Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy
It is the challenging goal in cancer biomedicine to search novel cancer-therapeutic modality with concurrent high therapeutic efficiency on combating cancer and low side effects to normal cells/tissues. The recently developed nanocatalytic cancer therapy based on catalytic Fenton reaction represents...
Saved in:
Published in | Biomaterials Vol. 211; pp. 1 - 13 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is the challenging goal in cancer biomedicine to search novel cancer-therapeutic modality with concurrent high therapeutic efficiency on combating cancer and low side effects to normal cells/tissues. The recently developed nanocatalytic cancer therapy based on catalytic Fenton reaction represents one of the promising paradigms for potential clinical translation, which has got fast progress very recently. This progress report discusses the rational design and fabrication of Fenton reaction-based nanocatalysts for triggering the in-situ Fenton chemical reaction within tumor microenvironment to generate highly toxic hydroxyl radicals (•OH), which is highly efficient for killing the cancer cells and suppressing the tumor growth. Several strategies for optimizing the nanocatalytic cancer-therapeutic efficiency of Fenton reaction have been highlighted, including screening high-performance Fenton nanocatalysts, increasing peroxide-hydrogen amounts as the reactants, changing the Fenton-reaction conditions (e.g., temperature, acidity and photo-triggering), and Fenton reaction-based synergistic cancer therapy such as some sequential nanocatalytic reactions with improved therapeutic outcome. The facing challenges and future developments of Fenton reaction-based nanocatalytic cancer therapy are also discussed for further promoting the clinical translation of this emerging cancer-therapeutic modality to benefit the cancer patients.
[Display omitted] |
---|---|
AbstractList | It is the challenging goal in cancer biomedicine to search novel cancer-therapeutic modality with concurrent high therapeutic efficiency on combating cancer and low side effects to normal cells/tissues. The recently developed nanocatalytic cancer therapy based on catalytic Fenton reaction represents one of the promising paradigms for potential clinical translation, which has got fast progress very recently. This progress report discusses the rational design and fabrication of Fenton reaction-based nanocatalysts for triggering the in-situ Fenton chemical reaction within tumor microenvironment to generate highly toxic hydroxyl radicals (•OH), which is highly efficient for killing the cancer cells and suppressing the tumor growth. Several strategies for optimizing the nanocatalytic cancer-therapeutic efficiency of Fenton reaction have been highlighted, including screening high-performance Fenton nanocatalysts, increasing peroxide-hydrogen amounts as the reactants, changing the Fenton-reaction conditions (e.g., temperature, acidity and photo-triggering), and Fenton reaction-based synergistic cancer therapy such as some sequential nanocatalytic reactions with improved therapeutic outcome. The facing challenges and future developments of Fenton reaction-based nanocatalytic cancer therapy are also discussed for further promoting the clinical translation of this emerging cancer-therapeutic modality to benefit the cancer patients. It is the challenging goal in cancer biomedicine to search novel cancer-therapeutic modality with concurrent high therapeutic efficiency on combating cancer and low side effects to normal cells/tissues. The recently developed nanocatalytic cancer therapy based on catalytic Fenton reaction represents one of the promising paradigms for potential clinical translation, which has got fast progress very recently. This progress report discusses the rational design and fabrication of Fenton reaction-based nanocatalysts for triggering the in-situ Fenton chemical reaction within tumor microenvironment to generate highly toxic hydroxyl radicals (•OH), which is highly efficient for killing the cancer cells and suppressing the tumor growth. Several strategies for optimizing the nanocatalytic cancer-therapeutic efficiency of Fenton reaction have been highlighted, including screening high-performance Fenton nanocatalysts, increasing peroxide-hydrogen amounts as the reactants, changing the Fenton-reaction conditions (e.g., temperature, acidity and photo-triggering), and Fenton reaction-based synergistic cancer therapy such as some sequential nanocatalytic reactions with improved therapeutic outcome. The facing challenges and future developments of Fenton reaction-based nanocatalytic cancer therapy are also discussed for further promoting the clinical translation of this emerging cancer-therapeutic modality to benefit the cancer patients. [Display omitted] It is the challenging goal in cancer biomedicine to search novel cancer-therapeutic modality with concurrent high therapeutic efficiency on combating cancer and low side effects to normal cells/tissues. The recently developed nanocatalytic cancer therapy based on catalytic Fenton reaction represents one of the promising paradigms for potential clinical translation, which has got fast progress very recently. This progress report discusses the rational design and fabrication of Fenton reaction-based nanocatalysts for triggering the in-situ Fenton chemical reaction within tumor microenvironment to generate highly toxic hydroxyl radicals (•OH), which is highly efficient for killing the cancer cells and suppressing the tumor growth. Several strategies for optimizing the nanocatalytic cancer-therapeutic efficiency of Fenton reaction have been highlighted, including screening high-performance Fenton nanocatalysts, increasing peroxide-hydrogen amounts as the reactants, changing the Fenton-reaction conditions (e.g., temperature, acidity and photo-triggering), and Fenton reaction-based synergistic cancer therapy such as some sequential nanocatalytic reactions with improved therapeutic outcome. The facing challenges and future developments of Fenton reaction-based nanocatalytic cancer therapy are also discussed for further promoting the clinical translation of this emerging cancer-therapeutic modality to benefit the cancer patients.It is the challenging goal in cancer biomedicine to search novel cancer-therapeutic modality with concurrent high therapeutic efficiency on combating cancer and low side effects to normal cells/tissues. The recently developed nanocatalytic cancer therapy based on catalytic Fenton reaction represents one of the promising paradigms for potential clinical translation, which has got fast progress very recently. This progress report discusses the rational design and fabrication of Fenton reaction-based nanocatalysts for triggering the in-situ Fenton chemical reaction within tumor microenvironment to generate highly toxic hydroxyl radicals (•OH), which is highly efficient for killing the cancer cells and suppressing the tumor growth. Several strategies for optimizing the nanocatalytic cancer-therapeutic efficiency of Fenton reaction have been highlighted, including screening high-performance Fenton nanocatalysts, increasing peroxide-hydrogen amounts as the reactants, changing the Fenton-reaction conditions (e.g., temperature, acidity and photo-triggering), and Fenton reaction-based synergistic cancer therapy such as some sequential nanocatalytic reactions with improved therapeutic outcome. The facing challenges and future developments of Fenton reaction-based nanocatalytic cancer therapy are also discussed for further promoting the clinical translation of this emerging cancer-therapeutic modality to benefit the cancer patients. |
Author | Qian, Xiaoqin Gu, Zi Chen, Yu Zhang, Jun |
Author_xml | – sequence: 1 givenname: Xiaoqin surname: Qian fullname: Qian, Xiaoqin organization: Department of Ultrasound, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, PR China – sequence: 2 givenname: Jun surname: Zhang fullname: Zhang, Jun email: zhangjun@huashan.org.cn organization: Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, PR China – sequence: 3 givenname: Zi surname: Gu fullname: Gu, Zi organization: School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia – sequence: 4 givenname: Yu surname: Chen fullname: Chen, Yu email: chenyu@mail.sic.ac.cn organization: State Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31075521$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9v1DAQxS1URLcLXwFFnLgk9d9szAkobUGqaA9wtpzxLPWSOIvtIO23r1fbItTTnkYevffz6L0zchKmgIS8Y7RhlLXnm6b302gzRm-H1HDKdENlQ7l4QRasW3W10lSdkAVlkte6ZfyUnKW0oeVNJX9FTgWjK6U4W5C77zZMYLMddimn2s6_RgwZXXVVxhQquMfRgx2qiBayL5v1FKvwz5Q9VHkeyy7fY7Tb3Wvycl2uwjePc0l-Xl3-uPha39xef7v4dFODEl2uZQ9uRR063aHgvBcOeiupkBqYaBW2DDR0jjplnegE0BUqpTvuUOp23YNYkvcH7jZOf2ZM2Yw-AQ6DDTjNyXCuBJeCaXGEtMhox4pjSd4-Sud-RGe20Y827sxTYEXw8SCAOKUUcW3AZ7sPJkfrB8Oo2XdkNub_jsy-I0OlKR0VxIdniKdfjjJ_OZixZPvXYzQJPAZA5yNCNm7yx2E-P8PA4MO-6N-4OxbyAGNrzNk |
CitedBy_id | crossref_primary_10_1021_acsami_3c00562 crossref_primary_10_1016_j_actbio_2023_06_002 crossref_primary_10_1007_s40820_024_01399_0 crossref_primary_10_1002_smll_202204133 crossref_primary_10_1002_wnan_1663 crossref_primary_10_1039_D3SM00822C crossref_primary_10_1002_smtd_202100361 crossref_primary_10_1021_acsnano_0c00082 crossref_primary_10_1021_acs_chemrev_3c00301 crossref_primary_10_1016_j_aaf_2023_05_008 crossref_primary_10_1021_acsami_0c00170 crossref_primary_10_1039_D4NR02907K crossref_primary_10_1016_j_jcis_2024_12_239 crossref_primary_10_6023_A24040115 crossref_primary_10_1186_s12951_021_01235_2 crossref_primary_10_1021_acsami_1c11032 crossref_primary_10_1039_D2TB02751H crossref_primary_10_1021_acs_jafc_4c00556 crossref_primary_10_1039_D3NR01746J crossref_primary_10_1016_j_ccr_2021_213912 crossref_primary_10_1021_acsbiomaterials_2c00138 crossref_primary_10_1002_adfm_201907066 crossref_primary_10_1016_j_apmt_2020_100864 crossref_primary_10_3892_ol_2024_14438 crossref_primary_10_1016_j_mattod_2024_07_004 crossref_primary_10_1002_adhm_202203085 crossref_primary_10_1021_acsanm_4c04921 crossref_primary_10_1016_j_nantod_2024_102498 crossref_primary_10_1021_acs_jafc_3c03284 crossref_primary_10_1002_VIW_20200133 crossref_primary_10_1021_acsami_0c10888 crossref_primary_10_1016_j_pmatsci_2024_101375 crossref_primary_10_1002_chem_202302125 crossref_primary_10_3390_jfb13040215 crossref_primary_10_1016_j_cej_2024_157645 crossref_primary_10_1093_rb_rbad097 crossref_primary_10_1021_acsami_0c19330 crossref_primary_10_1021_acsanm_0c00762 crossref_primary_10_2147_BCTT_S387793 crossref_primary_10_1039_D3QM01202F crossref_primary_10_1002_adhm_202302955 crossref_primary_10_1016_j_colsurfb_2021_111750 crossref_primary_10_1039_D1QM00134E crossref_primary_10_1039_D0BM02064H crossref_primary_10_1088_2515_7639_ad4d1e crossref_primary_10_3389_fmats_2022_857385 crossref_primary_10_1016_j_jssc_2021_122784 crossref_primary_10_1016_j_jssc_2022_123352 crossref_primary_10_3389_fchem_2021_630969 crossref_primary_10_1016_j_actbio_2023_03_011 crossref_primary_10_3390_cancers14205125 crossref_primary_10_1016_j_ica_2020_119759 crossref_primary_10_1016_j_actbio_2023_03_017 crossref_primary_10_1007_s10876_020_01971_9 crossref_primary_10_1039_D2CS00479H crossref_primary_10_1002_mco2_70116 crossref_primary_10_1016_j_cej_2020_124628 crossref_primary_10_1016_j_ajps_2022_09_002 crossref_primary_10_1021_acs_molpharmaceut_3c00294 crossref_primary_10_1007_s11010_021_04327_7 crossref_primary_10_1016_j_addr_2022_114241 crossref_primary_10_1186_s12951_022_01278_z crossref_primary_10_1016_j_pmatsci_2022_100959 crossref_primary_10_1002_adfm_202210345 crossref_primary_10_1016_j_ccr_2021_214360 crossref_primary_10_1016_j_jcis_2023_11_067 crossref_primary_10_1186_s12951_022_01398_6 crossref_primary_10_1021_acsbiomaterials_0c01009 crossref_primary_10_1039_D0TB02294B crossref_primary_10_1002_app_51535 crossref_primary_10_1021_acsabm_0c00098 crossref_primary_10_3389_fcell_2021_765859 crossref_primary_10_1016_j_ijpharm_2024_124015 crossref_primary_10_1061__ASCE_EE_1943_7870_0002043 crossref_primary_10_1016_j_jcis_2022_05_059 crossref_primary_10_1002_adma_202006892 crossref_primary_10_1021_jacsau_1c00422 crossref_primary_10_1016_j_jddst_2022_104103 crossref_primary_10_1021_acs_bioconjchem_0c00194 crossref_primary_10_2147_IJN_S491421 crossref_primary_10_1016_j_jddst_2023_104194 crossref_primary_10_3389_fimmu_2023_1259797 crossref_primary_10_1007_s11244_023_01885_6 crossref_primary_10_1016_j_nantod_2024_102165 crossref_primary_10_1002_adma_202303158 crossref_primary_10_1002_advs_202203583 crossref_primary_10_1002_smll_202004161 crossref_primary_10_1021_acsnano_1c08536 crossref_primary_10_1016_j_matdes_2022_110722 crossref_primary_10_1007_s11144_021_01934_9 crossref_primary_10_1016_j_bioactmat_2021_06_006 crossref_primary_10_3390_pharmaceutics15092337 crossref_primary_10_1016_j_jclepro_2019_118143 crossref_primary_10_1039_D4BM00366G crossref_primary_10_1186_s12951_021_00957_7 crossref_primary_10_1186_s12951_022_01482_x crossref_primary_10_1002_bmm2_12068 crossref_primary_10_3390_ijms242316949 crossref_primary_10_1007_s12274_020_2844_3 crossref_primary_10_1016_j_cclet_2025_110994 crossref_primary_10_1038_s41598_024_53334_3 crossref_primary_10_1016_j_matdes_2023_111653 crossref_primary_10_1111_cas_15250 crossref_primary_10_3389_fcell_2021_629150 crossref_primary_10_1016_j_jconrel_2023_07_050 crossref_primary_10_1039_D1MA00646K crossref_primary_10_1002_smsc_202200024 crossref_primary_10_1016_j_jconrel_2020_01_008 crossref_primary_10_1039_D2BM00102K crossref_primary_10_1002_smll_202205414 crossref_primary_10_1007_s00109_023_02346_z crossref_primary_10_1002_ange_202200480 crossref_primary_10_1088_1361_6528_ac2843 crossref_primary_10_1016_j_micromeso_2021_110905 crossref_primary_10_3389_fphys_2021_773055 crossref_primary_10_1016_j_nantod_2020_100920 crossref_primary_10_1002_adfm_202417871 crossref_primary_10_1016_j_ccr_2021_214267 crossref_primary_10_1021_acsnano_1c00380 crossref_primary_10_1016_j_biomaterials_2021_121168 crossref_primary_10_3390_ph16020166 crossref_primary_10_3390_ani13142300 crossref_primary_10_1002_anie_202200480 crossref_primary_10_1007_s10562_024_04594_1 crossref_primary_10_1039_D1SC04112F crossref_primary_10_1002_EXP_20230171 crossref_primary_10_1002_macp_202000022 crossref_primary_10_1016_j_mtbio_2021_100197 crossref_primary_10_1021_acsomega_4c00258 crossref_primary_10_1021_acsnano_0c06962 crossref_primary_10_1155_2021_9958239 crossref_primary_10_1016_j_ccr_2021_214393 crossref_primary_10_1016_j_cej_2023_144358 crossref_primary_10_1021_acsbiomaterials_4c00776 crossref_primary_10_1016_j_actbio_2022_01_046 crossref_primary_10_1021_acsami_3c02646 crossref_primary_10_1039_D2CS00435F crossref_primary_10_1021_acs_langmuir_4c00922 crossref_primary_10_1039_D0TB00436G crossref_primary_10_1039_D1BM00721A crossref_primary_10_1016_j_ccr_2021_213978 crossref_primary_10_1039_D0TB02138E crossref_primary_10_1038_s41419_022_04927_1 crossref_primary_10_1016_j_jconrel_2022_05_049 crossref_primary_10_1039_C9NH00577C crossref_primary_10_1016_j_colsurfb_2020_111437 crossref_primary_10_1016_j_cej_2023_142960 crossref_primary_10_1016_j_cej_2024_151614 crossref_primary_10_1039_D0CC03829F crossref_primary_10_1016_j_tice_2025_102773 crossref_primary_10_1039_D2TB02548E crossref_primary_10_1016_j_colsurfa_2021_127229 crossref_primary_10_1016_j_procbio_2023_06_014 crossref_primary_10_1002_advs_202409087 crossref_primary_10_1016_j_jelechem_2024_118298 crossref_primary_10_1016_j_jare_2020_12_001 crossref_primary_10_1016_j_jphotochem_2020_112444 crossref_primary_10_1186_s12951_021_00848_x crossref_primary_10_1007_s40843_023_2722_y crossref_primary_10_1039_D0CS00178C crossref_primary_10_1039_D1CC06742G crossref_primary_10_1016_j_ejps_2022_106319 crossref_primary_10_1021_acsbiomaterials_3c00867 crossref_primary_10_1039_D2CS00352J crossref_primary_10_1002_adma_202008226 crossref_primary_10_1002_cmdc_202100108 crossref_primary_10_1016_j_jcis_2023_01_144 crossref_primary_10_1039_D3NR02000B crossref_primary_10_2217_nnm_2022_0187 crossref_primary_10_1002_adhm_202201607 crossref_primary_10_1016_j_bmt_2022_12_004 crossref_primary_10_1002_adhm_202002126 crossref_primary_10_1016_j_actbio_2022_07_046 crossref_primary_10_1021_acsnano_0c00910 crossref_primary_10_1002_admi_202102263 crossref_primary_10_1016_j_colsurfb_2023_113529 crossref_primary_10_1039_D1NR03496K crossref_primary_10_1016_j_actbio_2025_01_014 crossref_primary_10_1016_j_cej_2023_145415 crossref_primary_10_1002_anbr_202300069 crossref_primary_10_1039_D0NR05501H crossref_primary_10_1007_s12274_020_2838_1 crossref_primary_10_2147_IJN_S321612 crossref_primary_10_1016_j_trac_2022_116734 crossref_primary_10_3389_fonc_2020_571127 crossref_primary_10_3390_antiox13080911 crossref_primary_10_1016_j_carbpol_2022_119432 crossref_primary_10_1039_D3TB02875E crossref_primary_10_1016_j_bioactmat_2023_09_015 crossref_primary_10_1016_j_addr_2021_114031 crossref_primary_10_1002_adfm_202107518 crossref_primary_10_1016_j_mtcomm_2020_101842 crossref_primary_10_1016_j_addr_2022_114648 crossref_primary_10_1016_j_biomaterials_2022_121384 crossref_primary_10_1016_j_cej_2024_157233 crossref_primary_10_1021_jacs_9b12873 crossref_primary_10_3389_fonc_2021_777295 crossref_primary_10_1016_j_actbio_2023_05_018 crossref_primary_10_1039_D2BM01033J crossref_primary_10_1039_D2TB02769K crossref_primary_10_1007_s40097_021_00457_y crossref_primary_10_1016_j_cej_2021_133466 crossref_primary_10_1186_s12951_023_02158_w crossref_primary_10_1186_s40824_023_00464_w crossref_primary_10_3390_molecules28114562 crossref_primary_10_3390_cancers16213581 crossref_primary_10_1016_j_jcis_2024_07_080 crossref_primary_10_1002_adfm_202107529 crossref_primary_10_1186_s12951_022_01416_7 crossref_primary_10_1039_D2NR00165A crossref_primary_10_1186_s12964_023_01296_w crossref_primary_10_1016_j_cej_2023_145513 crossref_primary_10_1146_annurev_nutr_062320_114541 crossref_primary_10_1039_D3NA00738C crossref_primary_10_1039_D4QM00833B crossref_primary_10_1002_wnan_1614 crossref_primary_10_1016_j_cej_2022_135373 crossref_primary_10_1166_jbn_2021_3130 crossref_primary_10_3389_fphar_2021_735965 crossref_primary_10_1002_advs_202000494 crossref_primary_10_1039_D1BM00679G crossref_primary_10_1166_jbn_2022_3250 crossref_primary_10_1016_j_cej_2020_125574 crossref_primary_10_1002_smll_202205024 crossref_primary_10_1021_acsami_9b18676 crossref_primary_10_1016_j_cclet_2022_05_066 crossref_primary_10_1126_sciadv_adr9196 crossref_primary_10_1021_acsmaterialslett_4c01132 crossref_primary_10_1016_j_cej_2024_157451 crossref_primary_10_1016_j_jddst_2020_101883 crossref_primary_10_2147_IJN_S479425 crossref_primary_10_1016_j_ajps_2021_10_003 crossref_primary_10_1016_j_cej_2022_140175 crossref_primary_10_1039_D0CS00607F crossref_primary_10_1039_D2TB02161G crossref_primary_10_1016_j_ccr_2023_215115 crossref_primary_10_1021_acsami_2c09912 crossref_primary_10_2139_ssrn_3943651 crossref_primary_10_3390_polym13040558 crossref_primary_10_1016_j_cej_2023_145738 crossref_primary_10_1021_acsami_1c15203 crossref_primary_10_1002_adma_202002439 crossref_primary_10_1039_C9MH01565E crossref_primary_10_1021_acsbiomaterials_1c01605 crossref_primary_10_3389_fimmu_2022_925290 crossref_primary_10_1021_acsnano_9b05836 crossref_primary_10_1007_s40843_020_1513_8 crossref_primary_10_4251_wjgo_v15_i2_225 crossref_primary_10_1016_j_mtbio_2024_101427 crossref_primary_10_1016_j_ijbiomac_2023_124003 crossref_primary_10_1039_D1NR04104E crossref_primary_10_1007_s12272_020_01209_2 crossref_primary_10_1016_j_neulet_2021_135975 crossref_primary_10_1039_D1TB02221K crossref_primary_10_1016_j_ccr_2023_215209 crossref_primary_10_1021_acsami_3c07379 crossref_primary_10_1021_acsbiomaterials_4c01907 crossref_primary_10_1016_j_ijpharm_2023_122822 crossref_primary_10_1016_j_ijpx_2023_100214 crossref_primary_10_1016_j_apmt_2020_100883 crossref_primary_10_1002_smll_201903746 crossref_primary_10_1016_j_actbio_2021_05_016 crossref_primary_10_1016_j_bcp_2021_114584 crossref_primary_10_1016_j_ntm_2023_100007 crossref_primary_10_1039_D3TB02763E crossref_primary_10_1002_adhm_202001897 crossref_primary_10_1002_adhm_202202474 crossref_primary_10_1002_adhm_202400366 crossref_primary_10_1088_1758_5090_ac19c7 crossref_primary_10_1002_adhm_202101971 crossref_primary_10_1016_j_ccr_2024_215751 crossref_primary_10_1016_j_ccr_2023_215330 crossref_primary_10_1016_j_ccr_2022_214861 crossref_primary_10_1186_s12951_024_02297_8 crossref_primary_10_1016_j_chemosphere_2023_139312 crossref_primary_10_1039_D0BM01738H crossref_primary_10_1002_adhm_202304639 crossref_primary_10_1016_j_nantod_2020_101073 crossref_primary_10_1186_s12951_021_01191_x |
Cites_doi | 10.1038/s41551-017-0116-7 10.1021/acsnano.8b00999 10.1002/adma.201601902 10.1021/acsami.7b07981 10.1021/acs.nanolett.8b03178 10.1002/adma.201704877 10.1021/acsnano.7b06852 10.1021/cr900136g 10.1016/j.cell.2010.03.015 10.1016/j.tips.2006.10.005 10.1038/nnano.2012.90 10.1002/adma.201704307 10.1016/j.apcatb.2015.01.019 10.1002/ange.201510031 10.1016/S0014-5793(00)02197-9 10.1016/j.actbio.2015.06.037 10.1016/j.apcatb.2010.11.022 10.1038/s41467-017-00424-8 10.1021/acsnano.7b02533 10.1038/nature14344 10.1016/S0304-3894(02)00282-0 10.1038/nnano.2011.95 10.1038/nnano.2016.164 10.1038/nrd2803 10.1038/nature12626 10.1038/nrc1821 10.1016/j.freeradbiomed.2009.12.022 10.1002/adma.200802646 10.1016/j.chemosphere.2005.01.033 10.1016/j.biomaterials.2017.06.035 10.1002/adma.201805919 10.7150/thno.5411 10.15541/jim20170041 10.1021/acs.chemmater.6b03905 10.1021/ar9000026 10.1038/nnano.2016.168 10.1016/j.cell.2017.09.021 10.1016/S0891-5849(01)00480-4 10.1038/nrc2067 10.15541/jim20160285 10.1002/adma.201604105 10.1002/adma.201704007 10.1002/ange.201712027 10.1039/C2CS35342C 10.1002/adma.201701683 10.1080/10643380500326564 10.1038/nnano.2016.280 10.1016/j.jhazmat.2009.09.057 10.1021/ja905938a 10.1039/C8CC03922D 10.1002/anie.201610682 10.1038/s41427-018-0015-8 10.1016/S0968-0004(03)00174-9 10.1158/0008-5472.CAN-07-5259 10.1016/j.canlet.2006.10.029 10.1039/B813725K 10.1021/ar800150g 10.1002/adfm.201600676 10.1021/ac503653c 10.1002/anie.200602866 10.1016/S0956-053X(00)00070-2 10.1039/c2sc20099f 10.1039/C7BM00999B 10.1016/j.cell.2012.03.042 10.1016/j.freeradbiomed.2010.03.025 10.1039/C1CS15187H 10.1039/C7CS00471K 10.1021/jacs.5b09974 10.1038/nnano.2007.260 10.1080/09593330802468848 10.1021/nn300291r 10.1002/anie.201008286 10.1021/cr068445e 10.1021/ar400091e 10.1038/nmat2992 10.1038/cdd.2015.158 10.1038/srep29247 10.1002/adma.201205292 10.1021/acsami.5b12523 10.1021/jacs.5b11561 10.1016/j.chempr.2018.02.012 10.1126/science.2834821 10.1039/C4RA13564D 10.1016/j.addr.2009.03.007 10.1038/nrc.2016.108 10.1021/acs.nanolett.6b04269 10.1038/nnano.2016.72 10.1016/j.jclepro.2013.09.013 10.1073/pnas.1113560109 10.1211/jpp.59.11.0013 10.1016/S0140-6736(08)60241-X 10.1021/acs.biomac.7b01433 10.1016/j.biomaterials.2018.02.018 10.1016/j.chemosphere.2005.07.029 10.1016/j.nano.2006.12.001 10.1016/j.jconrel.2008.05.003 10.1021/acs.bioconjchem.6b00562 10.1021/acs.nanolett.6b04060 10.1021/acsnano.5b06175 10.1021/es020757l 10.1039/C5NR00706B 10.1002/adma.201304497 10.1021/jacs.7b05559 10.1021/nn800596w 10.1039/C4CS00300D 10.1016/j.biomaterials.2012.06.076 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biomaterials.2019.04.023 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1878-5905 |
EndPage | 13 |
ExternalDocumentID | 31075521 10_1016_j_biomaterials_2019_04_023 S0142961219302406 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAIAV AAYOK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG RIG AAYXX AGRNS BNPGV CITATION SSH NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c538t-4bcd70ded98e322b3dcba40349c1365e61c9c8d0d5ad383c07e55982de496fbc3 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 1878-5905 |
IngestDate | Thu Jul 10 18:56:50 EDT 2025 Fri Jul 11 10:56:02 EDT 2025 Thu Apr 03 07:05:56 EDT 2025 Tue Jul 01 01:19:38 EDT 2025 Thu Apr 24 22:54:44 EDT 2025 Fri Feb 23 02:34:46 EST 2024 Tue Aug 26 20:00:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fenton reaction Nanocatalytic biomedicine Nanomedicine Synergistic therapy Cancer |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c538t-4bcd70ded98e322b3dcba40349c1365e61c9c8d0d5ad383c07e55982de496fbc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 31075521 |
PQID | 2231908125 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2253243193 proquest_miscellaneous_2231908125 pubmed_primary_31075521 crossref_citationtrail_10_1016_j_biomaterials_2019_04_023 crossref_primary_10_1016_j_biomaterials_2019_04_023 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2019_04_023 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2019_04_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2019 2019-08-00 20190801 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Schrank, Jose, Moreira, Schroder (bib96) 2005; 60 Jung, Lim, Park, Kim (bib14) 2009; 30 Ma, Li, Huan, Zhang, Yang, Wang, Chang, Wu (bib106) 2018; 10 Solano, Garcia-Segura, Martinez-Huitle, Brillas (bib24) 2015; 168 Dai, Cheng, Wang, Zhang, Yang, Wang, Yung, Wang, Jacobson, Xu, Ni, Yu, Zhou, Chen (bib103) 2018; 12 Cadet, Douki, Ravanat (bib27) 2010; 49 Zheng, Lei, Zhu, Fan, Li, Li, Xu, Cheng, Zhang (bib104) 2017; 17 Zhang, Bu, Ni, Zhang, Li, Yao, Zhang, Yao, Wang, Shi (bib61) 2016; 128 Kwon, Han, Cho, Yoo, Hwang, Kwon, Lee (bib82) 2016; 8 Chen, Yin, Zhou, Zhang, Song, Song, Hu, Gu (bib53) 2012; 6 Shen, Song, Yung, Zhou, Wu, Chen (bib52) 2018; 30 Ma, Xiao, Yu, Liu, Cheng, Song, Zhang, Li, Wang, Gu, Lin (bib101) 2017; 17 Zhu, Chen, Shi (bib41) 2018; 12 Feng, Han, Wang, Gao, Hu, Yue, Chen, Shi (bib86) 2019; 31 Lu, Salabas, Schuth (bib57) 2007; 46 Kessenbrock, Plaks, Werb (bib3) 2010; 141 Albini, Sporn (bib2) 2007; 7 Li, Cheng, Xie, Qiu, Zeng, Li, Wan, Zhang, Liu, Zhang (bib44) 2017; 11 Kim, Cho, Jeon, Kim, Song, Lee, Choi, Hyeon (bib7) 2017; 139 Brillas, Sires, Oturan (bib17) 2009; 109 Duan, Wang, Liu, Wang, Li, Jiang (bib63) 2018; 54 Cheng, Liu, Gu, Gong, Shi, Liu, Wang, Wang, Liu, Xing, Bu, Sun, Liu (bib88) 2014; 26 Wlassoff, Albright, Sivashinski, Lvanova, Appelbaum, Salganik (bib10) 2007; 59 Neyens, Baeyens (bib15) 2003; 98 Trachootham, Alexandre, Huang (bib70) 2009; 8 Cioloboc, Kennedy, Boice, Clark, Kurtz (bib105) 2018; 19 Shubayev, Pisanic, Jin (bib56) 2009; 61 Shi, Kantoff, Wooster, Farokhzad (bib36) 2017; 17 Kumar, Koul, Khandrika, Meacham, Koul (bib12) 2008; 68 Fu, Shao, Wang, Zhu (bib78) 2015; 7 Kim, Zhang, Ma, Riegman, Chen, Ingold, Conrad, Turker, Gao, Jiang, Monette, Pauliah, Gonen, Zanzonico, Quinn, Wiesner, Bradbury, Overholtzer (bib23) 2016; 11 Fan, Lu, Huang, Liu, Yang, Wang, Yu, Liu, Hu, He, Qu, Wang, Chen (bib43) 2017; 56 Shevtsov, Parr, Ryzhov, Zemtsova, Arbenin, Ponomareva, Smirnov, Multhoff (bib79) 2016; 6 Huang, Chen, Dong, Luo, Yu, Moore, Bey, Boothman, Gao (bib100) 2013; 3 Ranji-Burachaloo, Karimi, Xie, Fu, Gurr, Dunstan, Qiao (bib75) 2017; 9 Bataineh, Pestovsky, Bakac (bib26) 2012; 3 Lee, Jang, Choi, Moon, Noh, Kim, Kim, Kim, Park, Cheon (bib59) 2011; 6 Dixon, Lemberg, Lamprecht, Skouta, Zaitsev, Gleason, Patel, Bauer, Cantley, Yang, Morrison, Stockwell (bib19) 2012; 149 Lin, Song, Song, Ke, Liu, Zhou, Shen, Li, Yang, Tang, Niu, Yang, Chen (bib62) 2018; 130 Saeed, Ren, Wu (bib51) 2018; 6 Tang, Zhang, Liu, Ni, Zhang, Zhang, Yao, He, Shi, Bu (bib83) 2017; 29 Poyton, Sendecki, Cong, Cremer (bib66) 2016; 138 Chen, Tan, Zhang, Wang (bib31) 2015; 44 Pedraza, Coronel, Fraker, Ricordi, Stabler (bib47) 2012; 109 Jiang, Kon, Li, Wang, Su, Hibshoosh, Baer, Gu (bib21) 2015; 520 Bourquin, Milosevic, Hauser, Lehner, Blank, Petri-Fink, Rothen-Rutishauser (bib35) 2018; 30 Pignatello, Oliveros, MacKay (bib16) 2006; 36 Kim, Kuk, Yu, Kim, Park, Lee, Kim, Park, Park, Hwang, Kim, Lee, Jeong, Cho (bib73) 2007; 3 Ghaly, Hartel, Mayer, Haseneder (bib97) 2001; 21 Stockwell, Angeli, Bayir, Bush, Conrad, Dixon, Fulda, Gascon, Hatzios, Kagan, Noel, Jiang, Linkermann, Murphy, Overholtzer, Oyagi, Pagnussat, Park, Ran, Rosenfeld, Salnikow, Tang, Torti, Torti, Toyokuni, Woerpel, Zhang (bib22) 2017; 171 Laurent, Forge, Port, Roch, Robic, Elst, Muller (bib58) 2008; 108 Overall, Kleifeld (bib4) 2006; 6 Southworth, Voelker (bib25) 2003; 37 Yue, Wang, Dai, Hu, Chen, Qi, Zheng, Yu (bib76) 2017; 28 Ashley, Carnes, Phillips, Padilla, Durfee, Brown, Hanna, Liu, Phillips, Carter, Carroll, Jiang, Dunphy, Willman, Petsev, Evans, Parikh, Chackerian, Wharton, Peabody, Brinker (bib33) 2011; 10 Szatrowski, Nathan (bib9) 1991; 51 Pouran, Raman, Daud (bib13) 2014; 64 Hu, Wu, Fan, Chen, Liu, Ni, Bu, Shi (bib84) 2017; 141 Li, Su, Chang, Lin, Yeh (bib85) 2015; 10 Dai, Yang, Cheng, Wang, Zhang, Zhu, Wang, Yung, Tian, Jacobson, Xu, Ni, Song, Sun, Niu, Chen (bib102) 2018; 30 Zhu, Dong, Fu, Liu, Chen, Li, Zhu, Xu, Liu (bib45) 2016; 26 Tang, Zheng, Chen (bib38) 2017; 29 Schafer, Buettner (bib69) 2001; 30 Zhang, Ni, Liu, Yao, Bu, Shi (bib42) 2017; 12 Ma, Cui, Zhu, Li (bib39) 2017; 32 Wydra, Oliver, Anderson, Dziubla, Hilt (bib91) 2015; 5 Adam-Vizi, Chinopoulos (bib11) 2006; 27 Lu, Xu, Zhang, Ling, Wang, Zhou, Wu, Wu, Hackett, Kim, Chang, Kim, Hu, Dong, Lee, Li, He, Zhang, Wen, Yang, Choi, Hyeon, Zou (bib32) 2017; 1 Junttila, de Sauvage (bib1) 2013; 501 Wang, Zheng, Li, Yang, Liu, Xiao, Li, Cao, Yang (bib67) 2014; 86 AshaRani, Mun, Hande, Valiyaveettil (bib74) 2009; 3 Zhang, Wan, Li, Xu, Cheng, Zhang (bib93) 2018; 18 Lee, Gao, Bae (bib68) 2008; 132 Mi, Kokuryo, Cabral, Wu, Terada, Saga, Aoki, Nishiyama, Kataoka (bib48) 2016; 11 Huo, Wang, Chen, Shi (bib40) 2017; 8 Halliwell, Clement, Long (bib6) 2000; 486 Chiarugi, Cirri (bib28) 2003; 28 Huang, Liao, Lu, Pan, Wan, Chen, Sung (bib60) 2016; 28 Zanganeh, Hutter, Spitler, Lenkov, Mahmoudi, Shaw, Pajarinen, Nejadnik, Goodman, Moseley, Coussens, Daldrup-Link (bib54) 2016; 11 Mantovani, Romero, Palucka, Marincola (bib5) 2008; 371 Wydra, Rychahou, Evers, Anderson, Dziubla, Hilt (bib92) 2015; 25 Chen, Chen, Shi (bib81) 2014; 47 Lin, Chen, Shi (bib107) 2018; 47 Xie, Hou, Song, Yu, Huang, Sun, Kang, Tang (bib20) 2016; 23 Tibbitt, Dahlman, Langer (bib34) 2016; 138 Circu, Aw (bib29) 2010; 48 Chen, Chen, Shi (bib30) 2013; 25 Lopez-Lazaro (bib8) 2007; 252 Shemer, Kunukcu, Linden (bib94) 2006; 63 Gao, Gu, Xu (bib55) 2009; 42 Fan, Cao, Pan, Lu, Yang, Feng, Song, Liang, Yan (bib49) 2012; 7 Wang, Huo, Chen, Shi (bib80) 2018; 163 Yang, Feng, Shi, Liu (bib90) 2013; 42 Chen, Feng, Liu, Zhu, Dong, Wu, Liu (bib46) 2016; 28 Liong, France, Bradley, Zink (bib72) 2009; 21 Imlay, Chin, Linn (bib18) 1988; 240 Gao, Zhuang, Nie, Zhang, Zhang, Gu, Wang, Feng, Yang, Perrett (bib50) 2007; 2 He, Zhou, Wamer, Boudreau, Yin (bib71) 2012; 33 Elmorsi, Riyad, Mohamed, Abd El Bary (bib95) 2010; 174 Zhou, Liu, Li (bib99) 2012; 41 Xiong, Ye, Wang, Song, Qu (bib98) 2017; 32 Xu, Li, Ye, Yin, Zeng (bib65) 2011; 102 Ember, Rothbart, Puchta, van Eldik (bib64) 2009; 33 Yang, Chen, Shi (bib37) 2018; 4 Ke, Wang, Dai, Jin, Qu, Xing, Guo, Yue, Liu (bib89) 2011; 50 Xu, Yuan, Kohler, Kim, Chung, Sun (bib77) 2009; 131 Lal, Clare, Halas (bib87) 2008; 41 Pedraza (10.1016/j.biomaterials.2019.04.023_bib47) 2012; 109 Xiong (10.1016/j.biomaterials.2019.04.023_bib98) 2017; 32 Lopez-Lazaro (10.1016/j.biomaterials.2019.04.023_bib8) 2007; 252 Cadet (10.1016/j.biomaterials.2019.04.023_bib27) 2010; 49 Lee (10.1016/j.biomaterials.2019.04.023_bib68) 2008; 132 Ma (10.1016/j.biomaterials.2019.04.023_bib39) 2017; 32 Shi (10.1016/j.biomaterials.2019.04.023_bib36) 2017; 17 Fan (10.1016/j.biomaterials.2019.04.023_bib49) 2012; 7 He (10.1016/j.biomaterials.2019.04.023_bib71) 2012; 33 Dai (10.1016/j.biomaterials.2019.04.023_bib102) 2018; 30 Poyton (10.1016/j.biomaterials.2019.04.023_bib66) 2016; 138 Ma (10.1016/j.biomaterials.2019.04.023_bib106) 2018; 10 Bourquin (10.1016/j.biomaterials.2019.04.023_bib35) 2018; 30 Lee (10.1016/j.biomaterials.2019.04.023_bib59) 2011; 6 Zhang (10.1016/j.biomaterials.2019.04.023_bib93) 2018; 18 Imlay (10.1016/j.biomaterials.2019.04.023_bib18) 1988; 240 Cheng (10.1016/j.biomaterials.2019.04.023_bib88) 2014; 26 Ashley (10.1016/j.biomaterials.2019.04.023_bib33) 2011; 10 Fan (10.1016/j.biomaterials.2019.04.023_bib43) 2017; 56 Kim (10.1016/j.biomaterials.2019.04.023_bib73) 2007; 3 Xie (10.1016/j.biomaterials.2019.04.023_bib20) 2016; 23 Kumar (10.1016/j.biomaterials.2019.04.023_bib12) 2008; 68 Dai (10.1016/j.biomaterials.2019.04.023_bib103) 2018; 12 Laurent (10.1016/j.biomaterials.2019.04.023_bib58) 2008; 108 Lal (10.1016/j.biomaterials.2019.04.023_bib87) 2008; 41 Zhang (10.1016/j.biomaterials.2019.04.023_bib61) 2016; 128 Shevtsov (10.1016/j.biomaterials.2019.04.023_bib79) 2016; 6 Zheng (10.1016/j.biomaterials.2019.04.023_bib104) 2017; 17 Jung (10.1016/j.biomaterials.2019.04.023_bib14) 2009; 30 Zhou (10.1016/j.biomaterials.2019.04.023_bib99) 2012; 41 Tibbitt (10.1016/j.biomaterials.2019.04.023_bib34) 2016; 138 Wang (10.1016/j.biomaterials.2019.04.023_bib67) 2014; 86 Cioloboc (10.1016/j.biomaterials.2019.04.023_bib105) 2018; 19 Neyens (10.1016/j.biomaterials.2019.04.023_bib15) 2003; 98 Yue (10.1016/j.biomaterials.2019.04.023_bib76) 2017; 28 Solano (10.1016/j.biomaterials.2019.04.023_bib24) 2015; 168 Hu (10.1016/j.biomaterials.2019.04.023_bib84) 2017; 141 Xu (10.1016/j.biomaterials.2019.04.023_bib77) 2009; 131 Circu (10.1016/j.biomaterials.2019.04.023_bib29) 2010; 48 Ma (10.1016/j.biomaterials.2019.04.023_bib101) 2017; 17 Ember (10.1016/j.biomaterials.2019.04.023_bib64) 2009; 33 Huang (10.1016/j.biomaterials.2019.04.023_bib100) 2013; 3 Kim (10.1016/j.biomaterials.2019.04.023_bib23) 2016; 11 Duan (10.1016/j.biomaterials.2019.04.023_bib63) 2018; 54 Xu (10.1016/j.biomaterials.2019.04.023_bib65) 2011; 102 Lin (10.1016/j.biomaterials.2019.04.023_bib107) 2018; 47 Overall (10.1016/j.biomaterials.2019.04.023_bib4) 2006; 6 Zhu (10.1016/j.biomaterials.2019.04.023_bib41) 2018; 12 Kwon (10.1016/j.biomaterials.2019.04.023_bib82) 2016; 8 Wang (10.1016/j.biomaterials.2019.04.023_bib80) 2018; 163 Yang (10.1016/j.biomaterials.2019.04.023_bib90) 2013; 42 Halliwell (10.1016/j.biomaterials.2019.04.023_bib6) 2000; 486 Dixon (10.1016/j.biomaterials.2019.04.023_bib19) 2012; 149 Southworth (10.1016/j.biomaterials.2019.04.023_bib25) 2003; 37 Chen (10.1016/j.biomaterials.2019.04.023_bib30) 2013; 25 Chen (10.1016/j.biomaterials.2019.04.023_bib31) 2015; 44 Huo (10.1016/j.biomaterials.2019.04.023_bib40) 2017; 8 Zhang (10.1016/j.biomaterials.2019.04.023_bib42) 2017; 12 Bataineh (10.1016/j.biomaterials.2019.04.023_bib26) 2012; 3 Albini (10.1016/j.biomaterials.2019.04.023_bib2) 2007; 7 Shubayev (10.1016/j.biomaterials.2019.04.023_bib56) 2009; 61 Adam-Vizi (10.1016/j.biomaterials.2019.04.023_bib11) 2006; 27 Shen (10.1016/j.biomaterials.2019.04.023_bib52) 2018; 30 Mantovani (10.1016/j.biomaterials.2019.04.023_bib5) 2008; 371 Pignatello (10.1016/j.biomaterials.2019.04.023_bib16) 2006; 36 Li (10.1016/j.biomaterials.2019.04.023_bib85) 2015; 10 Tang (10.1016/j.biomaterials.2019.04.023_bib38) 2017; 29 Ghaly (10.1016/j.biomaterials.2019.04.023_bib97) 2001; 21 Chen (10.1016/j.biomaterials.2019.04.023_bib53) 2012; 6 Shemer (10.1016/j.biomaterials.2019.04.023_bib94) 2006; 63 Szatrowski (10.1016/j.biomaterials.2019.04.023_bib9) 1991; 51 Ranji-Burachaloo (10.1016/j.biomaterials.2019.04.023_bib75) 2017; 9 Huang (10.1016/j.biomaterials.2019.04.023_bib60) 2016; 28 Tang (10.1016/j.biomaterials.2019.04.023_bib83) 2017; 29 Chen (10.1016/j.biomaterials.2019.04.023_bib81) 2014; 47 AshaRani (10.1016/j.biomaterials.2019.04.023_bib74) 2009; 3 Pouran (10.1016/j.biomaterials.2019.04.023_bib13) 2014; 64 Wlassoff (10.1016/j.biomaterials.2019.04.023_bib10) 2007; 59 Li (10.1016/j.biomaterials.2019.04.023_bib44) 2017; 11 Schafer (10.1016/j.biomaterials.2019.04.023_bib69) 2001; 30 Wydra (10.1016/j.biomaterials.2019.04.023_bib91) 2015; 5 Fu (10.1016/j.biomaterials.2019.04.023_bib78) 2015; 7 Lu (10.1016/j.biomaterials.2019.04.023_bib57) 2007; 46 Stockwell (10.1016/j.biomaterials.2019.04.023_bib22) 2017; 171 Liong (10.1016/j.biomaterials.2019.04.023_bib72) 2009; 21 Junttila (10.1016/j.biomaterials.2019.04.023_bib1) 2013; 501 Trachootham (10.1016/j.biomaterials.2019.04.023_bib70) 2009; 8 Mi (10.1016/j.biomaterials.2019.04.023_bib48) 2016; 11 Zanganeh (10.1016/j.biomaterials.2019.04.023_bib54) 2016; 11 Elmorsi (10.1016/j.biomaterials.2019.04.023_bib95) 2010; 174 Gao (10.1016/j.biomaterials.2019.04.023_bib50) 2007; 2 Lu (10.1016/j.biomaterials.2019.04.023_bib32) 2017; 1 Schrank (10.1016/j.biomaterials.2019.04.023_bib96) 2005; 60 Saeed (10.1016/j.biomaterials.2019.04.023_bib51) 2018; 6 Lin (10.1016/j.biomaterials.2019.04.023_bib62) 2018; 130 Kessenbrock (10.1016/j.biomaterials.2019.04.023_bib3) 2010; 141 Chiarugi (10.1016/j.biomaterials.2019.04.023_bib28) 2003; 28 Jiang (10.1016/j.biomaterials.2019.04.023_bib21) 2015; 520 Chen (10.1016/j.biomaterials.2019.04.023_bib46) 2016; 28 Ke (10.1016/j.biomaterials.2019.04.023_bib89) 2011; 50 Zhu (10.1016/j.biomaterials.2019.04.023_bib45) 2016; 26 Wydra (10.1016/j.biomaterials.2019.04.023_bib92) 2015; 25 Brillas (10.1016/j.biomaterials.2019.04.023_bib17) 2009; 109 Kim (10.1016/j.biomaterials.2019.04.023_bib7) 2017; 139 Gao (10.1016/j.biomaterials.2019.04.023_bib55) 2009; 42 Feng (10.1016/j.biomaterials.2019.04.023_bib86) 2019; 31 Yang (10.1016/j.biomaterials.2019.04.023_bib37) 2018; 4 |
References_xml | – volume: 49 start-page: 9 year: 2010 end-page: 21 ident: bib27 article-title: Oxidatively generated base damage to cellular DNA publication-title: Free Radical Biol. Med. – volume: 68 start-page: 1777 year: 2008 end-page: 1785 ident: bib12 article-title: Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype publication-title: Cancer Res. – volume: 109 start-page: 4245 year: 2012 end-page: 4250 ident: bib47 article-title: Preventing hypoxia-induced cell death in beta cells and islets publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 25 start-page: 3144 year: 2013 end-page: 3176 ident: bib30 article-title: bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles publication-title: Adv. Mater. – volume: 141 start-page: 86 year: 2017 end-page: 95 ident: bib84 article-title: Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy publication-title: Biomaterials – volume: 50 start-page: 3017 year: 2011 end-page: 3021 ident: bib89 article-title: Gold-nanoshelled microcapsules: a theranostic agent for ultrasound contrast imaging and photothermal therapy publication-title: Angew. Chem. Int. Ed. – volume: 21 start-page: 1684 year: 2009 end-page: 1689 ident: bib72 article-title: Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles publication-title: Adv. Mater. – volume: 25 start-page: 284 year: 2015 end-page: 290 ident: bib92 article-title: The role of ROS generation from magnetic nanoparticles in an alternating magnetic field on cytotoxicity publication-title: Acta Biomater. – volume: 3 start-page: 116 year: 2013 end-page: 126 ident: bib100 article-title: Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy publication-title: Theranostics – volume: 7 start-page: 139 year: 2007 end-page: 147 ident: bib2 article-title: The tumour microenvironment as a target for chemoprevention publication-title: Nat. Rev. Canc. – volume: 371 start-page: 771 year: 2008 end-page: 783 ident: bib5 article-title: Tumour immunity: effector response to tumour and role of the microenvironment publication-title: Lancet – volume: 12 start-page: 378 year: 2017 end-page: 386 ident: bib42 article-title: Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy publication-title: Nat. Nanotechnol. – volume: 1 start-page: 637 year: 2017 end-page: 643 ident: bib32 article-title: Iron oxide nanoclusters for T publication-title: Nat. Biomed. Eng. – volume: 3 start-page: 1594 year: 2012 end-page: 1599 ident: bib26 article-title: pH-induced mechanistic changeover from hydroxyl radicals to iron(IV) in the Fenton reaction publication-title: Chem. Sci. – volume: 46 start-page: 1222 year: 2007 end-page: 1244 ident: bib57 article-title: Magnetic nanoparticles: synthesis, protection, functionalization, and application publication-title: Angew. Chem. Int. Ed. – volume: 130 start-page: 4996 year: 2018 end-page: 5000 ident: bib62 article-title: Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2 -based nanoagent to enhance chemodynamic therapy publication-title: Angew. Chem. Int. Ed. – volume: 138 start-page: 1584 year: 2016 end-page: 1590 ident: bib66 article-title: Cu publication-title: J. Am. Chem. Soc. – volume: 86 start-page: 12348 year: 2014 end-page: 12354 ident: bib67 article-title: AgNP-DNA@GQDs hybrid: new approach for sensitive detection of H publication-title: Anal. Chem. – volume: 10 start-page: 31 year: 2018 end-page: 44 ident: bib106 article-title: 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer publication-title: NPG Asia Mater. – volume: 47 start-page: 125 year: 2014 end-page: 137 ident: bib81 article-title: Construction of homogenous/heterogeneous hollow mesoporous silica nanostructures by silicaeEtching chemistry: principles, synthesis, and applications publication-title: Acc. Chem. Res. – volume: 48 start-page: 749 year: 2010 end-page: 762 ident: bib29 article-title: Reactive oxygen species, cellular redox systems, and apoptosis publication-title: Free Radical Biol. Med. – volume: 2 start-page: 577 year: 2007 end-page: 583 ident: bib50 article-title: Intrinsic peroxidase-like activity of ferromagnetic nanoparticles publication-title: Nat. Nanotechnol. – volume: 30 start-page: 1191 year: 2001 end-page: 1212 ident: bib69 article-title: Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple publication-title: Free Radical Biol. Med. – volume: 29 start-page: 1604105 year: 2017 ident: bib38 article-title: Materials chemistry of nanoultrasonic biomedicine publication-title: Adv. Mater. – volume: 132 start-page: 164 year: 2008 end-page: 170 ident: bib68 article-title: Recent progress in tumor pH targeting nanotechnology publication-title: J. Control. Release – volume: 131 start-page: 15346 year: 2009 end-page: 15351 ident: bib77 article-title: FePt nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 1549 year: 2007 end-page: 1553 ident: bib10 article-title: Hydrogen peroxide overproduced in breast cancer cells can serve as an anticancer prodrug generating apoptosis-stimulating hydroxyl radicals under the effect of tamoxifen-ferrocene conjugate publication-title: J. Pharm. Pharmacol. – volume: 41 start-page: 1842 year: 2008 end-page: 1851 ident: bib87 article-title: Nanoshell-enabled photothermal cancer therapy: impending clinical impact publication-title: Acc. Chem. Res. – volume: 486 start-page: 10 year: 2000 end-page: 13 ident: bib6 article-title: Hydrogen peroxide in the human body publication-title: FEBS Lett. – volume: 47 start-page: 1938 year: 2018 end-page: 1958 ident: bib107 article-title: Nanoparticle-triggered publication-title: Chem. Soc. Rev. – volume: 36 start-page: 1 year: 2006 end-page: 84 ident: bib16 article-title: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 11 start-page: 986 year: 2016 end-page: 994 ident: bib54 article-title: Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues publication-title: Nat. Nanotechnol. – volume: 44 start-page: 2681 year: 2015 end-page: 2701 ident: bib31 article-title: Two-dimensional graphene analogues for biomedical applications publication-title: Chem. Soc. Rev. – volume: 18 start-page: 7609 year: 2018 end-page: 7618 ident: bib93 article-title: An adenosine triphosphate-responsive autocatalytic Fenton nanoparticle for tumor ablation with self-supplied H publication-title: Nano Lett. – volume: 42 start-page: 1097 year: 2009 end-page: 1107 ident: bib55 article-title: Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications publication-title: Acc. Chem. Res. – volume: 41 start-page: 1323 year: 2012 end-page: 1349 ident: bib99 article-title: Upconversion nanophosphors for small-animal imaging publication-title: Chem. Soc. Rev. – volume: 8 start-page: 5887 year: 2016 end-page: 5897 ident: bib82 article-title: Nano-Fenton reactors as a new class of oxidative stress amplifying anticancer therapeutic agents publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 7275 year: 2015 end-page: 7283 ident: bib78 article-title: Lysosome-controlled efficient ROS overproduction against cancer cells with a high pH-responsive catalytic nanosystem publication-title: Nanoscale – volume: 32 start-page: 180 year: 2017 end-page: 184 ident: bib98 article-title: Spectra analysis of Nd3+ sensitized NaYF4:Yb@NaYF4:Ho upconversion nanoparticles publication-title: J. Inorg. Mater. – volume: 12 start-page: 3780 year: 2018 end-page: 3795 ident: bib41 article-title: Nanoenzyme-augmented cancer sonodynamic therapy by catalytic tumor oxygenation publication-title: ACS Nano – volume: 64 start-page: 24 year: 2014 end-page: 35 ident: bib13 article-title: Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions publication-title: J. Clean. Prod – volume: 26 start-page: 1886 year: 2014 end-page: 1893 ident: bib88 article-title: PEGylated WS publication-title: Adv. Mater. – volume: 128 start-page: 2141 year: 2016 end-page: 2146 ident: bib61 article-title: Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction publication-title: Angew. Chem. Int. Ed. – volume: 19 start-page: 178 year: 2018 end-page: 187 ident: bib105 article-title: Trojan horse for light-triggered bifurcated production of singlet oxygen and Fenton-reactive iron within cancer cells publication-title: Biomacromolecules – volume: 28 start-page: 509 year: 2003 end-page: 514 ident: bib28 article-title: Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction publication-title: Trends Biochem. Sci. – volume: 26 start-page: 5490 year: 2016 end-page: 5498 ident: bib45 article-title: Modulation of hypoxia in solid tumor microenvironment with MnO publication-title: Adv. Funct. Mater. – volume: 21 start-page: 41 year: 2001 end-page: 47 ident: bib97 article-title: Photochemical oxidation of p-chlorophenol by UV/H publication-title: Waste Manag. – volume: 8 start-page: 579 year: 2009 end-page: 591 ident: bib70 article-title: Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? publication-title: Nat. Rev. Drug Discov. – volume: 138 start-page: 704 year: 2016 end-page: 717 ident: bib34 article-title: Emerging frontiers in drug delivery publication-title: J. Am. Chem. Soc. – volume: 501 start-page: 346 year: 2013 end-page: 354 ident: bib1 article-title: Influence of tumour micro-environment heterogeneity on therapeutic response publication-title: Nature – volume: 32 start-page: 1215 year: 2017 end-page: 1222 ident: bib39 article-title: Porous hydroxyapatite microspheres prepared by using poly (allylamine hydrochloride) and its application in drug delivery publication-title: J. Inorg. Mater. – volume: 108 start-page: 2064 year: 2008 end-page: 2110 ident: bib58 article-title: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications publication-title: Chem. Rev. – volume: 42 start-page: 530 year: 2013 end-page: 547 ident: bib90 article-title: Nano-graphene in biomedicine: theranostic applications publication-title: Chem. Soc. Rev. – volume: 520 start-page: 57 year: 2015 end-page: 62 ident: bib21 article-title: Ferroptosis as a p53-mediated activity during tumour suppression publication-title: Nature – volume: 252 start-page: 1 year: 2007 end-page: 8 ident: bib8 article-title: Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy publication-title: Cancer Lett. – volume: 6 start-page: 708 year: 2018 end-page: 725 ident: bib51 article-title: Therapeutic applications of iron oxide based nanoparticles in cancer: basic concepts and recent advances publication-title: Biomater. Sci. – volume: 6 start-page: 4001 year: 2012 end-page: 4012 ident: bib53 article-title: Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity publication-title: ACS Nano – volume: 11 start-page: 724 year: 2016 end-page: 730 ident: bib48 article-title: A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy publication-title: Nat. Nanotechnol. – volume: 27 start-page: 639 year: 2006 end-page: 645 ident: bib11 article-title: Bioenergetics and the formation of mitochondrial reactive oxygen species publication-title: Trends Pharmacol. Sci. – volume: 51 start-page: 794 year: 1991 end-page: 798 ident: bib9 article-title: Production of large amounts of hydrogen peroxide by human tumor cells publication-title: Cancer Res. – volume: 33 start-page: 34 year: 2009 end-page: 49 ident: bib64 article-title: Metal ion-catalyzed oxidative degradation of Orange II by H publication-title: New J. Chem. – volume: 6 start-page: 29247 year: 2016 ident: bib79 article-title: Zero-valent Fe confined mesoporous silica nanocarriers (Fe(0) @ MCM-41) for targeting experimental orthotopic glioma in rats publication-title: Sci. Rep. – volume: 30 start-page: 1704877 year: 2018 ident: bib102 article-title: Toxic reactive oxygen species enhanced synergistic combination therapy by self-assembled metal-phenolic network nanoparticles publication-title: Adv. Mater. – volume: 7 start-page: 459 year: 2012 end-page: 464 ident: bib49 article-title: Magnetoferritin nanoparticles for targeting and visualizing tumour tissues publication-title: Nat. Nanotechnol. – volume: 102 start-page: 37 year: 2011 end-page: 43 ident: bib65 article-title: Catalyzed oxidative degradation of methylene blue by publication-title: Appl. Catal. B Environ. – volume: 33 start-page: 7547 year: 2012 end-page: 7555 ident: bib71 article-title: Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles publication-title: Biomaterials – volume: 63 start-page: 269 year: 2006 end-page: 276 ident: bib94 article-title: Degradation of the pharmaceutical metronidazole publication-title: Chemosphere – volume: 12 start-page: 455 year: 2018 end-page: 463 ident: bib103 article-title: Hypochlorous acid promoted platinum drug chemotherapy by myeloperoxidase-encapsulated therapeutic metal phenolic nanoparticles publication-title: ACS Nano – volume: 30 start-page: 183 year: 2009 end-page: 190 ident: bib14 article-title: Effect of pH on Fenton and Fenton-like oxidation publication-title: Environ. Technol. – volume: 28 start-page: 7129 year: 2016 end-page: 7136 ident: bib46 article-title: Intelligent albumin–MnO publication-title: Adv. Mater. – volume: 6 start-page: 227 year: 2006 end-page: 239 ident: bib4 article-title: Tumour microenvironment - opinion - Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy publication-title: Nat. Rev. Canc. – volume: 30 start-page: 1704007 year: 2018 ident: bib52 article-title: Emerging strategies of cancer therapy based on ferroptosis publication-title: Adv. Mater. – volume: 30 start-page: 1704307 year: 2018 ident: bib35 article-title: Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials publication-title: Adv. Mater. – volume: 139 start-page: 10992 year: 2017 end-page: 10995 ident: bib7 article-title: Continuous O publication-title: J. Am. Chem. Soc. – volume: 168 start-page: 559 year: 2015 end-page: 571 ident: bib24 article-title: Degradation of acidic aqueous solutions of the diazo dye Congo Red by photo-assisted electrochemical processes based on Fenton's reaction chemistry publication-title: Appl. Catal. B Environ. – volume: 11 start-page: 7006 year: 2017 end-page: 7018 ident: bib44 article-title: Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy publication-title: ACS Nano – volume: 98 start-page: 33 year: 2003 end-page: 50 ident: bib15 article-title: A review of classic Fenton's peroxidation as an advanced oxidation technique publication-title: J. Hazard Mater. – volume: 163 start-page: 1 year: 2018 end-page: 13 ident: bib80 article-title: Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for tumor-specific therapy publication-title: Biomaterials – volume: 3 start-page: 279 year: 2009 end-page: 290 ident: bib74 article-title: Cytotoxicity and genotoxicity of silver nanoparticles in human cells publication-title: ACS Nano – volume: 10 start-page: 2017 year: 2015 end-page: 2027 ident: bib85 article-title: Ultrasound-induced reactive oxygen species-mediated therapy and imaging using a Fenton reaction activable polymersome publication-title: ACS Nano – volume: 54 start-page: 8214 year: 2018 end-page: 8217 ident: bib63 article-title: Tumor-selective catalytic nanosystem for activatable theranostics publication-title: Chem. Commun. – volume: 8 start-page: 357 year: 2017 ident: bib40 article-title: Tumor-selective catalytic nanomedicine by nanocatalyst delivery publication-title: Nat. Commun. – volume: 31 start-page: 1805919 year: 2019 ident: bib86 article-title: Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows publication-title: Adv. Mater. – volume: 37 start-page: 1130 year: 2003 end-page: 1136 ident: bib25 article-title: Hydroxyl radical production publication-title: Environ. Sci. Technol. – volume: 17 start-page: 20 year: 2017 end-page: 37 ident: bib36 article-title: Cancer nanomedicine: progress, challenges and opportunities publication-title: Nat. Rev. Canc. – volume: 6 start-page: 418 year: 2011 end-page: 422 ident: bib59 article-title: Exchange-coupled magnetic nanoparticles for efficient heat induction publication-title: Nat. Nanotechnol. – volume: 23 start-page: 369 year: 2016 end-page: 379 ident: bib20 article-title: Ferroptosis: process and function publication-title: Cell Death Differ. – volume: 56 start-page: 1229 year: 2017 end-page: 1233 ident: bib43 article-title: Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic cancer starving-like/gas therapy publication-title: Angew. Chem. Int. Ed. – volume: 171 start-page: 273 year: 2017 end-page: 285 ident: bib22 article-title: Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease publication-title: Cell – volume: 60 start-page: 644 year: 2005 end-page: 655 ident: bib96 article-title: Applicability of Fenton and H publication-title: Chemosphere – volume: 28 start-page: 9017 year: 2016 end-page: 9025 ident: bib60 article-title: Cellular organelle-dependent cytotoxicity of iron oxide nanoparticles and its implications for cancer diagnosis and treatment: a mechanistic investigation publication-title: Chem. Mater. – volume: 28 start-page: 400 year: 2017 end-page: 409 ident: bib76 article-title: pH-responsive, self-sacrificial nanotheranostic agent for potential publication-title: Bioconjug. Chem. – volume: 141 start-page: 52 year: 2010 end-page: 67 ident: bib3 article-title: Matrix metalloproteinases: Regulators of the tumor microenvironment publication-title: Cell – volume: 5 start-page: 18888 year: 2015 end-page: 18893 ident: bib91 article-title: Accelerated generation of free radicals by iron oxide nanoparticles in the presence of an alternating magnetic field publication-title: RSC Adv. – volume: 240 start-page: 640 year: 1988 end-page: 642 ident: bib18 article-title: Toxic DNA damage by hydrogen-peroxide trough the Fenton reaction publication-title: Science – volume: 174 start-page: 352 year: 2010 end-page: 358 ident: bib95 article-title: Decolorization of Mordant red 73 azo dye in water using H publication-title: J. Hazard Mater. – volume: 4 start-page: 1284 year: 2018 end-page: 1313 ident: bib37 article-title: Material chemistry of Two-dimensional inorganic nanosheets in cancer theranostics publication-title: Chem – volume: 11 start-page: 977 year: 2016 end-page: 985 ident: bib23 article-title: Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth publication-title: Nat. Nanotechnol. – volume: 10 start-page: 389 year: 2011 end-page: 397 ident: bib33 article-title: The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers publication-title: Nat. Mater. – volume: 9 start-page: 33599 year: 2017 end-page: 33608 ident: bib75 article-title: MOF-mediated destruction of cancer using the cell's own hydrogen peroxide publication-title: ACS Appl. Mater. Interfaces – volume: 61 start-page: 467 year: 2009 end-page: 477 ident: bib56 article-title: Magnetic nanoparticles for theragnostics publication-title: Adv. Drug Deliv. Rev. – volume: 149 start-page: 1060 year: 2012 end-page: 1072 ident: bib19 article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death publication-title: Cell – volume: 29 start-page: 1701683 year: 2017 ident: bib83 article-title: Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy publication-title: Adv. Mater. – volume: 17 start-page: 928 year: 2017 end-page: 937 ident: bib101 article-title: Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species publication-title: Nano Lett. – volume: 17 start-page: 284 year: 2017 end-page: 291 ident: bib104 article-title: Switching apoptosis to ferroptosis: metal-organic network for high-efficiency anticancer therapy publication-title: Nano Lett. – volume: 3 start-page: 95 year: 2007 end-page: 101 ident: bib73 article-title: Antimicrobial effects of silver nanoparticles publication-title: Nanomed.-Nanotechnol. – volume: 109 start-page: 6570 year: 2009 end-page: 6631 ident: bib17 article-title: Electro-fenton process and related electrochemical technologies based on Fenton's reaction chemistry publication-title: Chem. Rev. – volume: 1 start-page: 637 issue: 8 year: 2017 ident: 10.1016/j.biomaterials.2019.04.023_bib32 article-title: Iron oxide nanoclusters for T1 magnetic resonance imaging of non-human primates publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-017-0116-7 – volume: 12 start-page: 3780 issue: 4 year: 2018 ident: 10.1016/j.biomaterials.2019.04.023_bib41 article-title: Nanoenzyme-augmented cancer sonodynamic therapy by catalytic tumor oxygenation publication-title: ACS Nano doi: 10.1021/acsnano.8b00999 – volume: 28 start-page: 7129 year: 2016 ident: 10.1016/j.biomaterials.2019.04.023_bib46 article-title: Intelligent albumin–MnO2 nanoparticles as pH‐/H2O2‐responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy publication-title: Adv. Mater. doi: 10.1002/adma.201601902 – volume: 9 start-page: 33599 issue: 39 year: 2017 ident: 10.1016/j.biomaterials.2019.04.023_bib75 article-title: MOF-mediated destruction of cancer using the cell's own hydrogen peroxide publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b07981 – volume: 18 start-page: 7609 issue: 12 year: 2018 ident: 10.1016/j.biomaterials.2019.04.023_bib93 article-title: An adenosine triphosphate-responsive autocatalytic Fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe(III)/Fe(II) Conversion publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03178 – volume: 30 start-page: 1704877 issue: 8 year: 2018 ident: 10.1016/j.biomaterials.2019.04.023_bib102 article-title: Toxic reactive oxygen species enhanced synergistic combination therapy by self-assembled metal-phenolic network nanoparticles publication-title: Adv. Mater. doi: 10.1002/adma.201704877 – volume: 12 start-page: 455 issue: 1 year: 2018 ident: 10.1016/j.biomaterials.2019.04.023_bib103 article-title: Hypochlorous acid promoted platinum drug chemotherapy by myeloperoxidase-encapsulated therapeutic metal phenolic nanoparticles publication-title: ACS Nano doi: 10.1021/acsnano.7b06852 – volume: 109 start-page: 6570 issue: 12 year: 2009 ident: 10.1016/j.biomaterials.2019.04.023_bib17 article-title: Electro-fenton process and related electrochemical technologies based on Fenton's reaction chemistry publication-title: Chem. Rev. doi: 10.1021/cr900136g – volume: 141 start-page: 52 issue: 1 year: 2010 ident: 10.1016/j.biomaterials.2019.04.023_bib3 article-title: Matrix metalloproteinases: Regulators of the tumor microenvironment publication-title: Cell doi: 10.1016/j.cell.2010.03.015 – volume: 27 start-page: 639 issue: 12 year: 2006 ident: 10.1016/j.biomaterials.2019.04.023_bib11 article-title: Bioenergetics and the formation of mitochondrial reactive oxygen species publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2006.10.005 – volume: 7 start-page: 459 issue: 7 year: 2012 ident: 10.1016/j.biomaterials.2019.04.023_bib49 article-title: Magnetoferritin nanoparticles for targeting and visualizing tumour tissues publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.90 – volume: 30 start-page: 1704307 year: 2018 ident: 10.1016/j.biomaterials.2019.04.023_bib35 article-title: Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials publication-title: Adv. Mater. doi: 10.1002/adma.201704307 – volume: 168 start-page: 559 year: 2015 ident: 10.1016/j.biomaterials.2019.04.023_bib24 article-title: Degradation of acidic aqueous solutions of the diazo dye Congo Red by photo-assisted electrochemical processes based on Fenton's reaction chemistry publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.01.019 – volume: 128 start-page: 2141 issue: 6 year: 2016 ident: 10.1016/j.biomaterials.2019.04.023_bib61 article-title: Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201510031 – volume: 486 start-page: 10 issue: 1 year: 2000 ident: 10.1016/j.biomaterials.2019.04.023_bib6 article-title: Hydrogen peroxide in the human body publication-title: FEBS Lett. doi: 10.1016/S0014-5793(00)02197-9 – volume: 25 start-page: 284 year: 2015 ident: 10.1016/j.biomaterials.2019.04.023_bib92 article-title: The role of ROS generation from magnetic nanoparticles in an alternating magnetic field on cytotoxicity publication-title: Acta Biomater. doi: 10.1016/j.actbio.2015.06.037 – volume: 102 start-page: 37 issue: 1–2 year: 2011 ident: 10.1016/j.biomaterials.2019.04.023_bib65 article-title: Catalyzed oxidative degradation of methylene blue by in situ generated cobalt (II)-bicarbonate complexes with hydrogen peroxide publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2010.11.022 – volume: 8 start-page: 357 year: 2017 ident: 10.1016/j.biomaterials.2019.04.023_bib40 article-title: Tumor-selective catalytic nanomedicine by nanocatalyst delivery publication-title: Nat. Commun. doi: 10.1038/s41467-017-00424-8 – volume: 11 start-page: 7006 issue: 7 year: 2017 ident: 10.1016/j.biomaterials.2019.04.023_bib44 article-title: Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy publication-title: ACS Nano doi: 10.1021/acsnano.7b02533 – volume: 51 start-page: 794 issue: 3 year: 1991 ident: 10.1016/j.biomaterials.2019.04.023_bib9 article-title: Production of large amounts of hydrogen peroxide by human tumor cells publication-title: Cancer Res. – volume: 520 start-page: 57 issue: 7545 year: 2015 ident: 10.1016/j.biomaterials.2019.04.023_bib21 article-title: Ferroptosis as a p53-mediated activity during tumour suppression publication-title: Nature doi: 10.1038/nature14344 – volume: 98 start-page: 33 issue: 1–3 year: 2003 ident: 10.1016/j.biomaterials.2019.04.023_bib15 article-title: A review of classic Fenton's peroxidation as an advanced oxidation technique publication-title: J. Hazard Mater. doi: 10.1016/S0304-3894(02)00282-0 – volume: 6 start-page: 418 issue: 7 year: 2011 ident: 10.1016/j.biomaterials.2019.04.023_bib59 article-title: Exchange-coupled magnetic nanoparticles for efficient heat induction publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.95 – volume: 11 start-page: 977 issue: 11 year: 2016 ident: 10.1016/j.biomaterials.2019.04.023_bib23 article-title: Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.164 – volume: 8 start-page: 579 issue: 7 year: 2009 ident: 10.1016/j.biomaterials.2019.04.023_bib70 article-title: Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2803 – volume: 501 start-page: 346 issue: 7467 year: 2013 ident: 10.1016/j.biomaterials.2019.04.023_bib1 article-title: Influence of tumour micro-environment heterogeneity on therapeutic response publication-title: Nature doi: 10.1038/nature12626 – volume: 6 start-page: 227 issue: 3 year: 2006 ident: 10.1016/j.biomaterials.2019.04.023_bib4 article-title: Tumour microenvironment - opinion - Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy publication-title: Nat. Rev. Canc. doi: 10.1038/nrc1821 – volume: 48 start-page: 749 issue: 6 year: 2010 ident: 10.1016/j.biomaterials.2019.04.023_bib29 article-title: Reactive oxygen species, cellular redox systems, and apoptosis publication-title: Free Radical Biol. Med. doi: 10.1016/j.freeradbiomed.2009.12.022 – volume: 21 start-page: 1684 issue: 17 year: 2009 ident: 10.1016/j.biomaterials.2019.04.023_bib72 article-title: Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles publication-title: Adv. Mater. doi: 10.1002/adma.200802646 – volume: 60 start-page: 644 issue: 5 year: 2005 ident: 10.1016/j.biomaterials.2019.04.023_bib96 article-title: Applicability of Fenton and H2O2/UV reactions in the treatment of tannery wastewaters publication-title: Chemosphere doi: 10.1016/j.chemosphere.2005.01.033 – volume: 141 start-page: 86 year: 2017 ident: 10.1016/j.biomaterials.2019.04.023_bib84 article-title: Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.06.035 – volume: 31 start-page: 1805919 issue: 5 year: 2019 ident: 10.1016/j.biomaterials.2019.04.023_bib86 article-title: Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows publication-title: Adv. Mater. doi: 10.1002/adma.201805919 – volume: 3 start-page: 116 issue: 2 year: 2013 ident: 10.1016/j.biomaterials.2019.04.023_bib100 article-title: Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy publication-title: Theranostics doi: 10.7150/thno.5411 – volume: 32 start-page: 1215 issue: 11 year: 2017 ident: 10.1016/j.biomaterials.2019.04.023_bib39 article-title: Porous hydroxyapatite microspheres prepared by using poly (allylamine hydrochloride) and its application in drug delivery publication-title: J. Inorg. Mater. doi: 10.15541/jim20170041 – volume: 28 start-page: 9017 issue: 24 year: 2016 ident: 10.1016/j.biomaterials.2019.04.023_bib60 article-title: Cellular organelle-dependent cytotoxicity of iron oxide nanoparticles and its implications for cancer diagnosis and treatment: a mechanistic investigation publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b03905 – volume: 42 start-page: 1097 issue: 8 year: 2009 ident: 10.1016/j.biomaterials.2019.04.023_bib55 article-title: Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications publication-title: Acc. Chem. Res. doi: 10.1021/ar9000026 – volume: 11 start-page: 986 issue: 11 year: 2016 ident: 10.1016/j.biomaterials.2019.04.023_bib54 article-title: Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.168 – volume: 171 start-page: 273 issue: 2 year: 2017 ident: 10.1016/j.biomaterials.2019.04.023_bib22 article-title: Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease publication-title: Cell doi: 10.1016/j.cell.2017.09.021 – volume: 30 start-page: 1191 issue: 11 year: 2001 ident: 10.1016/j.biomaterials.2019.04.023_bib69 article-title: Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple publication-title: Free Radical Biol. Med. doi: 10.1016/S0891-5849(01)00480-4 – volume: 7 start-page: 139 issue: 2 year: 2007 ident: 10.1016/j.biomaterials.2019.04.023_bib2 article-title: The tumour microenvironment as a target for chemoprevention publication-title: Nat. Rev. Canc. doi: 10.1038/nrc2067 – volume: 32 start-page: 180 issue: 2 year: 2017 ident: 10.1016/j.biomaterials.2019.04.023_bib98 article-title: Spectra analysis of Nd3+ sensitized NaYF4:Yb@NaYF4:Ho upconversion nanoparticles publication-title: J. Inorg. Mater. doi: 10.15541/jim20160285 – volume: 29 start-page: 1604105 issue: 10 year: 2017 ident: 10.1016/j.biomaterials.2019.04.023_bib38 article-title: Materials chemistry of nanoultrasonic biomedicine publication-title: Adv. Mater. doi: 10.1002/adma.201604105 – volume: 30 start-page: 1704007 issue: 12 year: 2018 ident: 10.1016/j.biomaterials.2019.04.023_bib52 article-title: Emerging strategies of cancer therapy based on ferroptosis publication-title: Adv. Mater. doi: 10.1002/adma.201704007 – volume: 130 start-page: 4996 year: 2018 ident: 10.1016/j.biomaterials.2019.04.023_bib62 article-title: Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2 -based nanoagent to enhance chemodynamic therapy publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201712027 – volume: 42 start-page: 530 issue: 2 year: 2013 ident: 10.1016/j.biomaterials.2019.04.023_bib90 article-title: Nano-graphene in biomedicine: theranostic applications publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35342C – volume: 29 start-page: 1701683 issue: 47 year: 2017 ident: 10.1016/j.biomaterials.2019.04.023_bib83 article-title: Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy publication-title: Adv. Mater. doi: 10.1002/adma.201701683 – volume: 36 start-page: 1 issue: 1 year: 2006 ident: 10.1016/j.biomaterials.2019.04.023_bib16 article-title: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643380500326564 – volume: 12 start-page: 378 issue: 4 year: 2017 ident: 10.1016/j.biomaterials.2019.04.023_bib42 article-title: Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.280 – volume: 174 start-page: 352 issue: 1–3 year: 2010 ident: 10.1016/j.biomaterials.2019.04.023_bib95 article-title: Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2009.09.057 – volume: 131 start-page: 15346 issue: 42 year: 2009 ident: 10.1016/j.biomaterials.2019.04.023_bib77 article-title: FePt nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition publication-title: J. Am. Chem. Soc. doi: 10.1021/ja905938a – volume: 54 start-page: 8214 year: 2018 ident: 10.1016/j.biomaterials.2019.04.023_bib63 article-title: Tumor-selective catalytic nanosystem for activatable theranostics publication-title: Chem. Commun. doi: 10.1039/C8CC03922D – volume: 56 start-page: 1229 issue: 5 year: 2017 ident: 10.1016/j.biomaterials.2019.04.023_bib43 article-title: Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic cancer starving-like/gas therapy publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201610682 – volume: 10 start-page: 31 issue: 4 year: 2018 ident: 10.1016/j.biomaterials.2019.04.023_bib106 article-title: 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer publication-title: NPG Asia Mater. doi: 10.1038/s41427-018-0015-8 – volume: 28 start-page: 509 issue: 9 year: 2003 ident: 10.1016/j.biomaterials.2019.04.023_bib28 article-title: Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(03)00174-9 – volume: 68 start-page: 1777 issue: 6 year: 2008 ident: 10.1016/j.biomaterials.2019.04.023_bib12 article-title: Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-5259 – volume: 252 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.biomaterials.2019.04.023_bib8 article-title: Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy publication-title: Cancer Lett. doi: 10.1016/j.canlet.2006.10.029 – volume: 33 start-page: 34 issue: 1 year: 2009 ident: 10.1016/j.biomaterials.2019.04.023_bib64 article-title: Metal ion-catalyzed oxidative degradation of Orange II by H2O2. High catalytic activity of simple manganese salts publication-title: New J. Chem. doi: 10.1039/B813725K – volume: 41 start-page: 1842 issue: 12 year: 2008 ident: 10.1016/j.biomaterials.2019.04.023_bib87 article-title: Nanoshell-enabled photothermal cancer therapy: impending clinical impact publication-title: Acc. Chem. Res. doi: 10.1021/ar800150g – volume: 26 start-page: 5490 year: 2016 ident: 10.1016/j.biomaterials.2019.04.023_bib45 article-title: Modulation of hypoxia in solid tumor microenvironment with MnO2 nanoparticles to enhance photodynamic therapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600676 – volume: 86 start-page: 12348 issue: 24 year: 2014 ident: 10.1016/j.biomaterials.2019.04.023_bib67 article-title: AgNP-DNA@GQDs hybrid: new approach for sensitive detection of H2O2 and Glucose via simultaneous AgNP etching and DNA cleavage publication-title: Anal. Chem. doi: 10.1021/ac503653c – volume: 46 start-page: 1222 issue: 8 year: 2007 ident: 10.1016/j.biomaterials.2019.04.023_bib57 article-title: Magnetic nanoparticles: synthesis, protection, functionalization, and application publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200602866 – volume: 21 start-page: 41 issue: 1 year: 2001 ident: 10.1016/j.biomaterials.2019.04.023_bib97 article-title: Photochemical oxidation of p-chlorophenol by UV/H2O2 and photo-Fenton process. A comparative study publication-title: Waste Manag. doi: 10.1016/S0956-053X(00)00070-2 – volume: 3 start-page: 1594 issue: 5 year: 2012 ident: 10.1016/j.biomaterials.2019.04.023_bib26 article-title: pH-induced mechanistic changeover from hydroxyl radicals to iron(IV) in the Fenton reaction publication-title: Chem. Sci. doi: 10.1039/c2sc20099f – volume: 6 start-page: 708 issue: 4 year: 2018 ident: 10.1016/j.biomaterials.2019.04.023_bib51 article-title: Therapeutic applications of iron oxide based nanoparticles in cancer: basic concepts and recent advances publication-title: Biomater. Sci. doi: 10.1039/C7BM00999B – volume: 149 start-page: 1060 issue: 5 year: 2012 ident: 10.1016/j.biomaterials.2019.04.023_bib19 article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death publication-title: Cell doi: 10.1016/j.cell.2012.03.042 – volume: 49 start-page: 9 issue: 1 year: 2010 ident: 10.1016/j.biomaterials.2019.04.023_bib27 article-title: Oxidatively generated base damage to cellular DNA publication-title: Free Radical Biol. Med. doi: 10.1016/j.freeradbiomed.2010.03.025 – volume: 41 start-page: 1323 issue: 3 year: 2012 ident: 10.1016/j.biomaterials.2019.04.023_bib99 article-title: Upconversion nanophosphors for small-animal imaging publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15187H – volume: 47 start-page: 1938 year: 2018 ident: 10.1016/j.biomaterials.2019.04.023_bib107 article-title: Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00471K – volume: 138 start-page: 704 issue: 3 year: 2016 ident: 10.1016/j.biomaterials.2019.04.023_bib34 article-title: Emerging frontiers in drug delivery publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b09974 – volume: 2 start-page: 577 issue: 9 year: 2007 ident: 10.1016/j.biomaterials.2019.04.023_bib50 article-title: Intrinsic peroxidase-like activity of ferromagnetic nanoparticles publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.260 – volume: 30 start-page: 183 issue: 2 year: 2009 ident: 10.1016/j.biomaterials.2019.04.023_bib14 article-title: Effect of pH on Fenton and Fenton-like oxidation publication-title: Environ. Technol. doi: 10.1080/09593330802468848 – volume: 6 start-page: 4001 issue: 5 year: 2012 ident: 10.1016/j.biomaterials.2019.04.023_bib53 article-title: Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity publication-title: ACS Nano doi: 10.1021/nn300291r – volume: 50 start-page: 3017 issue: 13 year: 2011 ident: 10.1016/j.biomaterials.2019.04.023_bib89 article-title: Gold-nanoshelled microcapsules: a theranostic agent for ultrasound contrast imaging and photothermal therapy publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201008286 – volume: 108 start-page: 2064 issue: 6 year: 2008 ident: 10.1016/j.biomaterials.2019.04.023_bib58 article-title: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications publication-title: Chem. Rev. doi: 10.1021/cr068445e – volume: 47 start-page: 125 issue: 1 year: 2014 ident: 10.1016/j.biomaterials.2019.04.023_bib81 article-title: Construction of homogenous/heterogeneous hollow mesoporous silica nanostructures by silicaeEtching chemistry: principles, synthesis, and applications publication-title: Acc. Chem. Res. doi: 10.1021/ar400091e – volume: 10 start-page: 389 issue: 5 year: 2011 ident: 10.1016/j.biomaterials.2019.04.023_bib33 article-title: The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers publication-title: Nat. Mater. doi: 10.1038/nmat2992 – volume: 23 start-page: 369 issue: 3 year: 2016 ident: 10.1016/j.biomaterials.2019.04.023_bib20 article-title: Ferroptosis: process and function publication-title: Cell Death Differ. doi: 10.1038/cdd.2015.158 – volume: 6 start-page: 29247 year: 2016 ident: 10.1016/j.biomaterials.2019.04.023_bib79 article-title: Zero-valent Fe confined mesoporous silica nanocarriers (Fe(0) @ MCM-41) for targeting experimental orthotopic glioma in rats publication-title: Sci. Rep. doi: 10.1038/srep29247 – volume: 25 start-page: 3144 issue: 23 year: 2013 ident: 10.1016/j.biomaterials.2019.04.023_bib30 article-title: In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles publication-title: Adv. Mater. doi: 10.1002/adma.201205292 – volume: 8 start-page: 5887 issue: 9 year: 2016 ident: 10.1016/j.biomaterials.2019.04.023_bib82 article-title: Nano-Fenton reactors as a new class of oxidative stress amplifying anticancer therapeutic agents publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b12523 – volume: 138 start-page: 1584 issue: 5 year: 2016 ident: 10.1016/j.biomaterials.2019.04.023_bib66 article-title: Cu2+ binds to phosphatidylethanolamine and increases oxidation in lipid membranes publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11561 – volume: 4 start-page: 1284 issue: 6 year: 2018 ident: 10.1016/j.biomaterials.2019.04.023_bib37 article-title: Material chemistry of Two-dimensional inorganic nanosheets in cancer theranostics publication-title: Chem doi: 10.1016/j.chempr.2018.02.012 – volume: 240 start-page: 640 issue: 4852 year: 1988 ident: 10.1016/j.biomaterials.2019.04.023_bib18 article-title: Toxic DNA damage by hydrogen-peroxide trough the Fenton reaction in vivo and in vitro INVIVO AND publication-title: Science doi: 10.1126/science.2834821 – volume: 5 start-page: 18888 issue: 24 year: 2015 ident: 10.1016/j.biomaterials.2019.04.023_bib91 article-title: Accelerated generation of free radicals by iron oxide nanoparticles in the presence of an alternating magnetic field publication-title: RSC Adv. doi: 10.1039/C4RA13564D – volume: 61 start-page: 467 issue: 6 year: 2009 ident: 10.1016/j.biomaterials.2019.04.023_bib56 article-title: Magnetic nanoparticles for theragnostics publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2009.03.007 – volume: 17 start-page: 20 issue: 1 year: 2017 ident: 10.1016/j.biomaterials.2019.04.023_bib36 article-title: Cancer nanomedicine: progress, challenges and opportunities publication-title: Nat. Rev. Canc. doi: 10.1038/nrc.2016.108 – volume: 17 start-page: 928 issue: 2 year: 2017 ident: 10.1016/j.biomaterials.2019.04.023_bib101 article-title: Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04269 – volume: 11 start-page: 724 issue: 8 year: 2016 ident: 10.1016/j.biomaterials.2019.04.023_bib48 article-title: A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.72 – volume: 64 start-page: 24 year: 2014 ident: 10.1016/j.biomaterials.2019.04.023_bib13 article-title: Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2013.09.013 – volume: 109 start-page: 4245 issue: 11 year: 2012 ident: 10.1016/j.biomaterials.2019.04.023_bib47 article-title: Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1113560109 – volume: 59 start-page: 1549 issue: 11 year: 2007 ident: 10.1016/j.biomaterials.2019.04.023_bib10 article-title: Hydrogen peroxide overproduced in breast cancer cells can serve as an anticancer prodrug generating apoptosis-stimulating hydroxyl radicals under the effect of tamoxifen-ferrocene conjugate publication-title: J. Pharm. Pharmacol. doi: 10.1211/jpp.59.11.0013 – volume: 371 start-page: 771 issue: 9614 year: 2008 ident: 10.1016/j.biomaterials.2019.04.023_bib5 article-title: Tumour immunity: effector response to tumour and role of the microenvironment publication-title: Lancet doi: 10.1016/S0140-6736(08)60241-X – volume: 19 start-page: 178 issue: 1 year: 2018 ident: 10.1016/j.biomaterials.2019.04.023_bib105 article-title: Trojan horse for light-triggered bifurcated production of singlet oxygen and Fenton-reactive iron within cancer cells publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b01433 – volume: 163 start-page: 1 year: 2018 ident: 10.1016/j.biomaterials.2019.04.023_bib80 article-title: Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for tumor-specific therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.02.018 – volume: 63 start-page: 269 issue: 2 year: 2006 ident: 10.1016/j.biomaterials.2019.04.023_bib94 article-title: Degradation of the pharmaceutical metronidazole via UV, Fenton and photo-Fenton processes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2005.07.029 – volume: 3 start-page: 95 issue: 1 year: 2007 ident: 10.1016/j.biomaterials.2019.04.023_bib73 article-title: Antimicrobial effects of silver nanoparticles publication-title: Nanomed.-Nanotechnol. doi: 10.1016/j.nano.2006.12.001 – volume: 132 start-page: 164 issue: 3 year: 2008 ident: 10.1016/j.biomaterials.2019.04.023_bib68 article-title: Recent progress in tumor pH targeting nanotechnology publication-title: J. Control. Release doi: 10.1016/j.jconrel.2008.05.003 – volume: 28 start-page: 400 issue: 2 year: 2017 ident: 10.1016/j.biomaterials.2019.04.023_bib76 article-title: pH-responsive, self-sacrificial nanotheranostic agent for potential in vivo and in vitro dual modal MRI/CT imaging, real-time, and in situ monitoring of cancer therapy publication-title: Bioconjug. Chem. doi: 10.1021/acs.bioconjchem.6b00562 – volume: 17 start-page: 284 issue: 1 year: 2017 ident: 10.1016/j.biomaterials.2019.04.023_bib104 article-title: Switching apoptosis to ferroptosis: metal-organic network for high-efficiency anticancer therapy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04060 – volume: 10 start-page: 2017 year: 2015 ident: 10.1016/j.biomaterials.2019.04.023_bib85 article-title: Ultrasound-induced reactive oxygen species-mediated therapy and imaging using a Fenton reaction activable polymersome publication-title: ACS Nano doi: 10.1021/acsnano.5b06175 – volume: 37 start-page: 1130 issue: 6 year: 2003 ident: 10.1016/j.biomaterials.2019.04.023_bib25 article-title: Hydroxyl radical production via the photo-Fenton reaction in the presence of fulvic acid publication-title: Environ. Sci. Technol. doi: 10.1021/es020757l – volume: 7 start-page: 7275 issue: 16 year: 2015 ident: 10.1016/j.biomaterials.2019.04.023_bib78 article-title: Lysosome-controlled efficient ROS overproduction against cancer cells with a high pH-responsive catalytic nanosystem publication-title: Nanoscale doi: 10.1039/C5NR00706B – volume: 26 start-page: 1886 issue: 12 year: 2014 ident: 10.1016/j.biomaterials.2019.04.023_bib88 article-title: PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/Photoacoustic imaging guided photothermal therapy publication-title: Adv. Mater. doi: 10.1002/adma.201304497 – volume: 139 start-page: 10992 issue: 32 year: 2017 ident: 10.1016/j.biomaterials.2019.04.023_bib7 article-title: Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05559 – volume: 3 start-page: 279 issue: 2 year: 2009 ident: 10.1016/j.biomaterials.2019.04.023_bib74 article-title: Cytotoxicity and genotoxicity of silver nanoparticles in human cells publication-title: ACS Nano doi: 10.1021/nn800596w – volume: 44 start-page: 2681 issue: 9 year: 2015 ident: 10.1016/j.biomaterials.2019.04.023_bib31 article-title: Two-dimensional graphene analogues for biomedical applications publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00300D – volume: 33 start-page: 7547 issue: 30 year: 2012 ident: 10.1016/j.biomaterials.2019.04.023_bib71 article-title: Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.06.076 |
SSID | ssj0014042 |
Score | 2.6538124 |
SecondaryResourceType | review_article |
Snippet | It is the challenging goal in cancer biomedicine to search novel cancer-therapeutic modality with concurrent high therapeutic efficiency on combating cancer... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | acidity adverse effects Cancer catalysts chemical reactions Fenton reaction hydroxyl radicals medicine Nanocatalytic biomedicine nanomaterials Nanomedicine neoplasm cells neoplasms patients screening Synergistic therapy temperature therapeutics toxicity |
Title | Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961219302406 https://dx.doi.org/10.1016/j.biomaterials.2019.04.023 https://www.ncbi.nlm.nih.gov/pubmed/31075521 https://www.proquest.com/docview/2231908125 https://www.proquest.com/docview/2253243193 |
Volume | 211 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iIHoQ3--lgte4NUkfQTwsoqzKigcX9hbSJBVFu6Ldgxd_uzPpg_WgLHhsyLTpZDL52n7zlZBjGWlhtYlprOOcCpdpmjqd0yyNEscMT3PPdh_cxf2huBlFozly0dTCIK2yzv1VTvfZum7p1t7svj09dZGWxCQKYEmOQl0ouy1EglF-8tXSPFA9hlU0RkaxdyM86jleWOKuy2qqkeYlvewp479tUr-BUL8ZXa2SlRpFBr1qoGtkzhXrZHlKW3CdLA7qr-Yb5B5S6Ni_p_n8KD-onjx6JU4bQIgC9AtMLRoQAID0ZQ4BINmgaI3gIkE5eYW2qlrrc5MMry4fLvq0_pMCNZDQSioyY5PQOitTBys449ZkWqA0jUGam4tPjTSpDW2kLTyymjBxKNzOrBMyzjPDt8h8MS7cDgkA0ljn8pgZYUXERJY7wWECpIk5t6HZJbJxnTK1zDj-7eJFNXyyZzXtdoVuV6FQ4PZdwlvbt0psYyars2aGVFNOCglQwZ4wk_V5a_0j8Ga2P2qCQsHKxM8tunDjCXQC6CwBcbHorz4RIFroB-fZriKqvXMA3kkE6GrvnyPcJ0t4VLEWD8h8-T5xh4Ckyqzjl0qHLPSub_t33xeJIds |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BIhU4VBQopQUapF6tDfFjY1UcEAItj11xAImb5dgO2gqyqGQP_HvGjhPBAbQSV2cmccbj8Zd45jPAH8k1s9oIIrQoCXOFJrnTJSlyPnCZoXkZst1HYzG8Yee3_HYBjttaGJ9WGWN_E9NDtI4t_WjN_uNk0vdpSZn0BFiSeqIusQhLnp2K92Dp6OxiOO42E1gaztDx8sQrtNyjIc3LV7nruhltn-klA_NpRt9bp97DoWE9Ol2DrxFIJkdNX7_BgqvWYfUVveA6fBnFjfMNuMIoOg2_ap6f6ieiZ3eBjNMm6KWI_hITeQMSxJCh0iFBMJtUnRI-JKlnD9jWFGw9b8LN6cn18ZDEwxSIwZhWE1YYO0itszJ3OIkLak2hmWenMT7TzYkDI01uU8u1xa9Wkw6c527PrGNSlIWh36FXTSv3AxJENda5UmSGWcYzVpSOURwDaQSlNjXbIFvTKROZxv2BF_eqTSn7p16bXXmzq5QpNPs20E73seHbmEvrbztCqq0oxRiocFmYS_uw037je3Pr77dOoXBy-h0XXbnpDIUQPUsEXRn_SIYjqEU5vM9W41HdmyP2HnAEWD8_2cPfsDy8Hl2qy7PxxS9Y8VeaJMYd6NX_Z24XgVVd7MWJ8wLpEiSM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanocatalysts-augmented+Fenton+chemical+reaction+for+nanocatalytic+tumor+therapy&rft.jtitle=Biomaterials&rft.au=Qian%2C+Xiaoqin&rft.au=Zhang%2C+Jun&rft.au=Gu%2C+Zi&rft.au=Chen%2C+Yu&rft.date=2019-08-01&rft.pub=Elsevier+Ltd&rft.issn=0142-9612&rft.eissn=1878-5905&rft.volume=211&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1016%2Fj.biomaterials.2019.04.023&rft.externalDocID=S0142961219302406 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |