Anti-Biofilm Effect of Selected Essential Oils and Main Components on Mono- and Polymicrobic Bacterial Cultures
Biofilms are surface-associated microbial communities resistant to sanitizers and antimicrobials. Various interactions that can contribute to increased resistance occur between the populations in biofilms. These relationships are the focus of a range of studies dealing with biofilm-associated infect...
Saved in:
Published in | Microorganisms (Basel) Vol. 7; no. 9; p. 345 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
12.09.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biofilms are surface-associated microbial communities resistant to sanitizers and antimicrobials. Various interactions that can contribute to increased resistance occur between the populations in biofilms. These relationships are the focus of a range of studies dealing with biofilm-associated infections and food spoilage. The present study investigated the effects of cinnamon (Cinnamomum zeylanicum), marjoram (Origanum majorana), and thyme (Thymus vulgaris) essential oils (EOs) and their main components, i.e., trans-cinnamaldehyde, terpinen-4-ol, and thymol, respectively, on single- and dual-species biofilms of Escherichia coli, Listeria monocytogenes, Pseudomonas putida, and Staphylococcus aureus. In dual-species biofilms, L. monocytogenes was paired with each of the other three bacteria. Minimum inhibitory concentration (MIC) values for the individual bacteria ranged between 0.25 and 20 mg/mL, and trans-cinnamaldehyde and cinnamon showed the highest growth inhibitory effect. Single-species biofilms of L. monocytogenes, P. putida, and S. aureus were inhibited by the tested EOs and their components at sub-lethal concentrations. Scanning electron microscopy images showed that the three-dimensional structure of mature biofilms embedded in the exopolysaccharide matrix disappeared or was limited to micro-colonies with a simplified structure. In most dual-species biofilms, to eliminate living cells from the matrix, concentrations exceeding the MIC determined for individual bacteria were required. |
---|---|
AbstractList | Biofilms are surface-associated microbial communities resistant to sanitizers and antimicrobials. Various interactions that can contribute to increased resistance occur between the populations in biofilms. These relationships are the focus of a range of studies dealing with biofilm-associated infections and food spoilage. The present study investigated the effects of cinnamon (Cinnamomum zeylanicum), marjoram (Origanum majorana), and thyme (Thymus vulgaris) essential oils (EOs) and their main components, i.e., trans-cinnamaldehyde, terpinen-4-ol, and thymol, respectively, on single- and dual-species biofilms of Escherichia coli, Listeria monocytogenes, Pseudomonas putida, and Staphylococcus aureus. In dual-species biofilms, L. monocytogenes was paired with each of the other three bacteria. Minimum inhibitory concentration (MIC) values for the individual bacteria ranged between 0.25 and 20 mg/mL, and trans-cinnamaldehyde and cinnamon showed the highest growth inhibitory effect. Single-species biofilms of L. monocytogenes, P. putida, and S. aureus were inhibited by the tested EOs and their components at sub-lethal concentrations. Scanning electron microscopy images showed that the three-dimensional structure of mature biofilms embedded in the exopolysaccharide matrix disappeared or was limited to micro-colonies with a simplified structure. In most dual-species biofilms, to eliminate living cells from the matrix, concentrations exceeding the MIC determined for individual bacteria were required. Biofilms are surface-associated microbial communities resistant to sanitizers and antimicrobials. Various interactions that can contribute to increased resistance occur between the populations in biofilms. These relationships are the focus of a range of studies dealing with biofilm-associated infections and food spoilage. The present study investigated the effects of cinnamon (Cinnamomum zeylanicum), marjoram (Origanum majorana), and thyme (Thymus vulgaris) essential oils (EOs) and their main components, i.e., trans-cinnamaldehyde, terpinen-4-ol, and thymol, respectively, on single- and dual-species biofilms of Escherichia coli, Listeria monocytogenes, Pseudomonas putida, and Staphylococcus aureus. In dual-species biofilms, L. monocytogenes was paired with each of the other three bacteria. Minimum inhibitory concentration (MIC) values for the individual bacteria ranged between 0.25 and 20 mg/mL, and trans-cinnamaldehyde and cinnamon showed the highest growth inhibitory effect. Single-species biofilms of L. monocytogenes, P. putida, and S. aureus were inhibited by the tested EOs and their components at sub-lethal concentrations. Scanning electron microscopy images showed that the three-dimensional structure of mature biofilms embedded in the exopolysaccharide matrix disappeared or was limited to micro-colonies with a simplified structure. In most dual-species biofilms, to eliminate living cells from the matrix, concentrations exceeding the MIC determined for individual bacteria were required.Biofilms are surface-associated microbial communities resistant to sanitizers and antimicrobials. Various interactions that can contribute to increased resistance occur between the populations in biofilms. These relationships are the focus of a range of studies dealing with biofilm-associated infections and food spoilage. The present study investigated the effects of cinnamon (Cinnamomum zeylanicum), marjoram (Origanum majorana), and thyme (Thymus vulgaris) essential oils (EOs) and their main components, i.e., trans-cinnamaldehyde, terpinen-4-ol, and thymol, respectively, on single- and dual-species biofilms of Escherichia coli, Listeria monocytogenes, Pseudomonas putida, and Staphylococcus aureus. In dual-species biofilms, L. monocytogenes was paired with each of the other three bacteria. Minimum inhibitory concentration (MIC) values for the individual bacteria ranged between 0.25 and 20 mg/mL, and trans-cinnamaldehyde and cinnamon showed the highest growth inhibitory effect. Single-species biofilms of L. monocytogenes, P. putida, and S. aureus were inhibited by the tested EOs and their components at sub-lethal concentrations. Scanning electron microscopy images showed that the three-dimensional structure of mature biofilms embedded in the exopolysaccharide matrix disappeared or was limited to micro-colonies with a simplified structure. In most dual-species biofilms, to eliminate living cells from the matrix, concentrations exceeding the MIC determined for individual bacteria were required. Biofilms are surface-associated microbial communities resistant to sanitizers and antimicrobials. Various interactions that can contribute to increased resistance occur between the populations in biofilms. These relationships are the focus of a range of studies dealing with biofilm-associated infections and food spoilage. The present study investigated the effects of cinnamon ( Cinnamomum zeylanicum ), marjoram ( Origanum majorana ), and thyme ( Thymus vulgaris ) essential oils (EOs) and their main components, i.e., trans-cinnamaldehyde, terpinen-4-ol, and thymol, respectively, on single- and dual-species biofilms of Escherichia coli , Listeria monocytogenes , Pseudomonas putida, and Staphylococcus aureus . In dual-species biofilms, L. monocytogenes was paired with each of the other three bacteria. Minimum inhibitory concentration (MIC) values for the individual bacteria ranged between 0.25 and 20 mg/mL, and trans-cinnamaldehyde and cinnamon showed the highest growth inhibitory effect. Single-species biofilms of L. monocytogenes , P. putida, and S. aureus were inhibited by the tested EOs and their components at sub-lethal concentrations. Scanning electron microscopy images showed that the three-dimensional structure of mature biofilms embedded in the exopolysaccharide matrix disappeared or was limited to micro-colonies with a simplified structure. In most dual-species biofilms, to eliminate living cells from the matrix, concentrations exceeding the MIC determined for individual bacteria were required. Biofilms are surface-associated microbial communities resistant to sanitizers and antimicrobials. Various interactions that can contribute to increased resistance occur between the populations in biofilms. These relationships are the focus of a range of studies dealing with biofilm-associated infections and food spoilage. The present study investigated the effects of cinnamon ( ), marjoram ( ), and thyme ( ) essential oils (EOs) and their main components, i.e., trans-cinnamaldehyde, terpinen-4-ol, and thymol, respectively, on single- and dual-species biofilms of , , and . In dual-species biofilms, was paired with each of the other three bacteria. Minimum inhibitory concentration (MIC) values for the individual bacteria ranged between 0.25 and 20 mg/mL, and trans-cinnamaldehyde and cinnamon showed the highest growth inhibitory effect. Single-species biofilms of , and were inhibited by the tested EOs and their components at sub-lethal concentrations. Scanning electron microscopy images showed that the three-dimensional structure of mature biofilms embedded in the exopolysaccharide matrix disappeared or was limited to micro-colonies with a simplified structure. In most dual-species biofilms, to eliminate living cells from the matrix, concentrations exceeding the MIC determined for individual bacteria were required. |
Author | Horváth, Györgyi Vidács, Anita Balázs, Viktória Lilla Takó, Miklós Petkovits, Tamás Vágvölgyi, Csaba Kerekes, Erika Beáta Krisch, Judit |
AuthorAffiliation | 1 Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary 3 Department of Pharmacognosy, University of Pécs, H-7624 Pécs, Rókus utca 2, Hungary 2 Institute of Food Engineering, Faculty of Engineering, University of Szeged, H-6724 Szeged, Mars tér 7, Hungary |
AuthorAffiliation_xml | – name: 3 Department of Pharmacognosy, University of Pécs, H-7624 Pécs, Rókus utca 2, Hungary – name: 1 Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary – name: 2 Institute of Food Engineering, Faculty of Engineering, University of Szeged, H-6724 Szeged, Mars tér 7, Hungary |
Author_xml | – sequence: 1 givenname: Erika Beáta surname: Kerekes fullname: Kerekes, Erika Beáta – sequence: 2 givenname: Anita surname: Vidács fullname: Vidács, Anita – sequence: 3 givenname: Miklós orcidid: 0000-0002-1219-1049 surname: Takó fullname: Takó, Miklós – sequence: 4 givenname: Tamás surname: Petkovits fullname: Petkovits, Tamás – sequence: 5 givenname: Csaba orcidid: 0000-0003-0009-7773 surname: Vágvölgyi fullname: Vágvölgyi, Csaba – sequence: 6 givenname: Györgyi surname: Horváth fullname: Horváth, Györgyi – sequence: 7 givenname: Viktória Lilla surname: Balázs fullname: Balázs, Viktória Lilla – sequence: 8 givenname: Judit surname: Krisch fullname: Krisch, Judit |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31547282$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl1rFDEUhoNUbK39CUrAG29G8zGZJAhCu6xaaKmgXodsPmqWTLImM0L_vdndWtoiNDcJOc95856T8xIcpJwcAK8xek-pRB_GYErO5VqnUMfKkUS0Z8_AEUF86MiA-MG98yE4qXWN2pKYCoZfgEOKWc-JIEcgn6YpdGch-xBHuPTemQlmD7-72E7OwmWtriE6wqsQK9TJwksdElzkcdNMpanCnOBlTrnbBb_leLOztwoGnummUbbJizlOc3H1FXjudazu5HY_Bj8_L38svnYXV1_OF6cXnWFUTB21iBhDBqalNIR61K8Icl4bQjDzXApskLZYYOqsFX5YcYyNYFxyxow3lh6D872uzXqtNiWMutyorIPaXbTeKV2mYKJTvkcrKYlGxOne91wgSqggRFjkDLa-aX3aa23m1eisaUUXHR-IPoyk8Etd5z9qaFoc0Sbw7lag5N-zq5MaQzUuRp1cnqsiPUK9wEN7-UmUyGFgrX7W0LeP0HWeS2pdVYT1QmLWamjUm_vm71z_G4EGsD3Q_qzW4vwdgpHaTpv677S1vI-P8kyY9BTytgchPpH9FxE14Fw |
CitedBy_id | crossref_primary_10_3390_molecules27175518 crossref_primary_10_3390_pathogens10050515 crossref_primary_10_2174_2772434418666230316113927 crossref_primary_10_3390_plants11111432 crossref_primary_10_1007_s13369_023_08415_2 crossref_primary_10_3390_antibiotics12030565 crossref_primary_10_3390_microorganisms11061364 crossref_primary_10_3390_ijms21124531 crossref_primary_10_1186_s12906_023_03966_1 crossref_primary_10_5812_archcid_122410 crossref_primary_10_3390_antibiotics11020147 crossref_primary_10_1080_10408398_2023_2200861 crossref_primary_10_1080_1040841X_2020_1782339 crossref_primary_10_5004_dwt_2022_28757 crossref_primary_10_1021_acsami_0c17043 crossref_primary_10_3390_foods12152893 crossref_primary_10_3390_molecules25184125 crossref_primary_10_3390_molecules27154895 crossref_primary_10_1016_j_jphotobiol_2021_112253 crossref_primary_10_1177_10820132211013273 crossref_primary_10_1016_j_indcrop_2023_116523 crossref_primary_10_3390_microorganisms10101975 crossref_primary_10_14232_analecta_2022_1_71_76 crossref_primary_10_1021_acsomega_3c03982 crossref_primary_10_2217_fmb_2022_0115 crossref_primary_10_1016_j_ijbiomac_2024_131943 crossref_primary_10_3390_antibiotics12020299 crossref_primary_10_3390_molecules27217472 crossref_primary_10_5937_leksir2040057K crossref_primary_10_3390_plants13020192 crossref_primary_10_3390_plants13233442 crossref_primary_10_1080_08927014_2020_1772243 crossref_primary_10_1088_1402_4896_acccba crossref_primary_10_3390_app11094020 crossref_primary_10_3390_biom11030397 crossref_primary_10_3390_antibiotics12040756 crossref_primary_10_17221_179_2023_CJFS crossref_primary_10_3389_fphar_2020_566334 crossref_primary_10_3390_molecules28073044 crossref_primary_10_1016_j_lwt_2024_116464 crossref_primary_10_3389_fcimb_2022_930624 crossref_primary_10_1155_2022_9744153 crossref_primary_10_1016_j_nanoen_2021_106783 crossref_primary_10_3389_fphar_2024_1491363 crossref_primary_10_1177_10820132231165543 crossref_primary_10_1016_j_jiph_2019_10_010 crossref_primary_10_1002_cbdv_202400756 crossref_primary_10_1080_0972060X_2024_2325101 crossref_primary_10_3390_biom10060860 crossref_primary_10_1007_s11274_025_04289_8 crossref_primary_10_1111_jfpp_16653 crossref_primary_10_1186_s13568_021_01305_6 crossref_primary_10_1016_j_ijhydene_2020_08_070 crossref_primary_10_1016_j_sjbs_2020_07_008 crossref_primary_10_3390_app15063385 crossref_primary_10_3390_foods12061265 crossref_primary_10_3390_plants14010081 crossref_primary_10_1007_s11274_022_03363_9 crossref_primary_10_3389_fmicb_2022_1029098 crossref_primary_10_1016_j_sciaf_2023_e01927 crossref_primary_10_1021_acsami_1c11265 crossref_primary_10_1080_08927014_2023_2269551 crossref_primary_10_3390_microorganisms12081651 crossref_primary_10_3390_pathogens10010012 crossref_primary_10_3390_pr9030537 crossref_primary_10_1080_10408398_2023_2169858 crossref_primary_10_1111_1541_4337_13232 crossref_primary_10_3390_metabo12121256 crossref_primary_10_3390_microorganisms8050762 crossref_primary_10_1111_jam_15421 crossref_primary_10_1016_j_aquaculture_2020_735639 crossref_primary_10_1016_j_micpath_2023_106361 crossref_primary_10_1080_08927014_2022_2149326 |
Cites_doi | 10.1016/j.jtbi.2007.10.039 10.1007/BF00390357 10.4315/0362-028X-66.4.535 10.3389/fmicb.2012.00012 10.1016/j.foodcont.2009.08.003 10.1128/AEM.68.8.4015-4024.2002 10.1046/j.1365-2672.2000.00969.x 10.1038/nrmicro821 10.1016/j.foodcont.2013.08.023 10.1016/j.foodcont.2015.05.032 10.1016/j.tifs.2009.01.054 10.1046/j.1365-2672.2000.01000.x 10.1016/j.foodcont.2010.02.003 10.1111/jam.12289 10.1016/j.ijfoodmicro.2004.03.031 10.1016/j.foodres.2013.11.042 10.3390/ph6121451 10.1016/j.foodcont.2016.01.012 10.1016/j.ijfoodmicro.2004.03.022 10.1111/j.1365-2672.2007.03694.x 10.1016/j.fct.2007.09.106 10.1016/S0005-2728(99)00033-X 10.1111/j.1745-4565.2012.00387.x 10.1371/journal.pone.0077276 10.1128/AEM.03052-09 10.2903/j.efsa.2018.5500 10.1128/AEM.07364-11 10.1371/journal.pone.0014786 10.1111/j.1750-3841.2011.02274.x 10.1016/j.ijfoodmicro.2014.06.017 10.1111/j.1365-2672.2012.05418.x 10.1099/jmm.0.46495-0 10.1111/j.1574-6976.2012.00328.x 10.1111/j.1574-6976.2012.00325.x 10.1080/08927014.2011.626899 10.1556/018.67.2016.3.10 10.1016/j.mimet.2007.11.010 |
ContentType | Journal Article |
Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION NPM 7T7 8FD 8FE 8FH ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/microorganisms7090345 |
DatabaseName | CrossRef PubMed Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2076-2607 |
ExternalDocumentID | oai_doaj_org_article_f40b992a02ea4f47803238228d0ec1df PMC6780703 31547282 10_3390_microorganisms7090345 |
Genre | Journal Article |
GeographicLocations | United Kingdom--UK Hungary Germany |
GeographicLocations_xml | – name: United Kingdom--UK – name: Hungary – name: Germany |
GrantInformation_xml | – fundername: University of Szeged Open Access Fund grantid: 4330 |
GroupedDBID | 53G 5VS 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ACPRK AFKRA AFPKN AFRAH AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BBNVY BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ GS5 GX1 HCIFZ HYE IAO KQ8 LK8 M48 M7P MODMG M~E OK1 PATMY PGMZT PHGZM PHGZT PIMPY PROAC PYCSY RNS RPM NPM 7T7 8FD ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c538t-3d02cc265a99c23f04b20efac2215f7981c0ad1813edd8f6b711c8579755cfcd3 |
IEDL.DBID | M48 |
ISSN | 2076-2607 |
IngestDate | Wed Aug 27 01:28:27 EDT 2025 Thu Aug 21 14:29:36 EDT 2025 Fri Jul 11 11:56:42 EDT 2025 Fri Jul 11 07:25:49 EDT 2025 Fri Jul 25 12:16:09 EDT 2025 Thu Jan 02 22:31:33 EST 2025 Tue Jul 01 01:05:33 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | antibacterial activity polymicrobial biofilm essential oil food spoilage biofilm |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c538t-3d02cc265a99c23f04b20efac2215f7981c0ad1813edd8f6b711c8579755cfcd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1219-1049 0000-0003-0009-7773 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/microorganisms7090345 |
PMID | 31547282 |
PQID | 2548915228 |
PQPubID | 2032358 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f40b992a02ea4f47803238228d0ec1df pubmedcentral_primary_oai_pubmedcentral_nih_gov_6780703 proquest_miscellaneous_2400481680 proquest_miscellaneous_2296659815 proquest_journals_2548915228 pubmed_primary_31547282 crossref_primary_10_3390_microorganisms7090345 crossref_citationtrail_10_3390_microorganisms7090345 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190912 |
PublicationDateYYYYMMDD | 2019-09-12 |
PublicationDate_xml | – month: 9 year: 2019 text: 20190912 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Microorganisms (Basel) |
PublicationTitleAlternate | Microorganisms |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Carpentier (ref_19) 2004; 97 Cammack (ref_21) 1999; 1411 Rendueles (ref_7) 2012; 36 Chorianopoulos (ref_28) 2008; 104 Dorman (ref_35) 2000; 88 Elias (ref_11) 2012; 36 Holban (ref_12) 2018; Volume 15 Hyldgaard (ref_41) 2012; 3 ref_13 Millezi (ref_38) 2012; 32 Bridier (ref_5) 2011; 27 Shi (ref_1) 2009; 20 Naimi (ref_17) 2003; 66 Tajkarimi (ref_26) 2010; 21 Peeters (ref_33) 2008; 72 Kerekes (ref_34) 2018; 13 Heredia (ref_27) 2010; 76 Liu (ref_14) 2006; 55 Burt (ref_24) 2004; 94 ref_37 Midelet (ref_2) 2002; 68 Johnson (ref_3) 2008; 251 Fetsch (ref_16) 2014; 187 Kerekes (ref_31) 2013; 115 Szczepanski (ref_39) 2014; 36 Zhang (ref_40) 2016; 59 ref_23 Costerton (ref_6) 2004; 2 Mariutti (ref_22) 2011; 76 Kerekes (ref_32) 2016; 67 Nazzaro (ref_36) 2013; 6 Jahid (ref_10) 2014; 55 Bakkali (ref_25) 2008; 46 Adukwu (ref_30) 2012; 113 Leriche (ref_18) 2000; 88 Wong (ref_4) 2010; 108 ref_9 Schweinsberg (ref_20) 1985; 109 Ica (ref_8) 2012; 78 Oliveira (ref_29) 2010; 21 Puga (ref_15) 2016; 65 |
References_xml | – volume: 251 start-page: 24 year: 2008 ident: ref_3 article-title: Microcolony and biofilm formation as a survival strategy for bacteria publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2007.10.039 – volume: 109 start-page: 200 year: 1985 ident: ref_20 article-title: Nitrite: A co-carcinogen? publication-title: J. Cancer Res. Clin. Oncol. doi: 10.1007/BF00390357 – volume: 66 start-page: 535 year: 2003 ident: ref_17 article-title: Concurrent outbreaks of Shigella sonnei and enterotoxigenic Escherichia coli infections associated with parsley: Implications for surveillance and control of foodborne illness publication-title: J. Food Prot. doi: 10.4315/0362-028X-66.4.535 – volume: 3 start-page: 12 year: 2012 ident: ref_41 article-title: Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components publication-title: Front. Microbiol. doi: 10.3389/fmicb.2012.00012 – volume: 21 start-page: 549 year: 2010 ident: ref_29 article-title: Disinfectant action of Cymbopogon sp. essential oils in different phases of biofilm formation by Listeria monocytogenes on stainless steel surface publication-title: Food Contr. doi: 10.1016/j.foodcont.2009.08.003 – volume: 68 start-page: 4015 year: 2002 ident: ref_2 article-title: Transfer of microorganisms, including Listeria monocytogenes, from various materials to beef publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.68.8.4015-4024.2002 – volume: 88 start-page: 308 year: 2000 ident: ref_35 article-title: Antimicrobial agents from plants: Antibacterial activity of plant volatile oils publication-title: J. Appl. Microbiol. doi: 10.1046/j.1365-2672.2000.00969.x – volume: 2 start-page: 95 year: 2004 ident: ref_6 article-title: Bacterial biofilms: From the natural environment to infectious diseases publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro821 – volume: 13 start-page: 483 year: 2018 ident: ref_34 article-title: Altered antimicrobial and anti-biofilm forming effect of thyme essential oil due to changes in composition publication-title: Nat. Prod. Commun. – volume: 36 start-page: 224 year: 2014 ident: ref_39 article-title: Essential oils show specific inhibiting effects on bacterial biofilm formation publication-title: Food Contr. doi: 10.1016/j.foodcont.2013.08.023 – volume: 59 start-page: 282 year: 2016 ident: ref_40 article-title: Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus publication-title: Food Contr. doi: 10.1016/j.foodcont.2015.05.032 – volume: 20 start-page: 407 year: 2009 ident: ref_1 article-title: Biofilm formation and food safety in food industries publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2009.01.054 – volume: 88 start-page: 594 year: 2000 ident: ref_18 article-title: Limitation of adhesion and growth of Listeria monocytogenes on stainless steel surfaces by Staphylococcus sciuri biofilms publication-title: J. Appl. Microbiol. doi: 10.1046/j.1365-2672.2000.01000.x – volume: 21 start-page: 1199 year: 2010 ident: ref_26 article-title: Antimicrobial herb and spice compounds in food publication-title: Food Contr. doi: 10.1016/j.foodcont.2010.02.003 – volume: 115 start-page: 933 year: 2013 ident: ref_31 article-title: Anti-biofilm forming and anti-quorum sensing activity of selected essential oils and their main components on food-related micro-organisms publication-title: J. Appl. Microbiol. doi: 10.1111/jam.12289 – ident: ref_23 – volume: 97 start-page: 111 year: 2004 ident: ref_19 article-title: Interactions in biofilms between Listeria monocytogenes and resident microorganisms from food industry premises publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2004.03.031 – volume: 55 start-page: 445 year: 2014 ident: ref_10 article-title: Competitive interactions inside mixed-culture biofilms of Salmonella Typhimurium and cultivable indigenous microorganisms on lettuce enhance microbial resistance of their sessile cells to ultraviolet C (UV-C) irradiation publication-title: Food Res. Int. doi: 10.1016/j.foodres.2013.11.042 – volume: 6 start-page: 1451 year: 2013 ident: ref_36 article-title: Effect of essential oils on pathogenic bacteria publication-title: Pharmaceuticals doi: 10.3390/ph6121451 – volume: 65 start-page: 143 year: 2016 ident: ref_15 article-title: Biofilm development at low temperatures enhances Listeria monocytogenes resistance to chitosan publication-title: Food Contr. doi: 10.1016/j.foodcont.2016.01.012 – volume: 94 start-page: 223 year: 2004 ident: ref_24 article-title: Essential oils: Their antibacterial properties and potential applications in foods—A review publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2004.03.022 – volume: 104 start-page: 1586 year: 2008 ident: ref_28 article-title: Disinfectant test against monoculture and mixed-culture biofilms composed of technological, spoilage and pathogenic bacteria: Bactericidal effect of essential oil and hydrosol of Satureja thymbra and comparison with standard acid-base sanitizers publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2007.03694.x – volume: 46 start-page: 446 year: 2008 ident: ref_25 article-title: Biological effects of essential oils–a review publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2007.09.106 – volume: 108 start-page: 2222 year: 2010 ident: ref_4 article-title: Comparative susceptibility of planktonic and 3-day-old Salmonella Typhimurium biofilms to disinfectants publication-title: J. Appl. Microbiol. – volume: 1411 start-page: 475 year: 1999 ident: ref_21 article-title: Nitrite and nitrosyl compounds in food preservation publication-title: BBA-Bioenergetics doi: 10.1016/S0005-2728(99)00033-X – volume: 32 start-page: 351 year: 2012 ident: ref_38 article-title: Susceptibility of monospecies and dual-species biofilms of Staphylococcus aureus and Escherichia coli to essential oils publication-title: J. Food Saf. doi: 10.1111/j.1745-4565.2012.00387.x – ident: ref_9 doi: 10.1371/journal.pone.0077276 – volume: 76 start-page: 6888 year: 2010 ident: ref_27 article-title: Extracts of edible and medicinal plants damage membranes of Vibrio cholerae publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.03052-09 – ident: ref_13 doi: 10.2903/j.efsa.2018.5500 – volume: Volume 15 start-page: 157 year: 2018 ident: ref_12 article-title: Listeria monocytogenes: A Food-Borne Pathogen publication-title: Foodborne Diseases. Handbook of Food Bioengineering – volume: 78 start-page: 1033 year: 2012 ident: ref_8 article-title: Characterization of mono- and mixed-culture Campylobacter jejuni biofilm publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.07364-11 – ident: ref_37 doi: 10.1371/journal.pone.0014786 – volume: 76 start-page: C909 year: 2011 ident: ref_22 article-title: Lipid and cholesterol oxidation in chicken meat are inhibited by sage but not by garlic publication-title: J. Food Sci. doi: 10.1111/j.1750-3841.2011.02274.x – volume: 187 start-page: 1 year: 2014 ident: ref_16 article-title: Staphylococcus aureus food-poisoning outbreak associated with the consumption of ice-cream publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2014.06.017 – volume: 113 start-page: 1217 year: 2012 ident: ref_30 article-title: The anti-biofilm activity of lemongrass (Cymbopogon flexuosus) and grapefruit (Citrus paradisi) essential oils against five strains of Staphylococcus aureus publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2012.05418.x – volume: 55 start-page: 645 year: 2006 ident: ref_14 article-title: Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen publication-title: J. Med. Microbiol. doi: 10.1099/jmm.0.46495-0 – volume: 36 start-page: 972 year: 2012 ident: ref_7 article-title: Multi-species biofilms: How to avoid unfriendly neighbours publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2012.00328.x – volume: 36 start-page: 990 year: 2012 ident: ref_11 article-title: Multi-species biofilms: Living with friendly neighbors publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2012.00325.x – volume: 27 start-page: 1017 year: 2011 ident: ref_5 article-title: Resistance of bacterial biofilms to disinfectants: A review publication-title: Biofouling doi: 10.1080/08927014.2011.626899 – volume: 67 start-page: 333 year: 2016 ident: ref_32 article-title: Anti-listerial effect of selected essential oils and thymol publication-title: Acta Biol. Hung. doi: 10.1556/018.67.2016.3.10 – volume: 72 start-page: 157 year: 2008 ident: ref_33 article-title: Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates publication-title: J. Microbiol. Meth. doi: 10.1016/j.mimet.2007.11.010 |
SSID | ssj0000913851 |
Score | 2.3958435 |
Snippet | Biofilms are surface-associated microbial communities resistant to sanitizers and antimicrobials. Various interactions that can contribute to increased... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 345 |
SubjectTerms | anti-infective agents antibacterial activity Antimicrobial agents Bacteria biofilm Biofilms Cinnamaldehyde Cinnamomum verum Cinnamomum zeylanicum Cinnamon E coli Escherichia coli essential oil Essential oils Exopolysaccharides Food contamination & poisoning Food spoilage Investigations Listeria Listeria monocytogenes marjoram Microbial activity microbial communities Microorganisms Minimum inhibitory concentration Natural products Oils & fats Origanum majorana Pathogens Physiology polymicrobial biofilm Pseudomonas putida Sanitizers Scanning electron microscopy Spoilage Staphylococcus aureus Terpinene thyme Thymol Thymus vulgaris |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOilNE0fbtOiQq9uZD0s6ZiEhBBIWmgDuRlZD2rYlUO9OeTfdyQ5y24JzSVHWxJImtHMN_boG4S-CmM574OovQi85paoWtG-rRlAWUvbnsnMrn9x2Z5d8fNrcb1R6ivlhBV64LJxB4GTXmtqCPWGBy4VYeBlKFWOeNu4kKwv-LyNYCrbYN0wwBLlyg6DuP5gmfLbSqWkaTnJ9HkiXWHacEaZs_8hoPlvvuSGAzp9hV7OyBEflhnvomc-vkbPSy3Juz00HsbVUMNjGBZLXEiJ8Rjwz1zoxjt8MqV7RqBu-PuwmLCJDl-YIeJkEcaY8inwGDGc8bHOjT_GxV1eTj9YfFRInWFw4eD00xt0dXry6_isnqsp1BaM2qpmjlAL2y-M1payQHhPiQ_GUvD6QWrVWGIcOHzmnVOh7WXTWCWklkLYYB17i3YiTOc9wp6rNlBrpNGBN70B6QbHPdUO0GIwvEL8fls7O1ONp4oXiw5CjiSN7kFpVOjbethN4dp4bMBRktm6c6LKzi-gYzcrUPeYAlVo_17i3Xx-pw7CZqUB2lBVoS_rZjh56XeKiX68hT4UQkUB-yb-0yebyKZVpELvihKtZ8sAvUqIeCskt9RraznbLXH4nRnAAWEkU_3hKdb_Eb0AEJjz5hq6j3ZWf279JwBaq_5zPlN_AelaKoo priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB7BVkhcEG8CBRmJq6nj2LFzQl20VYXUUgGVeoscP0Sk3aSQ7aH_nrGTXbqoKsdd25KTeX3jjL8B-CCNFaIJknoZBBWWaap5U9ICoazlZVOoxK5_cloen4svF_JiOnAbprLKjU9Mjtr1Np6RH2AioysMNlx_uvxFY9eo-HV1aqFxH_bQBWs9g7354vTs2_aUJbJeIqYYr-4UmN8frGKd29gxaVgNKh5TxKtMN4JS4u6_DXD-Wzd5IxAdPYZHE4Ikh6PIn8A93z2FB2NPyetn0B9265biz9AuV2QkJyZ9IN9TwxvvyGKI941Q7cjXdjkQ0zlyYtqORM_Qd7GugvQdQVvvaRo865fX6XGa1pL5SO6Mi0cuTj88h_OjxY_Px3TqqkAtOrc1LRzjFsUgTVVZXgQmGs58MJZj9A-q0rllxmHgL7xzOpSNynOrpaqUlDZYV7yAWYfbeQXEC10Gbo0yVRB5Y1DKwQnPK4eoMRiRgdi81tpOlOOx88WyxtQjSqO-VRoZfNwuuxw5N_63YB5ltp0cKbPTHzixniywDoI1VcUN496IIJRmBcIV1CfHvM1dyGB_I_F6suOh_qt1GbzfDqMFxs8qpvP9Fc7hmDJKfG_yjjnJVealZhm8HJVou9sCUazCzDcDtaNeO4-zO9K1PxMTOCKN6LJf3731N_AQYV6qjMv5PszWv6_8W4RS6-bdZC9_AMoiI9I priority: 102 providerName: ProQuest |
Title | Anti-Biofilm Effect of Selected Essential Oils and Main Components on Mono- and Polymicrobic Bacterial Cultures |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31547282 https://www.proquest.com/docview/2548915228 https://www.proquest.com/docview/2296659815 https://www.proquest.com/docview/2400481680 https://pubmed.ncbi.nlm.nih.gov/PMC6780703 https://doaj.org/article/f40b992a02ea4f47803238228d0ec1df |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bi9QwFA7rLoIv4t3qOkTwtWuaJk3yILIjsyzCrIs6sG8lzYUtdFrdzoLz7z1JO4Mj4_rY5gTSnEu-kybfQegd14axyvPUcc9SZohMJa2KNAcoa2hR5SKy688vivMF-3zFrw7QhlBhnMB-b2oX6kktbpqTXz_XH8HhP4SME1L298twdG0ogtQvexF2Hhi_h45gcRKhqMF8RPwxOKssB5Ax3OX5d--dVSqS-e9DoH8fpPxjZTp7hB6OkBKfDjbwGB249gm6PxSZXD9F3Wm7qlN49HWzxANbMe48_hYr4DiLZ324gAR2iL_UTY91a_Fc1y0OoaJrw0EL3LUYnL9LY-Nl16zj51S1wdOB7Rk6D-Scrn-GFmez75_O07HMQmog2q3S3BJqQC9cK2Vo7gmrKHFeGwpwwAslM0O0BSSQO2ulLyqRZUZyoQTnxhubP0eHLQznJcKOycJTo4VWnmWVBrV7yxxVFmCk1yxBbDOtpRk5yEMpjKaEXCRoo9yrjQSdbLv9GEg4_tdhGnS2FQ4c2vEFCJajS5aekUopqgl1mnkmJMkBv1AqLXEmsz5BxxuNlxu7LCGflgowD5UJerttBpcM_1l067pbkKGQQ3KYN36HTIydWSFJgl4MRrQdbQ6wVkAqnCCxY147n7Pb0tbXkRocoEeI4a_uHvpr9ABwXzwql9FjdLi6uXVvAFutqgk6ms4uLr9O4t7EJPrOb1ZYK7Y |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEx1DHdl4HhLqw1ZZ2lwpaqbfg-KFG2k1ashXaP8VvZJzH0kVVOfWY2I5sz-sbZzwD8DaUSojchr4JrfCFoomfsDzyOUJZxaKcx012_ck0Gh-LLyfhyQb87u_CuLDKXic2ilpXyp2Rb6Mjk6RobFjy8ezcd1Wj3N_VvoRGyxb7ZvkLXbb6w95npO87xnZHR5_GfldVwFco3Aufa8oUTiOUaaoYt1TkjBorFUPrZ-M0CRSVGg0fN1onNsrjIFBJGKdxGCqrNMfv3oJNwSPKBrA5HE0Pv61OdVyWTcQw7VUhzlO6PXdxdW2Fpnpex-5YxF2dumQEm1oBVwHcf-M0Lxm-3ftwr0OsZKdlsQewYcqHcLutYbl8BNVOuSh8fLTFbE7aZMiksuR7U2DHaDKq3f0mZHPytZjVRJaaTGRREqeJqtLFcZCqJKhbKr9pPKxmy2Y5eaHIsE0mjYPb3J-mfgzHN7LfT2BQ4nSeATEiiSxTMpapFUEukausFoalGlGqlcID0W9rproU567SxixDV8dRI7uSGh68Xw07a3N8_G_A0NFs1dml6G5eYMesk_jMCpqnKZOUGSmsiBPKER4h_2pqVKCtB1s9xbNOb9TZXy734M2qGSXe_caRpakusA9DFzXEfQuv6dOo5iBKqAdPWyZazZYjao7R0_YgXmOvteWst5TFaZN5HJGNMxHPr5_6a7gzPpocZAd70_0XcBchZhOVF7AtGCx-XpiXCOMW-atOdgj8uGlx_QOBnGDR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEN8EBhgJHkMdx4mTB4RW1mpjrFTApL1ljj9EpDYZpBPqv8ZfxzlJw4qm8bTHxHZk-75-55zvAF5HUnGe28g3keU-VzTxE5bHfohQVrE4D0WTXf9oGu8f848n0ckW_F7fhXFhlWud2ChqXSl3Rj5ERyZJ0diwZGi7sIjZ3uT92Q_fVZByf1rX5TRaFjk0q1_ovtXvDvaQ1m8Ym4y_fdj3uwoDvkJBX_qhpkzhlCKZpoqFlvKcUWOlYmgJrUiTQFGp0QiGRuvExrkIApVEIhVRpKzSIX73BmwL5xUNYHs0ns6-9Cc8LuMm4pn22lAYpnS4cDF2bbWmelELd0TirlFdMIhN3YDLwO6_MZsXjODkLtzp0CvZbdntHmyZ8j7cbOtZrh5AtVsuCx8fbTFfkDYxMqks-doU2zGajGt31wlZnnwu5jWRpSZHsiiJ00pV6WI6SFUS1DOV3zTOqvmqWU5eKDJqE0vj4DYPqKkfwvG17PcjGJQ4nSdADE9iy5QUMrU8yCVymNXcsFQjYrWSe8DX25qpLt25q7oxz9DtcdTILqWGB2_7YWdtvo__DRg5mvWdXbru5gV2zDrpzyyneZoySZmR3HKR0BChEvKypkYF2nqws6Z41umQOvvL8R686ptR-t0vHVma6hz7MHRXI9y36Io-jZoO4oR68Lhlon62ISJogV63B2KDvTaWs9lSFt-bLOSIcpy5eHr11F_CLRTT7NPB9PAZ3Ea02QToBWwHBsuf5-Y5Irpl_qITHQKn1y2tfwCenWUG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-Biofilm+Effect+of+Selected+Essential+Oils+and+Main+Components+on+Mono-+and+Polymicrobic+Bacterial+Cultures&rft.jtitle=Microorganisms+%28Basel%29&rft.au=Erika+Be%C3%A1ta+Kerekes&rft.au=Vid%C3%A1cs%2C+Anita&rft.au=Tak%C3%B3%2C+Mikl%C3%B3s&rft.au=Petkovits%2C+Tam%C3%A1s&rft.date=2019-09-12&rft.pub=MDPI+AG&rft.eissn=2076-2607&rft.volume=7&rft.issue=9&rft.spage=345&rft_id=info:doi/10.3390%2Fmicroorganisms7090345&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-2607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-2607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-2607&client=summon |