Anti-Biofilm Effect of Selected Essential Oils and Main Components on Mono- and Polymicrobic Bacterial Cultures

Biofilms are surface-associated microbial communities resistant to sanitizers and antimicrobials. Various interactions that can contribute to increased resistance occur between the populations in biofilms. These relationships are the focus of a range of studies dealing with biofilm-associated infect...

Full description

Saved in:
Bibliographic Details
Published inMicroorganisms (Basel) Vol. 7; no. 9; p. 345
Main Authors Kerekes, Erika Beáta, Vidács, Anita, Takó, Miklós, Petkovits, Tamás, Vágvölgyi, Csaba, Horváth, Györgyi, Balázs, Viktória Lilla, Krisch, Judit
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 12.09.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biofilms are surface-associated microbial communities resistant to sanitizers and antimicrobials. Various interactions that can contribute to increased resistance occur between the populations in biofilms. These relationships are the focus of a range of studies dealing with biofilm-associated infections and food spoilage. The present study investigated the effects of cinnamon (Cinnamomum zeylanicum), marjoram (Origanum majorana), and thyme (Thymus vulgaris) essential oils (EOs) and their main components, i.e., trans-cinnamaldehyde, terpinen-4-ol, and thymol, respectively, on single- and dual-species biofilms of Escherichia coli, Listeria monocytogenes, Pseudomonas putida, and Staphylococcus aureus. In dual-species biofilms, L. monocytogenes was paired with each of the other three bacteria. Minimum inhibitory concentration (MIC) values for the individual bacteria ranged between 0.25 and 20 mg/mL, and trans-cinnamaldehyde and cinnamon showed the highest growth inhibitory effect. Single-species biofilms of L. monocytogenes, P. putida, and S. aureus were inhibited by the tested EOs and their components at sub-lethal concentrations. Scanning electron microscopy images showed that the three-dimensional structure of mature biofilms embedded in the exopolysaccharide matrix disappeared or was limited to micro-colonies with a simplified structure. In most dual-species biofilms, to eliminate living cells from the matrix, concentrations exceeding the MIC determined for individual bacteria were required.
AbstractList Biofilms are surface-associated microbial communities resistant to sanitizers and antimicrobials. Various interactions that can contribute to increased resistance occur between the populations in biofilms. These relationships are the focus of a range of studies dealing with biofilm-associated infections and food spoilage. The present study investigated the effects of cinnamon (Cinnamomum zeylanicum), marjoram (Origanum majorana), and thyme (Thymus vulgaris) essential oils (EOs) and their main components, i.e., trans-cinnamaldehyde, terpinen-4-ol, and thymol, respectively, on single- and dual-species biofilms of Escherichia coli, Listeria monocytogenes, Pseudomonas putida, and Staphylococcus aureus. In dual-species biofilms, L. monocytogenes was paired with each of the other three bacteria. Minimum inhibitory concentration (MIC) values for the individual bacteria ranged between 0.25 and 20 mg/mL, and trans-cinnamaldehyde and cinnamon showed the highest growth inhibitory effect. Single-species biofilms of L. monocytogenes, P. putida, and S. aureus were inhibited by the tested EOs and their components at sub-lethal concentrations. Scanning electron microscopy images showed that the three-dimensional structure of mature biofilms embedded in the exopolysaccharide matrix disappeared or was limited to micro-colonies with a simplified structure. In most dual-species biofilms, to eliminate living cells from the matrix, concentrations exceeding the MIC determined for individual bacteria were required.
Biofilms are surface-associated microbial communities resistant to sanitizers and antimicrobials. Various interactions that can contribute to increased resistance occur between the populations in biofilms. These relationships are the focus of a range of studies dealing with biofilm-associated infections and food spoilage. The present study investigated the effects of cinnamon (Cinnamomum zeylanicum), marjoram (Origanum majorana), and thyme (Thymus vulgaris) essential oils (EOs) and their main components, i.e., trans-cinnamaldehyde, terpinen-4-ol, and thymol, respectively, on single- and dual-species biofilms of Escherichia coli, Listeria monocytogenes, Pseudomonas putida, and Staphylococcus aureus. In dual-species biofilms, L. monocytogenes was paired with each of the other three bacteria. Minimum inhibitory concentration (MIC) values for the individual bacteria ranged between 0.25 and 20 mg/mL, and trans-cinnamaldehyde and cinnamon showed the highest growth inhibitory effect. Single-species biofilms of L. monocytogenes, P. putida, and S. aureus were inhibited by the tested EOs and their components at sub-lethal concentrations. Scanning electron microscopy images showed that the three-dimensional structure of mature biofilms embedded in the exopolysaccharide matrix disappeared or was limited to micro-colonies with a simplified structure. In most dual-species biofilms, to eliminate living cells from the matrix, concentrations exceeding the MIC determined for individual bacteria were required.Biofilms are surface-associated microbial communities resistant to sanitizers and antimicrobials. Various interactions that can contribute to increased resistance occur between the populations in biofilms. These relationships are the focus of a range of studies dealing with biofilm-associated infections and food spoilage. The present study investigated the effects of cinnamon (Cinnamomum zeylanicum), marjoram (Origanum majorana), and thyme (Thymus vulgaris) essential oils (EOs) and their main components, i.e., trans-cinnamaldehyde, terpinen-4-ol, and thymol, respectively, on single- and dual-species biofilms of Escherichia coli, Listeria monocytogenes, Pseudomonas putida, and Staphylococcus aureus. In dual-species biofilms, L. monocytogenes was paired with each of the other three bacteria. Minimum inhibitory concentration (MIC) values for the individual bacteria ranged between 0.25 and 20 mg/mL, and trans-cinnamaldehyde and cinnamon showed the highest growth inhibitory effect. Single-species biofilms of L. monocytogenes, P. putida, and S. aureus were inhibited by the tested EOs and their components at sub-lethal concentrations. Scanning electron microscopy images showed that the three-dimensional structure of mature biofilms embedded in the exopolysaccharide matrix disappeared or was limited to micro-colonies with a simplified structure. In most dual-species biofilms, to eliminate living cells from the matrix, concentrations exceeding the MIC determined for individual bacteria were required.
Biofilms are surface-associated microbial communities resistant to sanitizers and antimicrobials. Various interactions that can contribute to increased resistance occur between the populations in biofilms. These relationships are the focus of a range of studies dealing with biofilm-associated infections and food spoilage. The present study investigated the effects of cinnamon ( Cinnamomum zeylanicum ), marjoram ( Origanum majorana ), and thyme ( Thymus vulgaris ) essential oils (EOs) and their main components, i.e., trans-cinnamaldehyde, terpinen-4-ol, and thymol, respectively, on single- and dual-species biofilms of Escherichia coli , Listeria monocytogenes , Pseudomonas putida, and Staphylococcus aureus . In dual-species biofilms, L. monocytogenes was paired with each of the other three bacteria. Minimum inhibitory concentration (MIC) values for the individual bacteria ranged between 0.25 and 20 mg/mL, and trans-cinnamaldehyde and cinnamon showed the highest growth inhibitory effect. Single-species biofilms of L. monocytogenes , P. putida, and S. aureus were inhibited by the tested EOs and their components at sub-lethal concentrations. Scanning electron microscopy images showed that the three-dimensional structure of mature biofilms embedded in the exopolysaccharide matrix disappeared or was limited to micro-colonies with a simplified structure. In most dual-species biofilms, to eliminate living cells from the matrix, concentrations exceeding the MIC determined for individual bacteria were required.
Biofilms are surface-associated microbial communities resistant to sanitizers and antimicrobials. Various interactions that can contribute to increased resistance occur between the populations in biofilms. These relationships are the focus of a range of studies dealing with biofilm-associated infections and food spoilage. The present study investigated the effects of cinnamon ( ), marjoram ( ), and thyme ( ) essential oils (EOs) and their main components, i.e., trans-cinnamaldehyde, terpinen-4-ol, and thymol, respectively, on single- and dual-species biofilms of , , and . In dual-species biofilms, was paired with each of the other three bacteria. Minimum inhibitory concentration (MIC) values for the individual bacteria ranged between 0.25 and 20 mg/mL, and trans-cinnamaldehyde and cinnamon showed the highest growth inhibitory effect. Single-species biofilms of , and were inhibited by the tested EOs and their components at sub-lethal concentrations. Scanning electron microscopy images showed that the three-dimensional structure of mature biofilms embedded in the exopolysaccharide matrix disappeared or was limited to micro-colonies with a simplified structure. In most dual-species biofilms, to eliminate living cells from the matrix, concentrations exceeding the MIC determined for individual bacteria were required.
Author Horváth, Györgyi
Vidács, Anita
Balázs, Viktória Lilla
Takó, Miklós
Petkovits, Tamás
Vágvölgyi, Csaba
Kerekes, Erika Beáta
Krisch, Judit
AuthorAffiliation 1 Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary
3 Department of Pharmacognosy, University of Pécs, H-7624 Pécs, Rókus utca 2, Hungary
2 Institute of Food Engineering, Faculty of Engineering, University of Szeged, H-6724 Szeged, Mars tér 7, Hungary
AuthorAffiliation_xml – name: 3 Department of Pharmacognosy, University of Pécs, H-7624 Pécs, Rókus utca 2, Hungary
– name: 1 Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary
– name: 2 Institute of Food Engineering, Faculty of Engineering, University of Szeged, H-6724 Szeged, Mars tér 7, Hungary
Author_xml – sequence: 1
  givenname: Erika Beáta
  surname: Kerekes
  fullname: Kerekes, Erika Beáta
– sequence: 2
  givenname: Anita
  surname: Vidács
  fullname: Vidács, Anita
– sequence: 3
  givenname: Miklós
  orcidid: 0000-0002-1219-1049
  surname: Takó
  fullname: Takó, Miklós
– sequence: 4
  givenname: Tamás
  surname: Petkovits
  fullname: Petkovits, Tamás
– sequence: 5
  givenname: Csaba
  orcidid: 0000-0003-0009-7773
  surname: Vágvölgyi
  fullname: Vágvölgyi, Csaba
– sequence: 6
  givenname: Györgyi
  surname: Horváth
  fullname: Horváth, Györgyi
– sequence: 7
  givenname: Viktória Lilla
  surname: Balázs
  fullname: Balázs, Viktória Lilla
– sequence: 8
  givenname: Judit
  surname: Krisch
  fullname: Krisch, Judit
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31547282$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1rFDEUhoNUbK39CUrAG29G8zGZJAhCu6xaaKmgXodsPmqWTLImM0L_vdndWtoiNDcJOc95856T8xIcpJwcAK8xek-pRB_GYErO5VqnUMfKkUS0Z8_AEUF86MiA-MG98yE4qXWN2pKYCoZfgEOKWc-JIEcgn6YpdGch-xBHuPTemQlmD7-72E7OwmWtriE6wqsQK9TJwksdElzkcdNMpanCnOBlTrnbBb_leLOztwoGnummUbbJizlOc3H1FXjudazu5HY_Bj8_L38svnYXV1_OF6cXnWFUTB21iBhDBqalNIR61K8Icl4bQjDzXApskLZYYOqsFX5YcYyNYFxyxow3lh6D872uzXqtNiWMutyorIPaXbTeKV2mYKJTvkcrKYlGxOne91wgSqggRFjkDLa-aX3aa23m1eisaUUXHR-IPoyk8Etd5z9qaFoc0Sbw7lag5N-zq5MaQzUuRp1cnqsiPUK9wEN7-UmUyGFgrX7W0LeP0HWeS2pdVYT1QmLWamjUm_vm71z_G4EGsD3Q_qzW4vwdgpHaTpv677S1vI-P8kyY9BTytgchPpH9FxE14Fw
CitedBy_id crossref_primary_10_3390_molecules27175518
crossref_primary_10_3390_pathogens10050515
crossref_primary_10_2174_2772434418666230316113927
crossref_primary_10_3390_plants11111432
crossref_primary_10_1007_s13369_023_08415_2
crossref_primary_10_3390_antibiotics12030565
crossref_primary_10_3390_microorganisms11061364
crossref_primary_10_3390_ijms21124531
crossref_primary_10_1186_s12906_023_03966_1
crossref_primary_10_5812_archcid_122410
crossref_primary_10_3390_antibiotics11020147
crossref_primary_10_1080_10408398_2023_2200861
crossref_primary_10_1080_1040841X_2020_1782339
crossref_primary_10_5004_dwt_2022_28757
crossref_primary_10_1021_acsami_0c17043
crossref_primary_10_3390_foods12152893
crossref_primary_10_3390_molecules25184125
crossref_primary_10_3390_molecules27154895
crossref_primary_10_1016_j_jphotobiol_2021_112253
crossref_primary_10_1177_10820132211013273
crossref_primary_10_1016_j_indcrop_2023_116523
crossref_primary_10_3390_microorganisms10101975
crossref_primary_10_14232_analecta_2022_1_71_76
crossref_primary_10_1021_acsomega_3c03982
crossref_primary_10_2217_fmb_2022_0115
crossref_primary_10_1016_j_ijbiomac_2024_131943
crossref_primary_10_3390_antibiotics12020299
crossref_primary_10_3390_molecules27217472
crossref_primary_10_5937_leksir2040057K
crossref_primary_10_3390_plants13020192
crossref_primary_10_3390_plants13233442
crossref_primary_10_1080_08927014_2020_1772243
crossref_primary_10_1088_1402_4896_acccba
crossref_primary_10_3390_app11094020
crossref_primary_10_3390_biom11030397
crossref_primary_10_3390_antibiotics12040756
crossref_primary_10_17221_179_2023_CJFS
crossref_primary_10_3389_fphar_2020_566334
crossref_primary_10_3390_molecules28073044
crossref_primary_10_1016_j_lwt_2024_116464
crossref_primary_10_3389_fcimb_2022_930624
crossref_primary_10_1155_2022_9744153
crossref_primary_10_1016_j_nanoen_2021_106783
crossref_primary_10_3389_fphar_2024_1491363
crossref_primary_10_1177_10820132231165543
crossref_primary_10_1016_j_jiph_2019_10_010
crossref_primary_10_1002_cbdv_202400756
crossref_primary_10_1080_0972060X_2024_2325101
crossref_primary_10_3390_biom10060860
crossref_primary_10_1007_s11274_025_04289_8
crossref_primary_10_1111_jfpp_16653
crossref_primary_10_1186_s13568_021_01305_6
crossref_primary_10_1016_j_ijhydene_2020_08_070
crossref_primary_10_1016_j_sjbs_2020_07_008
crossref_primary_10_3390_app15063385
crossref_primary_10_3390_foods12061265
crossref_primary_10_3390_plants14010081
crossref_primary_10_1007_s11274_022_03363_9
crossref_primary_10_3389_fmicb_2022_1029098
crossref_primary_10_1016_j_sciaf_2023_e01927
crossref_primary_10_1021_acsami_1c11265
crossref_primary_10_1080_08927014_2023_2269551
crossref_primary_10_3390_microorganisms12081651
crossref_primary_10_3390_pathogens10010012
crossref_primary_10_3390_pr9030537
crossref_primary_10_1080_10408398_2023_2169858
crossref_primary_10_1111_1541_4337_13232
crossref_primary_10_3390_metabo12121256
crossref_primary_10_3390_microorganisms8050762
crossref_primary_10_1111_jam_15421
crossref_primary_10_1016_j_aquaculture_2020_735639
crossref_primary_10_1016_j_micpath_2023_106361
crossref_primary_10_1080_08927014_2022_2149326
Cites_doi 10.1016/j.jtbi.2007.10.039
10.1007/BF00390357
10.4315/0362-028X-66.4.535
10.3389/fmicb.2012.00012
10.1016/j.foodcont.2009.08.003
10.1128/AEM.68.8.4015-4024.2002
10.1046/j.1365-2672.2000.00969.x
10.1038/nrmicro821
10.1016/j.foodcont.2013.08.023
10.1016/j.foodcont.2015.05.032
10.1016/j.tifs.2009.01.054
10.1046/j.1365-2672.2000.01000.x
10.1016/j.foodcont.2010.02.003
10.1111/jam.12289
10.1016/j.ijfoodmicro.2004.03.031
10.1016/j.foodres.2013.11.042
10.3390/ph6121451
10.1016/j.foodcont.2016.01.012
10.1016/j.ijfoodmicro.2004.03.022
10.1111/j.1365-2672.2007.03694.x
10.1016/j.fct.2007.09.106
10.1016/S0005-2728(99)00033-X
10.1111/j.1745-4565.2012.00387.x
10.1371/journal.pone.0077276
10.1128/AEM.03052-09
10.2903/j.efsa.2018.5500
10.1128/AEM.07364-11
10.1371/journal.pone.0014786
10.1111/j.1750-3841.2011.02274.x
10.1016/j.ijfoodmicro.2014.06.017
10.1111/j.1365-2672.2012.05418.x
10.1099/jmm.0.46495-0
10.1111/j.1574-6976.2012.00328.x
10.1111/j.1574-6976.2012.00325.x
10.1080/08927014.2011.626899
10.1556/018.67.2016.3.10
10.1016/j.mimet.2007.11.010
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
7T7
8FD
8FE
8FH
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/microorganisms7090345
DatabaseName CrossRef
PubMed
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef
MEDLINE - Academic


PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2076-2607
ExternalDocumentID oai_doaj_org_article_f40b992a02ea4f47803238228d0ec1df
PMC6780703
31547282
10_3390_microorganisms7090345
Genre Journal Article
GeographicLocations United Kingdom--UK
Hungary
Germany
GeographicLocations_xml – name: United Kingdom--UK
– name: Hungary
– name: Germany
GrantInformation_xml – fundername: University of Szeged Open Access Fund
  grantid: 4330
GroupedDBID 53G
5VS
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ACPRK
AFKRA
AFPKN
AFRAH
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
GS5
GX1
HCIFZ
HYE
IAO
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
RNS
RPM
NPM
7T7
8FD
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c538t-3d02cc265a99c23f04b20efac2215f7981c0ad1813edd8f6b711c8579755cfcd3
IEDL.DBID M48
ISSN 2076-2607
IngestDate Wed Aug 27 01:28:27 EDT 2025
Thu Aug 21 14:29:36 EDT 2025
Fri Jul 11 11:56:42 EDT 2025
Fri Jul 11 07:25:49 EDT 2025
Fri Jul 25 12:16:09 EDT 2025
Thu Jan 02 22:31:33 EST 2025
Tue Jul 01 01:05:33 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords antibacterial activity
polymicrobial biofilm
essential oil
food spoilage
biofilm
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c538t-3d02cc265a99c23f04b20efac2215f7981c0ad1813edd8f6b711c8579755cfcd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1219-1049
0000-0003-0009-7773
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/microorganisms7090345
PMID 31547282
PQID 2548915228
PQPubID 2032358
ParticipantIDs doaj_primary_oai_doaj_org_article_f40b992a02ea4f47803238228d0ec1df
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6780703
proquest_miscellaneous_2400481680
proquest_miscellaneous_2296659815
proquest_journals_2548915228
pubmed_primary_31547282
crossref_primary_10_3390_microorganisms7090345
crossref_citationtrail_10_3390_microorganisms7090345
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190912
PublicationDateYYYYMMDD 2019-09-12
PublicationDate_xml – month: 9
  year: 2019
  text: 20190912
  day: 12
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Microorganisms (Basel)
PublicationTitleAlternate Microorganisms
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Carpentier (ref_19) 2004; 97
Cammack (ref_21) 1999; 1411
Rendueles (ref_7) 2012; 36
Chorianopoulos (ref_28) 2008; 104
Dorman (ref_35) 2000; 88
Elias (ref_11) 2012; 36
Holban (ref_12) 2018; Volume 15
Hyldgaard (ref_41) 2012; 3
ref_13
Millezi (ref_38) 2012; 32
Bridier (ref_5) 2011; 27
Shi (ref_1) 2009; 20
Naimi (ref_17) 2003; 66
Tajkarimi (ref_26) 2010; 21
Peeters (ref_33) 2008; 72
Kerekes (ref_34) 2018; 13
Heredia (ref_27) 2010; 76
Liu (ref_14) 2006; 55
Burt (ref_24) 2004; 94
ref_37
Midelet (ref_2) 2002; 68
Johnson (ref_3) 2008; 251
Fetsch (ref_16) 2014; 187
Kerekes (ref_31) 2013; 115
Szczepanski (ref_39) 2014; 36
Zhang (ref_40) 2016; 59
ref_23
Costerton (ref_6) 2004; 2
Mariutti (ref_22) 2011; 76
Kerekes (ref_32) 2016; 67
Nazzaro (ref_36) 2013; 6
Jahid (ref_10) 2014; 55
Bakkali (ref_25) 2008; 46
Adukwu (ref_30) 2012; 113
Leriche (ref_18) 2000; 88
Wong (ref_4) 2010; 108
ref_9
Schweinsberg (ref_20) 1985; 109
Ica (ref_8) 2012; 78
Oliveira (ref_29) 2010; 21
Puga (ref_15) 2016; 65
References_xml – volume: 251
  start-page: 24
  year: 2008
  ident: ref_3
  article-title: Microcolony and biofilm formation as a survival strategy for bacteria
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2007.10.039
– volume: 109
  start-page: 200
  year: 1985
  ident: ref_20
  article-title: Nitrite: A co-carcinogen?
  publication-title: J. Cancer Res. Clin. Oncol.
  doi: 10.1007/BF00390357
– volume: 66
  start-page: 535
  year: 2003
  ident: ref_17
  article-title: Concurrent outbreaks of Shigella sonnei and enterotoxigenic Escherichia coli infections associated with parsley: Implications for surveillance and control of foodborne illness
  publication-title: J. Food Prot.
  doi: 10.4315/0362-028X-66.4.535
– volume: 3
  start-page: 12
  year: 2012
  ident: ref_41
  article-title: Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2012.00012
– volume: 21
  start-page: 549
  year: 2010
  ident: ref_29
  article-title: Disinfectant action of Cymbopogon sp. essential oils in different phases of biofilm formation by Listeria monocytogenes on stainless steel surface
  publication-title: Food Contr.
  doi: 10.1016/j.foodcont.2009.08.003
– volume: 68
  start-page: 4015
  year: 2002
  ident: ref_2
  article-title: Transfer of microorganisms, including Listeria monocytogenes, from various materials to beef
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.68.8.4015-4024.2002
– volume: 88
  start-page: 308
  year: 2000
  ident: ref_35
  article-title: Antimicrobial agents from plants: Antibacterial activity of plant volatile oils
  publication-title: J. Appl. Microbiol.
  doi: 10.1046/j.1365-2672.2000.00969.x
– volume: 2
  start-page: 95
  year: 2004
  ident: ref_6
  article-title: Bacterial biofilms: From the natural environment to infectious diseases
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro821
– volume: 13
  start-page: 483
  year: 2018
  ident: ref_34
  article-title: Altered antimicrobial and anti-biofilm forming effect of thyme essential oil due to changes in composition
  publication-title: Nat. Prod. Commun.
– volume: 36
  start-page: 224
  year: 2014
  ident: ref_39
  article-title: Essential oils show specific inhibiting effects on bacterial biofilm formation
  publication-title: Food Contr.
  doi: 10.1016/j.foodcont.2013.08.023
– volume: 59
  start-page: 282
  year: 2016
  ident: ref_40
  article-title: Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus
  publication-title: Food Contr.
  doi: 10.1016/j.foodcont.2015.05.032
– volume: 20
  start-page: 407
  year: 2009
  ident: ref_1
  article-title: Biofilm formation and food safety in food industries
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2009.01.054
– volume: 88
  start-page: 594
  year: 2000
  ident: ref_18
  article-title: Limitation of adhesion and growth of Listeria monocytogenes on stainless steel surfaces by Staphylococcus sciuri biofilms
  publication-title: J. Appl. Microbiol.
  doi: 10.1046/j.1365-2672.2000.01000.x
– volume: 21
  start-page: 1199
  year: 2010
  ident: ref_26
  article-title: Antimicrobial herb and spice compounds in food
  publication-title: Food Contr.
  doi: 10.1016/j.foodcont.2010.02.003
– volume: 115
  start-page: 933
  year: 2013
  ident: ref_31
  article-title: Anti-biofilm forming and anti-quorum sensing activity of selected essential oils and their main components on food-related micro-organisms
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.12289
– ident: ref_23
– volume: 97
  start-page: 111
  year: 2004
  ident: ref_19
  article-title: Interactions in biofilms between Listeria monocytogenes and resident microorganisms from food industry premises
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2004.03.031
– volume: 55
  start-page: 445
  year: 2014
  ident: ref_10
  article-title: Competitive interactions inside mixed-culture biofilms of Salmonella Typhimurium and cultivable indigenous microorganisms on lettuce enhance microbial resistance of their sessile cells to ultraviolet C (UV-C) irradiation
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2013.11.042
– volume: 6
  start-page: 1451
  year: 2013
  ident: ref_36
  article-title: Effect of essential oils on pathogenic bacteria
  publication-title: Pharmaceuticals
  doi: 10.3390/ph6121451
– volume: 65
  start-page: 143
  year: 2016
  ident: ref_15
  article-title: Biofilm development at low temperatures enhances Listeria monocytogenes resistance to chitosan
  publication-title: Food Contr.
  doi: 10.1016/j.foodcont.2016.01.012
– volume: 94
  start-page: 223
  year: 2004
  ident: ref_24
  article-title: Essential oils: Their antibacterial properties and potential applications in foods—A review
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2004.03.022
– volume: 104
  start-page: 1586
  year: 2008
  ident: ref_28
  article-title: Disinfectant test against monoculture and mixed-culture biofilms composed of technological, spoilage and pathogenic bacteria: Bactericidal effect of essential oil and hydrosol of Satureja thymbra and comparison with standard acid-base sanitizers
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/j.1365-2672.2007.03694.x
– volume: 46
  start-page: 446
  year: 2008
  ident: ref_25
  article-title: Biological effects of essential oils–a review
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2007.09.106
– volume: 108
  start-page: 2222
  year: 2010
  ident: ref_4
  article-title: Comparative susceptibility of planktonic and 3-day-old Salmonella Typhimurium biofilms to disinfectants
  publication-title: J. Appl. Microbiol.
– volume: 1411
  start-page: 475
  year: 1999
  ident: ref_21
  article-title: Nitrite and nitrosyl compounds in food preservation
  publication-title: BBA-Bioenergetics
  doi: 10.1016/S0005-2728(99)00033-X
– volume: 32
  start-page: 351
  year: 2012
  ident: ref_38
  article-title: Susceptibility of monospecies and dual-species biofilms of Staphylococcus aureus and Escherichia coli to essential oils
  publication-title: J. Food Saf.
  doi: 10.1111/j.1745-4565.2012.00387.x
– ident: ref_9
  doi: 10.1371/journal.pone.0077276
– volume: 76
  start-page: 6888
  year: 2010
  ident: ref_27
  article-title: Extracts of edible and medicinal plants damage membranes of Vibrio cholerae
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.03052-09
– ident: ref_13
  doi: 10.2903/j.efsa.2018.5500
– volume: Volume 15
  start-page: 157
  year: 2018
  ident: ref_12
  article-title: Listeria monocytogenes: A Food-Borne Pathogen
  publication-title: Foodborne Diseases. Handbook of Food Bioengineering
– volume: 78
  start-page: 1033
  year: 2012
  ident: ref_8
  article-title: Characterization of mono- and mixed-culture Campylobacter jejuni biofilm
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.07364-11
– ident: ref_37
  doi: 10.1371/journal.pone.0014786
– volume: 76
  start-page: C909
  year: 2011
  ident: ref_22
  article-title: Lipid and cholesterol oxidation in chicken meat are inhibited by sage but not by garlic
  publication-title: J. Food Sci.
  doi: 10.1111/j.1750-3841.2011.02274.x
– volume: 187
  start-page: 1
  year: 2014
  ident: ref_16
  article-title: Staphylococcus aureus food-poisoning outbreak associated with the consumption of ice-cream
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2014.06.017
– volume: 113
  start-page: 1217
  year: 2012
  ident: ref_30
  article-title: The anti-biofilm activity of lemongrass (Cymbopogon flexuosus) and grapefruit (Citrus paradisi) essential oils against five strains of Staphylococcus aureus
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/j.1365-2672.2012.05418.x
– volume: 55
  start-page: 645
  year: 2006
  ident: ref_14
  article-title: Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen
  publication-title: J. Med. Microbiol.
  doi: 10.1099/jmm.0.46495-0
– volume: 36
  start-page: 972
  year: 2012
  ident: ref_7
  article-title: Multi-species biofilms: How to avoid unfriendly neighbours
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2012.00328.x
– volume: 36
  start-page: 990
  year: 2012
  ident: ref_11
  article-title: Multi-species biofilms: Living with friendly neighbors
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2012.00325.x
– volume: 27
  start-page: 1017
  year: 2011
  ident: ref_5
  article-title: Resistance of bacterial biofilms to disinfectants: A review
  publication-title: Biofouling
  doi: 10.1080/08927014.2011.626899
– volume: 67
  start-page: 333
  year: 2016
  ident: ref_32
  article-title: Anti-listerial effect of selected essential oils and thymol
  publication-title: Acta Biol. Hung.
  doi: 10.1556/018.67.2016.3.10
– volume: 72
  start-page: 157
  year: 2008
  ident: ref_33
  article-title: Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates
  publication-title: J. Microbiol. Meth.
  doi: 10.1016/j.mimet.2007.11.010
SSID ssj0000913851
Score 2.3958435
Snippet Biofilms are surface-associated microbial communities resistant to sanitizers and antimicrobials. Various interactions that can contribute to increased...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 345
SubjectTerms anti-infective agents
antibacterial activity
Antimicrobial agents
Bacteria
biofilm
Biofilms
Cinnamaldehyde
Cinnamomum verum
Cinnamomum zeylanicum
Cinnamon
E coli
Escherichia coli
essential oil
Essential oils
Exopolysaccharides
Food contamination & poisoning
Food spoilage
Investigations
Listeria
Listeria monocytogenes
marjoram
Microbial activity
microbial communities
Microorganisms
Minimum inhibitory concentration
Natural products
Oils & fats
Origanum majorana
Pathogens
Physiology
polymicrobial biofilm
Pseudomonas putida
Sanitizers
Scanning electron microscopy
Spoilage
Staphylococcus aureus
Terpinene
thyme
Thymol
Thymus vulgaris
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOilNE0fbtOiQq9uZD0s6ZiEhBBIWmgDuRlZD2rYlUO9OeTfdyQ5y24JzSVHWxJImtHMN_boG4S-CmM574OovQi85paoWtG-rRlAWUvbnsnMrn9x2Z5d8fNrcb1R6ivlhBV64LJxB4GTXmtqCPWGBy4VYeBlKFWOeNu4kKwv-LyNYCrbYN0wwBLlyg6DuP5gmfLbSqWkaTnJ9HkiXWHacEaZs_8hoPlvvuSGAzp9hV7OyBEflhnvomc-vkbPSy3Juz00HsbVUMNjGBZLXEiJ8Rjwz1zoxjt8MqV7RqBu-PuwmLCJDl-YIeJkEcaY8inwGDGc8bHOjT_GxV1eTj9YfFRInWFw4eD00xt0dXry6_isnqsp1BaM2qpmjlAL2y-M1payQHhPiQ_GUvD6QWrVWGIcOHzmnVOh7WXTWCWklkLYYB17i3YiTOc9wp6rNlBrpNGBN70B6QbHPdUO0GIwvEL8fls7O1ONp4oXiw5CjiSN7kFpVOjbethN4dp4bMBRktm6c6LKzi-gYzcrUPeYAlVo_17i3Xx-pw7CZqUB2lBVoS_rZjh56XeKiX68hT4UQkUB-yb-0yebyKZVpELvihKtZ8sAvUqIeCskt9RraznbLXH4nRnAAWEkU_3hKdb_Eb0AEJjz5hq6j3ZWf279JwBaq_5zPlN_AelaKoo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB7BVkhcEG8CBRmJq6nj2LFzQl20VYXUUgGVeoscP0Sk3aSQ7aH_nrGTXbqoKsdd25KTeX3jjL8B-CCNFaIJknoZBBWWaap5U9ICoazlZVOoxK5_cloen4svF_JiOnAbprLKjU9Mjtr1Np6RH2AioysMNlx_uvxFY9eo-HV1aqFxH_bQBWs9g7354vTs2_aUJbJeIqYYr-4UmN8frGKd29gxaVgNKh5TxKtMN4JS4u6_DXD-Wzd5IxAdPYZHE4Ikh6PIn8A93z2FB2NPyetn0B9265biz9AuV2QkJyZ9IN9TwxvvyGKI941Q7cjXdjkQ0zlyYtqORM_Qd7GugvQdQVvvaRo865fX6XGa1pL5SO6Mi0cuTj88h_OjxY_Px3TqqkAtOrc1LRzjFsUgTVVZXgQmGs58MJZj9A-q0rllxmHgL7xzOpSNynOrpaqUlDZYV7yAWYfbeQXEC10Gbo0yVRB5Y1DKwQnPK4eoMRiRgdi81tpOlOOx88WyxtQjSqO-VRoZfNwuuxw5N_63YB5ltp0cKbPTHzixniywDoI1VcUN496IIJRmBcIV1CfHvM1dyGB_I_F6suOh_qt1GbzfDqMFxs8qpvP9Fc7hmDJKfG_yjjnJVealZhm8HJVou9sCUazCzDcDtaNeO4-zO9K1PxMTOCKN6LJf3731N_AQYV6qjMv5PszWv6_8W4RS6-bdZC9_AMoiI9I
  priority: 102
  providerName: ProQuest
Title Anti-Biofilm Effect of Selected Essential Oils and Main Components on Mono- and Polymicrobic Bacterial Cultures
URI https://www.ncbi.nlm.nih.gov/pubmed/31547282
https://www.proquest.com/docview/2548915228
https://www.proquest.com/docview/2296659815
https://www.proquest.com/docview/2400481680
https://pubmed.ncbi.nlm.nih.gov/PMC6780703
https://doaj.org/article/f40b992a02ea4f47803238228d0ec1df
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bi9QwFA7rLoIv4t3qOkTwtWuaJk3yILIjsyzCrIs6sG8lzYUtdFrdzoLz7z1JO4Mj4_rY5gTSnEu-kybfQegd14axyvPUcc9SZohMJa2KNAcoa2hR5SKy688vivMF-3zFrw7QhlBhnMB-b2oX6kktbpqTXz_XH8HhP4SME1L298twdG0ogtQvexF2Hhi_h45gcRKhqMF8RPwxOKssB5Ax3OX5d--dVSqS-e9DoH8fpPxjZTp7hB6OkBKfDjbwGB249gm6PxSZXD9F3Wm7qlN49HWzxANbMe48_hYr4DiLZ324gAR2iL_UTY91a_Fc1y0OoaJrw0EL3LUYnL9LY-Nl16zj51S1wdOB7Rk6D-Scrn-GFmez75_O07HMQmog2q3S3BJqQC9cK2Vo7gmrKHFeGwpwwAslM0O0BSSQO2ulLyqRZUZyoQTnxhubP0eHLQznJcKOycJTo4VWnmWVBrV7yxxVFmCk1yxBbDOtpRk5yEMpjKaEXCRoo9yrjQSdbLv9GEg4_tdhGnS2FQ4c2vEFCJajS5aekUopqgl1mnkmJMkBv1AqLXEmsz5BxxuNlxu7LCGflgowD5UJerttBpcM_1l067pbkKGQQ3KYN36HTIydWSFJgl4MRrQdbQ6wVkAqnCCxY147n7Pb0tbXkRocoEeI4a_uHvpr9ABwXzwql9FjdLi6uXVvAFutqgk6ms4uLr9O4t7EJPrOb1ZYK7Y
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEx1DHdl4HhLqw1ZZ2lwpaqbfg-KFG2k1ashXaP8VvZJzH0kVVOfWY2I5sz-sbZzwD8DaUSojchr4JrfCFoomfsDzyOUJZxaKcx012_ck0Gh-LLyfhyQb87u_CuLDKXic2ilpXyp2Rb6Mjk6RobFjy8ezcd1Wj3N_VvoRGyxb7ZvkLXbb6w95npO87xnZHR5_GfldVwFco3Aufa8oUTiOUaaoYt1TkjBorFUPrZ-M0CRSVGg0fN1onNsrjIFBJGKdxGCqrNMfv3oJNwSPKBrA5HE0Pv61OdVyWTcQw7VUhzlO6PXdxdW2Fpnpex-5YxF2dumQEm1oBVwHcf-M0Lxm-3ftwr0OsZKdlsQewYcqHcLutYbl8BNVOuSh8fLTFbE7aZMiksuR7U2DHaDKq3f0mZHPytZjVRJaaTGRREqeJqtLFcZCqJKhbKr9pPKxmy2Y5eaHIsE0mjYPb3J-mfgzHN7LfT2BQ4nSeATEiiSxTMpapFUEukausFoalGlGqlcID0W9rproU567SxixDV8dRI7uSGh68Xw07a3N8_G_A0NFs1dml6G5eYMesk_jMCpqnKZOUGSmsiBPKER4h_2pqVKCtB1s9xbNOb9TZXy734M2qGSXe_caRpakusA9DFzXEfQuv6dOo5iBKqAdPWyZazZYjao7R0_YgXmOvteWst5TFaZN5HJGNMxHPr5_6a7gzPpocZAd70_0XcBchZhOVF7AtGCx-XpiXCOMW-atOdgj8uGlx_QOBnGDR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEN8EBhgJHkMdx4mTB4RW1mpjrFTApL1ljj9EpDYZpBPqv8ZfxzlJw4qm8bTHxHZk-75-55zvAF5HUnGe28g3keU-VzTxE5bHfohQVrE4D0WTXf9oGu8f848n0ckW_F7fhXFhlWud2ChqXSl3Rj5ERyZJ0diwZGi7sIjZ3uT92Q_fVZByf1rX5TRaFjk0q1_ovtXvDvaQ1m8Ym4y_fdj3uwoDvkJBX_qhpkzhlCKZpoqFlvKcUWOlYmgJrUiTQFGp0QiGRuvExrkIApVEIhVRpKzSIX73BmwL5xUNYHs0ns6-9Cc8LuMm4pn22lAYpnS4cDF2bbWmelELd0TirlFdMIhN3YDLwO6_MZsXjODkLtzp0CvZbdntHmyZ8j7cbOtZrh5AtVsuCx8fbTFfkDYxMqks-doU2zGajGt31wlZnnwu5jWRpSZHsiiJ00pV6WI6SFUS1DOV3zTOqvmqWU5eKDJqE0vj4DYPqKkfwvG17PcjGJQ4nSdADE9iy5QUMrU8yCVymNXcsFQjYrWSe8DX25qpLt25q7oxz9DtcdTILqWGB2_7YWdtvo__DRg5mvWdXbru5gV2zDrpzyyneZoySZmR3HKR0BChEvKypkYF2nqws6Z41umQOvvL8R686ptR-t0vHVma6hz7MHRXI9y36Io-jZoO4oR68Lhlon62ISJogV63B2KDvTaWs9lSFt-bLOSIcpy5eHr11F_CLRTT7NPB9PAZ3Ea02QToBWwHBsuf5-Y5Irpl_qITHQKn1y2tfwCenWUG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-Biofilm+Effect+of+Selected+Essential+Oils+and+Main+Components+on+Mono-+and+Polymicrobic+Bacterial+Cultures&rft.jtitle=Microorganisms+%28Basel%29&rft.au=Erika+Be%C3%A1ta+Kerekes&rft.au=Vid%C3%A1cs%2C+Anita&rft.au=Tak%C3%B3%2C+Mikl%C3%B3s&rft.au=Petkovits%2C+Tam%C3%A1s&rft.date=2019-09-12&rft.pub=MDPI+AG&rft.eissn=2076-2607&rft.volume=7&rft.issue=9&rft.spage=345&rft_id=info:doi/10.3390%2Fmicroorganisms7090345&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-2607&client=summon