Impact of blood rheology on wall shear stress in a model of the middle cerebral artery

Perturbations to the homeostatic distribution of mechanical forces exerted by blood on the endothelial layer have been correlated with vascular pathologies, including intracranial aneurysms and atherosclerosis. Recent computational work suggests that, in order to correctly characterize such forces,...

Full description

Saved in:
Bibliographic Details
Published inInterface focus Vol. 3; no. 2; p. 20120094
Main Authors Bernabeu, Miguel O., Nash, Rupert W., Groen, Derek, Carver, Hywel B., Hetherington, James, Krüger, Timm, Coveney, Peter V.
Format Journal Article
LanguageEnglish
Published England The Royal Society 06.04.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Perturbations to the homeostatic distribution of mechanical forces exerted by blood on the endothelial layer have been correlated with vascular pathologies, including intracranial aneurysms and atherosclerosis. Recent computational work suggests that, in order to correctly characterize such forces, the shear-thinning properties of blood must be taken into account. To the best of our knowledge, these findings have never been compared against experimentally observed pathological thresholds. In this work, we apply the three-band diagram (TBD) analysis due to Gizzi et al. (Gizzi et al. 2011 Three-band decomposition analysis of wall shear stress in pulsatile flows. Phys. Rev. E 83, 031902. (doi:10.1103/PhysRevE.83.031902)) to assess the impact of the choice of blood rheology model on a computational model of the right middle cerebral artery. Our results show that, in the model under study, the differences between the wall shear stress predicted by a Newtonian model and the well-known Carreau–Yasuda generalized Newtonian model are only significant if the vascular pathology under study is associated with a pathological threshold in the range 0.94–1.56 Pa, where the results of the TBD analysis of the rheology models considered differs. Otherwise, we observe no significant differences.
AbstractList Perturbations to the homeostatic distribution of mechanical forces exerted by blood on the endothelial layer have been correlated with vascular pathologies, including intracranial aneurysms and atherosclerosis. Recent computational work suggests that, in order to correctly characterize such forces, the shear-thinning properties of blood must be taken into account. To the best of our knowledge, these findings have never been compared against experimentally observed pathological thresholds. In this work, we apply the three-band diagram (TBD) analysis due to Gizzi et al. (Gizzi et al. 2011 Three-band decomposition analysis of wall shear stress in pulsatile flows. Phys. Rev. E 83 , 031902. ( doi:10.1103/PhysRevE.83.031902 )) to assess the impact of the choice of blood rheology model on a computational model of the right middle cerebral artery. Our results show that, in the model under study, the differences between the wall shear stress predicted by a Newtonian model and the well-known Carreau–Yasuda generalized Newtonian model are only significant if the vascular pathology under study is associated with a pathological threshold in the range 0.94–1.56 Pa, where the results of the TBD analysis of the rheology models considered differs. Otherwise, we observe no significant differences.
Perturbations to the homeostatic distribution of mechanical forces exerted by blood on the endothelial layer have been correlated with vascular pathologies, including intracranial aneurysms and atherosclerosis. Recent computational work suggests that, in order to correctly characterize such forces, the shear-thinning properties of blood must be taken into account. To the best of our knowledge, these findings have never been compared against experimentally observed pathological thresholds. In this work, we apply the three-band diagram (TBD) analysis due to Gizzi et al. (Gizzi et al. 2011 Three-band decomposition analysis of wall shear stress in pulsatile flows. Phys. Rev. E 83, 031902. (doi:10.1103/PhysRevE.83.031902)) to assess the impact of the choice of blood rheology model on a computational model of the right middle cerebral artery. Our results show that, in the model under study, the differences between the wall shear stress predicted by a Newtonian model and the well-known Carreau–Yasuda generalized Newtonian model are only significant if the vascular pathology under study is associated with a pathological threshold in the range 0.94–1.56 Pa, where the results of the TBD analysis of the rheology models considered differs. Otherwise, we observe no significant differences.
Author Hetherington, James
Groen, Derek
Nash, Rupert W.
Bernabeu, Miguel O.
Krüger, Timm
Carver, Hywel B.
Coveney, Peter V.
AuthorAffiliation 2 CoMPLEX , University College London , Physics Building, Gower Street, London WC1E 6BT , UK
3 Research Software Development Team, Research Computing and Facilitating Services , University College London , Podium Building, 1st Floor, Gower Street, London WC1E 6BT , UK
1 Centre for Computational Science, Department of Chemistry , University College London , 20 Gordon Street, London WC1H 0AJ , UK
AuthorAffiliation_xml – name: 3 Research Software Development Team, Research Computing and Facilitating Services , University College London , Podium Building, 1st Floor, Gower Street, London WC1E 6BT , UK
– name: 1 Centre for Computational Science, Department of Chemistry , University College London , 20 Gordon Street, London WC1H 0AJ , UK
– name: 2 CoMPLEX , University College London , Physics Building, Gower Street, London WC1E 6BT , UK
Author_xml – sequence: 1
  givenname: Miguel O.
  surname: Bernabeu
  fullname: Bernabeu, Miguel O.
  email: miguel.bernabeu@ucl.ac.uk
  organization: Centre for Computational Science, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
– sequence: 2
  givenname: Rupert W.
  surname: Nash
  fullname: Nash, Rupert W.
  organization: Centre for Computational Science, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
– sequence: 3
  givenname: Derek
  surname: Groen
  fullname: Groen, Derek
  organization: Centre for Computational Science, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
– sequence: 4
  givenname: Hywel B.
  surname: Carver
  fullname: Carver, Hywel B.
  organization: Centre for Computational Science, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
– sequence: 5
  givenname: James
  surname: Hetherington
  fullname: Hetherington, James
  organization: Research Software Development Team, Research Computing and Facilitating Services, University College London, Podium Building, 1st Floor, Gower Street, London WC1E 6BT, UK
– sequence: 6
  givenname: Timm
  surname: Krüger
  fullname: Krüger, Timm
  organization: Centre for Computational Science, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
– sequence: 7
  givenname: Peter V.
  surname: Coveney
  fullname: Coveney, Peter V.
  organization: Centre for Computational Science, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24427534$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1v1DAQxS1UREvplSPykUsWf8e-IKEK2ooKhIAVN8txxt0UJ97aWWj-exJtu4IDvoytee_n0bzn6GhIAyD0kpIVJUa_ySWUFSOUrQgx4gk6YUSwShtCjx7v2uhjdFbKLZmPUFQT9gwdMyFYLbk4Qeurfuv8iFPATUypxXkDKaabCacB_3Yx4rIBl3EZM5SCuwE73KcW4uIYN4D7rm0jYA8ZmuwidnmEPL1AT4OLBc4e6in6_uH9t_PL6vrzxdX5u-vKS67HSugAPrQm1ACE68Cd5JJKRWtngpeEqboVQVKvHBOgRK2IlpwrZaBtGur5KXq75253TQ-th2Gch7Db3PUuTza5zv7bGbqNvUm_LFdcC21mwOsHQE53Oyij7bviIUY3QNoVS4UhdS0No7N0tZf6nErJEA7fUGKXPOySh13ysEses-HV38Md5I_bnwV8L8hpmreUfAfjZG_TLg_z8__Yau_qygj3B6rLP62qeS3tWgt78ePLR7H-Su0n_gfemKm6
CitedBy_id crossref_primary_10_1371_journal_pcbi_1003506
crossref_primary_10_1016_j_medengphy_2017_06_028
crossref_primary_10_1038_s41598_020_60683_2
crossref_primary_10_3389_fphys_2018_00331
crossref_primary_10_1007_s10665_016_9869_3
crossref_primary_10_1007_s10544_019_0426_5
crossref_primary_10_1088_0953_8984_28_24_244019
crossref_primary_10_1103_PhysRevE_94_052606
crossref_primary_10_1016_j_jnnfm_2016_03_008
crossref_primary_10_1038_s41598_023_32643_z
crossref_primary_10_1177_0271678X19854640
crossref_primary_10_1063_5_0161809
crossref_primary_10_1002_mrm_28269
crossref_primary_10_1209_0295_5075_112_28001
crossref_primary_10_1016_j_heliyon_2024_e30443
crossref_primary_10_1088_2057_1976_aa9a09
crossref_primary_10_3389_fphys_2021_718540
crossref_primary_10_1038_s41598_022_21923_9
crossref_primary_10_1007_s10439_020_02527_8
crossref_primary_10_1038_s41598_024_61708_w
crossref_primary_10_1098_rsta_2013_0407
crossref_primary_10_1038_s41598_021_03584_2
crossref_primary_10_1098_rsfs_2012_0087
crossref_primary_10_1038_s41598_023_48776_0
crossref_primary_10_1063_5_0076271
crossref_primary_10_3389_fphys_2018_00721
crossref_primary_10_1016_j_medengphy_2017_05_008
crossref_primary_10_1038_s41598_021_01435_8
crossref_primary_10_1371_journal_pcbi_1008398
crossref_primary_10_1098_rspa_2016_0294
crossref_primary_10_1007_s13239_023_00681_3
crossref_primary_10_3390_s22218552
crossref_primary_10_1016_j_jocs_2015_04_008
crossref_primary_10_1016_j_actbio_2021_09_022
crossref_primary_10_1098_rsfs_2019_0119
crossref_primary_10_1098_rsif_2014_0543
Cites_doi 10.1016/j.camwa.2009.02.021
10.1007/s11517-008-0420-1
10.1136/neurintsurg-2011-010089
10.1103/PhysRevE.79.046704
10.1016/j.jbiomech.2011.06.028
10.1016/j.cpc.2009.10.013
10.1097/01.rli.0000160550.95547.22
10.1115/1.4004408
10.1115/1.3148470
10.1016/j.medengphy.2010.09.021
10.3174/ajnr.A2993
10.1161/CIRCULATIONAHA.107.695254
10.1146/annurev.fluid.30.1.329
10.1161/01.STR.0000144648.89172.0f
10.3174/ajnr.A2994
10.1161/01.ATV.5.3.293
10.1016/j.camwa.2009.02.019
10.1063/1.2772250
10.1186/1478-7547-8-6
10.1098/rsfs.2012.0087
10.1016/j.medengphy.2011.07.015
10.1103/PhysRevE.83.031902
10.1177/09544119JEIM894
10.1016/j.cpc.2008.02.013
10.1016/j.jbiomech.2003.09.016
10.3171/jns.1989.70.6.0823
ContentType Journal Article
Copyright 2013 The Author(s) Published by the Royal Society. All rights reserved.
2013 The Author(s) Published by the Royal Society. All rights reserved. 2013
Copyright_xml – notice: 2013 The Author(s) Published by the Royal Society. All rights reserved.
– notice: 2013 The Author(s) Published by the Royal Society. All rights reserved. 2013
DBID BSCLL
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1098/rsfs.2012.0094
DatabaseName Istex
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef



MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Blood rheology and vascular risk
EISSN 2042-8901
EndPage 20120094
ExternalDocumentID 10_1098_rsfs_2012_0094
24427534
ark_67375_V84_GXQK4VS1_N
Genre Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/K006584/1
GroupedDBID 0R~
4.4
53G
5VS
AAKDD
ACQIA
ADBBV
AENEX
AJZGM
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
AOIJS
BAWUL
BGBPD
BSCLL
BTFSW
DIK
EBS
EJD
H13
HYE
HZ~
ICLEN
KQ8
MV1
NSAHA
O9-
OK1
OP1
RHF
RPM
RRY
V1E
ABXXB
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c538t-48fecfd9f7ee038f3a53515617a9fc50267d4f51c6a24e647608533669edbb1c3
IEDL.DBID RPM
ISSN 2042-8898
IngestDate Tue Sep 17 21:22:03 EDT 2024
Sat Oct 26 06:01:14 EDT 2024
Thu Sep 26 16:20:51 EDT 2024
Sat Nov 02 12:23:06 EDT 2024
Wed Jan 17 02:37:36 EST 2024
Wed Oct 30 10:00:29 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords lattice Boltzmann
blood flow modelling
three-band diagram analysis
rheology
multi-scale modelling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c538t-48fecfd9f7ee038f3a53515617a9fc50267d4f51c6a24e647608533669edbb1c3
Notes ark:/67375/V84-GXQK4VS1-N
istex:732392F8E16D7290AB69F13738C908570DB095B8
ArticleID:rsfs20120094
href:rsfs20120094.pdf
One contribution of 25 to a Theme Issue ‘The virtual physiological human: integrative approaches to computational biomedicine’.
Theme Issue 'The virtual physiological human: integrative approaches to computational biomedicine' organized and edited by Peter Coveney, Vanessa Diaz-Zuccarini, Norbert Graf, Peter Hunter, Peter Kohl, Jesper Tegner and Marco Viceconti
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://royalsocietypublishing.org/doi/pdf/10.1098/rsfs.2012.0094
PMID 24427534
PQID 1490775921
PQPubID 23479
PageCount 1
ParticipantIDs royalsociety_journals_10_1098_rsfs_2012_0094
crossref_primary_10_1098_rsfs_2012_0094
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3638489
pubmed_primary_24427534
proquest_miscellaneous_1490775921
istex_primary_ark_67375_V84_GXQK4VS1_N
PublicationCentury 2000
PublicationDate 2013-04-06
20130406
2013-Apr-06
PublicationDateYYYYMMDD 2013-04-06
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-06
  day: 06
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Interface focus
PublicationTitleAbbrev Interface Focus
PublicationTitleAlternate Interface Focus
PublicationYear 2013
Publisher The Royal Society
Publisher_xml – name: The Royal Society
References e_1_3_2_27_2
e_1_3_2_28_2
Henderson A (e_1_3_2_30_2) 2007
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
Manini S (e_1_3_2_26_2) 2012
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_2_2
e_1_3_2_14_2
References_xml – ident: e_1_3_2_24_2
  doi: 10.1016/j.camwa.2009.02.021
– ident: e_1_3_2_20_2
  doi: 10.1007/s11517-008-0420-1
– ident: e_1_3_2_13_2
  doi: 10.1136/neurintsurg-2011-010089
– ident: e_1_3_2_28_2
  doi: 10.1103/PhysRevE.79.046704
– ident: e_1_3_2_7_2
  doi: 10.1016/j.jbiomech.2011.06.028
– ident: e_1_3_2_19_2
  doi: 10.1016/j.cpc.2009.10.013
– ident: e_1_3_2_8_2
  doi: 10.1097/01.rli.0000160550.95547.22
– ident: e_1_3_2_6_2
  doi: 10.1115/1.4004408
– ident: e_1_3_2_12_2
  doi: 10.1115/1.3148470
– volume-title: 10th Int. Symp. on Biomechanics and BiomedicalEngineering
  year: 2012
  ident: e_1_3_2_26_2
  contributor:
    fullname: Manini S
– ident: e_1_3_2_25_2
  doi: 10.1016/j.medengphy.2010.09.021
– ident: e_1_3_2_15_2
  doi: 10.3174/ajnr.A2993
– ident: e_1_3_2_5_2
  doi: 10.1161/CIRCULATIONAHA.107.695254
– ident: e_1_3_2_21_2
  doi: 10.1146/annurev.fluid.30.1.329
– ident: e_1_3_2_29_2
– ident: e_1_3_2_4_2
  doi: 10.1161/01.STR.0000144648.89172.0f
– ident: e_1_3_2_16_2
  doi: 10.3174/ajnr.A2994
– ident: e_1_3_2_14_2
  doi: 10.1161/01.ATV.5.3.293
– ident: e_1_3_2_22_2
– ident: e_1_3_2_10_2
  doi: 10.1016/j.camwa.2009.02.019
– ident: e_1_3_2_23_2
  doi: 10.1063/1.2772250
– ident: e_1_3_2_2_2
  doi: 10.1186/1478-7547-8-6
– volume-title: The ParaView guide: a parallel visualization application
  year: 2007
  ident: e_1_3_2_30_2
  contributor:
    fullname: Henderson A
– ident: e_1_3_2_31_2
  doi: 10.1098/rsfs.2012.0087
– ident: e_1_3_2_27_2
  doi: 10.1016/j.medengphy.2011.07.015
– ident: e_1_3_2_17_2
  doi: 10.1103/PhysRevE.83.031902
– ident: e_1_3_2_11_2
  doi: 10.1177/09544119JEIM894
– ident: e_1_3_2_18_2
  doi: 10.1016/j.cpc.2008.02.013
– ident: e_1_3_2_9_2
  doi: 10.1016/j.jbiomech.2003.09.016
– ident: e_1_3_2_3_2
  doi: 10.3171/jns.1989.70.6.0823
SSID ssj0000461802
Score 2.2179003
Snippet Perturbations to the homeostatic distribution of mechanical forces exerted by blood on the endothelial layer have been correlated with vascular pathologies,...
SourceID pubmedcentral
proquest
crossref
pubmed
royalsociety
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 20120094
SubjectTerms Blood Flow Modelling
Lattice Boltzmann
Multi-Scale Modelling
Rheology
Three-Band Diagram Analysis
Title Impact of blood rheology on wall shear stress in a model of the middle cerebral artery
URI https://api.istex.fr/ark:/67375/V84-GXQK4VS1-N/fulltext.pdf
https://royalsocietypublishing.org/doi/full/10.1098/rsfs.2012.0094
https://www.ncbi.nlm.nih.gov/pubmed/24427534
https://search.proquest.com/docview/1490775921
https://pubmed.ncbi.nlm.nih.gov/PMC3638489
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615cIF0fIKtJWREA-JdPOwHftYVZQCagWCrvZmOY6trtjNVslWpf8ej5OsdqVy4Rzn5Rnb39jffAPwJimZTqy0cVa4PKbOZH5I-ShFJyYxRmq_BGJy8vkFP7ukXydssgVsyIUJpH1TTo_q2fyonl4FbuX13IwGntjo-_lJ7p2GCjnahm3voGsheph-KUdVMywqh6knQkixEmsUo6Z1KNKNO4A-sEEpYEozD9npxrr0ALv4z32g8x7uZINxfttxLNfWptPH8KgHleS4-_hd2LL1Huz2w7Yl73tt6Q9PYPwlZEWShSOBsk6aq1Da944sanKrZzPSYolr0qWQkGlNNAnFcvAOjxXJPGxoEGMbPHGekUAJvXsKl6effp2cxX1phdj4GW4ZU-GscZV0hbVJLlyuWe6RjYczWjrDsCxVRR1LDdcZtZwW3EOzPOdc2qosU5M_g516UdsXQKzNuXFpKVlmqRNMe4hWaR_HMal5SasI3g0dq647BQ3VnXwLhdZQaA2F1ojgbej3VTPd_EbeWcHUWFD1efLjGx3_TNVFBK8Hwyg_GvCIQ9d2cdP6QEaipp_M0gied4ZaPW2wdATFhglXDVBpe_OKd8CguN07XAQf142t-uHe_uN_Xv73i17BwyyU3aBxwvdhZ9nc2AMPfpblYXD2v2AdA6M
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9gAXRHk1PI2EeEikm4fj2EdUUba0uwLRrvZmOY6trtjNVslW0H-Px0lWu1K5cM57xhN_Y3_zDcDbqMhUZIQJk9ymIbU6cSHlshQV6UhrodwUiMXJozEbXtBv02y6A1lfC-NJ-7qYHVbzxWE1u_TcyquFHvQ8scH30VHqBg3lYnAH9ly8RnQjSfc_YMpQ1wzbymHxCeeCr-Ua-aBuLMp04xqgS21QDJjSxIF2ujUz7aGR_9wGO29hT9aY6Tcty3Jjdjp-APc7WEk-t6-_Dzumegj7XeA25EOnLv3xEUxOfF0kWVriSeukvvTNfW_IsiK_1XxOGmxyTdoiEjKriCK-XQ5e4dAiWfglDaJNjXvOc-JJoTeP4eL4y_nRMOyaK4Ta2WwVUm6NtqWwuTFRym2qstRhGwdolLA6w8ZUJbVZrJlKqGE0Zw6cpSljwpRFEev0CexWy8ocADEmZdrGhcgSQy3PlANppXKZXCYUK2gZwPvesPKq1dCQ7d43l-gNid6Q6I0A3nm7r09T9S9knuWZnHAqv05_nNLJz1iOA3jTO0a6eMBNDlWZ5XXjUhmBqn4iiQN42jpqfbfe0wHkWy5cn4Ba29tH3BD0mtvdkAvg06azZRfwzT--59l_P-g13B2ej87k2cn49DncS3wTDhpG7AXsrupr89JBoVXxyg_8vy7vBvk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6CTUK8oI1rGBcjIS4SWW6OYz-iQdkYq4ZgVd8sx7G1ijatkk6wf4-Pk1atNF54jpPIPufE34m_8x2A13GZq9gIE6aFzUJqdepCymUpKtax1kK5LRCLk8-G7PiCfh3n441WX560r8vJYT2dHdaTS8-tXMx0tOKJRednR5lzGspFtKhsdBt2XczGbCNR9x9hylDbDFvLYQEK54KvJRt51LQWpbrxP6BLb1AQmNLUAXe6tTvt4kL_uQl63sCgbDDbbzum5cYONdiDez20JB-7KezDLVPfh_0-eFvyrleYfv8ARie-NpLMLfHEddJc-ga_12Rek99qOiUtNromXSEJmdREEd8yB-9wiJHM_G8Nok2D585T4omh1w_hYvD559Fx2DdYCLVbs2VIuTXaVsIWxsQZt5nKM4dvHKhRwuocm1NV1OaJZiqlhtGCOYCWZYwJU5VlorNHsFPPa_MEiDEZ0zYpRZ4aanmuHFCrlMvmcqFYSasA3q4WVi46HQ3ZnX9zidaQaA2J1gjgjV_39TDV_EL2WZHLEafyy_j7KR39SOQwgFcrw0gXE3jQoWozv2pdOiNQ2U-kSQCPO0Otn7aydADFlgnXA1Bve_uKc0Ovu927XQAfNo0t-6Bv_zGfp__9opdw5_zTQH47GZ4ewN3U9-GgYcyewc6yuTLPHRpali-83_8F-GUIDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+blood+rheology+on+wall+shear+stress+in+a+model+of+the+middle+cerebral+artery&rft.jtitle=Interface+focus&rft.au=Bernabeu%2C+Miguel+O.&rft.au=Nash%2C+Rupert+W.&rft.au=Groen%2C+Derek&rft.au=Carver%2C+Hywel+B.&rft.date=2013-04-06&rft.issn=2042-8898&rft.eissn=2042-8901&rft.volume=3&rft.issue=2&rft.spage=20120094&rft_id=info:doi/10.1098%2Frsfs.2012.0094&rft.externalDBID=n%2Fa&rft.externalDocID=10_1098_rsfs_2012_0094
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2042-8898&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2042-8898&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2042-8898&client=summon