Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy

It is the challenging goal in cancer biomedicine to search novel cancer-therapeutic modality with concurrent high therapeutic efficiency on combating cancer and low side effects to normal cells/tissues. The recently developed nanocatalytic cancer therapy based on catalytic Fenton reaction represents...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 211; pp. 1 - 13
Main Authors Qian, Xiaoqin, Zhang, Jun, Gu, Zi, Chen, Yu
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is the challenging goal in cancer biomedicine to search novel cancer-therapeutic modality with concurrent high therapeutic efficiency on combating cancer and low side effects to normal cells/tissues. The recently developed nanocatalytic cancer therapy based on catalytic Fenton reaction represents one of the promising paradigms for potential clinical translation, which has got fast progress very recently. This progress report discusses the rational design and fabrication of Fenton reaction-based nanocatalysts for triggering the in-situ Fenton chemical reaction within tumor microenvironment to generate highly toxic hydroxyl radicals (•OH), which is highly efficient for killing the cancer cells and suppressing the tumor growth. Several strategies for optimizing the nanocatalytic cancer-therapeutic efficiency of Fenton reaction have been highlighted, including screening high-performance Fenton nanocatalysts, increasing peroxide-hydrogen amounts as the reactants, changing the Fenton-reaction conditions (e.g., temperature, acidity and photo-triggering), and Fenton reaction-based synergistic cancer therapy such as some sequential nanocatalytic reactions with improved therapeutic outcome. The facing challenges and future developments of Fenton reaction-based nanocatalytic cancer therapy are also discussed for further promoting the clinical translation of this emerging cancer-therapeutic modality to benefit the cancer patients. [Display omitted]
AbstractList It is the challenging goal in cancer biomedicine to search novel cancer-therapeutic modality with concurrent high therapeutic efficiency on combating cancer and low side effects to normal cells/tissues. The recently developed nanocatalytic cancer therapy based on catalytic Fenton reaction represents one of the promising paradigms for potential clinical translation, which has got fast progress very recently. This progress report discusses the rational design and fabrication of Fenton reaction-based nanocatalysts for triggering the in-situ Fenton chemical reaction within tumor microenvironment to generate highly toxic hydroxyl radicals (•OH), which is highly efficient for killing the cancer cells and suppressing the tumor growth. Several strategies for optimizing the nanocatalytic cancer-therapeutic efficiency of Fenton reaction have been highlighted, including screening high-performance Fenton nanocatalysts, increasing peroxide-hydrogen amounts as the reactants, changing the Fenton-reaction conditions (e.g., temperature, acidity and photo-triggering), and Fenton reaction-based synergistic cancer therapy such as some sequential nanocatalytic reactions with improved therapeutic outcome. The facing challenges and future developments of Fenton reaction-based nanocatalytic cancer therapy are also discussed for further promoting the clinical translation of this emerging cancer-therapeutic modality to benefit the cancer patients.
It is the challenging goal in cancer biomedicine to search novel cancer-therapeutic modality with concurrent high therapeutic efficiency on combating cancer and low side effects to normal cells/tissues. The recently developed nanocatalytic cancer therapy based on catalytic Fenton reaction represents one of the promising paradigms for potential clinical translation, which has got fast progress very recently. This progress report discusses the rational design and fabrication of Fenton reaction-based nanocatalysts for triggering the in-situ Fenton chemical reaction within tumor microenvironment to generate highly toxic hydroxyl radicals (•OH), which is highly efficient for killing the cancer cells and suppressing the tumor growth. Several strategies for optimizing the nanocatalytic cancer-therapeutic efficiency of Fenton reaction have been highlighted, including screening high-performance Fenton nanocatalysts, increasing peroxide-hydrogen amounts as the reactants, changing the Fenton-reaction conditions (e.g., temperature, acidity and photo-triggering), and Fenton reaction-based synergistic cancer therapy such as some sequential nanocatalytic reactions with improved therapeutic outcome. The facing challenges and future developments of Fenton reaction-based nanocatalytic cancer therapy are also discussed for further promoting the clinical translation of this emerging cancer-therapeutic modality to benefit the cancer patients. [Display omitted]
It is the challenging goal in cancer biomedicine to search novel cancer-therapeutic modality with concurrent high therapeutic efficiency on combating cancer and low side effects to normal cells/tissues. The recently developed nanocatalytic cancer therapy based on catalytic Fenton reaction represents one of the promising paradigms for potential clinical translation, which has got fast progress very recently. This progress report discusses the rational design and fabrication of Fenton reaction-based nanocatalysts for triggering the in-situ Fenton chemical reaction within tumor microenvironment to generate highly toxic hydroxyl radicals (•OH), which is highly efficient for killing the cancer cells and suppressing the tumor growth. Several strategies for optimizing the nanocatalytic cancer-therapeutic efficiency of Fenton reaction have been highlighted, including screening high-performance Fenton nanocatalysts, increasing peroxide-hydrogen amounts as the reactants, changing the Fenton-reaction conditions (e.g., temperature, acidity and photo-triggering), and Fenton reaction-based synergistic cancer therapy such as some sequential nanocatalytic reactions with improved therapeutic outcome. The facing challenges and future developments of Fenton reaction-based nanocatalytic cancer therapy are also discussed for further promoting the clinical translation of this emerging cancer-therapeutic modality to benefit the cancer patients.It is the challenging goal in cancer biomedicine to search novel cancer-therapeutic modality with concurrent high therapeutic efficiency on combating cancer and low side effects to normal cells/tissues. The recently developed nanocatalytic cancer therapy based on catalytic Fenton reaction represents one of the promising paradigms for potential clinical translation, which has got fast progress very recently. This progress report discusses the rational design and fabrication of Fenton reaction-based nanocatalysts for triggering the in-situ Fenton chemical reaction within tumor microenvironment to generate highly toxic hydroxyl radicals (•OH), which is highly efficient for killing the cancer cells and suppressing the tumor growth. Several strategies for optimizing the nanocatalytic cancer-therapeutic efficiency of Fenton reaction have been highlighted, including screening high-performance Fenton nanocatalysts, increasing peroxide-hydrogen amounts as the reactants, changing the Fenton-reaction conditions (e.g., temperature, acidity and photo-triggering), and Fenton reaction-based synergistic cancer therapy such as some sequential nanocatalytic reactions with improved therapeutic outcome. The facing challenges and future developments of Fenton reaction-based nanocatalytic cancer therapy are also discussed for further promoting the clinical translation of this emerging cancer-therapeutic modality to benefit the cancer patients.
Author Qian, Xiaoqin
Gu, Zi
Chen, Yu
Zhang, Jun
Author_xml – sequence: 1
  givenname: Xiaoqin
  surname: Qian
  fullname: Qian, Xiaoqin
  organization: Department of Ultrasound, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, PR China
– sequence: 2
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
  email: zhangjun@huashan.org.cn
  organization: Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
– sequence: 3
  givenname: Zi
  surname: Gu
  fullname: Gu, Zi
  organization: School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
– sequence: 4
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
  email: chenyu@mail.sic.ac.cn
  organization: State Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31075521$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9v1DAQxS1URLcLXwFFnLgk9d9szAkobUGqaA9wtpzxLPWSOIvtIO23r1fbItTTnkYevffz6L0zchKmgIS8Y7RhlLXnm6b302gzRm-H1HDKdENlQ7l4QRasW3W10lSdkAVlkte6ZfyUnKW0oeVNJX9FTgWjK6U4W5C77zZMYLMddimn2s6_RgwZXXVVxhQquMfRgx2qiBayL5v1FKvwz5Q9VHkeyy7fY7Tb3Wvycl2uwjePc0l-Xl3-uPha39xef7v4dFODEl2uZQ9uRR063aHgvBcOeiupkBqYaBW2DDR0jjplnegE0BUqpTvuUOp23YNYkvcH7jZOf2ZM2Yw-AQ6DDTjNyXCuBJeCaXGEtMhox4pjSd4-Sud-RGe20Y827sxTYEXw8SCAOKUUcW3AZ7sPJkfrB8Oo2XdkNub_jsy-I0OlKR0VxIdniKdfjjJ_OZixZPvXYzQJPAZA5yNCNm7yx2E-P8PA4MO-6N-4OxbyAGNrzNk
CitedBy_id crossref_primary_10_1021_acsami_3c00562
crossref_primary_10_1016_j_actbio_2023_06_002
crossref_primary_10_1007_s40820_024_01399_0
crossref_primary_10_1002_smll_202204133
crossref_primary_10_1002_wnan_1663
crossref_primary_10_1039_D3SM00822C
crossref_primary_10_1002_smtd_202100361
crossref_primary_10_1021_acsnano_0c00082
crossref_primary_10_1021_acs_chemrev_3c00301
crossref_primary_10_1016_j_aaf_2023_05_008
crossref_primary_10_1021_acsami_0c00170
crossref_primary_10_1039_D4NR02907K
crossref_primary_10_1016_j_jcis_2024_12_239
crossref_primary_10_6023_A24040115
crossref_primary_10_1186_s12951_021_01235_2
crossref_primary_10_1021_acsami_1c11032
crossref_primary_10_1039_D2TB02751H
crossref_primary_10_1021_acs_jafc_4c00556
crossref_primary_10_1039_D3NR01746J
crossref_primary_10_1016_j_ccr_2021_213912
crossref_primary_10_1021_acsbiomaterials_2c00138
crossref_primary_10_1002_adfm_201907066
crossref_primary_10_1016_j_apmt_2020_100864
crossref_primary_10_3892_ol_2024_14438
crossref_primary_10_1016_j_mattod_2024_07_004
crossref_primary_10_1002_adhm_202203085
crossref_primary_10_1021_acsanm_4c04921
crossref_primary_10_1016_j_nantod_2024_102498
crossref_primary_10_1021_acs_jafc_3c03284
crossref_primary_10_1002_VIW_20200133
crossref_primary_10_1021_acsami_0c10888
crossref_primary_10_1016_j_pmatsci_2024_101375
crossref_primary_10_1002_chem_202302125
crossref_primary_10_3390_jfb13040215
crossref_primary_10_1016_j_cej_2024_157645
crossref_primary_10_1093_rb_rbad097
crossref_primary_10_1021_acsami_0c19330
crossref_primary_10_1021_acsanm_0c00762
crossref_primary_10_2147_BCTT_S387793
crossref_primary_10_1039_D3QM01202F
crossref_primary_10_1002_adhm_202302955
crossref_primary_10_1016_j_colsurfb_2021_111750
crossref_primary_10_1039_D1QM00134E
crossref_primary_10_1039_D0BM02064H
crossref_primary_10_1088_2515_7639_ad4d1e
crossref_primary_10_3389_fmats_2022_857385
crossref_primary_10_1016_j_jssc_2021_122784
crossref_primary_10_1016_j_jssc_2022_123352
crossref_primary_10_3389_fchem_2021_630969
crossref_primary_10_1016_j_actbio_2023_03_011
crossref_primary_10_3390_cancers14205125
crossref_primary_10_1016_j_ica_2020_119759
crossref_primary_10_1016_j_actbio_2023_03_017
crossref_primary_10_1007_s10876_020_01971_9
crossref_primary_10_1039_D2CS00479H
crossref_primary_10_1002_mco2_70116
crossref_primary_10_1016_j_cej_2020_124628
crossref_primary_10_1016_j_ajps_2022_09_002
crossref_primary_10_1021_acs_molpharmaceut_3c00294
crossref_primary_10_1007_s11010_021_04327_7
crossref_primary_10_1016_j_addr_2022_114241
crossref_primary_10_1186_s12951_022_01278_z
crossref_primary_10_1016_j_pmatsci_2022_100959
crossref_primary_10_1002_adfm_202210345
crossref_primary_10_1016_j_ccr_2021_214360
crossref_primary_10_1016_j_jcis_2023_11_067
crossref_primary_10_1186_s12951_022_01398_6
crossref_primary_10_1021_acsbiomaterials_0c01009
crossref_primary_10_1039_D0TB02294B
crossref_primary_10_1002_app_51535
crossref_primary_10_1021_acsabm_0c00098
crossref_primary_10_3389_fcell_2021_765859
crossref_primary_10_1016_j_ijpharm_2024_124015
crossref_primary_10_1061__ASCE_EE_1943_7870_0002043
crossref_primary_10_1016_j_jcis_2022_05_059
crossref_primary_10_1002_adma_202006892
crossref_primary_10_1021_jacsau_1c00422
crossref_primary_10_1016_j_jddst_2022_104103
crossref_primary_10_1021_acs_bioconjchem_0c00194
crossref_primary_10_2147_IJN_S491421
crossref_primary_10_1016_j_jddst_2023_104194
crossref_primary_10_3389_fimmu_2023_1259797
crossref_primary_10_1007_s11244_023_01885_6
crossref_primary_10_1016_j_nantod_2024_102165
crossref_primary_10_1002_adma_202303158
crossref_primary_10_1002_advs_202203583
crossref_primary_10_1002_smll_202004161
crossref_primary_10_1021_acsnano_1c08536
crossref_primary_10_1016_j_matdes_2022_110722
crossref_primary_10_1007_s11144_021_01934_9
crossref_primary_10_1016_j_bioactmat_2021_06_006
crossref_primary_10_3390_pharmaceutics15092337
crossref_primary_10_1016_j_jclepro_2019_118143
crossref_primary_10_1039_D4BM00366G
crossref_primary_10_1186_s12951_021_00957_7
crossref_primary_10_1186_s12951_022_01482_x
crossref_primary_10_1002_bmm2_12068
crossref_primary_10_3390_ijms242316949
crossref_primary_10_1007_s12274_020_2844_3
crossref_primary_10_1016_j_cclet_2025_110994
crossref_primary_10_1038_s41598_024_53334_3
crossref_primary_10_1016_j_matdes_2023_111653
crossref_primary_10_1111_cas_15250
crossref_primary_10_3389_fcell_2021_629150
crossref_primary_10_1016_j_jconrel_2023_07_050
crossref_primary_10_1039_D1MA00646K
crossref_primary_10_1002_smsc_202200024
crossref_primary_10_1016_j_jconrel_2020_01_008
crossref_primary_10_1039_D2BM00102K
crossref_primary_10_1002_smll_202205414
crossref_primary_10_1007_s00109_023_02346_z
crossref_primary_10_1002_ange_202200480
crossref_primary_10_1088_1361_6528_ac2843
crossref_primary_10_1016_j_micromeso_2021_110905
crossref_primary_10_3389_fphys_2021_773055
crossref_primary_10_1016_j_nantod_2020_100920
crossref_primary_10_1002_adfm_202417871
crossref_primary_10_1016_j_ccr_2021_214267
crossref_primary_10_1021_acsnano_1c00380
crossref_primary_10_1016_j_biomaterials_2021_121168
crossref_primary_10_3390_ph16020166
crossref_primary_10_3390_ani13142300
crossref_primary_10_1002_anie_202200480
crossref_primary_10_1007_s10562_024_04594_1
crossref_primary_10_1039_D1SC04112F
crossref_primary_10_1002_EXP_20230171
crossref_primary_10_1002_macp_202000022
crossref_primary_10_1016_j_mtbio_2021_100197
crossref_primary_10_1021_acsomega_4c00258
crossref_primary_10_1021_acsnano_0c06962
crossref_primary_10_1155_2021_9958239
crossref_primary_10_1016_j_ccr_2021_214393
crossref_primary_10_1016_j_cej_2023_144358
crossref_primary_10_1021_acsbiomaterials_4c00776
crossref_primary_10_1016_j_actbio_2022_01_046
crossref_primary_10_1021_acsami_3c02646
crossref_primary_10_1039_D2CS00435F
crossref_primary_10_1021_acs_langmuir_4c00922
crossref_primary_10_1039_D0TB00436G
crossref_primary_10_1039_D1BM00721A
crossref_primary_10_1016_j_ccr_2021_213978
crossref_primary_10_1039_D0TB02138E
crossref_primary_10_1038_s41419_022_04927_1
crossref_primary_10_1016_j_jconrel_2022_05_049
crossref_primary_10_1039_C9NH00577C
crossref_primary_10_1016_j_colsurfb_2020_111437
crossref_primary_10_1016_j_cej_2023_142960
crossref_primary_10_1016_j_cej_2024_151614
crossref_primary_10_1039_D0CC03829F
crossref_primary_10_1016_j_tice_2025_102773
crossref_primary_10_1039_D2TB02548E
crossref_primary_10_1016_j_colsurfa_2021_127229
crossref_primary_10_1016_j_procbio_2023_06_014
crossref_primary_10_1002_advs_202409087
crossref_primary_10_1016_j_jelechem_2024_118298
crossref_primary_10_1016_j_jare_2020_12_001
crossref_primary_10_1016_j_jphotochem_2020_112444
crossref_primary_10_1186_s12951_021_00848_x
crossref_primary_10_1007_s40843_023_2722_y
crossref_primary_10_1039_D0CS00178C
crossref_primary_10_1039_D1CC06742G
crossref_primary_10_1016_j_ejps_2022_106319
crossref_primary_10_1021_acsbiomaterials_3c00867
crossref_primary_10_1039_D2CS00352J
crossref_primary_10_1002_adma_202008226
crossref_primary_10_1002_cmdc_202100108
crossref_primary_10_1016_j_jcis_2023_01_144
crossref_primary_10_1039_D3NR02000B
crossref_primary_10_2217_nnm_2022_0187
crossref_primary_10_1002_adhm_202201607
crossref_primary_10_1016_j_bmt_2022_12_004
crossref_primary_10_1002_adhm_202002126
crossref_primary_10_1016_j_actbio_2022_07_046
crossref_primary_10_1021_acsnano_0c00910
crossref_primary_10_1002_admi_202102263
crossref_primary_10_1016_j_colsurfb_2023_113529
crossref_primary_10_1039_D1NR03496K
crossref_primary_10_1016_j_actbio_2025_01_014
crossref_primary_10_1016_j_cej_2023_145415
crossref_primary_10_1002_anbr_202300069
crossref_primary_10_1039_D0NR05501H
crossref_primary_10_1007_s12274_020_2838_1
crossref_primary_10_2147_IJN_S321612
crossref_primary_10_1016_j_trac_2022_116734
crossref_primary_10_3389_fonc_2020_571127
crossref_primary_10_3390_antiox13080911
crossref_primary_10_1016_j_carbpol_2022_119432
crossref_primary_10_1039_D3TB02875E
crossref_primary_10_1016_j_bioactmat_2023_09_015
crossref_primary_10_1016_j_addr_2021_114031
crossref_primary_10_1002_adfm_202107518
crossref_primary_10_1016_j_mtcomm_2020_101842
crossref_primary_10_1016_j_addr_2022_114648
crossref_primary_10_1016_j_biomaterials_2022_121384
crossref_primary_10_1016_j_cej_2024_157233
crossref_primary_10_1021_jacs_9b12873
crossref_primary_10_3389_fonc_2021_777295
crossref_primary_10_1016_j_actbio_2023_05_018
crossref_primary_10_1039_D2BM01033J
crossref_primary_10_1039_D2TB02769K
crossref_primary_10_1007_s40097_021_00457_y
crossref_primary_10_1016_j_cej_2021_133466
crossref_primary_10_1186_s12951_023_02158_w
crossref_primary_10_1186_s40824_023_00464_w
crossref_primary_10_3390_molecules28114562
crossref_primary_10_3390_cancers16213581
crossref_primary_10_1016_j_jcis_2024_07_080
crossref_primary_10_1002_adfm_202107529
crossref_primary_10_1186_s12951_022_01416_7
crossref_primary_10_1039_D2NR00165A
crossref_primary_10_1186_s12964_023_01296_w
crossref_primary_10_1016_j_cej_2023_145513
crossref_primary_10_1146_annurev_nutr_062320_114541
crossref_primary_10_1039_D3NA00738C
crossref_primary_10_1039_D4QM00833B
crossref_primary_10_1002_wnan_1614
crossref_primary_10_1016_j_cej_2022_135373
crossref_primary_10_1166_jbn_2021_3130
crossref_primary_10_3389_fphar_2021_735965
crossref_primary_10_1002_advs_202000494
crossref_primary_10_1039_D1BM00679G
crossref_primary_10_1166_jbn_2022_3250
crossref_primary_10_1016_j_cej_2020_125574
crossref_primary_10_1002_smll_202205024
crossref_primary_10_1021_acsami_9b18676
crossref_primary_10_1016_j_cclet_2022_05_066
crossref_primary_10_1126_sciadv_adr9196
crossref_primary_10_1021_acsmaterialslett_4c01132
crossref_primary_10_1016_j_cej_2024_157451
crossref_primary_10_1016_j_jddst_2020_101883
crossref_primary_10_2147_IJN_S479425
crossref_primary_10_1016_j_ajps_2021_10_003
crossref_primary_10_1016_j_cej_2022_140175
crossref_primary_10_1039_D0CS00607F
crossref_primary_10_1039_D2TB02161G
crossref_primary_10_1016_j_ccr_2023_215115
crossref_primary_10_1021_acsami_2c09912
crossref_primary_10_2139_ssrn_3943651
crossref_primary_10_3390_polym13040558
crossref_primary_10_1016_j_cej_2023_145738
crossref_primary_10_1021_acsami_1c15203
crossref_primary_10_1002_adma_202002439
crossref_primary_10_1039_C9MH01565E
crossref_primary_10_1021_acsbiomaterials_1c01605
crossref_primary_10_3389_fimmu_2022_925290
crossref_primary_10_1021_acsnano_9b05836
crossref_primary_10_1007_s40843_020_1513_8
crossref_primary_10_4251_wjgo_v15_i2_225
crossref_primary_10_1016_j_mtbio_2024_101427
crossref_primary_10_1016_j_ijbiomac_2023_124003
crossref_primary_10_1039_D1NR04104E
crossref_primary_10_1007_s12272_020_01209_2
crossref_primary_10_1016_j_neulet_2021_135975
crossref_primary_10_1039_D1TB02221K
crossref_primary_10_1016_j_ccr_2023_215209
crossref_primary_10_1021_acsami_3c07379
crossref_primary_10_1021_acsbiomaterials_4c01907
crossref_primary_10_1016_j_ijpharm_2023_122822
crossref_primary_10_1016_j_ijpx_2023_100214
crossref_primary_10_1016_j_apmt_2020_100883
crossref_primary_10_1002_smll_201903746
crossref_primary_10_1016_j_actbio_2021_05_016
crossref_primary_10_1016_j_bcp_2021_114584
crossref_primary_10_1016_j_ntm_2023_100007
crossref_primary_10_1039_D3TB02763E
crossref_primary_10_1002_adhm_202001897
crossref_primary_10_1002_adhm_202202474
crossref_primary_10_1002_adhm_202400366
crossref_primary_10_1088_1758_5090_ac19c7
crossref_primary_10_1002_adhm_202101971
crossref_primary_10_1016_j_ccr_2024_215751
crossref_primary_10_1016_j_ccr_2023_215330
crossref_primary_10_1016_j_ccr_2022_214861
crossref_primary_10_1186_s12951_024_02297_8
crossref_primary_10_1016_j_chemosphere_2023_139312
crossref_primary_10_1039_D0BM01738H
crossref_primary_10_1002_adhm_202304639
crossref_primary_10_1016_j_nantod_2020_101073
crossref_primary_10_1186_s12951_021_01191_x
Cites_doi 10.1038/s41551-017-0116-7
10.1021/acsnano.8b00999
10.1002/adma.201601902
10.1021/acsami.7b07981
10.1021/acs.nanolett.8b03178
10.1002/adma.201704877
10.1021/acsnano.7b06852
10.1021/cr900136g
10.1016/j.cell.2010.03.015
10.1016/j.tips.2006.10.005
10.1038/nnano.2012.90
10.1002/adma.201704307
10.1016/j.apcatb.2015.01.019
10.1002/ange.201510031
10.1016/S0014-5793(00)02197-9
10.1016/j.actbio.2015.06.037
10.1016/j.apcatb.2010.11.022
10.1038/s41467-017-00424-8
10.1021/acsnano.7b02533
10.1038/nature14344
10.1016/S0304-3894(02)00282-0
10.1038/nnano.2011.95
10.1038/nnano.2016.164
10.1038/nrd2803
10.1038/nature12626
10.1038/nrc1821
10.1016/j.freeradbiomed.2009.12.022
10.1002/adma.200802646
10.1016/j.chemosphere.2005.01.033
10.1016/j.biomaterials.2017.06.035
10.1002/adma.201805919
10.7150/thno.5411
10.15541/jim20170041
10.1021/acs.chemmater.6b03905
10.1021/ar9000026
10.1038/nnano.2016.168
10.1016/j.cell.2017.09.021
10.1016/S0891-5849(01)00480-4
10.1038/nrc2067
10.15541/jim20160285
10.1002/adma.201604105
10.1002/adma.201704007
10.1002/ange.201712027
10.1039/C2CS35342C
10.1002/adma.201701683
10.1080/10643380500326564
10.1038/nnano.2016.280
10.1016/j.jhazmat.2009.09.057
10.1021/ja905938a
10.1039/C8CC03922D
10.1002/anie.201610682
10.1038/s41427-018-0015-8
10.1016/S0968-0004(03)00174-9
10.1158/0008-5472.CAN-07-5259
10.1016/j.canlet.2006.10.029
10.1039/B813725K
10.1021/ar800150g
10.1002/adfm.201600676
10.1021/ac503653c
10.1002/anie.200602866
10.1016/S0956-053X(00)00070-2
10.1039/c2sc20099f
10.1039/C7BM00999B
10.1016/j.cell.2012.03.042
10.1016/j.freeradbiomed.2010.03.025
10.1039/C1CS15187H
10.1039/C7CS00471K
10.1021/jacs.5b09974
10.1038/nnano.2007.260
10.1080/09593330802468848
10.1021/nn300291r
10.1002/anie.201008286
10.1021/cr068445e
10.1021/ar400091e
10.1038/nmat2992
10.1038/cdd.2015.158
10.1038/srep29247
10.1002/adma.201205292
10.1021/acsami.5b12523
10.1021/jacs.5b11561
10.1016/j.chempr.2018.02.012
10.1126/science.2834821
10.1039/C4RA13564D
10.1016/j.addr.2009.03.007
10.1038/nrc.2016.108
10.1021/acs.nanolett.6b04269
10.1038/nnano.2016.72
10.1016/j.jclepro.2013.09.013
10.1073/pnas.1113560109
10.1211/jpp.59.11.0013
10.1016/S0140-6736(08)60241-X
10.1021/acs.biomac.7b01433
10.1016/j.biomaterials.2018.02.018
10.1016/j.chemosphere.2005.07.029
10.1016/j.nano.2006.12.001
10.1016/j.jconrel.2008.05.003
10.1021/acs.bioconjchem.6b00562
10.1021/acs.nanolett.6b04060
10.1021/acsnano.5b06175
10.1021/es020757l
10.1039/C5NR00706B
10.1002/adma.201304497
10.1021/jacs.7b05559
10.1021/nn800596w
10.1039/C4CS00300D
10.1016/j.biomaterials.2012.06.076
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.biomaterials.2019.04.023
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1878-5905
EndPage 13
ExternalDocumentID 31075521
10_1016_j_biomaterials_2019_04_023
S0142961219302406
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAIAV
AAYOK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
RIG
AAYXX
AGRNS
BNPGV
CITATION
SSH
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c538t-4bcd70ded98e322b3dcba40349c1365e61c9c8d0d5ad383c07e55982de496fbc3
IEDL.DBID .~1
ISSN 0142-9612
1878-5905
IngestDate Thu Jul 10 18:56:50 EDT 2025
Fri Jul 11 10:56:02 EDT 2025
Thu Apr 03 07:05:56 EDT 2025
Tue Jul 01 01:19:38 EDT 2025
Thu Apr 24 22:54:44 EDT 2025
Fri Feb 23 02:34:46 EST 2024
Tue Aug 26 20:00:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Fenton reaction
Nanocatalytic biomedicine
Nanomedicine
Synergistic therapy
Cancer
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c538t-4bcd70ded98e322b3dcba40349c1365e61c9c8d0d5ad383c07e55982de496fbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 31075521
PQID 2231908125
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2253243193
proquest_miscellaneous_2231908125
pubmed_primary_31075521
crossref_citationtrail_10_1016_j_biomaterials_2019_04_023
crossref_primary_10_1016_j_biomaterials_2019_04_023
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2019_04_023
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2019_04_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2019
2019-08-00
20190801
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Schrank, Jose, Moreira, Schroder (bib96) 2005; 60
Jung, Lim, Park, Kim (bib14) 2009; 30
Ma, Li, Huan, Zhang, Yang, Wang, Chang, Wu (bib106) 2018; 10
Solano, Garcia-Segura, Martinez-Huitle, Brillas (bib24) 2015; 168
Dai, Cheng, Wang, Zhang, Yang, Wang, Yung, Wang, Jacobson, Xu, Ni, Yu, Zhou, Chen (bib103) 2018; 12
Cadet, Douki, Ravanat (bib27) 2010; 49
Zheng, Lei, Zhu, Fan, Li, Li, Xu, Cheng, Zhang (bib104) 2017; 17
Zhang, Bu, Ni, Zhang, Li, Yao, Zhang, Yao, Wang, Shi (bib61) 2016; 128
Kwon, Han, Cho, Yoo, Hwang, Kwon, Lee (bib82) 2016; 8
Chen, Yin, Zhou, Zhang, Song, Song, Hu, Gu (bib53) 2012; 6
Shen, Song, Yung, Zhou, Wu, Chen (bib52) 2018; 30
Ma, Xiao, Yu, Liu, Cheng, Song, Zhang, Li, Wang, Gu, Lin (bib101) 2017; 17
Zhu, Chen, Shi (bib41) 2018; 12
Feng, Han, Wang, Gao, Hu, Yue, Chen, Shi (bib86) 2019; 31
Lu, Salabas, Schuth (bib57) 2007; 46
Kessenbrock, Plaks, Werb (bib3) 2010; 141
Albini, Sporn (bib2) 2007; 7
Li, Cheng, Xie, Qiu, Zeng, Li, Wan, Zhang, Liu, Zhang (bib44) 2017; 11
Kim, Cho, Jeon, Kim, Song, Lee, Choi, Hyeon (bib7) 2017; 139
Brillas, Sires, Oturan (bib17) 2009; 109
Duan, Wang, Liu, Wang, Li, Jiang (bib63) 2018; 54
Cheng, Liu, Gu, Gong, Shi, Liu, Wang, Wang, Liu, Xing, Bu, Sun, Liu (bib88) 2014; 26
Wlassoff, Albright, Sivashinski, Lvanova, Appelbaum, Salganik (bib10) 2007; 59
Neyens, Baeyens (bib15) 2003; 98
Trachootham, Alexandre, Huang (bib70) 2009; 8
Cioloboc, Kennedy, Boice, Clark, Kurtz (bib105) 2018; 19
Shubayev, Pisanic, Jin (bib56) 2009; 61
Shi, Kantoff, Wooster, Farokhzad (bib36) 2017; 17
Kumar, Koul, Khandrika, Meacham, Koul (bib12) 2008; 68
Fu, Shao, Wang, Zhu (bib78) 2015; 7
Kim, Zhang, Ma, Riegman, Chen, Ingold, Conrad, Turker, Gao, Jiang, Monette, Pauliah, Gonen, Zanzonico, Quinn, Wiesner, Bradbury, Overholtzer (bib23) 2016; 11
Fan, Lu, Huang, Liu, Yang, Wang, Yu, Liu, Hu, He, Qu, Wang, Chen (bib43) 2017; 56
Shevtsov, Parr, Ryzhov, Zemtsova, Arbenin, Ponomareva, Smirnov, Multhoff (bib79) 2016; 6
Huang, Chen, Dong, Luo, Yu, Moore, Bey, Boothman, Gao (bib100) 2013; 3
Ranji-Burachaloo, Karimi, Xie, Fu, Gurr, Dunstan, Qiao (bib75) 2017; 9
Bataineh, Pestovsky, Bakac (bib26) 2012; 3
Lee, Jang, Choi, Moon, Noh, Kim, Kim, Kim, Park, Cheon (bib59) 2011; 6
Dixon, Lemberg, Lamprecht, Skouta, Zaitsev, Gleason, Patel, Bauer, Cantley, Yang, Morrison, Stockwell (bib19) 2012; 149
Lin, Song, Song, Ke, Liu, Zhou, Shen, Li, Yang, Tang, Niu, Yang, Chen (bib62) 2018; 130
Saeed, Ren, Wu (bib51) 2018; 6
Tang, Zhang, Liu, Ni, Zhang, Zhang, Yao, He, Shi, Bu (bib83) 2017; 29
Poyton, Sendecki, Cong, Cremer (bib66) 2016; 138
Chen, Tan, Zhang, Wang (bib31) 2015; 44
Pedraza, Coronel, Fraker, Ricordi, Stabler (bib47) 2012; 109
Jiang, Kon, Li, Wang, Su, Hibshoosh, Baer, Gu (bib21) 2015; 520
Bourquin, Milosevic, Hauser, Lehner, Blank, Petri-Fink, Rothen-Rutishauser (bib35) 2018; 30
Pignatello, Oliveros, MacKay (bib16) 2006; 36
Kim, Kuk, Yu, Kim, Park, Lee, Kim, Park, Park, Hwang, Kim, Lee, Jeong, Cho (bib73) 2007; 3
Ghaly, Hartel, Mayer, Haseneder (bib97) 2001; 21
Stockwell, Angeli, Bayir, Bush, Conrad, Dixon, Fulda, Gascon, Hatzios, Kagan, Noel, Jiang, Linkermann, Murphy, Overholtzer, Oyagi, Pagnussat, Park, Ran, Rosenfeld, Salnikow, Tang, Torti, Torti, Toyokuni, Woerpel, Zhang (bib22) 2017; 171
Laurent, Forge, Port, Roch, Robic, Elst, Muller (bib58) 2008; 108
Overall, Kleifeld (bib4) 2006; 6
Southworth, Voelker (bib25) 2003; 37
Yue, Wang, Dai, Hu, Chen, Qi, Zheng, Yu (bib76) 2017; 28
Ashley, Carnes, Phillips, Padilla, Durfee, Brown, Hanna, Liu, Phillips, Carter, Carroll, Jiang, Dunphy, Willman, Petsev, Evans, Parikh, Chackerian, Wharton, Peabody, Brinker (bib33) 2011; 10
Szatrowski, Nathan (bib9) 1991; 51
Pouran, Raman, Daud (bib13) 2014; 64
Hu, Wu, Fan, Chen, Liu, Ni, Bu, Shi (bib84) 2017; 141
Li, Su, Chang, Lin, Yeh (bib85) 2015; 10
Dai, Yang, Cheng, Wang, Zhang, Zhu, Wang, Yung, Tian, Jacobson, Xu, Ni, Song, Sun, Niu, Chen (bib102) 2018; 30
Zhu, Dong, Fu, Liu, Chen, Li, Zhu, Xu, Liu (bib45) 2016; 26
Tang, Zheng, Chen (bib38) 2017; 29
Schafer, Buettner (bib69) 2001; 30
Zhang, Ni, Liu, Yao, Bu, Shi (bib42) 2017; 12
Ma, Cui, Zhu, Li (bib39) 2017; 32
Wydra, Oliver, Anderson, Dziubla, Hilt (bib91) 2015; 5
Adam-Vizi, Chinopoulos (bib11) 2006; 27
Lu, Xu, Zhang, Ling, Wang, Zhou, Wu, Wu, Hackett, Kim, Chang, Kim, Hu, Dong, Lee, Li, He, Zhang, Wen, Yang, Choi, Hyeon, Zou (bib32) 2017; 1
Junttila, de Sauvage (bib1) 2013; 501
Wang, Zheng, Li, Yang, Liu, Xiao, Li, Cao, Yang (bib67) 2014; 86
AshaRani, Mun, Hande, Valiyaveettil (bib74) 2009; 3
Zhang, Wan, Li, Xu, Cheng, Zhang (bib93) 2018; 18
Lee, Gao, Bae (bib68) 2008; 132
Mi, Kokuryo, Cabral, Wu, Terada, Saga, Aoki, Nishiyama, Kataoka (bib48) 2016; 11
Huo, Wang, Chen, Shi (bib40) 2017; 8
Halliwell, Clement, Long (bib6) 2000; 486
Chiarugi, Cirri (bib28) 2003; 28
Huang, Liao, Lu, Pan, Wan, Chen, Sung (bib60) 2016; 28
Zanganeh, Hutter, Spitler, Lenkov, Mahmoudi, Shaw, Pajarinen, Nejadnik, Goodman, Moseley, Coussens, Daldrup-Link (bib54) 2016; 11
Mantovani, Romero, Palucka, Marincola (bib5) 2008; 371
Wydra, Rychahou, Evers, Anderson, Dziubla, Hilt (bib92) 2015; 25
Chen, Chen, Shi (bib81) 2014; 47
Lin, Chen, Shi (bib107) 2018; 47
Xie, Hou, Song, Yu, Huang, Sun, Kang, Tang (bib20) 2016; 23
Tibbitt, Dahlman, Langer (bib34) 2016; 138
Circu, Aw (bib29) 2010; 48
Chen, Chen, Shi (bib30) 2013; 25
Lopez-Lazaro (bib8) 2007; 252
Shemer, Kunukcu, Linden (bib94) 2006; 63
Gao, Gu, Xu (bib55) 2009; 42
Fan, Cao, Pan, Lu, Yang, Feng, Song, Liang, Yan (bib49) 2012; 7
Wang, Huo, Chen, Shi (bib80) 2018; 163
Yang, Feng, Shi, Liu (bib90) 2013; 42
Chen, Feng, Liu, Zhu, Dong, Wu, Liu (bib46) 2016; 28
Liong, France, Bradley, Zink (bib72) 2009; 21
Imlay, Chin, Linn (bib18) 1988; 240
Gao, Zhuang, Nie, Zhang, Zhang, Gu, Wang, Feng, Yang, Perrett (bib50) 2007; 2
He, Zhou, Wamer, Boudreau, Yin (bib71) 2012; 33
Elmorsi, Riyad, Mohamed, Abd El Bary (bib95) 2010; 174
Zhou, Liu, Li (bib99) 2012; 41
Xiong, Ye, Wang, Song, Qu (bib98) 2017; 32
Xu, Li, Ye, Yin, Zeng (bib65) 2011; 102
Ember, Rothbart, Puchta, van Eldik (bib64) 2009; 33
Yang, Chen, Shi (bib37) 2018; 4
Ke, Wang, Dai, Jin, Qu, Xing, Guo, Yue, Liu (bib89) 2011; 50
Xu, Yuan, Kohler, Kim, Chung, Sun (bib77) 2009; 131
Lal, Clare, Halas (bib87) 2008; 41
Pedraza (10.1016/j.biomaterials.2019.04.023_bib47) 2012; 109
Xiong (10.1016/j.biomaterials.2019.04.023_bib98) 2017; 32
Lopez-Lazaro (10.1016/j.biomaterials.2019.04.023_bib8) 2007; 252
Cadet (10.1016/j.biomaterials.2019.04.023_bib27) 2010; 49
Lee (10.1016/j.biomaterials.2019.04.023_bib68) 2008; 132
Ma (10.1016/j.biomaterials.2019.04.023_bib39) 2017; 32
Shi (10.1016/j.biomaterials.2019.04.023_bib36) 2017; 17
Fan (10.1016/j.biomaterials.2019.04.023_bib49) 2012; 7
He (10.1016/j.biomaterials.2019.04.023_bib71) 2012; 33
Dai (10.1016/j.biomaterials.2019.04.023_bib102) 2018; 30
Poyton (10.1016/j.biomaterials.2019.04.023_bib66) 2016; 138
Ma (10.1016/j.biomaterials.2019.04.023_bib106) 2018; 10
Bourquin (10.1016/j.biomaterials.2019.04.023_bib35) 2018; 30
Lee (10.1016/j.biomaterials.2019.04.023_bib59) 2011; 6
Zhang (10.1016/j.biomaterials.2019.04.023_bib93) 2018; 18
Imlay (10.1016/j.biomaterials.2019.04.023_bib18) 1988; 240
Cheng (10.1016/j.biomaterials.2019.04.023_bib88) 2014; 26
Ashley (10.1016/j.biomaterials.2019.04.023_bib33) 2011; 10
Fan (10.1016/j.biomaterials.2019.04.023_bib43) 2017; 56
Kim (10.1016/j.biomaterials.2019.04.023_bib73) 2007; 3
Xie (10.1016/j.biomaterials.2019.04.023_bib20) 2016; 23
Kumar (10.1016/j.biomaterials.2019.04.023_bib12) 2008; 68
Dai (10.1016/j.biomaterials.2019.04.023_bib103) 2018; 12
Laurent (10.1016/j.biomaterials.2019.04.023_bib58) 2008; 108
Lal (10.1016/j.biomaterials.2019.04.023_bib87) 2008; 41
Zhang (10.1016/j.biomaterials.2019.04.023_bib61) 2016; 128
Shevtsov (10.1016/j.biomaterials.2019.04.023_bib79) 2016; 6
Zheng (10.1016/j.biomaterials.2019.04.023_bib104) 2017; 17
Jung (10.1016/j.biomaterials.2019.04.023_bib14) 2009; 30
Zhou (10.1016/j.biomaterials.2019.04.023_bib99) 2012; 41
Tibbitt (10.1016/j.biomaterials.2019.04.023_bib34) 2016; 138
Wang (10.1016/j.biomaterials.2019.04.023_bib67) 2014; 86
Cioloboc (10.1016/j.biomaterials.2019.04.023_bib105) 2018; 19
Neyens (10.1016/j.biomaterials.2019.04.023_bib15) 2003; 98
Yue (10.1016/j.biomaterials.2019.04.023_bib76) 2017; 28
Solano (10.1016/j.biomaterials.2019.04.023_bib24) 2015; 168
Hu (10.1016/j.biomaterials.2019.04.023_bib84) 2017; 141
Xu (10.1016/j.biomaterials.2019.04.023_bib77) 2009; 131
Circu (10.1016/j.biomaterials.2019.04.023_bib29) 2010; 48
Ma (10.1016/j.biomaterials.2019.04.023_bib101) 2017; 17
Ember (10.1016/j.biomaterials.2019.04.023_bib64) 2009; 33
Huang (10.1016/j.biomaterials.2019.04.023_bib100) 2013; 3
Kim (10.1016/j.biomaterials.2019.04.023_bib23) 2016; 11
Duan (10.1016/j.biomaterials.2019.04.023_bib63) 2018; 54
Xu (10.1016/j.biomaterials.2019.04.023_bib65) 2011; 102
Lin (10.1016/j.biomaterials.2019.04.023_bib107) 2018; 47
Overall (10.1016/j.biomaterials.2019.04.023_bib4) 2006; 6
Zhu (10.1016/j.biomaterials.2019.04.023_bib41) 2018; 12
Kwon (10.1016/j.biomaterials.2019.04.023_bib82) 2016; 8
Wang (10.1016/j.biomaterials.2019.04.023_bib80) 2018; 163
Yang (10.1016/j.biomaterials.2019.04.023_bib90) 2013; 42
Halliwell (10.1016/j.biomaterials.2019.04.023_bib6) 2000; 486
Dixon (10.1016/j.biomaterials.2019.04.023_bib19) 2012; 149
Southworth (10.1016/j.biomaterials.2019.04.023_bib25) 2003; 37
Chen (10.1016/j.biomaterials.2019.04.023_bib30) 2013; 25
Chen (10.1016/j.biomaterials.2019.04.023_bib31) 2015; 44
Huo (10.1016/j.biomaterials.2019.04.023_bib40) 2017; 8
Zhang (10.1016/j.biomaterials.2019.04.023_bib42) 2017; 12
Bataineh (10.1016/j.biomaterials.2019.04.023_bib26) 2012; 3
Albini (10.1016/j.biomaterials.2019.04.023_bib2) 2007; 7
Shubayev (10.1016/j.biomaterials.2019.04.023_bib56) 2009; 61
Adam-Vizi (10.1016/j.biomaterials.2019.04.023_bib11) 2006; 27
Shen (10.1016/j.biomaterials.2019.04.023_bib52) 2018; 30
Mantovani (10.1016/j.biomaterials.2019.04.023_bib5) 2008; 371
Pignatello (10.1016/j.biomaterials.2019.04.023_bib16) 2006; 36
Li (10.1016/j.biomaterials.2019.04.023_bib85) 2015; 10
Tang (10.1016/j.biomaterials.2019.04.023_bib38) 2017; 29
Ghaly (10.1016/j.biomaterials.2019.04.023_bib97) 2001; 21
Chen (10.1016/j.biomaterials.2019.04.023_bib53) 2012; 6
Shemer (10.1016/j.biomaterials.2019.04.023_bib94) 2006; 63
Szatrowski (10.1016/j.biomaterials.2019.04.023_bib9) 1991; 51
Ranji-Burachaloo (10.1016/j.biomaterials.2019.04.023_bib75) 2017; 9
Huang (10.1016/j.biomaterials.2019.04.023_bib60) 2016; 28
Tang (10.1016/j.biomaterials.2019.04.023_bib83) 2017; 29
Chen (10.1016/j.biomaterials.2019.04.023_bib81) 2014; 47
AshaRani (10.1016/j.biomaterials.2019.04.023_bib74) 2009; 3
Pouran (10.1016/j.biomaterials.2019.04.023_bib13) 2014; 64
Wlassoff (10.1016/j.biomaterials.2019.04.023_bib10) 2007; 59
Li (10.1016/j.biomaterials.2019.04.023_bib44) 2017; 11
Schafer (10.1016/j.biomaterials.2019.04.023_bib69) 2001; 30
Wydra (10.1016/j.biomaterials.2019.04.023_bib91) 2015; 5
Fu (10.1016/j.biomaterials.2019.04.023_bib78) 2015; 7
Lu (10.1016/j.biomaterials.2019.04.023_bib57) 2007; 46
Stockwell (10.1016/j.biomaterials.2019.04.023_bib22) 2017; 171
Liong (10.1016/j.biomaterials.2019.04.023_bib72) 2009; 21
Junttila (10.1016/j.biomaterials.2019.04.023_bib1) 2013; 501
Trachootham (10.1016/j.biomaterials.2019.04.023_bib70) 2009; 8
Mi (10.1016/j.biomaterials.2019.04.023_bib48) 2016; 11
Zanganeh (10.1016/j.biomaterials.2019.04.023_bib54) 2016; 11
Elmorsi (10.1016/j.biomaterials.2019.04.023_bib95) 2010; 174
Gao (10.1016/j.biomaterials.2019.04.023_bib50) 2007; 2
Lu (10.1016/j.biomaterials.2019.04.023_bib32) 2017; 1
Schrank (10.1016/j.biomaterials.2019.04.023_bib96) 2005; 60
Saeed (10.1016/j.biomaterials.2019.04.023_bib51) 2018; 6
Lin (10.1016/j.biomaterials.2019.04.023_bib62) 2018; 130
Kessenbrock (10.1016/j.biomaterials.2019.04.023_bib3) 2010; 141
Chiarugi (10.1016/j.biomaterials.2019.04.023_bib28) 2003; 28
Jiang (10.1016/j.biomaterials.2019.04.023_bib21) 2015; 520
Chen (10.1016/j.biomaterials.2019.04.023_bib46) 2016; 28
Ke (10.1016/j.biomaterials.2019.04.023_bib89) 2011; 50
Zhu (10.1016/j.biomaterials.2019.04.023_bib45) 2016; 26
Wydra (10.1016/j.biomaterials.2019.04.023_bib92) 2015; 25
Brillas (10.1016/j.biomaterials.2019.04.023_bib17) 2009; 109
Kim (10.1016/j.biomaterials.2019.04.023_bib7) 2017; 139
Gao (10.1016/j.biomaterials.2019.04.023_bib55) 2009; 42
Feng (10.1016/j.biomaterials.2019.04.023_bib86) 2019; 31
Yang (10.1016/j.biomaterials.2019.04.023_bib37) 2018; 4
References_xml – volume: 49
  start-page: 9
  year: 2010
  end-page: 21
  ident: bib27
  article-title: Oxidatively generated base damage to cellular DNA
  publication-title: Free Radical Biol. Med.
– volume: 68
  start-page: 1777
  year: 2008
  end-page: 1785
  ident: bib12
  article-title: Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype
  publication-title: Cancer Res.
– volume: 109
  start-page: 4245
  year: 2012
  end-page: 4250
  ident: bib47
  article-title: Preventing hypoxia-induced cell death in beta cells and islets
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 25
  start-page: 3144
  year: 2013
  end-page: 3176
  ident: bib30
  article-title: bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles
  publication-title: Adv. Mater.
– volume: 141
  start-page: 86
  year: 2017
  end-page: 95
  ident: bib84
  article-title: Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy
  publication-title: Biomaterials
– volume: 50
  start-page: 3017
  year: 2011
  end-page: 3021
  ident: bib89
  article-title: Gold-nanoshelled microcapsules: a theranostic agent for ultrasound contrast imaging and photothermal therapy
  publication-title: Angew. Chem. Int. Ed.
– volume: 21
  start-page: 1684
  year: 2009
  end-page: 1689
  ident: bib72
  article-title: Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles
  publication-title: Adv. Mater.
– volume: 25
  start-page: 284
  year: 2015
  end-page: 290
  ident: bib92
  article-title: The role of ROS generation from magnetic nanoparticles in an alternating magnetic field on cytotoxicity
  publication-title: Acta Biomater.
– volume: 3
  start-page: 116
  year: 2013
  end-page: 126
  ident: bib100
  article-title: Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy
  publication-title: Theranostics
– volume: 7
  start-page: 139
  year: 2007
  end-page: 147
  ident: bib2
  article-title: The tumour microenvironment as a target for chemoprevention
  publication-title: Nat. Rev. Canc.
– volume: 371
  start-page: 771
  year: 2008
  end-page: 783
  ident: bib5
  article-title: Tumour immunity: effector response to tumour and role of the microenvironment
  publication-title: Lancet
– volume: 12
  start-page: 378
  year: 2017
  end-page: 386
  ident: bib42
  article-title: Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy
  publication-title: Nat. Nanotechnol.
– volume: 1
  start-page: 637
  year: 2017
  end-page: 643
  ident: bib32
  article-title: Iron oxide nanoclusters for T
  publication-title: Nat. Biomed. Eng.
– volume: 3
  start-page: 1594
  year: 2012
  end-page: 1599
  ident: bib26
  article-title: pH-induced mechanistic changeover from hydroxyl radicals to iron(IV) in the Fenton reaction
  publication-title: Chem. Sci.
– volume: 46
  start-page: 1222
  year: 2007
  end-page: 1244
  ident: bib57
  article-title: Magnetic nanoparticles: synthesis, protection, functionalization, and application
  publication-title: Angew. Chem. Int. Ed.
– volume: 130
  start-page: 4996
  year: 2018
  end-page: 5000
  ident: bib62
  article-title: Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2 -based nanoagent to enhance chemodynamic therapy
  publication-title: Angew. Chem. Int. Ed.
– volume: 138
  start-page: 1584
  year: 2016
  end-page: 1590
  ident: bib66
  article-title: Cu
  publication-title: J. Am. Chem. Soc.
– volume: 86
  start-page: 12348
  year: 2014
  end-page: 12354
  ident: bib67
  article-title: AgNP-DNA@GQDs hybrid: new approach for sensitive detection of H
  publication-title: Anal. Chem.
– volume: 10
  start-page: 31
  year: 2018
  end-page: 44
  ident: bib106
  article-title: 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer
  publication-title: NPG Asia Mater.
– volume: 47
  start-page: 125
  year: 2014
  end-page: 137
  ident: bib81
  article-title: Construction of homogenous/heterogeneous hollow mesoporous silica nanostructures by silicaeEtching chemistry: principles, synthesis, and applications
  publication-title: Acc. Chem. Res.
– volume: 48
  start-page: 749
  year: 2010
  end-page: 762
  ident: bib29
  article-title: Reactive oxygen species, cellular redox systems, and apoptosis
  publication-title: Free Radical Biol. Med.
– volume: 2
  start-page: 577
  year: 2007
  end-page: 583
  ident: bib50
  article-title: Intrinsic peroxidase-like activity of ferromagnetic nanoparticles
  publication-title: Nat. Nanotechnol.
– volume: 30
  start-page: 1191
  year: 2001
  end-page: 1212
  ident: bib69
  article-title: Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple
  publication-title: Free Radical Biol. Med.
– volume: 29
  start-page: 1604105
  year: 2017
  ident: bib38
  article-title: Materials chemistry of nanoultrasonic biomedicine
  publication-title: Adv. Mater.
– volume: 132
  start-page: 164
  year: 2008
  end-page: 170
  ident: bib68
  article-title: Recent progress in tumor pH targeting nanotechnology
  publication-title: J. Control. Release
– volume: 131
  start-page: 15346
  year: 2009
  end-page: 15351
  ident: bib77
  article-title: FePt nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 1549
  year: 2007
  end-page: 1553
  ident: bib10
  article-title: Hydrogen peroxide overproduced in breast cancer cells can serve as an anticancer prodrug generating apoptosis-stimulating hydroxyl radicals under the effect of tamoxifen-ferrocene conjugate
  publication-title: J. Pharm. Pharmacol.
– volume: 41
  start-page: 1842
  year: 2008
  end-page: 1851
  ident: bib87
  article-title: Nanoshell-enabled photothermal cancer therapy: impending clinical impact
  publication-title: Acc. Chem. Res.
– volume: 486
  start-page: 10
  year: 2000
  end-page: 13
  ident: bib6
  article-title: Hydrogen peroxide in the human body
  publication-title: FEBS Lett.
– volume: 47
  start-page: 1938
  year: 2018
  end-page: 1958
  ident: bib107
  article-title: Nanoparticle-triggered
  publication-title: Chem. Soc. Rev.
– volume: 36
  start-page: 1
  year: 2006
  end-page: 84
  ident: bib16
  article-title: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 11
  start-page: 986
  year: 2016
  end-page: 994
  ident: bib54
  article-title: Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues
  publication-title: Nat. Nanotechnol.
– volume: 44
  start-page: 2681
  year: 2015
  end-page: 2701
  ident: bib31
  article-title: Two-dimensional graphene analogues for biomedical applications
  publication-title: Chem. Soc. Rev.
– volume: 18
  start-page: 7609
  year: 2018
  end-page: 7618
  ident: bib93
  article-title: An adenosine triphosphate-responsive autocatalytic Fenton nanoparticle for tumor ablation with self-supplied H
  publication-title: Nano Lett.
– volume: 42
  start-page: 1097
  year: 2009
  end-page: 1107
  ident: bib55
  article-title: Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications
  publication-title: Acc. Chem. Res.
– volume: 41
  start-page: 1323
  year: 2012
  end-page: 1349
  ident: bib99
  article-title: Upconversion nanophosphors for small-animal imaging
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 5887
  year: 2016
  end-page: 5897
  ident: bib82
  article-title: Nano-Fenton reactors as a new class of oxidative stress amplifying anticancer therapeutic agents
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 7275
  year: 2015
  end-page: 7283
  ident: bib78
  article-title: Lysosome-controlled efficient ROS overproduction against cancer cells with a high pH-responsive catalytic nanosystem
  publication-title: Nanoscale
– volume: 32
  start-page: 180
  year: 2017
  end-page: 184
  ident: bib98
  article-title: Spectra analysis of Nd3+ sensitized NaYF4:Yb@NaYF4:Ho upconversion nanoparticles
  publication-title: J. Inorg. Mater.
– volume: 12
  start-page: 3780
  year: 2018
  end-page: 3795
  ident: bib41
  article-title: Nanoenzyme-augmented cancer sonodynamic therapy by catalytic tumor oxygenation
  publication-title: ACS Nano
– volume: 64
  start-page: 24
  year: 2014
  end-page: 35
  ident: bib13
  article-title: Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions
  publication-title: J. Clean. Prod
– volume: 26
  start-page: 1886
  year: 2014
  end-page: 1893
  ident: bib88
  article-title: PEGylated WS
  publication-title: Adv. Mater.
– volume: 128
  start-page: 2141
  year: 2016
  end-page: 2146
  ident: bib61
  article-title: Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 19
  start-page: 178
  year: 2018
  end-page: 187
  ident: bib105
  article-title: Trojan horse for light-triggered bifurcated production of singlet oxygen and Fenton-reactive iron within cancer cells
  publication-title: Biomacromolecules
– volume: 28
  start-page: 509
  year: 2003
  end-page: 514
  ident: bib28
  article-title: Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction
  publication-title: Trends Biochem. Sci.
– volume: 26
  start-page: 5490
  year: 2016
  end-page: 5498
  ident: bib45
  article-title: Modulation of hypoxia in solid tumor microenvironment with MnO
  publication-title: Adv. Funct. Mater.
– volume: 21
  start-page: 41
  year: 2001
  end-page: 47
  ident: bib97
  article-title: Photochemical oxidation of p-chlorophenol by UV/H
  publication-title: Waste Manag.
– volume: 8
  start-page: 579
  year: 2009
  end-page: 591
  ident: bib70
  article-title: Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?
  publication-title: Nat. Rev. Drug Discov.
– volume: 138
  start-page: 704
  year: 2016
  end-page: 717
  ident: bib34
  article-title: Emerging frontiers in drug delivery
  publication-title: J. Am. Chem. Soc.
– volume: 501
  start-page: 346
  year: 2013
  end-page: 354
  ident: bib1
  article-title: Influence of tumour micro-environment heterogeneity on therapeutic response
  publication-title: Nature
– volume: 32
  start-page: 1215
  year: 2017
  end-page: 1222
  ident: bib39
  article-title: Porous hydroxyapatite microspheres prepared by using poly (allylamine hydrochloride) and its application in drug delivery
  publication-title: J. Inorg. Mater.
– volume: 108
  start-page: 2064
  year: 2008
  end-page: 2110
  ident: bib58
  article-title: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications
  publication-title: Chem. Rev.
– volume: 42
  start-page: 530
  year: 2013
  end-page: 547
  ident: bib90
  article-title: Nano-graphene in biomedicine: theranostic applications
  publication-title: Chem. Soc. Rev.
– volume: 520
  start-page: 57
  year: 2015
  end-page: 62
  ident: bib21
  article-title: Ferroptosis as a p53-mediated activity during tumour suppression
  publication-title: Nature
– volume: 252
  start-page: 1
  year: 2007
  end-page: 8
  ident: bib8
  article-title: Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy
  publication-title: Cancer Lett.
– volume: 6
  start-page: 708
  year: 2018
  end-page: 725
  ident: bib51
  article-title: Therapeutic applications of iron oxide based nanoparticles in cancer: basic concepts and recent advances
  publication-title: Biomater. Sci.
– volume: 6
  start-page: 4001
  year: 2012
  end-page: 4012
  ident: bib53
  article-title: Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity
  publication-title: ACS Nano
– volume: 11
  start-page: 724
  year: 2016
  end-page: 730
  ident: bib48
  article-title: A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy
  publication-title: Nat. Nanotechnol.
– volume: 27
  start-page: 639
  year: 2006
  end-page: 645
  ident: bib11
  article-title: Bioenergetics and the formation of mitochondrial reactive oxygen species
  publication-title: Trends Pharmacol. Sci.
– volume: 51
  start-page: 794
  year: 1991
  end-page: 798
  ident: bib9
  article-title: Production of large amounts of hydrogen peroxide by human tumor cells
  publication-title: Cancer Res.
– volume: 33
  start-page: 34
  year: 2009
  end-page: 49
  ident: bib64
  article-title: Metal ion-catalyzed oxidative degradation of Orange II by H
  publication-title: New J. Chem.
– volume: 6
  start-page: 29247
  year: 2016
  ident: bib79
  article-title: Zero-valent Fe confined mesoporous silica nanocarriers (Fe(0) @ MCM-41) for targeting experimental orthotopic glioma in rats
  publication-title: Sci. Rep.
– volume: 30
  start-page: 1704877
  year: 2018
  ident: bib102
  article-title: Toxic reactive oxygen species enhanced synergistic combination therapy by self-assembled metal-phenolic network nanoparticles
  publication-title: Adv. Mater.
– volume: 7
  start-page: 459
  year: 2012
  end-page: 464
  ident: bib49
  article-title: Magnetoferritin nanoparticles for targeting and visualizing tumour tissues
  publication-title: Nat. Nanotechnol.
– volume: 102
  start-page: 37
  year: 2011
  end-page: 43
  ident: bib65
  article-title: Catalyzed oxidative degradation of methylene blue by
  publication-title: Appl. Catal. B Environ.
– volume: 33
  start-page: 7547
  year: 2012
  end-page: 7555
  ident: bib71
  article-title: Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles
  publication-title: Biomaterials
– volume: 63
  start-page: 269
  year: 2006
  end-page: 276
  ident: bib94
  article-title: Degradation of the pharmaceutical metronidazole
  publication-title: Chemosphere
– volume: 12
  start-page: 455
  year: 2018
  end-page: 463
  ident: bib103
  article-title: Hypochlorous acid promoted platinum drug chemotherapy by myeloperoxidase-encapsulated therapeutic metal phenolic nanoparticles
  publication-title: ACS Nano
– volume: 30
  start-page: 183
  year: 2009
  end-page: 190
  ident: bib14
  article-title: Effect of pH on Fenton and Fenton-like oxidation
  publication-title: Environ. Technol.
– volume: 28
  start-page: 7129
  year: 2016
  end-page: 7136
  ident: bib46
  article-title: Intelligent albumin–MnO
  publication-title: Adv. Mater.
– volume: 6
  start-page: 227
  year: 2006
  end-page: 239
  ident: bib4
  article-title: Tumour microenvironment - opinion - Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy
  publication-title: Nat. Rev. Canc.
– volume: 30
  start-page: 1704007
  year: 2018
  ident: bib52
  article-title: Emerging strategies of cancer therapy based on ferroptosis
  publication-title: Adv. Mater.
– volume: 30
  start-page: 1704307
  year: 2018
  ident: bib35
  article-title: Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials
  publication-title: Adv. Mater.
– volume: 139
  start-page: 10992
  year: 2017
  end-page: 10995
  ident: bib7
  article-title: Continuous O
  publication-title: J. Am. Chem. Soc.
– volume: 168
  start-page: 559
  year: 2015
  end-page: 571
  ident: bib24
  article-title: Degradation of acidic aqueous solutions of the diazo dye Congo Red by photo-assisted electrochemical processes based on Fenton's reaction chemistry
  publication-title: Appl. Catal. B Environ.
– volume: 11
  start-page: 7006
  year: 2017
  end-page: 7018
  ident: bib44
  article-title: Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy
  publication-title: ACS Nano
– volume: 98
  start-page: 33
  year: 2003
  end-page: 50
  ident: bib15
  article-title: A review of classic Fenton's peroxidation as an advanced oxidation technique
  publication-title: J. Hazard Mater.
– volume: 163
  start-page: 1
  year: 2018
  end-page: 13
  ident: bib80
  article-title: Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for tumor-specific therapy
  publication-title: Biomaterials
– volume: 3
  start-page: 279
  year: 2009
  end-page: 290
  ident: bib74
  article-title: Cytotoxicity and genotoxicity of silver nanoparticles in human cells
  publication-title: ACS Nano
– volume: 10
  start-page: 2017
  year: 2015
  end-page: 2027
  ident: bib85
  article-title: Ultrasound-induced reactive oxygen species-mediated therapy and imaging using a Fenton reaction activable polymersome
  publication-title: ACS Nano
– volume: 54
  start-page: 8214
  year: 2018
  end-page: 8217
  ident: bib63
  article-title: Tumor-selective catalytic nanosystem for activatable theranostics
  publication-title: Chem. Commun.
– volume: 8
  start-page: 357
  year: 2017
  ident: bib40
  article-title: Tumor-selective catalytic nanomedicine by nanocatalyst delivery
  publication-title: Nat. Commun.
– volume: 31
  start-page: 1805919
  year: 2019
  ident: bib86
  article-title: Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows
  publication-title: Adv. Mater.
– volume: 37
  start-page: 1130
  year: 2003
  end-page: 1136
  ident: bib25
  article-title: Hydroxyl radical production
  publication-title: Environ. Sci. Technol.
– volume: 17
  start-page: 20
  year: 2017
  end-page: 37
  ident: bib36
  article-title: Cancer nanomedicine: progress, challenges and opportunities
  publication-title: Nat. Rev. Canc.
– volume: 6
  start-page: 418
  year: 2011
  end-page: 422
  ident: bib59
  article-title: Exchange-coupled magnetic nanoparticles for efficient heat induction
  publication-title: Nat. Nanotechnol.
– volume: 23
  start-page: 369
  year: 2016
  end-page: 379
  ident: bib20
  article-title: Ferroptosis: process and function
  publication-title: Cell Death Differ.
– volume: 56
  start-page: 1229
  year: 2017
  end-page: 1233
  ident: bib43
  article-title: Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic cancer starving-like/gas therapy
  publication-title: Angew. Chem. Int. Ed.
– volume: 171
  start-page: 273
  year: 2017
  end-page: 285
  ident: bib22
  article-title: Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease
  publication-title: Cell
– volume: 60
  start-page: 644
  year: 2005
  end-page: 655
  ident: bib96
  article-title: Applicability of Fenton and H
  publication-title: Chemosphere
– volume: 28
  start-page: 9017
  year: 2016
  end-page: 9025
  ident: bib60
  article-title: Cellular organelle-dependent cytotoxicity of iron oxide nanoparticles and its implications for cancer diagnosis and treatment: a mechanistic investigation
  publication-title: Chem. Mater.
– volume: 28
  start-page: 400
  year: 2017
  end-page: 409
  ident: bib76
  article-title: pH-responsive, self-sacrificial nanotheranostic agent for potential
  publication-title: Bioconjug. Chem.
– volume: 141
  start-page: 52
  year: 2010
  end-page: 67
  ident: bib3
  article-title: Matrix metalloproteinases: Regulators of the tumor microenvironment
  publication-title: Cell
– volume: 5
  start-page: 18888
  year: 2015
  end-page: 18893
  ident: bib91
  article-title: Accelerated generation of free radicals by iron oxide nanoparticles in the presence of an alternating magnetic field
  publication-title: RSC Adv.
– volume: 240
  start-page: 640
  year: 1988
  end-page: 642
  ident: bib18
  article-title: Toxic DNA damage by hydrogen-peroxide trough the Fenton reaction
  publication-title: Science
– volume: 174
  start-page: 352
  year: 2010
  end-page: 358
  ident: bib95
  article-title: Decolorization of Mordant red 73 azo dye in water using H
  publication-title: J. Hazard Mater.
– volume: 4
  start-page: 1284
  year: 2018
  end-page: 1313
  ident: bib37
  article-title: Material chemistry of Two-dimensional inorganic nanosheets in cancer theranostics
  publication-title: Chem
– volume: 11
  start-page: 977
  year: 2016
  end-page: 985
  ident: bib23
  article-title: Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth
  publication-title: Nat. Nanotechnol.
– volume: 10
  start-page: 389
  year: 2011
  end-page: 397
  ident: bib33
  article-title: The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers
  publication-title: Nat. Mater.
– volume: 9
  start-page: 33599
  year: 2017
  end-page: 33608
  ident: bib75
  article-title: MOF-mediated destruction of cancer using the cell's own hydrogen peroxide
  publication-title: ACS Appl. Mater. Interfaces
– volume: 61
  start-page: 467
  year: 2009
  end-page: 477
  ident: bib56
  article-title: Magnetic nanoparticles for theragnostics
  publication-title: Adv. Drug Deliv. Rev.
– volume: 149
  start-page: 1060
  year: 2012
  end-page: 1072
  ident: bib19
  article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death
  publication-title: Cell
– volume: 29
  start-page: 1701683
  year: 2017
  ident: bib83
  article-title: Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy
  publication-title: Adv. Mater.
– volume: 17
  start-page: 928
  year: 2017
  end-page: 937
  ident: bib101
  article-title: Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species
  publication-title: Nano Lett.
– volume: 17
  start-page: 284
  year: 2017
  end-page: 291
  ident: bib104
  article-title: Switching apoptosis to ferroptosis: metal-organic network for high-efficiency anticancer therapy
  publication-title: Nano Lett.
– volume: 3
  start-page: 95
  year: 2007
  end-page: 101
  ident: bib73
  article-title: Antimicrobial effects of silver nanoparticles
  publication-title: Nanomed.-Nanotechnol.
– volume: 109
  start-page: 6570
  year: 2009
  end-page: 6631
  ident: bib17
  article-title: Electro-fenton process and related electrochemical technologies based on Fenton's reaction chemistry
  publication-title: Chem. Rev.
– volume: 1
  start-page: 637
  issue: 8
  year: 2017
  ident: 10.1016/j.biomaterials.2019.04.023_bib32
  article-title: Iron oxide nanoclusters for T1 magnetic resonance imaging of non-human primates
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-017-0116-7
– volume: 12
  start-page: 3780
  issue: 4
  year: 2018
  ident: 10.1016/j.biomaterials.2019.04.023_bib41
  article-title: Nanoenzyme-augmented cancer sonodynamic therapy by catalytic tumor oxygenation
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00999
– volume: 28
  start-page: 7129
  year: 2016
  ident: 10.1016/j.biomaterials.2019.04.023_bib46
  article-title: Intelligent albumin–MnO2 nanoparticles as pH‐/H2O2‐responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601902
– volume: 9
  start-page: 33599
  issue: 39
  year: 2017
  ident: 10.1016/j.biomaterials.2019.04.023_bib75
  article-title: MOF-mediated destruction of cancer using the cell's own hydrogen peroxide
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b07981
– volume: 18
  start-page: 7609
  issue: 12
  year: 2018
  ident: 10.1016/j.biomaterials.2019.04.023_bib93
  article-title: An adenosine triphosphate-responsive autocatalytic Fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe(III)/Fe(II) Conversion
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03178
– volume: 30
  start-page: 1704877
  issue: 8
  year: 2018
  ident: 10.1016/j.biomaterials.2019.04.023_bib102
  article-title: Toxic reactive oxygen species enhanced synergistic combination therapy by self-assembled metal-phenolic network nanoparticles
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704877
– volume: 12
  start-page: 455
  issue: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2019.04.023_bib103
  article-title: Hypochlorous acid promoted platinum drug chemotherapy by myeloperoxidase-encapsulated therapeutic metal phenolic nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06852
– volume: 109
  start-page: 6570
  issue: 12
  year: 2009
  ident: 10.1016/j.biomaterials.2019.04.023_bib17
  article-title: Electro-fenton process and related electrochemical technologies based on Fenton's reaction chemistry
  publication-title: Chem. Rev.
  doi: 10.1021/cr900136g
– volume: 141
  start-page: 52
  issue: 1
  year: 2010
  ident: 10.1016/j.biomaterials.2019.04.023_bib3
  article-title: Matrix metalloproteinases: Regulators of the tumor microenvironment
  publication-title: Cell
  doi: 10.1016/j.cell.2010.03.015
– volume: 27
  start-page: 639
  issue: 12
  year: 2006
  ident: 10.1016/j.biomaterials.2019.04.023_bib11
  article-title: Bioenergetics and the formation of mitochondrial reactive oxygen species
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2006.10.005
– volume: 7
  start-page: 459
  issue: 7
  year: 2012
  ident: 10.1016/j.biomaterials.2019.04.023_bib49
  article-title: Magnetoferritin nanoparticles for targeting and visualizing tumour tissues
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.90
– volume: 30
  start-page: 1704307
  year: 2018
  ident: 10.1016/j.biomaterials.2019.04.023_bib35
  article-title: Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704307
– volume: 168
  start-page: 559
  year: 2015
  ident: 10.1016/j.biomaterials.2019.04.023_bib24
  article-title: Degradation of acidic aqueous solutions of the diazo dye Congo Red by photo-assisted electrochemical processes based on Fenton's reaction chemistry
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2015.01.019
– volume: 128
  start-page: 2141
  issue: 6
  year: 2016
  ident: 10.1016/j.biomaterials.2019.04.023_bib61
  article-title: Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201510031
– volume: 486
  start-page: 10
  issue: 1
  year: 2000
  ident: 10.1016/j.biomaterials.2019.04.023_bib6
  article-title: Hydrogen peroxide in the human body
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(00)02197-9
– volume: 25
  start-page: 284
  year: 2015
  ident: 10.1016/j.biomaterials.2019.04.023_bib92
  article-title: The role of ROS generation from magnetic nanoparticles in an alternating magnetic field on cytotoxicity
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2015.06.037
– volume: 102
  start-page: 37
  issue: 1–2
  year: 2011
  ident: 10.1016/j.biomaterials.2019.04.023_bib65
  article-title: Catalyzed oxidative degradation of methylene blue by in situ generated cobalt (II)-bicarbonate complexes with hydrogen peroxide
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2010.11.022
– volume: 8
  start-page: 357
  year: 2017
  ident: 10.1016/j.biomaterials.2019.04.023_bib40
  article-title: Tumor-selective catalytic nanomedicine by nanocatalyst delivery
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00424-8
– volume: 11
  start-page: 7006
  issue: 7
  year: 2017
  ident: 10.1016/j.biomaterials.2019.04.023_bib44
  article-title: Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02533
– volume: 51
  start-page: 794
  issue: 3
  year: 1991
  ident: 10.1016/j.biomaterials.2019.04.023_bib9
  article-title: Production of large amounts of hydrogen peroxide by human tumor cells
  publication-title: Cancer Res.
– volume: 520
  start-page: 57
  issue: 7545
  year: 2015
  ident: 10.1016/j.biomaterials.2019.04.023_bib21
  article-title: Ferroptosis as a p53-mediated activity during tumour suppression
  publication-title: Nature
  doi: 10.1038/nature14344
– volume: 98
  start-page: 33
  issue: 1–3
  year: 2003
  ident: 10.1016/j.biomaterials.2019.04.023_bib15
  article-title: A review of classic Fenton's peroxidation as an advanced oxidation technique
  publication-title: J. Hazard Mater.
  doi: 10.1016/S0304-3894(02)00282-0
– volume: 6
  start-page: 418
  issue: 7
  year: 2011
  ident: 10.1016/j.biomaterials.2019.04.023_bib59
  article-title: Exchange-coupled magnetic nanoparticles for efficient heat induction
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.95
– volume: 11
  start-page: 977
  issue: 11
  year: 2016
  ident: 10.1016/j.biomaterials.2019.04.023_bib23
  article-title: Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.164
– volume: 8
  start-page: 579
  issue: 7
  year: 2009
  ident: 10.1016/j.biomaterials.2019.04.023_bib70
  article-title: Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd2803
– volume: 501
  start-page: 346
  issue: 7467
  year: 2013
  ident: 10.1016/j.biomaterials.2019.04.023_bib1
  article-title: Influence of tumour micro-environment heterogeneity on therapeutic response
  publication-title: Nature
  doi: 10.1038/nature12626
– volume: 6
  start-page: 227
  issue: 3
  year: 2006
  ident: 10.1016/j.biomaterials.2019.04.023_bib4
  article-title: Tumour microenvironment - opinion - Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc1821
– volume: 48
  start-page: 749
  issue: 6
  year: 2010
  ident: 10.1016/j.biomaterials.2019.04.023_bib29
  article-title: Reactive oxygen species, cellular redox systems, and apoptosis
  publication-title: Free Radical Biol. Med.
  doi: 10.1016/j.freeradbiomed.2009.12.022
– volume: 21
  start-page: 1684
  issue: 17
  year: 2009
  ident: 10.1016/j.biomaterials.2019.04.023_bib72
  article-title: Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200802646
– volume: 60
  start-page: 644
  issue: 5
  year: 2005
  ident: 10.1016/j.biomaterials.2019.04.023_bib96
  article-title: Applicability of Fenton and H2O2/UV reactions in the treatment of tannery wastewaters
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2005.01.033
– volume: 141
  start-page: 86
  year: 2017
  ident: 10.1016/j.biomaterials.2019.04.023_bib84
  article-title: Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.06.035
– volume: 31
  start-page: 1805919
  issue: 5
  year: 2019
  ident: 10.1016/j.biomaterials.2019.04.023_bib86
  article-title: Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805919
– volume: 3
  start-page: 116
  issue: 2
  year: 2013
  ident: 10.1016/j.biomaterials.2019.04.023_bib100
  article-title: Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy
  publication-title: Theranostics
  doi: 10.7150/thno.5411
– volume: 32
  start-page: 1215
  issue: 11
  year: 2017
  ident: 10.1016/j.biomaterials.2019.04.023_bib39
  article-title: Porous hydroxyapatite microspheres prepared by using poly (allylamine hydrochloride) and its application in drug delivery
  publication-title: J. Inorg. Mater.
  doi: 10.15541/jim20170041
– volume: 28
  start-page: 9017
  issue: 24
  year: 2016
  ident: 10.1016/j.biomaterials.2019.04.023_bib60
  article-title: Cellular organelle-dependent cytotoxicity of iron oxide nanoparticles and its implications for cancer diagnosis and treatment: a mechanistic investigation
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b03905
– volume: 42
  start-page: 1097
  issue: 8
  year: 2009
  ident: 10.1016/j.biomaterials.2019.04.023_bib55
  article-title: Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar9000026
– volume: 11
  start-page: 986
  issue: 11
  year: 2016
  ident: 10.1016/j.biomaterials.2019.04.023_bib54
  article-title: Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.168
– volume: 171
  start-page: 273
  issue: 2
  year: 2017
  ident: 10.1016/j.biomaterials.2019.04.023_bib22
  article-title: Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.021
– volume: 30
  start-page: 1191
  issue: 11
  year: 2001
  ident: 10.1016/j.biomaterials.2019.04.023_bib69
  article-title: Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple
  publication-title: Free Radical Biol. Med.
  doi: 10.1016/S0891-5849(01)00480-4
– volume: 7
  start-page: 139
  issue: 2
  year: 2007
  ident: 10.1016/j.biomaterials.2019.04.023_bib2
  article-title: The tumour microenvironment as a target for chemoprevention
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc2067
– volume: 32
  start-page: 180
  issue: 2
  year: 2017
  ident: 10.1016/j.biomaterials.2019.04.023_bib98
  article-title: Spectra analysis of Nd3+ sensitized NaYF4:Yb@NaYF4:Ho upconversion nanoparticles
  publication-title: J. Inorg. Mater.
  doi: 10.15541/jim20160285
– volume: 29
  start-page: 1604105
  issue: 10
  year: 2017
  ident: 10.1016/j.biomaterials.2019.04.023_bib38
  article-title: Materials chemistry of nanoultrasonic biomedicine
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604105
– volume: 30
  start-page: 1704007
  issue: 12
  year: 2018
  ident: 10.1016/j.biomaterials.2019.04.023_bib52
  article-title: Emerging strategies of cancer therapy based on ferroptosis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704007
– volume: 130
  start-page: 4996
  year: 2018
  ident: 10.1016/j.biomaterials.2019.04.023_bib62
  article-title: Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2 -based nanoagent to enhance chemodynamic therapy
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201712027
– volume: 42
  start-page: 530
  issue: 2
  year: 2013
  ident: 10.1016/j.biomaterials.2019.04.023_bib90
  article-title: Nano-graphene in biomedicine: theranostic applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35342C
– volume: 29
  start-page: 1701683
  issue: 47
  year: 2017
  ident: 10.1016/j.biomaterials.2019.04.023_bib83
  article-title: Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701683
– volume: 36
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.biomaterials.2019.04.023_bib16
  article-title: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643380500326564
– volume: 12
  start-page: 378
  issue: 4
  year: 2017
  ident: 10.1016/j.biomaterials.2019.04.023_bib42
  article-title: Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.280
– volume: 174
  start-page: 352
  issue: 1–3
  year: 2010
  ident: 10.1016/j.biomaterials.2019.04.023_bib95
  article-title: Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2009.09.057
– volume: 131
  start-page: 15346
  issue: 42
  year: 2009
  ident: 10.1016/j.biomaterials.2019.04.023_bib77
  article-title: FePt nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja905938a
– volume: 54
  start-page: 8214
  year: 2018
  ident: 10.1016/j.biomaterials.2019.04.023_bib63
  article-title: Tumor-selective catalytic nanosystem for activatable theranostics
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC03922D
– volume: 56
  start-page: 1229
  issue: 5
  year: 2017
  ident: 10.1016/j.biomaterials.2019.04.023_bib43
  article-title: Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic cancer starving-like/gas therapy
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201610682
– volume: 10
  start-page: 31
  issue: 4
  year: 2018
  ident: 10.1016/j.biomaterials.2019.04.023_bib106
  article-title: 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-018-0015-8
– volume: 28
  start-page: 509
  issue: 9
  year: 2003
  ident: 10.1016/j.biomaterials.2019.04.023_bib28
  article-title: Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(03)00174-9
– volume: 68
  start-page: 1777
  issue: 6
  year: 2008
  ident: 10.1016/j.biomaterials.2019.04.023_bib12
  article-title: Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-5259
– volume: 252
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.biomaterials.2019.04.023_bib8
  article-title: Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2006.10.029
– volume: 33
  start-page: 34
  issue: 1
  year: 2009
  ident: 10.1016/j.biomaterials.2019.04.023_bib64
  article-title: Metal ion-catalyzed oxidative degradation of Orange II by H2O2. High catalytic activity of simple manganese salts
  publication-title: New J. Chem.
  doi: 10.1039/B813725K
– volume: 41
  start-page: 1842
  issue: 12
  year: 2008
  ident: 10.1016/j.biomaterials.2019.04.023_bib87
  article-title: Nanoshell-enabled photothermal cancer therapy: impending clinical impact
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar800150g
– volume: 26
  start-page: 5490
  year: 2016
  ident: 10.1016/j.biomaterials.2019.04.023_bib45
  article-title: Modulation of hypoxia in solid tumor microenvironment with MnO2 nanoparticles to enhance photodynamic therapy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600676
– volume: 86
  start-page: 12348
  issue: 24
  year: 2014
  ident: 10.1016/j.biomaterials.2019.04.023_bib67
  article-title: AgNP-DNA@GQDs hybrid: new approach for sensitive detection of H2O2 and Glucose via simultaneous AgNP etching and DNA cleavage
  publication-title: Anal. Chem.
  doi: 10.1021/ac503653c
– volume: 46
  start-page: 1222
  issue: 8
  year: 2007
  ident: 10.1016/j.biomaterials.2019.04.023_bib57
  article-title: Magnetic nanoparticles: synthesis, protection, functionalization, and application
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200602866
– volume: 21
  start-page: 41
  issue: 1
  year: 2001
  ident: 10.1016/j.biomaterials.2019.04.023_bib97
  article-title: Photochemical oxidation of p-chlorophenol by UV/H2O2 and photo-Fenton process. A comparative study
  publication-title: Waste Manag.
  doi: 10.1016/S0956-053X(00)00070-2
– volume: 3
  start-page: 1594
  issue: 5
  year: 2012
  ident: 10.1016/j.biomaterials.2019.04.023_bib26
  article-title: pH-induced mechanistic changeover from hydroxyl radicals to iron(IV) in the Fenton reaction
  publication-title: Chem. Sci.
  doi: 10.1039/c2sc20099f
– volume: 6
  start-page: 708
  issue: 4
  year: 2018
  ident: 10.1016/j.biomaterials.2019.04.023_bib51
  article-title: Therapeutic applications of iron oxide based nanoparticles in cancer: basic concepts and recent advances
  publication-title: Biomater. Sci.
  doi: 10.1039/C7BM00999B
– volume: 149
  start-page: 1060
  issue: 5
  year: 2012
  ident: 10.1016/j.biomaterials.2019.04.023_bib19
  article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.042
– volume: 49
  start-page: 9
  issue: 1
  year: 2010
  ident: 10.1016/j.biomaterials.2019.04.023_bib27
  article-title: Oxidatively generated base damage to cellular DNA
  publication-title: Free Radical Biol. Med.
  doi: 10.1016/j.freeradbiomed.2010.03.025
– volume: 41
  start-page: 1323
  issue: 3
  year: 2012
  ident: 10.1016/j.biomaterials.2019.04.023_bib99
  article-title: Upconversion nanophosphors for small-animal imaging
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15187H
– volume: 47
  start-page: 1938
  year: 2018
  ident: 10.1016/j.biomaterials.2019.04.023_bib107
  article-title: Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00471K
– volume: 138
  start-page: 704
  issue: 3
  year: 2016
  ident: 10.1016/j.biomaterials.2019.04.023_bib34
  article-title: Emerging frontiers in drug delivery
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b09974
– volume: 2
  start-page: 577
  issue: 9
  year: 2007
  ident: 10.1016/j.biomaterials.2019.04.023_bib50
  article-title: Intrinsic peroxidase-like activity of ferromagnetic nanoparticles
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.260
– volume: 30
  start-page: 183
  issue: 2
  year: 2009
  ident: 10.1016/j.biomaterials.2019.04.023_bib14
  article-title: Effect of pH on Fenton and Fenton-like oxidation
  publication-title: Environ. Technol.
  doi: 10.1080/09593330802468848
– volume: 6
  start-page: 4001
  issue: 5
  year: 2012
  ident: 10.1016/j.biomaterials.2019.04.023_bib53
  article-title: Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity
  publication-title: ACS Nano
  doi: 10.1021/nn300291r
– volume: 50
  start-page: 3017
  issue: 13
  year: 2011
  ident: 10.1016/j.biomaterials.2019.04.023_bib89
  article-title: Gold-nanoshelled microcapsules: a theranostic agent for ultrasound contrast imaging and photothermal therapy
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201008286
– volume: 108
  start-page: 2064
  issue: 6
  year: 2008
  ident: 10.1016/j.biomaterials.2019.04.023_bib58
  article-title: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr068445e
– volume: 47
  start-page: 125
  issue: 1
  year: 2014
  ident: 10.1016/j.biomaterials.2019.04.023_bib81
  article-title: Construction of homogenous/heterogeneous hollow mesoporous silica nanostructures by silicaeEtching chemistry: principles, synthesis, and applications
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar400091e
– volume: 10
  start-page: 389
  issue: 5
  year: 2011
  ident: 10.1016/j.biomaterials.2019.04.023_bib33
  article-title: The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2992
– volume: 23
  start-page: 369
  issue: 3
  year: 2016
  ident: 10.1016/j.biomaterials.2019.04.023_bib20
  article-title: Ferroptosis: process and function
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2015.158
– volume: 6
  start-page: 29247
  year: 2016
  ident: 10.1016/j.biomaterials.2019.04.023_bib79
  article-title: Zero-valent Fe confined mesoporous silica nanocarriers (Fe(0) @ MCM-41) for targeting experimental orthotopic glioma in rats
  publication-title: Sci. Rep.
  doi: 10.1038/srep29247
– volume: 25
  start-page: 3144
  issue: 23
  year: 2013
  ident: 10.1016/j.biomaterials.2019.04.023_bib30
  article-title: In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201205292
– volume: 8
  start-page: 5887
  issue: 9
  year: 2016
  ident: 10.1016/j.biomaterials.2019.04.023_bib82
  article-title: Nano-Fenton reactors as a new class of oxidative stress amplifying anticancer therapeutic agents
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12523
– volume: 138
  start-page: 1584
  issue: 5
  year: 2016
  ident: 10.1016/j.biomaterials.2019.04.023_bib66
  article-title: Cu2+ binds to phosphatidylethanolamine and increases oxidation in lipid membranes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11561
– volume: 4
  start-page: 1284
  issue: 6
  year: 2018
  ident: 10.1016/j.biomaterials.2019.04.023_bib37
  article-title: Material chemistry of Two-dimensional inorganic nanosheets in cancer theranostics
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.02.012
– volume: 240
  start-page: 640
  issue: 4852
  year: 1988
  ident: 10.1016/j.biomaterials.2019.04.023_bib18
  article-title: Toxic DNA damage by hydrogen-peroxide trough the Fenton reaction in vivo and in vitro INVIVO AND
  publication-title: Science
  doi: 10.1126/science.2834821
– volume: 5
  start-page: 18888
  issue: 24
  year: 2015
  ident: 10.1016/j.biomaterials.2019.04.023_bib91
  article-title: Accelerated generation of free radicals by iron oxide nanoparticles in the presence of an alternating magnetic field
  publication-title: RSC Adv.
  doi: 10.1039/C4RA13564D
– volume: 61
  start-page: 467
  issue: 6
  year: 2009
  ident: 10.1016/j.biomaterials.2019.04.023_bib56
  article-title: Magnetic nanoparticles for theragnostics
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2009.03.007
– volume: 17
  start-page: 20
  issue: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2019.04.023_bib36
  article-title: Cancer nanomedicine: progress, challenges and opportunities
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc.2016.108
– volume: 17
  start-page: 928
  issue: 2
  year: 2017
  ident: 10.1016/j.biomaterials.2019.04.023_bib101
  article-title: Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04269
– volume: 11
  start-page: 724
  issue: 8
  year: 2016
  ident: 10.1016/j.biomaterials.2019.04.023_bib48
  article-title: A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.72
– volume: 64
  start-page: 24
  year: 2014
  ident: 10.1016/j.biomaterials.2019.04.023_bib13
  article-title: Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2013.09.013
– volume: 109
  start-page: 4245
  issue: 11
  year: 2012
  ident: 10.1016/j.biomaterials.2019.04.023_bib47
  article-title: Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1113560109
– volume: 59
  start-page: 1549
  issue: 11
  year: 2007
  ident: 10.1016/j.biomaterials.2019.04.023_bib10
  article-title: Hydrogen peroxide overproduced in breast cancer cells can serve as an anticancer prodrug generating apoptosis-stimulating hydroxyl radicals under the effect of tamoxifen-ferrocene conjugate
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1211/jpp.59.11.0013
– volume: 371
  start-page: 771
  issue: 9614
  year: 2008
  ident: 10.1016/j.biomaterials.2019.04.023_bib5
  article-title: Tumour immunity: effector response to tumour and role of the microenvironment
  publication-title: Lancet
  doi: 10.1016/S0140-6736(08)60241-X
– volume: 19
  start-page: 178
  issue: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2019.04.023_bib105
  article-title: Trojan horse for light-triggered bifurcated production of singlet oxygen and Fenton-reactive iron within cancer cells
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b01433
– volume: 163
  start-page: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2019.04.023_bib80
  article-title: Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for tumor-specific therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.02.018
– volume: 63
  start-page: 269
  issue: 2
  year: 2006
  ident: 10.1016/j.biomaterials.2019.04.023_bib94
  article-title: Degradation of the pharmaceutical metronidazole via UV, Fenton and photo-Fenton processes
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2005.07.029
– volume: 3
  start-page: 95
  issue: 1
  year: 2007
  ident: 10.1016/j.biomaterials.2019.04.023_bib73
  article-title: Antimicrobial effects of silver nanoparticles
  publication-title: Nanomed.-Nanotechnol.
  doi: 10.1016/j.nano.2006.12.001
– volume: 132
  start-page: 164
  issue: 3
  year: 2008
  ident: 10.1016/j.biomaterials.2019.04.023_bib68
  article-title: Recent progress in tumor pH targeting nanotechnology
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2008.05.003
– volume: 28
  start-page: 400
  issue: 2
  year: 2017
  ident: 10.1016/j.biomaterials.2019.04.023_bib76
  article-title: pH-responsive, self-sacrificial nanotheranostic agent for potential in vivo and in vitro dual modal MRI/CT imaging, real-time, and in situ monitoring of cancer therapy
  publication-title: Bioconjug. Chem.
  doi: 10.1021/acs.bioconjchem.6b00562
– volume: 17
  start-page: 284
  issue: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2019.04.023_bib104
  article-title: Switching apoptosis to ferroptosis: metal-organic network for high-efficiency anticancer therapy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04060
– volume: 10
  start-page: 2017
  year: 2015
  ident: 10.1016/j.biomaterials.2019.04.023_bib85
  article-title: Ultrasound-induced reactive oxygen species-mediated therapy and imaging using a Fenton reaction activable polymersome
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06175
– volume: 37
  start-page: 1130
  issue: 6
  year: 2003
  ident: 10.1016/j.biomaterials.2019.04.023_bib25
  article-title: Hydroxyl radical production via the photo-Fenton reaction in the presence of fulvic acid
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es020757l
– volume: 7
  start-page: 7275
  issue: 16
  year: 2015
  ident: 10.1016/j.biomaterials.2019.04.023_bib78
  article-title: Lysosome-controlled efficient ROS overproduction against cancer cells with a high pH-responsive catalytic nanosystem
  publication-title: Nanoscale
  doi: 10.1039/C5NR00706B
– volume: 26
  start-page: 1886
  issue: 12
  year: 2014
  ident: 10.1016/j.biomaterials.2019.04.023_bib88
  article-title: PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/Photoacoustic imaging guided photothermal therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304497
– volume: 139
  start-page: 10992
  issue: 32
  year: 2017
  ident: 10.1016/j.biomaterials.2019.04.023_bib7
  article-title: Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05559
– volume: 3
  start-page: 279
  issue: 2
  year: 2009
  ident: 10.1016/j.biomaterials.2019.04.023_bib74
  article-title: Cytotoxicity and genotoxicity of silver nanoparticles in human cells
  publication-title: ACS Nano
  doi: 10.1021/nn800596w
– volume: 44
  start-page: 2681
  issue: 9
  year: 2015
  ident: 10.1016/j.biomaterials.2019.04.023_bib31
  article-title: Two-dimensional graphene analogues for biomedical applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00300D
– volume: 33
  start-page: 7547
  issue: 30
  year: 2012
  ident: 10.1016/j.biomaterials.2019.04.023_bib71
  article-title: Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.06.076
SSID ssj0014042
Score 2.6538124
SecondaryResourceType review_article
Snippet It is the challenging goal in cancer biomedicine to search novel cancer-therapeutic modality with concurrent high therapeutic efficiency on combating cancer...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms acidity
adverse effects
Cancer
catalysts
chemical reactions
Fenton reaction
hydroxyl radicals
medicine
Nanocatalytic biomedicine
nanomaterials
Nanomedicine
neoplasm cells
neoplasms
patients
screening
Synergistic therapy
temperature
therapeutics
toxicity
Title Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961219302406
https://dx.doi.org/10.1016/j.biomaterials.2019.04.023
https://www.ncbi.nlm.nih.gov/pubmed/31075521
https://www.proquest.com/docview/2231908125
https://www.proquest.com/docview/2253243193
Volume 211
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iIHoQ3--lgte4NUkfQTwsoqzKigcX9hbSJBVFu6Ldgxd_uzPpg_WgLHhsyLTpZDL52n7zlZBjGWlhtYlprOOcCpdpmjqd0yyNEscMT3PPdh_cxf2huBlFozly0dTCIK2yzv1VTvfZum7p1t7svj09dZGWxCQKYEmOQl0ouy1EglF-8tXSPFA9hlU0RkaxdyM86jleWOKuy2qqkeYlvewp479tUr-BUL8ZXa2SlRpFBr1qoGtkzhXrZHlKW3CdLA7qr-Yb5B5S6Ni_p_n8KD-onjx6JU4bQIgC9AtMLRoQAID0ZQ4BINmgaI3gIkE5eYW2qlrrc5MMry4fLvq0_pMCNZDQSioyY5PQOitTBys449ZkWqA0jUGam4tPjTSpDW2kLTyymjBxKNzOrBMyzjPDt8h8MS7cDgkA0ljn8pgZYUXERJY7wWECpIk5t6HZJbJxnTK1zDj-7eJFNXyyZzXtdoVuV6FQ4PZdwlvbt0psYyars2aGVFNOCglQwZ4wk_V5a_0j8Ga2P2qCQsHKxM8tunDjCXQC6CwBcbHorz4RIFroB-fZriKqvXMA3kkE6GrvnyPcJ0t4VLEWD8h8-T5xh4Ckyqzjl0qHLPSub_t33xeJIds
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BIhU4VBQopQUapF6tDfFjY1UcEAItj11xAImb5dgO2gqyqGQP_HvGjhPBAbQSV2cmccbj8Zd45jPAH8k1s9oIIrQoCXOFJrnTJSlyPnCZoXkZst1HYzG8Yee3_HYBjttaGJ9WGWN_E9NDtI4t_WjN_uNk0vdpSZn0BFiSeqIusQhLnp2K92Dp6OxiOO42E1gaztDx8sQrtNyjIc3LV7nruhltn-klA_NpRt9bp97DoWE9Ol2DrxFIJkdNX7_BgqvWYfUVveA6fBnFjfMNuMIoOg2_ap6f6ieiZ3eBjNMm6KWI_hITeQMSxJCh0iFBMJtUnRI-JKlnD9jWFGw9b8LN6cn18ZDEwxSIwZhWE1YYO0itszJ3OIkLak2hmWenMT7TzYkDI01uU8u1xa9Wkw6c527PrGNSlIWh36FXTSv3AxJENda5UmSGWcYzVpSOURwDaQSlNjXbIFvTKROZxv2BF_eqTSn7p16bXXmzq5QpNPs20E73seHbmEvrbztCqq0oxRiocFmYS_uw037je3Pr77dOoXBy-h0XXbnpDIUQPUsEXRn_SIYjqEU5vM9W41HdmyP2HnAEWD8_2cPfsDy8Hl2qy7PxxS9Y8VeaJMYd6NX_Z24XgVVd7MWJ8wLpEiSM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanocatalysts-augmented+Fenton+chemical+reaction+for+nanocatalytic+tumor+therapy&rft.jtitle=Biomaterials&rft.au=Qian%2C+Xiaoqin&rft.au=Zhang%2C+Jun&rft.au=Gu%2C+Zi&rft.au=Chen%2C+Yu&rft.date=2019-08-01&rft.pub=Elsevier+Ltd&rft.issn=0142-9612&rft.eissn=1878-5905&rft.volume=211&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1016%2Fj.biomaterials.2019.04.023&rft.externalDocID=S0142961219302406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon