Radiation Resistance in KRAS-Mutated Lung Cancer Is Enabled by Stem-like Properties Mediated by an Osteopontin–EGFR Pathway
Lung cancers with activating KRAS mutations are characterized by treatment resistance and poor prognosis. In particular, the basis for their resistance to radiation therapy is poorly understood. Here, we describe a radiation resistance phenotype conferred by a stem-like subpopulation characterized b...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 77; no. 8; pp. 2018 - 2028 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for Cancer Research, Inc
15.04.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lung cancers with activating KRAS mutations are characterized by treatment resistance and poor prognosis. In particular, the basis for their resistance to radiation therapy is poorly understood. Here, we describe a radiation resistance phenotype conferred by a stem-like subpopulation characterized by mitosis-like condensed chromatin (MLCC), high CD133 expression, invasive potential, and tumor-initiating properties. Mechanistic investigations defined a pathway involving osteopontin and the EGFR in promoting this phenotype. Osteopontin/EGFR–dependent MLCC protected cells against radiation-induced DNA double-strand breaks and repressed putative negative regulators of stem-like properties, such as CRMP1 and BIM. The MLCC-positive phenotype defined a subset of KRAS-mutated lung cancers that were enriched for co-occurring genomic alterations in TP53 and CDKN2A. Our results illuminate the basis for the radiation resistance of KRAS-mutated lung cancers, with possible implications for prognostic and therapeutic strategies. Cancer Res; 77(8); 2018–28. ©2017 AACR. |
---|---|
AbstractList | Lung cancers with activating KRAS mutations are characterized by treatment resistance and poor prognosis. In particular, the basis for their resistance to radiation therapy is poorly understood. Here we describe a radiation resistance phenotype conferred by a stem-like subpopulation characterized by mitosis-like condensed chromatin (MLCC), high CD133 expression, invasive potential, and tumor-initiating properties. Mechanistic investigations defined a pathway involving osteopontin and the EGFR in promoting this phenotype. Osteopontin/EGFR-dependent MLCC protected cells against radiation-induced DNA double-strand breaks and repressed putative negative regulators of stem-like properties such as CRMP1 and BIM. The MLCC-positive phenotype defined a subset of KRAS-mutated lung cancers that were enriched for co-occurring genomic alterations in TP53 and CDKN2A. Our results illuminate the basis for the radiation resistance of KRAS-mutated lung cancers with possible implications for prognostic and therapeutic strategies. In elucidating mechanisms that link the stem-like phenotype of KRAS-mutated lung cancer cells to radiation resistance, this study identifies potential therapeutic targets to overcome this resistance.Lung cancers with activating KRAS mutations are characterized by treatment resistance and poor prognosis. In particular, the basis for their resistance to radiation therapy is poorly understood. Here, we describe a radiation resistance phenotype conferred by a stem-like subpopulation characterized by mitosis-like condensed chromatin (MLCC), high CD133 expression, invasive potential, and tumor-initiating properties. Mechanistic investigations defined a pathway involving osteopontin and the EGFR in promoting this phenotype. Osteopontin/EGFR–dependent MLCC protected cells against radiation-induced DNA double-strand breaks and repressed putative negative regulators of stem-like properties, such as CRMP1 and BIM. The MLCC-positive phenotype defined a subset of KRAS-mutated lung cancers that were enriched for co-occurring genomic alterations in TP53 and CDKN2A. Our results illuminate the basis for the radiation resistance of KRAS-mutated lung cancers, with possible implications for prognostic and therapeutic strategies. Cancer Res; 77(8); 2018–28. ©2017 AACR. Lung cancers with activating KRAS mutations are characterized by treatment resistance and poor prognosis. In particular, the basis for their resistance to radiation therapy is poorly understood. Here, we describe a radiation resistance phenotype conferred by a stem-like subpopulation characterized by mitosis-like condensed chromatin (MLCC), high CD133 expression, invasive potential, and tumor-initiating properties. Mechanistic investigations defined a pathway involving osteopontin and the EGFR in promoting this phenotype. Osteopontin/EGFR-dependent MLCC protected cells against radiation-induced DNA double-strand breaks and repressed putative negative regulators of stem-like properties, such as CRMP1 and BIM. The MLCC-positive phenotype defined a subset of KRAS-mutated lung cancers that were enriched for co-occurring genomic alterations in TP53 and CDKN2A. Our results illuminate the basis for the radiation resistance of KRAS-mutated lung cancers, with possible implications for prognostic and therapeutic strategies. Cancer Res; 77(8); 2018-28. ©2017 AACR. In elucidating mechanisms that link the stem-like phenotype of KRAS-mutated lung cancer cells to radiation resistance, this study identifies potential therapeutic targets to overcome this resistance. Lung cancers with activating KRAS mutations are characterized by treatment resistance and poor prognosis. In particular, the basis for their resistance to radiation therapy is poorly understood. Here, we describe a radiation resistance phenotype conferred by a stem-like subpopulation characterized by mitosis-like condensed chromatin (MLCC), high CD133 expression, invasive potential, and tumor-initiating properties. Mechanistic investigations defined a pathway involving osteopontin and the EGFR in promoting this phenotype. Osteopontin/EGFR-dependent MLCC protected cells against radiation-induced DNA double-strand breaks and repressed putative negative regulators of stem-like properties, such as CRMP1 and BIM. The MLCC-positive phenotype defined a subset of KRAS-mutated lung cancers that were enriched for co-occurring genomic alterations in TP53 and CDKN2A. Our results illuminate the basis for the radiation resistance of KRAS-mutated lung cancers, with possible implications for prognostic and therapeutic strategies. Cancer Res; 77(8); 2018-28. [copy2017 AACR. Lung cancers with activating KRAS mutations are characterized by treatment resistance and poor prognosis. In particular, the basis for their resistance to radiation therapy is poorly understood. Here, we describe a radiation resistance phenotype conferred by a stem-like subpopulation characterized by mitosis-like condensed chromatin (MLCC), high CD133 expression, invasive potential, and tumor-initiating properties. Mechanistic investigations defined a pathway involving osteopontin and the EGFR in promoting this phenotype. Osteopontin/EGFR-dependent MLCC protected cells against radiation-induced DNA double-strand breaks and repressed putative negative regulators of stem-like properties, such as CRMP1 and BIM. The MLCC-positive phenotype defined a subset of KRAS-mutated lung cancers that were enriched for co-occurring genomic alterations in TP53 and CDKN2A. Our results illuminate the basis for the radiation resistance of KRAS-mutated lung cancers, with possible implications for prognostic and therapeutic strategies. . |
Author | Willers, Henning Black, Josh Krause, Mechthild Baumann, Michael Whetstine, Johnathan R. Wang, Meng Gurtner, Kristin Liu, Qi Li, Xiangyong Marcar, Lynnette Mak, Raymond H. Benes, Cyril H. Nagulapalli, Kshithija Kang, Jing X. Han, Jing Sequist, Lecia V. Hong, Theodore S. |
AuthorAffiliation | 8 Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 5 Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 6 Center for Computational Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 2 Jinan Municipal Center for Disease Control and Prevention, Shandong, China 4 Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 7 Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 3 University of Colorado School of Medicine, Aurora, Colorado 1 Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 9 Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden; OncoRay National Center for Radiation Research in Oncology; Medical Facul |
AuthorAffiliation_xml | – name: 7 Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts – name: 8 Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts – name: 3 University of Colorado School of Medicine, Aurora, Colorado – name: 4 Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts – name: 1 Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts – name: 2 Jinan Municipal Center for Disease Control and Prevention, Shandong, China – name: 5 Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts – name: 6 Center for Computational Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts – name: 9 Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden; OncoRay National Center for Radiation Research in Oncology; Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden; Helmholtz-Zentrum Dresden-Rossendorf; Institute of Radiation Oncology, Helmholtz-Zentrum Dresden-Rossendorf; and Cancer Consortium (DKTK) partner site Dresden and German Cancer Research Center (DKFZ) Heidelberg, Dresden, Germany |
Author_xml | – sequence: 1 givenname: Meng surname: Wang fullname: Wang, Meng – sequence: 2 givenname: Jing surname: Han fullname: Han, Jing – sequence: 3 givenname: Lynnette surname: Marcar fullname: Marcar, Lynnette – sequence: 4 givenname: Josh surname: Black fullname: Black, Josh – sequence: 5 givenname: Qi surname: Liu fullname: Liu, Qi – sequence: 6 givenname: Xiangyong surname: Li fullname: Li, Xiangyong – sequence: 7 givenname: Kshithija surname: Nagulapalli fullname: Nagulapalli, Kshithija – sequence: 8 givenname: Lecia V. surname: Sequist fullname: Sequist, Lecia V. – sequence: 9 givenname: Raymond H. surname: Mak fullname: Mak, Raymond H. – sequence: 10 givenname: Cyril H. surname: Benes fullname: Benes, Cyril H. – sequence: 11 givenname: Theodore S. surname: Hong fullname: Hong, Theodore S. – sequence: 12 givenname: Kristin surname: Gurtner fullname: Gurtner, Kristin – sequence: 13 givenname: Mechthild surname: Krause fullname: Krause, Mechthild – sequence: 14 givenname: Michael surname: Baumann fullname: Baumann, Michael – sequence: 15 givenname: Jing X. surname: Kang fullname: Kang, Jing X. – sequence: 16 givenname: Johnathan R. surname: Whetstine fullname: Whetstine, Johnathan R. – sequence: 17 givenname: Henning surname: Willers fullname: Willers, Henning |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28202526$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstu1DAUhi1URKeFRwBZYsMmxU7iS4SENBpNL2JKqymsLSc5aV0y9tR2QLNA6jvwhjwJDtNW0AViZdnnO_-5-N9DO9ZZQOglJQeUMvmWECIzVor8YDb9mFGeEUnkEzShrJCZKEu2gyYPzC7aC-E6XRkl7BnazWVOcpbzCfq-1K3R0TiLlxBMiNo2gI3FH5bTi-x0iDpCixeDvcSzMeTxScBzq-s-PdcbfBFhlfXmC-Bz79bgo4GAT2HU3ALa4rMQwa2djcb-vP0xPzpc4nMdr77pzXP0tNN9gBd35z76fDj_NDvOFmdHJ7PpImvSNDFjDe1IXfKuKrngpBO15iIHIkHoqhJEQwEN62qR521RkbZiFeGEdp2Elmumi330fqu7HuoVtA3Y6HWv1t6stN8op436O2LNlbp0XxVLi6xIngTe3Al4dzNAiGplQgN9ry24ISgqK5EqC1b-B8oTWBaUJPT1I_TaDd6mTShayaLgZUFool792fxD1_efmIB3W6DxLgQPnWpM_P2naRbTK0rUaBk12kGNdlDJMopyNVomZbNH2fcF_p33C4MZxRg |
CitedBy_id | crossref_primary_10_1016_j_prro_2024_07_004 crossref_primary_10_1038_s41598_021_83142_y crossref_primary_10_1002_ijc_32598 crossref_primary_10_1158_1078_0432_CCR_20_2859 crossref_primary_10_1016_j_lungcan_2020_03_012 crossref_primary_10_1038_s12276_020_00511_9 crossref_primary_10_1080_14737140_2023_2245140 crossref_primary_10_1016_j_trsl_2022_08_005 crossref_primary_10_3389_fonc_2022_1016217 crossref_primary_10_1016_j_hoc_2019_07_001 crossref_primary_10_3390_ijms232415576 crossref_primary_10_1002_jcb_28148 crossref_primary_10_1038_s41392_021_00780_4 crossref_primary_10_1007_s10549_018_05079_7 crossref_primary_10_1186_s11658_022_00336_6 crossref_primary_10_1186_s41016_020_00207_z crossref_primary_10_3390_ijms25116249 crossref_primary_10_1186_s13578_022_00778_7 crossref_primary_10_3390_cancers12113379 crossref_primary_10_1158_1078_0432_CCR_18_1489 crossref_primary_10_3390_biomedicines11071824 crossref_primary_10_1016_j_omtn_2023_07_027 crossref_primary_10_1186_s12929_020_00676_5 crossref_primary_10_1016_j_ijrobp_2021_07_1694 crossref_primary_10_3892_ijo_2018_4656 crossref_primary_10_14309_ctg_0000000000000053 crossref_primary_10_3390_cancers14092202 crossref_primary_10_1016_j_ijrobp_2017_04_005 crossref_primary_10_1007_s00270_020_02463_z crossref_primary_10_1016_j_bbrc_2018_03_185 crossref_primary_10_1016_j_ctro_2023_100686 crossref_primary_10_37549_ARO1246 crossref_primary_10_1016_j_bbcan_2020_188461 crossref_primary_10_1016_j_ctrv_2023_102573 crossref_primary_10_1016_j_ijrobp_2019_07_026 crossref_primary_10_1093_nar_gkab871 crossref_primary_10_1016_j_ejro_2019_04_006 crossref_primary_10_3390_cancers12051278 crossref_primary_10_1016_j_semradonc_2020_11_009 crossref_primary_10_1002_pros_24721 crossref_primary_10_1084_jem_20240587 crossref_primary_10_3892_ol_2019_9905 crossref_primary_10_1158_1078_0432_CCR_22_1914 crossref_primary_10_1080_09553002_2023_2232019 crossref_primary_10_18632_oncotarget_27881 crossref_primary_10_1016_j_actatropica_2022_106328 crossref_primary_10_1200_PO_18_00034 crossref_primary_10_1158_1078_0432_CCR_19_0908 crossref_primary_10_3390_ijms21186957 crossref_primary_10_1021_acsnano_2c07440 crossref_primary_10_1007_s40778_017_0102_8 crossref_primary_10_3389_fonc_2021_761901 crossref_primary_10_1371_journal_pone_0258951 crossref_primary_10_1038_s42003_021_01898_5 crossref_primary_10_3389_fimmu_2023_1133899 crossref_primary_10_1016_j_radonc_2020_02_008 crossref_primary_10_1093_jnci_djaa095 crossref_primary_10_1093_carcin_bgz190 crossref_primary_10_1158_0008_5472_CAN_20_4191 crossref_primary_10_3390_cancers14184374 crossref_primary_10_1016_j_xpro_2021_100391 crossref_primary_10_1177_1758834017719829 crossref_primary_10_1007_s12253_019_00690_5 crossref_primary_10_1186_s12943_024_02069_w crossref_primary_10_1016_j_jcmgh_2019_09_001 crossref_primary_10_1007_s00066_023_02086_6 crossref_primary_10_1186_s12931_018_0740_0 crossref_primary_10_3390_cancers15082250 crossref_primary_10_1002_ijc_32065 crossref_primary_10_1038_s41419_017_0226_x crossref_primary_10_3390_cancers14122829 crossref_primary_10_1007_s10585_019_09984_z |
Cites_doi | 10.1016/j.ijrobp.2011.05.057 10.1016/j.cllc.2014.09.005 10.1002/ijc.29454 10.1158/0008-5472.CAN-13-1750 10.1038/ncb2953 10.1158/0008-5472.CAN-13-3728 10.1056/NEJMoa043623 10.1016/j.radonc.2013.06.002 10.1016/j.stem.2012.05.007 10.1016/j.cell.2015.10.041 10.1080/09553009414550901 10.1091/mbc.e13-10-0628 10.1038/nature05236 10.3109/09553002.2014.892227 10.1016/j.radonc.2011.05.035 10.1016/S1476-5586(04)80047-2 10.1158/0008-5472.CAN-11-0213 10.1200/JCO.2005.02.857 10.1158/1078-0432.CCR-10-2639 10.1093/jnci/djj495 10.1016/0169-5002(95)00595-1 10.1158/2159-8290.CD-12-0095 10.1093/jnci/93.18.1392 10.1038/srep10194 10.1074/jbc.M310256200 10.1097/JTO.0000000000000028 10.1158/0008-5472.CAN-14-3790 10.1038/onc.2014.313 10.1016/j.ccr.2014.02.017 10.1158/0008-5472.CAN-14-1623 10.1593/neo.06823 10.4161/cc.27305 10.1038/nrc2419 10.18632/oncotarget.3113 10.1038/nature07733 10.1158/1541-7786.MCR-14-0570 10.1158/0008-5472.CAN-13-3157 10.1093/jnci/djt373 10.1158/1535-7163.MCT-12-0098 10.1158/1078-0432.CCR-05-2845 10.1038/onc.2012.320 10.1016/j.lungcan.2009.03.006 10.1016/j.ccr.2013.08.005 10.1158/0008-5472.CAN-05-0513 10.1200/JCO.2007.12.6953 10.1371/journal.pone.0082982 10.1073/pnas.1411848112 10.1093/carcin/bgr007 10.1016/j.stem.2014.01.005 10.4161/cbt.12.8.16440 10.1016/j.ijrobp.2015.07.266 |
ContentType | Journal Article |
Copyright | 2017 American Association for Cancer Research. Copyright American Association for Cancer Research, Inc. Apr 15, 2017 |
Copyright_xml | – notice: 2017 American Association for Cancer Research. – notice: Copyright American Association for Cancer Research, Inc. Apr 15, 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TM 7TO 7U9 8FD FR3 H94 P64 RC3 7X8 7U7 C1K 5PM |
DOI | 10.1158/0008-5472.CAN-16-0808 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Toxicology Abstracts Environmental Sciences and Pollution Management PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Toxicology Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic Toxicology Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 2028 |
ExternalDocumentID | PMC5445902 28202526 10_1158_0008_5472_CAN_16_0808 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM097360 – fundername: NCI NIH HHS grantid: C06 CA059267 – fundername: NCI NIH HHS grantid: P50 CA090578 – fundername: Wellcome Trust – fundername: NCI NIH HHS grantid: P30 CA006516 |
GroupedDBID | --- -ET 18M 29B 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AETEA AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P PQQKQ RCR RHI RNS SJN TR2 W2D W8F WH7 WOQ YKV YZZ CGR CUY CVF ECM EIF NPM RHF 7T5 7TM 7TO 7U9 8FD FR3 H94 P64 RC3 7X8 7U7 C1K 5PM |
ID | FETCH-LOGICAL-c538t-5c1f0b46f946760f7ba672e08e7a9970ae3ec5fb722d390d9590601ff8ed6a5a3 |
ISSN | 0008-5472 |
IngestDate | Thu Aug 21 18:22:20 EDT 2025 Fri Jul 11 10:09:59 EDT 2025 Thu Aug 07 15:02:38 EDT 2025 Sun Jul 13 05:08:51 EDT 2025 Wed Feb 19 02:40:22 EST 2025 Tue Jul 01 01:12:29 EDT 2025 Thu Apr 24 23:08:22 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | 2017 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c538t-5c1f0b46f946760f7ba672e08e7a9970ae3ec5fb722d390d9590601ff8ed6a5a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work |
OpenAccessLink | https://cancerres.aacrjournals.org/content/canres/77/8/2018.full.pdf |
PMID | 28202526 |
PQID | 1983364301 |
PQPubID | 105549 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5445902 proquest_miscellaneous_1897390754 proquest_miscellaneous_1869074310 proquest_journals_1983364301 pubmed_primary_28202526 crossref_citationtrail_10_1158_0008_5472_CAN_16_0808 crossref_primary_10_1158_0008_5472_CAN_16_0808 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-15 |
PublicationDateYYYYMMDD | 2017-04-15 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Baltimore |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2017 |
Publisher | American Association for Cancer Research, Inc |
Publisher_xml | – name: American Association for Cancer Research, Inc |
References | Faber (2022061706170078900_bib40) 2015; 112 Singhal (2022061706170078900_bib36) 1997; 3 Sourisseau (2022061706170078900_bib43) 2014; 9 Han (2022061706170078900_bib3) 2006; 12 Ahmed (2022061706170078900_bib55) 2015; 75 Bao (2022061706170078900_bib18) 2006; 444 Thalmann (2022061706170078900_bib37) 1999; 5 Thakur (2022061706170078900_bib50) 2015; 5 Phillips (2022061706170078900_bib19) 2006; 98 Kleiman (2022061706170078900_bib13) 2013; 8 Tam (2022061706170078900_bib34) 2013; 24 Liu (2022061706170078900_bib29) 2015; 13 Merino (2022061706170078900_bib53) 2015; 34 Visvader (2022061706170078900_bib16) 2012; 10 Stephen (2022061706170078900_bib1) 2014; 25 Antoniou (2022061706170078900_bib44) 2013; 12 Minjgee (2022061706170078900_bib11) 2011; 81 Shih (2022061706170078900_bib39) 2001; 93 Lamour (2022061706170078900_bib47) 2015; 137 Wang (2022061706170078900_bib26) 2015; 163 Tsao (2022061706170078900_bib4) 2007; 25 Hata (2022061706170078900_bib54) 2014; 74 Cengel (2022061706170078900_bib7) 2007; 9 Elia (2022061706170078900_bib41) 1992; 52 Rycaj (2022061706170078900_bib22) 2014; 90 Seguin (2022061706170078900_bib23) 2014; 16 Sabbattini (2022061706170078900_bib28) 2014; 25 Mutrie (2022061706170078900_bib51) 2011; 12 Pan (2022061706170078900_bib52) 2010; 67 Eberhard (2022061706170078900_bib2) 2005; 23 Pietras (2022061706170078900_bib48) 2014; 14 Williams (2022061706170078900_bib12) 2012; 11 Xue (2022061706170078900_bib42) 1994; 66 Mak (2022061706170078900_bib9) 2015; 16 Krause (2022061706170078900_bib21) 2011; 17 Wo (2022061706170078900_bib10) 2015; 93 Xu (2022061706170078900_bib14) 2011; 32 Das (2022061706170078900_bib38) 2004; 279 Kim (2022061706170078900_bib8) 2005; 65 Wang (2022061706170078900_bib27) 2014; 74 Rhodes (2022061706170078900_bib33) 2004; 6 Winton (2022061706170078900_bib5) 2005; 352 Butof (2022061706170078900_bib15) 2013; 108 Cao (2022061706170078900_bib46) 2015; 6 Chambers (2022061706170078900_bib35) 1996; 15 Fujita-Sato (2022061706170078900_bib45) 2015; 75 Barcelo (2022061706170078900_bib25) 2013; 74 Baumann (2022061706170078900_bib17) 2008; 8 Gurtner (2022061706170078900_bib31) 2011; 99 Bianchi-Smiraglia (2022061706170078900_bib49) 2013; 32 Wang (2022061706170078900_bib30) 2011; 71 Bernhard (2022061706170078900_bib6) 2000; 60 Cerami (2022061706170078900_bib32) 2012; 2 Diehn (2022061706170078900_bib20) 2009; 458 Moon (2022061706170078900_bib24) 2014; 106 10473115 - Clin Cancer Res. 1999 Aug;5(8):2271-7 24747441 - Nat Cell Biol. 2014 May;16(5):457-68 15068665 - Neoplasia. 2004 Jan-Feb;6(1):1-6 26590425 - Cell. 2015 Nov 19;163(5):1237-51 18024870 - J Clin Oncol. 2007 Nov 20;25(33):5240-7 24651010 - Cancer Cell. 2014 Mar 17;25(3):272-81 24675361 - Cancer Res. 2014 Jun 1;74(11):3146-56 21976536 - Clin Cancer Res. 2011 Dec 1;17(23):7224-9 11562390 - J Natl Cancer Inst. 2001 Sep 19;93(18):1392-400 8959677 - Lung Cancer. 1996 Nov;15(3):311-23 16140961 - Cancer Res. 2005 Sep 1;65(17 ):7902-10 23830466 - Radiother Oncol. 2013 Sep;108(3):388-96 19194462 - Nature. 2009 Apr 9;458(7239):780-3 21795853 - Cancer Biol Ther. 2011 Oct 15;12(8):680-90 9815727 - Clin Cancer Res. 1997 Apr;3(4):605-11 25737542 - Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1288-96 24349411 - PLoS One. 2013 Dec 12;8(12 ):e82982 24491301 - J Natl Cancer Inst. 2014 Feb;106(2):djt373 25620078 - Int J Cancer. 2015 Sep 1;137(5):1047-57 26282173 - Cancer Res. 2015 Oct 15;75(20):4416-28 25973915 - Sci Rep. 2015 May 14;5:10194 24371225 - Cancer Res. 2014 Feb 15;74(4):1190-9 22824793 - Oncogene. 2013 Jun 20;32(25):3049-58 24527669 - Int J Radiat Biol. 2014 Aug;90(8):615-21 8027606 - Int J Radiat Biol. 1994 Jul;66(1):11-21 17051156 - Nature. 2006 Dec 7;444(7120):756-60 14704150 - J Biol Chem. 2004 Mar 19;279(12):11051-64 25977330 - Cancer Res. 2015 Jul 15;75(14):2851-62 22411900 - Mol Cancer Ther. 2012 May;11(5):1193-202 24029232 - Cancer Cell. 2013 Sep 9;24(3):347-64 24648348 - Cancer Res. 2014 May 15;74(10 ):2825-34 21852385 - Cancer Res. 2011 Oct 1;71(19):6261-9 22704512 - Cell Stem Cell. 2012 Jun 14;10(6):717-28 15972865 - N Engl J Med. 2005 Jun 23;352(25):2589-97 25749383 - Oncotarget. 2015 Mar 30;6(9):6627-40 16043828 - J Clin Oncol. 2005 Sep 1;23(25):5900-9 11118040 - Cancer Res. 2000 Dec 1;60(23):6597-600 25263453 - Oncogene. 2015 Jul 23;34(30):3926-34 17460778 - Neoplasia. 2007 Apr;9(4):341-8 22588877 - Cancer Discov. 2012 May;2(5):401-4 19362386 - Lung Cancer. 2010 Jan;67(1):93-100 25450872 - Clin Lung Cancer. 2015 Jan;16(1):24-32 1540967 - Cancer Res. 1992 Mar 15;52(6):1580-6 24607407 - Cell Stem Cell. 2014 Mar 6;14(3):357-69 18511937 - Nat Rev Cancer. 2008 Jul;8(7):545-54 24270846 - Cell Cycle. 2013 Dec 15;12(24):3743-8 21985943 - Int J Radiat Oncol Biol Phys. 2011 Dec 1;81(5):1506-14 25667133 - Mol Cancer Res. 2015 Apr;13(4):713-20 24430871 - Mol Biol Cell. 2014 Mar;25(6):904-15 21262926 - Carcinogenesis. 2011 Apr;32(4):488-95 21665304 - Radiother Oncol. 2011 Jun;99(3):323-30 17179479 - J Natl Cancer Inst. 2006 Dec 20;98 (24):1777-85 16638863 - Clin Cancer Res. 2006 Apr 15;12 (8):2538-44 24346089 - J Thorac Oncol. 2014 Jan;9(1):7-17 |
References_xml | – volume: 81 start-page: 1506 year: 2011 ident: 2022061706170078900_bib11 article-title: K-RAS(V12) induces autocrine production of EGFR ligands and mediates radioresistance through EGFR-dependent Akt signaling and activation of DNA-PKcs publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2011.05.057 – volume: 16 start-page: 24 year: 2015 ident: 2022061706170078900_bib9 article-title: Outcomes by tumor histology and KRAS mutation status after lung stereotactic body radiation therapy for early-stage non-small-cell lung cancer publication-title: Clin Lung Cancer doi: 10.1016/j.cllc.2014.09.005 – volume: 137 start-page: 1047 year: 2015 ident: 2022061706170078900_bib47 article-title: Targeting osteopontin suppresses glioblastoma stem-like cell character and tumorigenicity in vivo publication-title: Int J Cancer doi: 10.1002/ijc.29454 – volume: 60 start-page: 6597 year: 2000 ident: 2022061706170078900_bib6 article-title: Direct evidence for the contribution of activated N-ras and K-ras oncogenes to increased intrinsic radiation resistance in human tumor cell lines publication-title: Cancer Res – volume: 74 start-page: 1190 year: 2013 ident: 2022061706170078900_bib25 article-title: Phosphorylation at Ser-181 of oncogenic KRAS is required for tumor growth publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-13-1750 – volume: 16 start-page: 457 year: 2014 ident: 2022061706170078900_bib23 article-title: An integrin beta(3)-KRAS-RalB complex drives tumour stemness and resistance to EGFR inhibition publication-title: Nat Cell Biol doi: 10.1038/ncb2953 – volume: 52 start-page: 1580 year: 1992 ident: 2022061706170078900_bib41 article-title: Influence of chromatin structure on the induction of DNA double strand breaks by ionizing radiation publication-title: Cancer Res – volume: 74 start-page: 3146 year: 2014 ident: 2022061706170078900_bib54 article-title: Failure to induce apoptosis via BCL-2 family proteins underlies lack of efficacy of combined MEK and PI3K inhibitors for KRAS-mutant lung cancers publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-13-3728 – volume: 352 start-page: 2589 year: 2005 ident: 2022061706170078900_bib5 article-title: Vinorelbine plus cisplatin vs. observation in resected non-small-cell lung cancer publication-title: N Engl J Med doi: 10.1056/NEJMoa043623 – volume: 108 start-page: 388 year: 2013 ident: 2022061706170078900_bib15 article-title: Clinical perspectives of cancer stem cell research in radiation oncology publication-title: Radiother Oncol doi: 10.1016/j.radonc.2013.06.002 – volume: 10 start-page: 717 year: 2012 ident: 2022061706170078900_bib16 article-title: Cancer stem cells: current status and evolving complexities publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.05.007 – volume: 163 start-page: 1237 year: 2015 ident: 2022061706170078900_bib26 article-title: K-Ras promotes tumorigenicity through suppression of non-canonical Wnt Signaling publication-title: Cell doi: 10.1016/j.cell.2015.10.041 – volume: 66 start-page: 11 year: 1994 ident: 2022061706170078900_bib42 article-title: Induction of DNA damage in gamma-irradiated nuclei stripped of nuclear protein classes: differential modulation of double-strand break and DNA-protein crosslink formation publication-title: Int J Radiat Biol doi: 10.1080/09553009414550901 – volume: 25 start-page: 904 year: 2014 ident: 2022061706170078900_bib28 article-title: An H3K9/S10 methyl-phospho switch modulates Polycomb and Pol II binding at repressed genes during differentiation publication-title: Mol Biol Cell doi: 10.1091/mbc.e13-10-0628 – volume: 444 start-page: 756 year: 2006 ident: 2022061706170078900_bib18 article-title: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response publication-title: Nature doi: 10.1038/nature05236 – volume: 90 start-page: 615 year: 2014 ident: 2022061706170078900_bib22 article-title: Cancer stem cells and radioresistance publication-title: Int J Radiat Biol doi: 10.3109/09553002.2014.892227 – volume: 99 start-page: 323 year: 2011 ident: 2022061706170078900_bib31 article-title: Diverse effects of combined radiotherapy and EGFR inhibition with antibodies or TK inhibitors on local tumour control and correlation with EGFR gene expression publication-title: Radiother Oncol doi: 10.1016/j.radonc.2011.05.035 – volume: 6 start-page: 1 year: 2004 ident: 2022061706170078900_bib33 article-title: ONCOMINE: a cancer microarray database and integrated data-mining platform publication-title: Neoplasia doi: 10.1016/S1476-5586(04)80047-2 – volume: 71 start-page: 6261 year: 2011 ident: 2022061706170078900_bib30 article-title: EGF receptor inhibition radiosensitizes NSCLC cells by inducing senescence in cells sustaining DNA double-strand breaks publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-11-0213 – volume: 23 start-page: 5900 year: 2005 ident: 2022061706170078900_bib2 article-title: Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib publication-title: J Clin Oncol doi: 10.1200/JCO.2005.02.857 – volume: 17 start-page: 7224 year: 2011 ident: 2022061706170078900_bib21 article-title: Cancer stem cells: targets and potential biomarkers for radiotherapy publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-10-2639 – volume: 98 start-page: 1777 year: 2006 ident: 2022061706170078900_bib19 article-title: The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djj495 – volume: 15 start-page: 311 year: 1996 ident: 2022061706170078900_bib35 article-title: Osteopontin expression in lung cancer publication-title: Lung Cancer doi: 10.1016/0169-5002(95)00595-1 – volume: 2 start-page: 401 year: 2012 ident: 2022061706170078900_bib32 article-title: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-12-0095 – volume: 93 start-page: 1392 year: 2001 ident: 2022061706170078900_bib39 article-title: Collapsin response mediator protein-1 and the invasion and metastasis of cancer cells publication-title: J Natl Cancer Inst doi: 10.1093/jnci/93.18.1392 – volume: 5 start-page: 10194 year: 2015 ident: 2022061706170078900_bib50 article-title: Inhibition of STAT3, FAK and Src mediated signaling reduces cancer stem cell load, tumorigenic potential and metastasis in breast cancer publication-title: Sci Rep doi: 10.1038/srep10194 – volume: 279 start-page: 11051 year: 2004 ident: 2022061706170078900_bib38 article-title: Osteopontin induces AP-1-mediated secretion of urokinase-type plasminogen activator through c-Src-dependent epidermal growth factor receptor transactivation in breast cancer cells publication-title: J Biol Chem doi: 10.1074/jbc.M310256200 – volume: 9 start-page: 7 year: 2014 ident: 2022061706170078900_bib43 article-title: Lung cancer stem cell: fancy conceptual model of tumor biology or cornerstone of a forthcoming therapeutic breakthrough? publication-title: J Thorac Oncol doi: 10.1097/JTO.0000000000000028 – volume: 75 start-page: 4416 year: 2015 ident: 2022061706170078900_bib55 article-title: Selective inhibition of parallel DNA damage response pathways optimizes radiosensitization of glioblastoma stem-like cells publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-3790 – volume: 34 start-page: 3926 year: 2015 ident: 2022061706170078900_bib53 article-title: Pro-apoptotic Bim suppresses breast tumor cell metastasis and is a target gene of SNAI2 publication-title: Oncogene doi: 10.1038/onc.2014.313 – volume: 25 start-page: 272 year: 2014 ident: 2022061706170078900_bib1 article-title: Dragging ras back in the ring publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.02.017 – volume: 75 start-page: 2851 year: 2015 ident: 2022061706170078900_bib45 article-title: Enhanced MET translation and signaling sustains K-Ras-driven proliferation under anchorage-independent growth conditions publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-1623 – volume: 9 start-page: 341 year: 2007 ident: 2022061706170078900_bib7 article-title: Oncogenic K-Ras signals through epidermal growth factor receptor and wild-type H-Ras to promote radiation survival in pancreatic and colorectal carcinoma cells publication-title: Neoplasia doi: 10.1593/neo.06823 – volume: 12 start-page: 3743 year: 2013 ident: 2022061706170078900_bib44 article-title: Cancer stem cells, a fuzzy evolving concept: a cell population or a cell property? publication-title: Cell Cycle doi: 10.4161/cc.27305 – volume: 8 start-page: 545 year: 2008 ident: 2022061706170078900_bib17 article-title: Exploring the role of cancer stem cells in radioresistance publication-title: Nat Rev Cancer doi: 10.1038/nrc2419 – volume: 6 start-page: 6627 year: 2015 ident: 2022061706170078900_bib46 article-title: Osteopontin promotes a cancer stem cell-like phenotype in hepatocellular carcinoma cells via an integrin-NF-kappaB-HIF-1alpha pathway publication-title: Oncotarget doi: 10.18632/oncotarget.3113 – volume: 458 start-page: 780 year: 2009 ident: 2022061706170078900_bib20 article-title: Association of reactive oxygen species levels and radioresistance in cancer stem cells publication-title: Nature doi: 10.1038/nature07733 – volume: 13 start-page: 713 year: 2015 ident: 2022061706170078900_bib29 article-title: Adapting a drug screening platform to discover associations of molecular targeted radiosensitizers with genomic biomarkers publication-title: Mol Cancer Res doi: 10.1158/1541-7786.MCR-14-0570 – volume: 74 start-page: 2825 year: 2014 ident: 2022061706170078900_bib27 article-title: EGFR-mediated chromatin condensation protects KRAS-mutant cancer cells against ionizing radiation publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-13-3157 – volume: 106 start-page: djt373 year: 2014 ident: 2022061706170078900_bib24 article-title: Role of oncogenic K-Ras in cancer stem cell activation by aberrant Wnt/beta-catenin signaling publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djt373 – volume: 11 start-page: 1193 year: 2012 ident: 2022061706170078900_bib12 article-title: Cotargeting MAPK and PI3K signaling with concurrent radiotherapy as a strategy for the treatment of pancreatic cancer publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-12-0098 – volume: 12 start-page: 2538 year: 2006 ident: 2022061706170078900_bib3 article-title: Optimization of patient selection for gefitinib in non-small cell lung cancer by combined analysis of epidermal growth factor receptor mutation, K-ras mutation, and Akt phosphorylation publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-05-2845 – volume: 32 start-page: 3049 year: 2013 ident: 2022061706170078900_bib49 article-title: Integrin beta5 contributes to the tumorigenic potential of breast cancer cells through the Src-FAK and MEK-ERK signaling pathways publication-title: Oncogene doi: 10.1038/onc.2012.320 – volume: 67 start-page: 93 year: 2010 ident: 2022061706170078900_bib52 article-title: Long form collapsin response mediator protein-1 (LCRMP-1) expression is associated with clinical outcome and lymph node metastasis in non-small cell lung cancer patients publication-title: Lung Cancer doi: 10.1016/j.lungcan.2009.03.006 – volume: 24 start-page: 347 year: 2013 ident: 2022061706170078900_bib34 article-title: Protein kinase C alpha is a central signaling node and therapeutic target for breast cancer stem cells publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.08.005 – volume: 65 start-page: 7902 year: 2005 ident: 2022061706170078900_bib8 article-title: Selective inhibition of Ras, phosphoinositide 3 kinase, and Akt isoforms increases the radiosensitivity of human carcinoma cell lines publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-05-0513 – volume: 25 start-page: 5240 year: 2007 ident: 2022061706170078900_bib4 article-title: Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer publication-title: J Clin Oncol doi: 10.1200/JCO.2007.12.6953 – volume: 8 start-page: e82982 year: 2013 ident: 2022061706170078900_bib13 article-title: Comparative analysis of radiosensitizers for K-RAS mutant rectal cancers publication-title: PLoS One doi: 10.1371/journal.pone.0082982 – volume: 3 start-page: 605 year: 1997 ident: 2022061706170078900_bib36 article-title: Elevated plasma osteopontin in metastatic breast cancer associated with increased tumor burden and decreased survival publication-title: Clin Cancer Res – volume: 112 start-page: E1288 year: 2015 ident: 2022061706170078900_bib40 article-title: Assessment of ABT-263 activity across a cancer cell line collection leads to a potent combination therapy for small-cell lung cancer publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1411848112 – volume: 32 start-page: 488 year: 2011 ident: 2022061706170078900_bib14 article-title: The oncogenic kinase Pim-1 is modulated by K-Ras signaling and mediates transformed growth and radioresistance in human pancreatic ductal adenocarcinoma cells publication-title: Carcinogenesis doi: 10.1093/carcin/bgr007 – volume: 5 start-page: 2271 year: 1999 ident: 2022061706170078900_bib37 article-title: Osteopontin: possible role in prostate cancer progression publication-title: Clin Cancer Res – volume: 14 start-page: 357 year: 2014 ident: 2022061706170078900_bib48 article-title: Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.01.005 – volume: 12 start-page: 680 year: 2011 ident: 2022061706170078900_bib51 article-title: Osteopontin increases breast cancer cell sensitivity to specific signaling pathway inhibitors in preclinical models publication-title: Cancer Biol Ther doi: 10.4161/cbt.12.8.16440 – volume: 93 start-page: S111 year: 2015 ident: 2022061706170078900_bib10 article-title: Clinical and molecular predictors of local failure after SBRT for liver metastases: a secondary analysis of a prospective phase II trial publication-title: Int J Rad Oncol Biol Phys doi: 10.1016/j.ijrobp.2015.07.266 – reference: 24430871 - Mol Biol Cell. 2014 Mar;25(6):904-15 – reference: 21665304 - Radiother Oncol. 2011 Jun;99(3):323-30 – reference: 24648348 - Cancer Res. 2014 May 15;74(10 ):2825-34 – reference: 14704150 - J Biol Chem. 2004 Mar 19;279(12):11051-64 – reference: 24029232 - Cancer Cell. 2013 Sep 9;24(3):347-64 – reference: 24675361 - Cancer Res. 2014 Jun 1;74(11):3146-56 – reference: 24747441 - Nat Cell Biol. 2014 May;16(5):457-68 – reference: 17179479 - J Natl Cancer Inst. 2006 Dec 20;98 (24):1777-85 – reference: 24349411 - PLoS One. 2013 Dec 12;8(12 ):e82982 – reference: 25263453 - Oncogene. 2015 Jul 23;34(30):3926-34 – reference: 17051156 - Nature. 2006 Dec 7;444(7120):756-60 – reference: 8959677 - Lung Cancer. 1996 Nov;15(3):311-23 – reference: 24270846 - Cell Cycle. 2013 Dec 15;12(24):3743-8 – reference: 1540967 - Cancer Res. 1992 Mar 15;52(6):1580-6 – reference: 11562390 - J Natl Cancer Inst. 2001 Sep 19;93(18):1392-400 – reference: 24371225 - Cancer Res. 2014 Feb 15;74(4):1190-9 – reference: 15972865 - N Engl J Med. 2005 Jun 23;352(25):2589-97 – reference: 21976536 - Clin Cancer Res. 2011 Dec 1;17(23):7224-9 – reference: 22824793 - Oncogene. 2013 Jun 20;32(25):3049-58 – reference: 22411900 - Mol Cancer Ther. 2012 May;11(5):1193-202 – reference: 24527669 - Int J Radiat Biol. 2014 Aug;90(8):615-21 – reference: 26282173 - Cancer Res. 2015 Oct 15;75(20):4416-28 – reference: 11118040 - Cancer Res. 2000 Dec 1;60(23):6597-600 – reference: 10473115 - Clin Cancer Res. 1999 Aug;5(8):2271-7 – reference: 16140961 - Cancer Res. 2005 Sep 1;65(17 ):7902-10 – reference: 8027606 - Int J Radiat Biol. 1994 Jul;66(1):11-21 – reference: 25973915 - Sci Rep. 2015 May 14;5:10194 – reference: 25620078 - Int J Cancer. 2015 Sep 1;137(5):1047-57 – reference: 25667133 - Mol Cancer Res. 2015 Apr;13(4):713-20 – reference: 15068665 - Neoplasia. 2004 Jan-Feb;6(1):1-6 – reference: 25977330 - Cancer Res. 2015 Jul 15;75(14):2851-62 – reference: 16043828 - J Clin Oncol. 2005 Sep 1;23(25):5900-9 – reference: 24346089 - J Thorac Oncol. 2014 Jan;9(1):7-17 – reference: 21262926 - Carcinogenesis. 2011 Apr;32(4):488-95 – reference: 21985943 - Int J Radiat Oncol Biol Phys. 2011 Dec 1;81(5):1506-14 – reference: 24491301 - J Natl Cancer Inst. 2014 Feb;106(2):djt373 – reference: 21795853 - Cancer Biol Ther. 2011 Oct 15;12(8):680-90 – reference: 19194462 - Nature. 2009 Apr 9;458(7239):780-3 – reference: 16638863 - Clin Cancer Res. 2006 Apr 15;12 (8):2538-44 – reference: 19362386 - Lung Cancer. 2010 Jan;67(1):93-100 – reference: 18024870 - J Clin Oncol. 2007 Nov 20;25(33):5240-7 – reference: 24651010 - Cancer Cell. 2014 Mar 17;25(3):272-81 – reference: 17460778 - Neoplasia. 2007 Apr;9(4):341-8 – reference: 25450872 - Clin Lung Cancer. 2015 Jan;16(1):24-32 – reference: 9815727 - Clin Cancer Res. 1997 Apr;3(4):605-11 – reference: 26590425 - Cell. 2015 Nov 19;163(5):1237-51 – reference: 25737542 - Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1288-96 – reference: 23830466 - Radiother Oncol. 2013 Sep;108(3):388-96 – reference: 22588877 - Cancer Discov. 2012 May;2(5):401-4 – reference: 24607407 - Cell Stem Cell. 2014 Mar 6;14(3):357-69 – reference: 18511937 - Nat Rev Cancer. 2008 Jul;8(7):545-54 – reference: 21852385 - Cancer Res. 2011 Oct 1;71(19):6261-9 – reference: 25749383 - Oncotarget. 2015 Mar 30;6(9):6627-40 – reference: 22704512 - Cell Stem Cell. 2012 Jun 14;10(6):717-28 |
SSID | ssj0005105 |
Score | 2.5164392 |
Snippet | Lung cancers with activating KRAS mutations are characterized by treatment resistance and poor prognosis. In particular, the basis for their resistance to... In elucidating mechanisms that link the stem-like phenotype of KRAS-mutated lung cancer cells to radiation resistance, this study identifies potential... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2018 |
SubjectTerms | A549 Cells Animals Cancer therapies Carcinoma, Non-Small-Cell Lung - genetics Carcinoma, Non-Small-Cell Lung - metabolism Carcinoma, Non-Small-Cell Lung - pathology Carcinoma, Non-Small-Cell Lung - radiotherapy Chromatin DNA damage Epidermal growth factor receptors Female Genotype & phenotype Heterografts Humans Invasiveness K-Ras protein Lung cancer Lung Neoplasms - genetics Lung Neoplasms - metabolism Lung Neoplasms - pathology Lung Neoplasms - radiotherapy Lungs Male Mice Mice, Nude Mitosis Mutation Neoplastic Stem Cells - metabolism Neoplastic Stem Cells - pathology Neoplastic Stem Cells - radiation effects Osteopontin Osteopontin - biosynthesis Osteopontin - genetics Osteopontin - metabolism p53 Protein Proto-Oncogene Proteins p21(ras) - genetics Proto-Oncogene Proteins p21(ras) - metabolism Radiation Tolerance - genetics Receptor, Epidermal Growth Factor - metabolism Signal Transduction Treatment resistance |
Title | Radiation Resistance in KRAS-Mutated Lung Cancer Is Enabled by Stem-like Properties Mediated by an Osteopontin–EGFR Pathway |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28202526 https://www.proquest.com/docview/1983364301 https://www.proquest.com/docview/1869074310 https://www.proquest.com/docview/1897390754 https://pubmed.ncbi.nlm.nih.gov/PMC5445902 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiEuiHcDBS0St8jBr334GFUJLU1SkSYiN8trr5WI4ERNIlQ48NeZsTe201ZQuFiJvV7Z_j6PZ3dmviXkva9EGnsus7jmHMOMsaXsRFlcqTSRMUuiCOchB0N-MvE_Tdm00fhVy1rablQ7_nFrXcn_oAr7AFeskv0HZMtOYQf8BnxhCwjD9k4Yj1BYIAdwpNfoCOJbOs9aZ6POhTXYoh-ZtPpbjOzjocvW6brVzYulcrfzYqO_WYv5V43lAitMsNbrPHKTn6dQmal1DixYrpa4noTV_dgboab_7Hu0Fww2nRvdoFkeGC4yPHILtFi0a_MNX8wENabTVuavqBCZV7sG0FOR-92_wsqhTRX9xylHE7yY1Sct4EOI6ohF9FpXhlb4hZTkzhKbBV0Kxsm6WbWNkdbmb1FQftP8M1nkS0qL-cJtH3eGlsMt8Ipl9b3bxfiH52Fv0u-H4-50fI_cd2GcgUtgnH2u5ObR-zRlX9D1h1s73ndoboxSrifb1ryX8WPyyAw7aKfg0BPS0NlT8mBgEiuekZ8llWhFJTrPaJ1KFKlEC7Tp6ZoaKlF1RUsq0YpKdEclbBBl9DqVqKHSczLpdcfHJ5ZZl8OKAbWNxWIntZXP0wC-stxOhYq4cLUttYiCQNiR9nTMUgXPM_ECOwlYgKo_aSp1wiMWeS_IQbbM9CGhju_4yot5DJ6s7-ISuoEvYwfMm-AikrxJ_N3DDWMjWo9rpyzCfPDKJCZPyBAxCQGT0OEhYtIk7fK0VaHa8rcTjnbIheYFX4dOID0PPHbbaZJ35WEwvxhTizK93EIbmU8vwSDpT20CAc9BML9JXhZkKK_KBQ_cZS7cqNijSdkA5d_3j2TzWS4DjzJage2-usO1vSYPq7fwiBxsLrf6DTjTG_U2J_xvSs3Icg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiation+Resistance+in+KRAS-Mutated+Lung+Cancer+Is+Enabled+by+Stem-like+Properties+Mediated+by+an+Osteopontin-EGFR+Pathway&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Wang%2C+Meng&rft.au=Han%2C+Jing&rft.au=Marcar%2C+Lynnette&rft.au=Black%2C+Josh&rft.date=2017-04-15&rft.eissn=1538-7445&rft.volume=77&rft.issue=8&rft.spage=2018&rft.epage=2028&rft_id=info:doi/10.1158%2F0008-5472.CAN-16-0808&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |