J Cancer. 2015 Sep 1;137(5):1047-57
– reference: 25667133 - Mol Cancer Res. 2015 Apr;13(4):713-20
– reference: 15068665 - Neoplasia. 2004 Jan-Feb;6(1):1-6
– reference: 25977330 - Cancer Res. 2015 Jul 15;75(14):2851-62
– reference: 16043828 - J Clin Oncol. 2005 Sep 1;23(25):5900-9
– reference: 24346089 - J Thorac Oncol. 2014 Jan;9(1):7-17
– reference: 21262926 - Carcinogenesis. 2011 Apr;32(4):488-95
– reference: 21985943 - Int J Radiat Oncol Biol Phys. 2011 Dec 1;81(5):1506-14
– reference: 24491301 - J Natl Cancer Inst. 2014 Feb;106(2):djt373
– reference: 21795853 - Cancer Biol Ther. 2011 Oct 15;12(8):680-90
– reference: 19194462 - Nature. 2009 Apr 9;458(7239):780-3
– reference: 16638863 - Clin Cancer Res. 2006 Apr 15;12 (8):2538-44
– reference: 19362386 - Lung Cancer. 2010 Jan;67(1):93-100
– reference: 18024870 - J Clin Oncol. 2007 Nov 20;25(33):5240-7
– reference: 24651010 - Cancer Cell. 2014 Mar 17;25(3):272-81
– reference: 17460778 - Neoplasia. 2007 Apr;9(4):341-8
– reference: 25450872 - Clin Lung Cancer. 2015 Jan;16(1):24-32
– reference: 9815727 - Clin Cancer Res. 1997 Apr;3(4):605-11
– reference: 26590425 - Cell. 2015 Nov 19;163(5):1237-51
– reference: 25737542 - Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1288-96
– reference: 23830466 - Radiother Oncol. 2013 Sep;108(3):388-96
– reference: 22588877 - Cancer Discov. 2012 May;2(5):401-4
– reference: 24607407 - Cell Stem Cell. 2014 Mar 6;14(3):357-69
– reference: 18511937 - Nat Rev Cancer. 2008 Jul;8(7):545-54
– reference: 21852385 - Cancer Res. 2011 Oct 1;71(19):6261-9
– reference: 25749383 - Oncotarget. 2015 Mar 30;6(9):6627-40
– reference: 22704512 - Cell Stem Cell. 2012 Jun 14;10(6):717-28
SSID ssj0005105
Score 2.5164392
Snippet Lung cancers with activating KRAS mutations are characterized by treatment resistance and poor prognosis. In particular, the basis for their resistance to...
In elucidating mechanisms that link the stem-like phenotype of KRAS-mutated lung cancer cells to radiation resistance, this study identifies potential...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2018
SubjectTerms A549 Cells
Animals
Cancer therapies
Carcinoma, Non-Small-Cell Lung - genetics
Carcinoma, Non-Small-Cell Lung - metabolism
Carcinoma, Non-Small-Cell Lung - pathology
Carcinoma, Non-Small-Cell Lung - radiotherapy
Chromatin
DNA damage
Epidermal growth factor receptors
Female
Genotype & phenotype
Heterografts
Humans
Invasiveness
K-Ras protein
Lung cancer
Lung Neoplasms - genetics
Lung Neoplasms - metabolism
Lung Neoplasms - pathology
Lung Neoplasms - radiotherapy
Lungs
Male
Mice
Mice, Nude
Mitosis
Mutation
Neoplastic Stem Cells - metabolism
Neoplastic Stem Cells - pathology
Neoplastic Stem Cells - radiation effects
Osteopontin
Osteopontin - biosynthesis
Osteopontin - genetics
Osteopontin - metabolism
p53 Protein
Proto-Oncogene Proteins p21(ras) - genetics
Proto-Oncogene Proteins p21(ras) - metabolism
Radiation Tolerance - genetics
Receptor, Epidermal Growth Factor - metabolism
Signal Transduction
Treatment resistance
Title Radiation Resistance in KRAS-Mutated Lung Cancer Is Enabled by Stem-like Properties Mediated by an Osteopontin–EGFR Pathway
URI https://www.ncbi.nlm.nih.gov/pubmed/28202526
https://www.proquest.com/docview/1983364301
https://www.proquest.com/docview/1869074310
https://www.proquest.com/docview/1897390754
https://pubmed.ncbi.nlm.nih.gov/PMC5445902
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiEuiHcDBS0St8jBr334GFUJLU1SkSYiN8trr5WI4ERNIlQ48NeZsTe201ZQuFiJvV7Z_j6PZ3dmviXkva9EGnsus7jmHMOMsaXsRFlcqTSRMUuiCOchB0N-MvE_Tdm00fhVy1rablQ7_nFrXcn_oAr7AFeskv0HZMtOYQf8BnxhCwjD9k4Yj1BYIAdwpNfoCOJbOs9aZ6POhTXYoh-ZtPpbjOzjocvW6brVzYulcrfzYqO_WYv5V43lAitMsNbrPHKTn6dQmal1DixYrpa4noTV_dgboab_7Hu0Fww2nRvdoFkeGC4yPHILtFi0a_MNX8wENabTVuavqBCZV7sG0FOR-92_wsqhTRX9xylHE7yY1Sct4EOI6ohF9FpXhlb4hZTkzhKbBV0Kxsm6WbWNkdbmb1FQftP8M1nkS0qL-cJtH3eGlsMt8Ipl9b3bxfiH52Fv0u-H4-50fI_cd2GcgUtgnH2u5ObR-zRlX9D1h1s73ndoboxSrifb1ryX8WPyyAw7aKfg0BPS0NlT8mBgEiuekZ8llWhFJTrPaJ1KFKlEC7Tp6ZoaKlF1RUsq0YpKdEclbBBl9DqVqKHSczLpdcfHJ5ZZl8OKAbWNxWIntZXP0wC-stxOhYq4cLUttYiCQNiR9nTMUgXPM_ECOwlYgKo_aSp1wiMWeS_IQbbM9CGhju_4yot5DJ6s7-ISuoEvYwfMm-AikrxJ_N3DDWMjWo9rpyzCfPDKJCZPyBAxCQGT0OEhYtIk7fK0VaHa8rcTjnbIheYFX4dOID0PPHbbaZJ35WEwvxhTizK93EIbmU8vwSDpT20CAc9BML9JXhZkKK_KBQ_cZS7cqNijSdkA5d_3j2TzWS4DjzJage2-usO1vSYPq7fwiBxsLrf6DTjTG_U2J_xvSs3Icg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiation+Resistance+in+KRAS-Mutated+Lung+Cancer+Is+Enabled+by+Stem-like+Properties+Mediated+by+an+Osteopontin-EGFR+Pathway&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Wang%2C+Meng&rft.au=Han%2C+Jing&rft.au=Marcar%2C+Lynnette&rft.au=Black%2C+Josh&rft.date=2017-04-15&rft.eissn=1538-7445&rft.volume=77&rft.issue=8&rft.spage=2018&rft.epage=2028&rft_id=info:doi/10.1158%2F0008-5472.CAN-16-0808&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon