Genetic control of root architectural plasticity in maize

Root architectural phenes have heritable and plastic responses, and genetic loci associated with stress and environmental plasticity are distinct from loci controlling phenotypic expression in water-stress and well-watered conditions. Abstract Root phenotypes regulate soil resource acquisition; howe...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental botany Vol. 71; no. 10; pp. 3185 - 3197
Main Authors Schneider, Hannah M, Klein, Stephanie P, Hanlon, Meredith T, Nord, Eric A, Kaeppler, Shawn, Brown, Kathleen M, Warry, Andrew, Bhosale, Rahul, Lynch, Jonathan P
Format Journal Article
LanguageEnglish
Published UK Oxford University Press 30.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Root architectural phenes have heritable and plastic responses, and genetic loci associated with stress and environmental plasticity are distinct from loci controlling phenotypic expression in water-stress and well-watered conditions. Abstract Root phenotypes regulate soil resource acquisition; however, their genetic control and phenotypic plasticity are poorly understood. We hypothesized that the responses of root architectural phenes to water deficit (stress plasticity) and different environments (environmental plasticity) are under genetic control and that these loci are distinct. Root architectural phenes were phenotyped in the field using a large maize association panel with and without water deficit stress for three seasons in Arizona and without water deficit stress for four seasons in South Africa. All root phenes were plastic and varied in their plastic response. We identified candidate genes associated with stress and environmental plasticity and candidate genes associated with phenes in well-watered conditions in South Africa and in well-watered and water-stress conditions in Arizona. Few candidate genes for plasticity overlapped with those for phenes expressed under each condition. Our results suggest that phenotypic plasticity is highly quantitative, and plasticity loci are distinct from loci that control phene expression in stress and non-stress, which poses a challenge for breeding programs. To make these loci more accessible to the wider research community, we developed a public online resource that will allow for further experimental validation towards understanding the genetic control underlying phenotypic plasticity.
AbstractList Root architectural phenes have heritable and plastic responses, and genetic loci associated with stress and environmental plasticity are distinct from loci controlling phenotypic expression in water-stress and well-watered conditions. Root phenotypes regulate soil resource acquisition; however, their genetic control and phenotypic plasticity are poorly understood. We hypothesized that the responses of root architectural phenes to water deficit (stress plasticity) and different environments (environmental plasticity) are under genetic control and that these loci are distinct. Root architectural phenes were phenotyped in the field using a large maize association panel with and without water deficit stress for three seasons in Arizona and without water deficit stress for four seasons in South Africa. All root phenes were plastic and varied in their plastic response. We identified candidate genes associated with stress and environmental plasticity and candidate genes associated with phenes in well-watered conditions in South Africa and in well-watered and water-stress conditions in Arizona. Few candidate genes for plasticity overlapped with those for phenes expressed under each condition. Our results suggest that phenotypic plasticity is highly quantitative, and plasticity loci are distinct from loci that control phene expression in stress and non-stress, which poses a challenge for breeding programs. To make these loci more accessible to the wider research community, we developed a public online resource that will allow for further experimental validation towards understanding the genetic control underlying phenotypic plasticity.
Root phenotypes regulate soil resource acquisition; however, their genetic control and phenotypic plasticity are poorly understood. We hypothesized that the responses of root architectural phenes to water deficit (stress plasticity) and different environments (environmental plasticity) are under genetic control and that these loci are distinct. Root architectural phenes were phenotyped in the field using a large maize association panel with and without water deficit stress for three seasons in Arizona and without water deficit stress for four seasons in South Africa. All root phenes were plastic and varied in their plastic response. We identified candidate genes associated with stress and environmental plasticity and candidate genes associated with phenes in well-watered conditions in South Africa and in well-watered and water-stress conditions in Arizona. Few candidate genes for plasticity overlapped with those for phenes expressed under each condition. Our results suggest that phenotypic plasticity is highly quantitative, and plasticity loci are distinct from loci that control phene expression in stress and non-stress, which poses a challenge for breeding programs. To make these loci more accessible to the wider research community, we developed a public online resource that will allow for further experimental validation towards understanding the genetic control underlying phenotypic plasticity.
Root architectural phenes have heritable and plastic responses, and genetic loci associated with stress and environmental plasticity are distinct from loci controlling phenotypic expression in water-stress and well-watered conditions. Abstract Root phenotypes regulate soil resource acquisition; however, their genetic control and phenotypic plasticity are poorly understood. We hypothesized that the responses of root architectural phenes to water deficit (stress plasticity) and different environments (environmental plasticity) are under genetic control and that these loci are distinct. Root architectural phenes were phenotyped in the field using a large maize association panel with and without water deficit stress for three seasons in Arizona and without water deficit stress for four seasons in South Africa. All root phenes were plastic and varied in their plastic response. We identified candidate genes associated with stress and environmental plasticity and candidate genes associated with phenes in well-watered conditions in South Africa and in well-watered and water-stress conditions in Arizona. Few candidate genes for plasticity overlapped with those for phenes expressed under each condition. Our results suggest that phenotypic plasticity is highly quantitative, and plasticity loci are distinct from loci that control phene expression in stress and non-stress, which poses a challenge for breeding programs. To make these loci more accessible to the wider research community, we developed a public online resource that will allow for further experimental validation towards understanding the genetic control underlying phenotypic plasticity.
Root phenotypes regulate soil resource acquisition; however, their genetic control and phenotypic plasticity are poorly understood. We hypothesized that the responses of root architectural phenes to water deficit (stress plasticity) and different environments (environmental plasticity) are under genetic control and that these loci are distinct. Root architectural phenes were phenotyped in the field using a large maize association panel with and without water deficit stress for three seasons in Arizona and without water deficit stress for four seasons in South Africa. All root phenes were plastic and varied in their plastic response. We identified candidate genes associated with stress and environmental plasticity and candidate genes associated with phenes in well-watered conditions in South Africa and in well-watered and water-stress conditions in Arizona. Few candidate genes for plasticity overlapped with those for phenes expressed under each condition. Our results suggest that phenotypic plasticity is highly quantitative, and plasticity loci are distinct from loci that control phene expression in stress and non-stress, which poses a challenge for breeding programs. To make these loci more accessible to the wider research community, we developed a public online resource that will allow for further experimental validation towards understanding the genetic control underlying phenotypic plasticity.Root phenotypes regulate soil resource acquisition; however, their genetic control and phenotypic plasticity are poorly understood. We hypothesized that the responses of root architectural phenes to water deficit (stress plasticity) and different environments (environmental plasticity) are under genetic control and that these loci are distinct. Root architectural phenes were phenotyped in the field using a large maize association panel with and without water deficit stress for three seasons in Arizona and without water deficit stress for four seasons in South Africa. All root phenes were plastic and varied in their plastic response. We identified candidate genes associated with stress and environmental plasticity and candidate genes associated with phenes in well-watered conditions in South Africa and in well-watered and water-stress conditions in Arizona. Few candidate genes for plasticity overlapped with those for phenes expressed under each condition. Our results suggest that phenotypic plasticity is highly quantitative, and plasticity loci are distinct from loci that control phene expression in stress and non-stress, which poses a challenge for breeding programs. To make these loci more accessible to the wider research community, we developed a public online resource that will allow for further experimental validation towards understanding the genetic control underlying phenotypic plasticity.
Author Lynch, Jonathan P
Schneider, Hannah M
Nord, Eric A
Brown, Kathleen M
Klein, Stephanie P
Warry, Andrew
Hanlon, Meredith T
Kaeppler, Shawn
Bhosale, Rahul
AuthorAffiliation 5 Lancaster University , UK
3 Advanced Data Analysis Centre, University of Nottingham , Nottingham, UK
1 Department of Plant Science, The Pennsylvania State University , University Park, PA, USA
2 Department of Agronomy, University of Wisconsin , Madison, WI, USA
4 Plant and Crop Sciences, School of Biosciences, University of Nottingham , Sutton Bonington, UK
AuthorAffiliation_xml – name: 2 Department of Agronomy, University of Wisconsin , Madison, WI, USA
– name: 4 Plant and Crop Sciences, School of Biosciences, University of Nottingham , Sutton Bonington, UK
– name: 1 Department of Plant Science, The Pennsylvania State University , University Park, PA, USA
– name: 5 Lancaster University , UK
– name: 3 Advanced Data Analysis Centre, University of Nottingham , Nottingham, UK
Author_xml – sequence: 1
  givenname: Hannah M
  surname: Schneider
  fullname: Schneider, Hannah M
  organization: Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
– sequence: 2
  givenname: Stephanie P
  surname: Klein
  fullname: Klein, Stephanie P
  organization: Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
– sequence: 3
  givenname: Meredith T
  surname: Hanlon
  fullname: Hanlon, Meredith T
  organization: Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
– sequence: 4
  givenname: Eric A
  surname: Nord
  fullname: Nord, Eric A
  organization: Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
– sequence: 5
  givenname: Shawn
  surname: Kaeppler
  fullname: Kaeppler, Shawn
  organization: Department of Agronomy, University of Wisconsin, Madison, WI, USA
– sequence: 6
  givenname: Kathleen M
  orcidid: 0000-0002-4960-5292
  surname: Brown
  fullname: Brown, Kathleen M
  organization: Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
– sequence: 7
  givenname: Andrew
  surname: Warry
  fullname: Warry, Andrew
  organization: Advanced Data Analysis Centre, University of Nottingham, Nottingham, UK
– sequence: 8
  givenname: Rahul
  surname: Bhosale
  fullname: Bhosale, Rahul
  organization: Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, UK
– sequence: 9
  givenname: Jonathan P
  orcidid: 0000-0002-7265-9790
  surname: Lynch
  fullname: Lynch, Jonathan P
  email: jpl4@psu.edu
  organization: Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32080722$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1637590$$D View this record in Osti.gov
BookMark eNqNkc2LFDEQxYOsuLOrJ-_SeBBB2q18dvoiyKKrsOBFz6GmOu1k6emMSVpc_3ozzKyoiHiqQ3716r28M3Yyx9kz9pjDSw69vLj5tr7wCRGsusdWXBlohZL8hK0AhGih190pO8v5BgA0aP2AnUoBFjohVqy_8rMvgRqKc0lxauLYpBhLg4k2oXgqS8Kp2U2YKxXKbRPmZovhu3_I7o84Zf_oOM_Zp7dvPl6-a68_XL2_fH3dkpa2tFKQEGujOdE49ANHLaylwaKFUZPquRXSWMXRWBhIeKBBaYM9EB_kWpM8Z68OurtlvfUD-eoTJ7dLYYvp1kUM7veXOWzc5_jVdcJAx3kVeHoQiDWCy7RPtalx5xrOcSM73UOFnh-vpPhl8bm4bcjkpwlnH5fshJFGmc7K_0AVWN6rGq2iT371_tP03f9XgB8ASjHn5EdX7WEJ-zIwTI6D23fsasfu2HHdefHHzp3s3-lnx_TL7p_gD0PetjE
CitedBy_id crossref_primary_10_1002_bes2_1970
crossref_primary_10_1080_21645698_2024_2377408
crossref_primary_10_1038_s41477_022_01274_z
crossref_primary_10_1007_s00122_021_03819_w
crossref_primary_10_3390_plants12132520
crossref_primary_10_3389_fpls_2022_824720
crossref_primary_10_3390_plants10010001
crossref_primary_10_1093_jxb_erae298
crossref_primary_10_12688_f1000research_140649_1
crossref_primary_10_3389_fpls_2022_902902
crossref_primary_10_1111_pbr_13049
crossref_primary_10_1111_pbr_13248
crossref_primary_10_1186_s12863_023_01140_7
crossref_primary_10_1111_pce_14135
crossref_primary_10_1111_pce_14256
crossref_primary_10_1002_csc2_20312
crossref_primary_10_1007_s11104_021_05010_y
crossref_primary_10_1016_j_xplc_2022_100473
crossref_primary_10_3389_fpls_2020_00546
crossref_primary_10_1002_tpg2_20489
crossref_primary_10_3390_ijms22073529
crossref_primary_10_1002_tpg2_20463
crossref_primary_10_3389_fpls_2022_897256
crossref_primary_10_1002_biot_202100505
crossref_primary_10_3389_fpls_2022_883209
crossref_primary_10_1016_j_agee_2025_109505
crossref_primary_10_1093_jxb_eraa487
crossref_primary_10_1093_jxb_erae009
crossref_primary_10_1007_s00122_023_04376_0
crossref_primary_10_3389_fpls_2022_959629
crossref_primary_10_1093_jxb_erad390
crossref_primary_10_1111_pce_14567
crossref_primary_10_1016_j_jia_2022_07_003
crossref_primary_10_1007_s10265_021_01348_7
crossref_primary_10_1270_jsbbs_20106
crossref_primary_10_1016_j_fcr_2025_109774
crossref_primary_10_1073_pnas_2012087118
crossref_primary_10_1038_s41467_025_55872_4
crossref_primary_10_1111_pce_14382
crossref_primary_10_1007_s00344_024_11339_2
Cites_doi 10.1104/pp.18.00234
10.1016/S0378-4290(99)00056-8
10.1007/s11104-014-2240-4
10.1016/j.fcr.2016.04.008
10.1071/A97035
10.1104/pp.16.01257
10.1016/S1360-1385(00)01797-0
10.1104/pp.114.243519
10.1093/aob/mcx047
10.2135/cropsci2010.03.0178
10.1002/tpg2.20003
10.1104/pp.15.00780
10.1007/s00122-009-1144-9
10.1016/j.cub.2017.01.030
10.1007/s00122-019-03343-y
10.1146/annurev.arplant.59.032607.092819
10.1111/j.1365-313X.2008.03495.x
10.1104/pp.113.232603
10.1093/jxb/ery252
10.1093/jxb/erq403
10.1186/s13007-015-0093-3
10.1371/journal.pgen.1005767
10.1007/s11427-010-4097-y
10.1016/j.fcr.2012.09.010
10.1186/s12870-015-0647-6
10.1093/jxb/erv252
10.1104/pp.15.00145
10.1104/pp.113.233916
10.1111/j.1469-8137.2006.01761.x
10.1016/j.tplants.2010.09.008
10.1023/A:1013324727040
10.1093/jxb/erv007
10.1007/s11104-010-0675-9
10.1023/A:1014987710937
10.1071/FP04046
10.1007/s00299-018-2262-0
10.1098/rstb.2011.0243
10.1093/nar/gkx1002
10.3390/ijms20051040
10.1093/jxb/erv074
10.1098/rstb.2010.0172
10.1016/j.fcr.2010.07.012
10.1104/pp.15.00187
10.3389/fpls.2015.00746
10.1046/j.1469-8137.2003.00907.x
10.1071/FP09197
10.1073/pnas.1400966111
10.1007/s00122-004-1665-1
10.1105/tpc.106.048033
10.1126/science.aau3956
10.1111/j.1420-9101.2009.01754.x
10.1104/pp.17.00500
10.1093/jxb/eru508
10.1242/dev.065102
10.1038/s41467-018-03850-4
10.1007/s00122-005-2051-3
10.1093/jxb/ers111
10.1104/pp.110.165126
10.1007/s11104-007-9492-1
10.1093/jxb/ery048
10.1007/s10681-011-0585-9
10.1104/pp.111.175414
10.1093/jxb/erw039
10.1038/srep24212
10.1007/s00122-018-3257-5
10.1104/pp.012161
10.1104/pp.16.00705
10.1126/science.1146265
10.1071/FP06055
10.1038/ng.546
10.1071/FP05005
10.1104/pp.125.3.1529
10.1111/nph.15738
10.1093/jxb/ert223
10.1093/aob/mcv018
10.1111/j.1365-3040.2009.01978.x
10.1016/j.tplants.2011.12.005
10.1016/j.cub.2017.07.015
10.1007/s11104-010-0623-8
10.1534/g3.118.200540
10.1093/jxb/erq429
10.1111/j.1469-8137.2007.02370.x
10.1007/BF00029096
10.1007/s11104-004-1697-y
10.1104/pp.109.1.7
10.1186/s12284-018-0252-z
10.1105/tpc.113.119982
10.1104/pp.104.059196
10.1093/jxb/erm097
10.1007/s00122-006-0260-z
10.1093/jexbot/53.366.33
10.1021/acs.jafc.8b02178
10.3389/fpls.2013.00355
10.1038/ng.2725
10.1007/s00122-011-1690-9
10.1093/jxb/err269
10.1111/j.1469-8137.1996.tb01847.x
10.1155/2012/546930
10.1104/pp.108.118117
10.1093/aob/mcw112
10.1016/j.fcr.2011.03.001
10.1016/j.fcr.2013.01.024
10.1007/s11104-009-0275-8
10.1111/j.1469-8137.1975.tb01409.x
10.1093/nar/gkg076
10.1093/aob/mct099
10.1038/nature22971
10.1007/s11104-015-2404-x
10.3389/fpls.2017.00134
10.1093/jxb/erw243
10.1074/jbc.RA118.002073
10.1046/j.1365-313x.1998.00280.x
10.1098/rspb.1999.0656
10.1093/aob/mcs293
10.1016/j.pbi.2011.03.020
10.1093/jxb/erv241
10.1626/pps.14.307
10.1016/j.fcr.2010.10.003
10.1111/pce.13197
10.1186/s12870-019-1653-x
10.1071/FP05043
10.1371/journal.pone.0000718
10.1071/FPv39n11_IN
10.1093/aob/mcy092
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2020
The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2020
– notice: The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology.
CorporateAuthor Pennsylvania State Univ., University Park, PA (United States)
CorporateAuthor_xml – name: Pennsylvania State Univ., University Park, PA (United States)
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
OIOZB
OTOTI
5PM
DOI 10.1093/jxb/eraa084
DatabaseName Oxford Journals Open Access (Activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
CrossRef


MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Architecture
EISSN 1460-2431
EndPage 3197
ExternalDocumentID PMC7260711
1637590
32080722
10_1093_jxb_eraa084
10.1093/jxb/eraa084
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations South Africa
Arizona
GeographicLocations_xml – name: South Africa
– name: Arizona
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
– fundername: ;
– fundername: ;
  grantid: 2014-67013-21572; DE-AR0000821
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
18M
1TH
29K
2WC
4.4
482
48X
5GY
5VS
5WA
5WD
70D
AAHBH
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAVLN
AAXTN
ABEUO
ABIXL
ABJNI
ABLJU
ABMNT
ABNKS
ABPPZ
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPRK
ACUFI
ACUTJ
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
CDBKE
CS3
CZ4
D-I
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
ECGQY
EE~
ESX
F5P
F9B
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
M49
ML0
N9A
NGC
NLBLG
NOMLY
NU-
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OK1
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
ROL
ROX
ROZ
RUSNO
RW1
RXO
TLC
TN5
TOX
TR2
UHB
UPT
W8F
WH7
WOQ
X7H
YAYTL
YKOAZ
YQT
YSK
YXANX
YZZ
ZKX
~02
~91
~KM
AAYXX
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ABXZS
ADNBA
AFYAG
AGORE
AHGBF
AJBYB
AJNCP
ALXQX
CITATION
JST
CGR
CUY
CVF
ECM
EIF
NPM
Z5M
7X8
7S9
L.6
AABJS
AABMN
AAESY
AAIYJ
AANRK
ABPTK
ADEIU
ADORX
ADQLU
AELNO
AIKOY
AZQFJ
BYORX
CASEJ
DPORF
DPPUQ
OIOZB
OTOTI
PQEST
UMP
5PM
ID FETCH-LOGICAL-c538t-32c22b651ccfd9d1a5288cd8a80f5c4918236841a680dc2e0cd456a90c1d3b5c3
IEDL.DBID TOX
ISSN 0022-0957
1460-2431
IngestDate Thu Aug 21 13:36:04 EDT 2025
Fri May 19 00:40:16 EDT 2023
Fri Jul 11 00:42:06 EDT 2025
Fri Jul 11 09:53:05 EDT 2025
Wed Feb 19 02:05:36 EST 2025
Tue Jul 01 03:05:44 EDT 2025
Thu Apr 24 23:12:54 EDT 2025
Wed Sep 11 05:00:09 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords plasticity
water deficit stress
Architecture
association mapping
maize
root
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c538t-32c22b651ccfd9d1a5288cd8a80f5c4918236841a680dc2e0cd456a90c1d3b5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
AR0000821
ORCID 0000-0002-7265-9790
0000-0002-4960-5292
0000000272659790
0000000249605292
OpenAccessLink https://dx.doi.org/10.1093/jxb/eraa084
PMID 32080722
PQID 2408194491
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7260711
osti_scitechconnect_1637590
proquest_miscellaneous_2636467830
proquest_miscellaneous_2408194491
pubmed_primary_32080722
crossref_citationtrail_10_1093_jxb_eraa084
crossref_primary_10_1093_jxb_eraa084
oup_primary_10_1093_jxb_eraa084
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-30
PublicationDateYYYYMMDD 2020-05-30
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-30
  day: 30
PublicationDecade 2020
PublicationPlace UK
PublicationPlace_xml – name: UK
– name: England
– name: United States
PublicationTitle Journal of experimental botany
PublicationTitleAlternate J Exp Bot
PublicationYear 2020
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Lynch (2020053006301685500_CIT0058) 2011; 156
Zhang (2020053006301685500_CIT0123) 2010; 42
Lynch (2020053006301685500_CIT0059) 2013; 112
Ma (2020053006301685500_CIT0065) 2003; 131
Nakamoto (2020053006301685500_CIT0073) 1993; 152
Walter (2020053006301685500_CIT0111) 2009; 60
Arp (2020053006301685500_CIT0001) 2017
Robinson (2020053006301685500_CIT0085) 1999; 266
Zhu (2020053006301685500_CIT0129) 2006; 113
Mace (2020053006301685500_CIT0067) 2012; 124
Lynch (2020053006301685500_CIT0061) 2019; 223
Nicotra (2020053006301685500_CIT0075) 2010; 15
Zhu (2020053006301685500_CIT0124) 2011; 14
Das (2020053006301685500_CIT0015) 2015; 11
Hansey (2020053006301685500_CIT0030) 2011; 51
Jamsheer (2020053006301685500_CIT0040) 2015; 6
Zhu (2020053006301685500_CIT0125) 2005; 32
Bradshaw (2020053006301685500_CIT0007) 2006; 170
Zhan (2020053006301685500_CIT0122) 2015; 168
Bucksch (2020053006301685500_CIT0010) 2014; 166
Debnath (2020053006301685500_CIT0017) 2019; 20
Jia (2020053006301685500_CIT0042) 2018; 69
Wasson (2020053006301685500_CIT0112) 2012; 63
Ding (2020053006301685500_CIT0018) 2018; 66
Tran (2020053006301685500_CIT0105) 2014; 386
Gao (2020053006301685500_CIT0025) 2016; 67
Lewis (2020053006301685500_CIT0051) 2011; 138
Uga (2020053006301685500_CIT0107) 2011; 62
Lynch (2020053006301685500_CIT0062) 2001; 237
Galindo-Castañeda (2020053006301685500_CIT0024) 2018; 41
Lande (2020053006301685500_CIT0049) 2009; 22
Lucas (2020053006301685500_CIT0056) 2011; 155
Brady (2020053006301685500_CIT0008) 2007; 318
Jamsheer (2020053006301685500_CIT0041) 2018; 293
Jiao (2020053006301685500_CIT0043) 2017; 546
Kano-Nakata (2020053006301685500_CIT0046) 2013; 144
Li (2020053006301685500_CIT0052) 2017; 27
Prince (2020053006301685500_CIT0081) 2017; 68
Trachsel (2020053006301685500_CIT0104) 2009; 119
Maccaferri (2020053006301685500_CIT0066) 2016; 67
Poot (2020053006301685500_CIT0079) 2008; 178
Sanchez Carranza (2020053006301685500_CIT0088) 2016; 6
Bao (2020053006301685500_CIT0002) 2014; 111
Suralta (2020053006301685500_CIT0096) 2010; 332
Tardieu (2020053006301685500_CIT0098) 2012; 63
Postma (2020053006301685500_CIT0080) 2014; 166
York (2020053006301685500_CIT0117) 2015; 66
Hirel (2020053006301685500_CIT0033) 2007; 58
Chang (2020053006301685500_CIT0012) 2015; 66
Mazaheri (2020053006301685500_CIT0070) 2019; 19
Tylová (2020053006301685500_CIT0106) 2017; 120
Fehr (2020053006301685500_CIT0022) 1993
Rostamza (2020053006301685500_CIT0086) 2013; 112
Kano-Nakata (2020053006301685500_CIT0047) 2011; 14
Kwon (2020053006301685500_CIT0048) 2013; 64
Rhee (2020053006301685500_CIT0084) 2003; 31
Toal (2020053006301685500_CIT0100) 2018; 8
Yu (2020053006301685500_CIT0119) 2019; 132
Gowda (2020053006301685500_CIT0028) 2011; 122
Hazman (2020053006301685500_CIT0031) 2018; 11
Manschadi (2020053006301685500_CIT0068) 2006; 33
Zhu (2020053006301685500_CIT0131) 2019; 132
Burridge (2020053006301685500_CIT0011) 2016; 192
Sharp (2020053006301685500_CIT0091) 2002; 53
Zhan (2020053006301685500_CIT0121) 2015; 66
Henry (2020053006301685500_CIT0032) 2011; 120
Takahashi (2020053006301685500_CIT0097) 2015; 115
Hochholdinger (2020053006301685500_CIT0036) 1998; 16
Bates (2020053006301685500_CIT0004) 2002
Dathe (2020053006301685500_CIT0016) 2016; 118
Irmisch (2020053006301685500_CIT0039) 2015; 15
Su (2020053006301685500_CIT0093) 2017; 27
Usadel (2020053006301685500_CIT0109) 2009; 32
Orosa-Puente (2020053006301685500_CIT0077) 2018; 362
York (2020053006301685500_CIT0118) 2013; 4
Liu (2020053006301685500_CIT0054) 2016; 11
Shi (2020053006301685500_CIT0092) 2015; 169
Negi (2020053006301685500_CIT0074) 2008; 55
Lawrence (2020053006301685500_CIT0050) 2005; 138
Basford (2020053006301685500_CIT0003) 1998; 49
Liu (2020053006301685500_CIT0055) 2016; 12
Collins (2020053006301685500_CIT0013) 2008; 147
Zhu (2020053006301685500_CIT0126) 2005; 270
Lynch (2020053006301685500_CIT0057) 1995; 109
Van Bel (2020053006301685500_CIT0110) 2018; 46
Hirsch (2020053006301685500_CIT0034) 2014; 26
Miguel (2020053006301685500_CIT0072) 2015; 167
R Core Team (2020053006301685500_CIT0083) 2018
Bonser (2020053006301685500_CIT0006) 1996; 132
Kano (2020053006301685500_CIT0045) 2011; 342
Brisson (2020053006301685500_CIT0009) 2010; 119
Drew (2020053006301685500_CIT0019) 1975; 75
Cooper (2020053006301685500_CIT0014) 1999; 64
Uga (2020053006301685500_CIT0108) 2013; 45
Woods (2020053006301685500_CIT0114) 2010; 365
Lynch (2020053006301685500_CIT0064) 2015; 66
Mi (2020053006301685500_CIT0071) 2010; 53
Hund (2020053006301685500_CIT0038) 2004; 109
Liang (2020053006301685500_CIT0053) 2017; 8
Ha (2020053006301685500_CIT0029) 2012; 17
Sandhu (2020053006301685500_CIT0089) 2016; 171
Zhu (2020053006301685500_CIT0127) 2005; 111
Xu (2020053006301685500_CIT0115) 2018; 37
Lynch (2020053006301685500_CIT0060) 2018; 69
Trachsel (2020053006301685500_CIT0103) 2013; 140
Trachsel (2020053006301685500_CIT0102) 2011; 341
Sun (2020053006301685500_CIT0095) 2018; 177
Pieruschka (2020053006301685500_CIT0078) 2012; 39
Topp (2020053006301685500_CIT0101) 2016; 172
Ge (2020053006301685500_CIT0026) 2000; 218
Niones (2020053006301685500_CIT0076) 2015; 391
Ho (2020053006301685500_CIT0035) 2005; 32
Sultan (2020053006301685500_CIT0094) 2000; 5
Tebaldi (2020053006301685500_CIT0099) 2008; 41
Saengwilai (2020053006301685500_CIT0087) 2014; 166
Feng (2020053006301685500_CIT0023) 2011; 62
Giri (2020053006301685500_CIT0027) 2018; 9
Lynch (2020053006301685500_CIT0063) 2012; 367
Yue (2020053006301685500_CIT0120) 2012; 2012
Beisson (2020053006301685500_CIT0005) 2007; 19
Ehdaie (2020053006301685500_CIT0020) 2012; 186
Manschadi (2020053006301685500_CIT0069) 2008; 303
Evans (2020053006301685500_CIT0021) 2003; 161
Schneider (2020053006301685500_CIT0090) 2020
Winter (2020053006301685500_CIT0113) 2007; 2
Hochholdinger (2020053006301685500_CIT0037) 2001; 125
York (2020053006301685500_CIT0116) 2015; 66
Zhu (2020053006301685500_CIT0128) 2004; 31
Zhu (2020053006301685500_CIT0130) 2010; 37
Rangarajan (2020053006301685500_CIT0082) 2018; 122
Kadam (2020053006301685500_CIT0044) 2017; 174
References_xml – volume: 177
  start-page: 90
  year: 2018
  ident: 2020053006301685500_CIT0095
  article-title: Large crown root number improves topsoil foraging and phosphorus acquisition
  publication-title: Plant Physiology
  doi: 10.1104/pp.18.00234
– volume: 64
  start-page: 131
  year: 1999
  ident: 2020053006301685500_CIT0014
  article-title: Rainfed lowland rice breeding strategies for Northeast Thailand. I. Genotypic variation and genotype × environment interactions for grain yield
  publication-title: Field Crops Research
  doi: 10.1016/S0378-4290(99)00056-8
– volume: 386
  start-page: 65
  year: 2014
  ident: 2020053006301685500_CIT0105
  article-title: Root plasticity and its functional roles were triggered by water deficit but not by the resulting changes in the forms of soil N in rice
  publication-title: Plant and Soil
  doi: 10.1007/s11104-014-2240-4
– volume: 192
  start-page: 21
  year: 2016
  ident: 2020053006301685500_CIT0011
  article-title: Legume shovelomics: high-throughput phenotyping of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata subsp. unguiculata) root architecture in the field
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2016.04.008
– volume: 49
  start-page: 153
  year: 1998
  ident: 2020053006301685500_CIT0003
  article-title: Genotype × environment interactions and some considerations of their implications for wheat breeding in Australia
  publication-title: Australian Journal of Agricultural Research
  doi: 10.1071/A97035
– volume-title: R: a language and environment for statistical computing
  year: 2018
  ident: 2020053006301685500_CIT0083
– volume: 172
  start-page: 5
  year: 2016
  ident: 2020053006301685500_CIT0101
  article-title: Hope in change: the role of root plasticity in crop yield stability
  publication-title: Plant Physiology
  doi: 10.1104/pp.16.01257
– volume: 5
  start-page: 537
  year: 2000
  ident: 2020053006301685500_CIT0094
  article-title: Phenotypic plasticity for plant development, function and life history
  publication-title: Trends in Plant Science
  doi: 10.1016/S1360-1385(00)01797-0
– volume: 166
  start-page: 470
  year: 2014
  ident: 2020053006301685500_CIT0010
  article-title: Image-based high-throughput field phenotyping of crop roots
  publication-title: Plant Physiology
  doi: 10.1104/pp.114.243519
– volume: 120
  start-page: 71
  year: 2017
  ident: 2020053006301685500_CIT0106
  article-title: Casparian bands and suberin lamellae in exodermis of lateral roots: an important trait of roots system response to abiotic stress factors
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcx047
– volume: 51
  start-page: 704
  year: 2011
  ident: 2020053006301685500_CIT0030
  article-title: Genetic diversity of a maize association population with restricted phenology
  publication-title: Crop Science
  doi: 10.2135/cropsci2010.03.0178
– year: 2020
  ident: 2020053006301685500_CIT0090
  article-title: Genetic control of root anatomical plasticity in maize
  publication-title: Plant Genome
  doi: 10.1002/tpg2.20003
– volume: 169
  start-page: 266
  year: 2015
  ident: 2020053006301685500_CIT0092
  article-title: Overexpression of ARGOS genes modifies plant sensitivity to ethylene, leading to improved drought tolerance in both Arabidopsis and maize
  publication-title: Plant Physiology
  doi: 10.1104/pp.15.00780
– volume: 119
  start-page: 1413
  year: 2009
  ident: 2020053006301685500_CIT0104
  article-title: Mapping of QTLs for lateral and axile root growth of tropical maize
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-009-1144-9
– volume: 27
  start-page: 758
  year: 2017
  ident: 2020053006301685500_CIT0052
  article-title: Role of LOTR1 in nutrient transport through organization of spatial distribution of root endodermal barriers
  publication-title: Current Biology
  doi: 10.1016/j.cub.2017.01.030
– volume: 132
  start-page: 2137
  year: 2019
  ident: 2020053006301685500_CIT0131
  article-title: Genome-wide analysis of maize GPAT gene family and cytological characterization and breeding application of ZmMs33/ZmGPAT6 gene
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-019-03343-y
– volume: 60
  start-page: 279
  year: 2009
  ident: 2020053006301685500_CIT0111
  article-title: Environmental effects on spatial and temporal patterns of leaf and root growth
  publication-title: Annual Review of Plant Biology
  doi: 10.1146/annurev.arplant.59.032607.092819
– volume: 55
  start-page: 175
  year: 2008
  ident: 2020053006301685500_CIT0074
  article-title: Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2008.03495.x
– volume: 166
  start-page: 581
  year: 2014
  ident: 2020053006301685500_CIT0087
  article-title: Low crown root number enhances nitrogen acquisition from low-nitrogen soils in maize
  publication-title: Plant Physiology
  doi: 10.1104/pp.113.232603
– volume: 69
  start-page: 4961
  year: 2018
  ident: 2020053006301685500_CIT0042
  article-title: Greater lateral root branching density in maize improves phosphorus acquisition from low phosphorus soil
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/ery252
– volume: 62
  start-page: 2319
  year: 2011
  ident: 2020053006301685500_CIT0023
  article-title: Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erq403
– volume: 11
  start-page: 51
  year: 2015
  ident: 2020053006301685500_CIT0015
  article-title: Digital imaging of root traits (DIRT): a high-throughput computing and collaboration platform for field-based root phenomics
  publication-title: Plant Methods
  doi: 10.1186/s13007-015-0093-3
– volume: 12
  start-page: e1005767
  year: 2016
  ident: 2020053006301685500_CIT0055
  article-title: Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies
  publication-title: PLoS Genetics
  doi: 10.1371/journal.pgen.1005767
– volume: 53
  start-page: 1369
  year: 2010
  ident: 2020053006301685500_CIT0071
  article-title: Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems
  publication-title: Science China Life Sciences
  doi: 10.1007/s11427-010-4097-y
– volume: 140
  start-page: 18
  year: 2013
  ident: 2020053006301685500_CIT0103
  article-title: Maize root growth angles become steeper under low N conditions
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2012.09.010
– volume: 15
  start-page: 262
  year: 2015
  ident: 2020053006301685500_CIT0039
  article-title: One amino acid makes the difference: the formation of ent-kaurene and 16α-hydroxy-ent-kaurane by diterpene synthases in poplar
  publication-title: BMC Plant Biology
  doi: 10.1186/s12870-015-0647-6
– volume: 66
  start-page: 4759
  year: 2015
  ident: 2020053006301685500_CIT0012
  article-title: Cytokinin as a positional cue regulating lateral root spacing in Arabidopsis
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erv252
– volume: 167
  start-page: 1430
  year: 2015
  ident: 2020053006301685500_CIT0072
  article-title: Phene synergism between root hair length and basal root growth angle for phosphorus acquisition
  publication-title: Plant Physiology
  doi: 10.1104/pp.15.00145
– volume: 166
  start-page: 590
  year: 2014
  ident: 2020053006301685500_CIT0080
  article-title: The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability
  publication-title: Plant Physiology
  doi: 10.1104/pp.113.233916
– volume: 170
  start-page: 644
  year: 2006
  ident: 2020053006301685500_CIT0007
  article-title: Unravelling phenotypic plasticity—why should we bother?
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2006.01761.x
– volume: 15
  start-page: 684
  year: 2010
  ident: 2020053006301685500_CIT0075
  article-title: Plant phenotypic plasticity in a changing climate
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2010.09.008
– volume-title: Discovery of novel regulators and genes in nitrogen utilization pathways in maize
  year: 2017
  ident: 2020053006301685500_CIT0001
– volume: 237
  start-page: 225
  year: 2001
  ident: 2020053006301685500_CIT0062
  article-title: Topsoil foraging—an architectural adaptation of plants to low phosphorus availability
  publication-title: Plant and Soil
  doi: 10.1023/A:1013324727040
– volume: 41
  start-page: 1
  year: 2008
  ident: 2020053006301685500_CIT0099
  article-title: Towards probabilistic projections of climate change impacts on global crop yields
  publication-title: Geophysical Research Letters
– volume: 66
  start-page: 2055
  year: 2015
  ident: 2020053006301685500_CIT0121
  article-title: Reduced frequency of lateral root branching improves N capture from low-N soils in maize
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erv007
– volume: 342
  start-page: 117
  year: 2011
  ident: 2020053006301685500_CIT0045
  article-title: Root plasticity as the key root trait for adaptation to various intensities of drought stress in rice
  publication-title: Plant and Soil
  doi: 10.1007/s11104-010-0675-9
– volume: 218
  start-page: 159
  year: 2000
  ident: 2020053006301685500_CIT0026
  article-title: The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: results from a geometric simulation model
  publication-title: Plant and Soil
  doi: 10.1023/A:1014987710937
– volume: 31
  start-page: 949
  year: 2004
  ident: 2020053006301685500_CIT0128
  article-title: The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays) seedlings
  publication-title: Functional Plant Biology
  doi: 10.1071/FP04046
– volume: 37
  start-page: 711
  year: 2018
  ident: 2020053006301685500_CIT0115
  article-title: Genome-wide identification and comparative analysis of phosphate starvation-responsive transcription factors in maize and three other gramineous plants
  publication-title: Plant Cell Reports
  doi: 10.1007/s00299-018-2262-0
– volume: 367
  start-page: 1598
  year: 2012
  ident: 2020053006301685500_CIT0063
  article-title: New roots for agriculture: exploiting the root phenome
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
  doi: 10.1098/rstb.2011.0243
– volume: 46
  start-page: D1190
  year: 2018
  ident: 2020053006301685500_CIT0110
  article-title: PLAZA 4.0: an integrative resource for functional, evolutionary and comparative plant genomics
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkx1002
– volume: 20
  start-page: 1040
  year: 2019
  ident: 2020053006301685500_CIT0017
  article-title: Melatonin mediates enhancement of stress tolerance in plants
  publication-title: International Journal of Molecular Sciences
  doi: 10.3390/ijms20051040
– volume: 66
  start-page: 2347
  year: 2015
  ident: 2020053006301685500_CIT0116
  article-title: Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erv074
– volume: 365
  start-page: 2991
  year: 2010
  ident: 2020053006301685500_CIT0114
  article-title: Energy and the food system
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
  doi: 10.1098/rstb.2010.0172
– volume: 119
  start-page: 201
  year: 2010
  ident: 2020053006301685500_CIT0009
  article-title: Why are wheat yields stagnating in Europe? A comprehensive data analysis for France
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2010.07.012
– volume: 168
  start-page: 1603
  year: 2015
  ident: 2020053006301685500_CIT0122
  article-title: Reduced lateral root branching density improves drought tolerance in maize
  publication-title: Plant Physiology
  doi: 10.1104/pp.15.00187
– volume: 6
  start-page: 1
  year: 2015
  ident: 2020053006301685500_CIT0040
  article-title: Expression of Arabidopsis FCS-like Zinc finger genes is differentially regulated by sugars, cellular energy level, and abiotic stress
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2015.00746
– volume: 161
  start-page: 35
  year: 2003
  ident: 2020053006301685500_CIT0021
  article-title: Aerenchyma formation
  publication-title: New Phytologist
  doi: 10.1046/j.1469-8137.2003.00907.x
– volume: 37
  start-page: 313
  year: 2010
  ident: 2020053006301685500_CIT0130
  article-title: The utility of phenotypic plasticity of root hair length for phosphorus acquisition
  publication-title: Functional Plant Biology
  doi: 10.1071/FP09197
– volume: 111
  start-page: 9319
  year: 2014
  ident: 2020053006301685500_CIT0002
  article-title: Plant roots use a patterning mechanism to position lateral root branches toward available water
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.1400966111
– volume: 109
  start-page: 618
  year: 2004
  ident: 2020053006301685500_CIT0038
  article-title: QTL controlling root and shoot traits of maize seedlings under cold stress
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-004-1665-1
– volume: 19
  start-page: 351
  year: 2007
  ident: 2020053006301685500_CIT0005
  article-title: The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis
  publication-title: The Plant Cell
  doi: 10.1105/tpc.106.048033
– volume: 362
  start-page: 1407
  year: 2018
  ident: 2020053006301685500_CIT0077
  article-title: Root branching toward water involves posttranslational modification of transcription factor ARF7
  publication-title: Science
  doi: 10.1126/science.aau3956
– volume: 22
  start-page: 1435
  year: 2009
  ident: 2020053006301685500_CIT0049
  article-title: Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation
  publication-title: Journal of Evolutionary Biology
  doi: 10.1111/j.1420-9101.2009.01754.x
– volume: 174
  start-page: 2302
  year: 2017
  ident: 2020053006301685500_CIT0044
  article-title: Genetic control of plasticity in root morphology and anatomy of rice in response to water deficit
  publication-title: Plant Physiology
  doi: 10.1104/pp.17.00500
– volume: 66
  start-page: 2199
  year: 2015
  ident: 2020053006301685500_CIT0064
  article-title: Opportunities and challenges in the subsoil: pathways to deeper rooted crops
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/eru508
– volume: 138
  start-page: 3485
  year: 2011
  ident: 2020053006301685500_CIT0051
  article-title: Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers
  publication-title: Development
  doi: 10.1242/dev.065102
– volume: 9
  start-page: 1408
  year: 2018
  ident: 2020053006301685500_CIT0027
  article-title: Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-03850-4
– volume: 111
  start-page: 688
  year: 2005
  ident: 2020053006301685500_CIT0127
  article-title: Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-005-2051-3
– volume: 63
  start-page: 3485
  year: 2012
  ident: 2020053006301685500_CIT0112
  article-title: Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/ers111
– volume: 155
  start-page: 384
  year: 2011
  ident: 2020053006301685500_CIT0056
  article-title: Short-Root regulates primary, lateral, and adventitious root development in Arabidopsis
  publication-title: Plant Physiology
  doi: 10.1104/pp.110.165126
– volume: 303
  start-page: 115
  year: 2008
  ident: 2020053006301685500_CIT0069
  article-title: Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.)
  publication-title: Plant and Soil
  doi: 10.1007/s11104-007-9492-1
– volume: 69
  start-page: 3279
  year: 2018
  ident: 2020053006301685500_CIT0060
  article-title: Rightsizing root phenotypes for drought resistance
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/ery048
– volume: 186
  start-page: 219
  year: 2012
  ident: 2020053006301685500_CIT0020
  article-title: Root system plasticity to drought influences grain yield in bread wheat
  publication-title: Euphytica
  doi: 10.1007/s10681-011-0585-9
– volume: 156
  start-page: 1041
  year: 2011
  ident: 2020053006301685500_CIT0058
  article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops
  publication-title: Plant Physiology
  doi: 10.1104/pp.111.175414
– volume: 67
  start-page: 1161
  year: 2016
  ident: 2020053006301685500_CIT0066
  article-title: Prioritizing quantitative trait loci for root system architecture in tetraploid wheat
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erw039
– volume: 6
  start-page: 24212
  year: 2016
  ident: 2020053006301685500_CIT0088
  article-title: Hydrolases of the ILR1-like family of Arabidopsis thaliana modulate auxin response by regulating auxin homeostasis in the endoplasmic reticulum
  publication-title: Scientific Reports
  doi: 10.1038/srep24212
– volume: 132
  start-page: 1035
  year: 2019
  ident: 2020053006301685500_CIT0119
  article-title: ZmAPRG, an uncharacterized gene, enhances acid phosphatase activity and Pi concentration in maize leaf during phosphate starvation
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-018-3257-5
– volume: 131
  start-page: 1381
  year: 2003
  ident: 2020053006301685500_CIT0065
  article-title: Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness
  publication-title: Plant Physiology
  doi: 10.1104/pp.012161
– volume: 171
  start-page: 2562
  year: 2016
  ident: 2020053006301685500_CIT0089
  article-title: Rice root architectural plasticity traits and genetic regions for adaptability to variable cultivation and stress conditions
  publication-title: Plant Physiology
  doi: 10.1104/pp.16.00705
– volume: 318
  start-page: 801
  year: 2007
  ident: 2020053006301685500_CIT0008
  article-title: A high-resolution root spatiotemporal map reveals dominant expression patterns
  publication-title: Science
  doi: 10.1126/science.1146265
– volume: 33
  start-page: 823
  year: 2006
  ident: 2020053006301685500_CIT0068
  article-title: The role of root architectural traits in adaptation of wheat to water-limited environments
  publication-title: Functional Plant Biology
  doi: 10.1071/FP06055
– year: 2002
  ident: 2020053006301685500_CIT0004
– volume: 42
  start-page: 355
  year: 2010
  ident: 2020053006301685500_CIT0123
  article-title: Mixed linear model approach adapted for genome-wide association studies
  publication-title: Nature Genetics
  doi: 10.1038/ng.546
– volume: 32
  start-page: 749
  year: 2005
  ident: 2020053006301685500_CIT0125
  article-title: Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays)
  publication-title: Functional Plant Biology
  doi: 10.1071/FP05005
– volume: 125
  start-page: 1529
  year: 2001
  ident: 2020053006301685500_CIT0037
  article-title: Cooperative action of SLR1 and SLR2 is required for lateral root-specific cell elongation in maize 1
  publication-title: Plant Physiology
  doi: 10.1104/pp.125.3.1529
– volume: 223
  start-page: 548
  year: 2019
  ident: 2020053006301685500_CIT0061
  article-title: Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture
  publication-title: New Phytologist
  doi: 10.1111/nph.15738
– volume: 64
  start-page: 3911
  year: 2013
  ident: 2020053006301685500_CIT0048
  article-title: A novel Arabidopsis MYB-like transcription factor, MYBH, regulates hypocotyl elongation by enhancing auxin accumulation
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/ert223
– volume: 115
  start-page: 879
  year: 2015
  ident: 2020053006301685500_CIT0097
  article-title: Transcript profiles in cortical cells of maize primary root during ethylene-induced lysigenous aerenchyma formation under aerobic conditions
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcv018
– volume: 32
  start-page: 1211
  year: 2009
  ident: 2020053006301685500_CIT0109
  article-title: A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, maize
  publication-title: Plant, Cell & Environment
  doi: 10.1111/j.1365-3040.2009.01978.x
– volume: 17
  start-page: 172
  year: 2012
  ident: 2020053006301685500_CIT0029
  article-title: Cytokinins: metabolism and function in plant adaptation to environmental stresses
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2011.12.005
– volume: 27
  start-page: R964
  year: 2017
  ident: 2020053006301685500_CIT0093
  article-title: Molecular mechanisms of root gravitropism
  publication-title: Current Biology
  doi: 10.1016/j.cub.2017.07.015
– volume: 341
  start-page: 75
  year: 2011
  ident: 2020053006301685500_CIT0102
  article-title: Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field
  publication-title: Plant and Soil
  doi: 10.1007/s11104-010-0623-8
– volume: 8
  start-page: 3841
  year: 2018
  ident: 2020053006301685500_CIT0100
  article-title: Regulation of root angle and gravitropism
  publication-title: G3
  doi: 10.1534/g3.118.200540
– volume: 62
  start-page: 2485
  year: 2011
  ident: 2020053006301685500_CIT0107
  article-title: Dro1, a major QTL involved in deep rooting of rice under upland field conditions
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erq429
– volume: 178
  start-page: 371
  year: 2008
  ident: 2020053006301685500_CIT0079
  article-title: Shallow-soil endemics: adaptive advantages and constraints of a specialized root-system morphology
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2007.02370.x
– volume: 11
  start-page: e01617630
  year: 2016
  ident: 2020053006301685500_CIT0054
  article-title: Molecular evolution and genetic variation of G2-like transcription factor genes in maize
  publication-title: PLoS One
– volume: 152
  start-page: 261
  year: 1993
  ident: 2020053006301685500_CIT0073
  article-title: Effect of soil water content on the gravitropic behavior of nodal roots in maize
  publication-title: Plant and Soil
  doi: 10.1007/BF00029096
– volume: 270
  start-page: 299
  year: 2005
  ident: 2020053006301685500_CIT0126
  article-title: Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency
  publication-title: Plant and Soil
  doi: 10.1007/s11104-004-1697-y
– volume: 109
  start-page: 7
  year: 1995
  ident: 2020053006301685500_CIT0057
  article-title: Root architecture and plant productivity
  publication-title: Plant Physiology
  doi: 10.1104/pp.109.1.7
– volume: 11
  start-page: 62
  year: 2018
  ident: 2020053006301685500_CIT0031
  article-title: Progressive drought alters architectural and anatomical traits of rice roots
  publication-title: Rice
  doi: 10.1186/s12284-018-0252-z
– volume: 26
  start-page: 121
  year: 2014
  ident: 2020053006301685500_CIT0034
  article-title: Insights into the maize pan-genome and pan-transcriptome
  publication-title: The Plant Cell
  doi: 10.1105/tpc.113.119982
– volume: 138
  start-page: 55
  year: 2005
  ident: 2020053006301685500_CIT0050
  article-title: The maize genetics and genomics database. The community resource for access to diverse maize data
  publication-title: Plant Physiology
  doi: 10.1104/pp.104.059196
– volume: 58
  start-page: 2369
  year: 2007
  ident: 2020053006301685500_CIT0033
  article-title: The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erm097
– volume: 113
  start-page: 1
  year: 2006
  ident: 2020053006301685500_CIT0129
  article-title: Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-006-0260-z
– volume: 53
  start-page: 33
  year: 2002
  ident: 2020053006301685500_CIT0091
  article-title: ABA, ethylene and the control of shoot and root growth under water stress
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jexbot/53.366.33
– volume: 66
  start-page: 7701
  year: 2018
  ident: 2020053006301685500_CIT0018
  article-title: Melatonin: a multifunctional molecule that triggers defense responses against high light and nitrogen starvation stress in Haematococcus pluvialis
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/acs.jafc.8b02178
– volume: 4
  start-page: 355
  year: 2013
  ident: 2020053006301685500_CIT0118
  article-title: Integration of root phenes for soil resource acquisition
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2013.00355
– volume: 45
  start-page: 1097
  year: 2013
  ident: 2020053006301685500_CIT0108
  article-title: Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions
  publication-title: Nature Genetics
  doi: 10.1038/ng.2725
– volume: 124
  start-page: 97
  year: 2012
  ident: 2020053006301685500_CIT0067
  article-title: QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-011-1690-9
– volume: 63
  start-page: 25
  year: 2012
  ident: 2020053006301685500_CIT0098
  article-title: Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/err269
– volume: 132
  start-page: 281
  year: 1996
  ident: 2020053006301685500_CIT0006
  article-title: Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.1996.tb01847.x
– volume: 2012
  start-page: 546930
  year: 2012
  ident: 2020053006301685500_CIT0120
  article-title: Correlation of aquaporins and transmembrane solute transporters revealed by genome-wide analysis in developing maize leaf
  publication-title: Comparative and Functional Genomics
  doi: 10.1155/2012/546930
– volume: 147
  start-page: 469
  year: 2008
  ident: 2020053006301685500_CIT0013
  article-title: Quantitative trait loci and crop performance under abiotic stress: where do we stand?
  publication-title: Plant Physiology
  doi: 10.1104/pp.108.118117
– volume: 118
  start-page: 401
  year: 2016
  ident: 2020053006301685500_CIT0016
  article-title: Impact of axial root growth angles on nitrogen acquisition in maize depends on environmental conditions
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcw112
– volume: 122
  start-page: 1
  year: 2011
  ident: 2020053006301685500_CIT0028
  article-title: Root biology and genetic improvement for drought avoidance in rice
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2011.03.001
– volume: 144
  start-page: 288
  year: 2013
  ident: 2020053006301685500_CIT0046
  article-title: Functional roles of the plasticity of root system development in biomass production and water uptake under rainfed lowland conditions
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2013.01.024
– volume: 332
  start-page: 87
  year: 2010
  ident: 2020053006301685500_CIT0096
  article-title: Dry matter production in relation to root plastic development, oxygen transport, and water uptake of rice under transient soil moisture stresses
  publication-title: Plant and Soil
  doi: 10.1007/s11104-009-0275-8
– volume: 75
  start-page: 479
  year: 1975
  ident: 2020053006301685500_CIT0019
  article-title: Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.1975.tb01409.x
– volume: 31
  start-page: 224
  year: 2003
  ident: 2020053006301685500_CIT0084
  article-title: The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkg076
– volume: 112
  start-page: 439
  year: 2013
  ident: 2020053006301685500_CIT0086
  article-title: Response of millet and sorghum to a varying water supply around the primary and nodal roots
  publication-title: Annals of Botany
  doi: 10.1093/aob/mct099
– volume: 546
  start-page: 524
  year: 2017
  ident: 2020053006301685500_CIT0043
  article-title: Improved maize reference genome with single-molecule technologies
  publication-title: Nature
  doi: 10.1038/nature22971
– volume: 391
  start-page: 63
  year: 2015
  ident: 2020053006301685500_CIT0076
  article-title: QTL associated with lateral root plasticity in response to soil moisture fluctuation stress in rice
  publication-title: Plant and Soil
  doi: 10.1007/s11104-015-2404-x
– volume: 8
  start-page: 1
  year: 2017
  ident: 2020053006301685500_CIT0053
  article-title: Melatonin regulates root architecture by modulating auxin response in rice
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2017.00134
– volume: 67
  start-page: 4545
  year: 2016
  ident: 2020053006301685500_CIT0025
  article-title: Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L.)
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erw243
– volume: 293
  start-page: 13134
  year: 2018
  ident: 2020053006301685500_CIT0041
  article-title: The FCS-like zinc finger scaffold of the kinase SnRK1 is formed by the coordinated actions of the FLZ domain and intrinsically disordered regions
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.RA118.002073
– volume: 16
  start-page: 247
  year: 1998
  ident: 2020053006301685500_CIT0036
  article-title: Early post-embryonic root formation is specifically affected in the maize mutant lrt1
  publication-title: The Plant Journal
  doi: 10.1046/j.1365-313x.1998.00280.x
– volume: 266
  start-page: 431
  year: 1999
  ident: 2020053006301685500_CIT0085
  article-title: Plant root proliferation in nitrogen-rich patches confers competitive advantage
  publication-title: Proceedings of the Royal Society B: Biological Sciences
  doi: 10.1098/rspb.1999.0656
– volume: 112
  start-page: 347
  year: 2013
  ident: 2020053006301685500_CIT0059
  article-title: Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcs293
– volume: 14
  start-page: 310
  year: 2011
  ident: 2020053006301685500_CIT0124
  article-title: From lab to field, new approaches to phenotyping root system architecture
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2011.03.020
– volume: 66
  start-page: 5493
  year: 2015
  ident: 2020053006301685500_CIT0117
  article-title: Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erv241
– volume: 14
  start-page: 307
  year: 2011
  ident: 2020053006301685500_CIT0047
  article-title: Root development, water uptake, and shoot dry matter production under water deficit conditions in two CSSLs of rice: functional roles of root plasticity
  publication-title: Plant Production Science
  doi: 10.1626/pps.14.307
– volume-title: Principles of cultivar development
  year: 1993
  ident: 2020053006301685500_CIT0022
– volume: 120
  start-page: 205
  year: 2011
  ident: 2020053006301685500_CIT0032
  article-title: Variation in root system architecture and drought response in rice (Oryza sativa): phenotyping of the OryzaSNP panel in rainfed lowland fields
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2010.10.003
– volume: 68
  start-page: 2027
  year: 2017
  ident: 2020053006301685500_CIT0081
  article-title: Root xylem plasticity to improve water use and yield in water-stressed soybean
  publication-title: Journal of Experimental Botany
– volume: 41
  start-page: 1579
  year: 2018
  ident: 2020053006301685500_CIT0024
  article-title: Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize
  publication-title: Plant, Cell & Environment
  doi: 10.1111/pce.13197
– volume: 19
  start-page: 45
  year: 2019
  ident: 2020053006301685500_CIT0070
  article-title: Genome-wide association analysis of stalk biomass and anatomical traits in maize
  publication-title: BMC Plant Biology
  doi: 10.1186/s12870-019-1653-x
– volume: 32
  start-page: 737
  year: 2005
  ident: 2020053006301685500_CIT0035
  article-title: Root architectural tradeoffs for water and phosphorus acquisition
  publication-title: Functional Plant Biology
  doi: 10.1071/FP05043
– volume: 2
  start-page: e718
  year: 2007
  ident: 2020053006301685500_CIT0113
  article-title: An ‘Electronic Fluorescent Pictograph’ browser for exploring and analyzing large-scale biological data sets
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0000718
– volume: 39
  start-page: 813
  year: 2012
  ident: 2020053006301685500_CIT0078
  article-title: Phenotyping plants: genes, phenes and machines
  publication-title: Functional Plant Biology
  doi: 10.1071/FPv39n11_IN
– volume: 122
  start-page: 485
  year: 2018
  ident: 2020053006301685500_CIT0082
  article-title: Co-optimization of axial root phenotypes for nitrogen and phosphorus acquisition in common bean
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcy092
SSID ssj0005055
Score 2.5081677
Snippet Root architectural phenes have heritable and plastic responses, and genetic loci associated with stress and environmental plasticity are distinct from loci...
Root phenotypes regulate soil resource acquisition; however, their genetic control and phenotypic plasticity are poorly understood. We hypothesized that the...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3185
SubjectTerms architecture
Arizona
association mapping
BASIC BIOLOGICAL SCIENCES
botany
corn
maize
Phenotype
phenotypic plasticity
Plant Breeding
Plant Roots - genetics
plasticity
Research Papers
root
soil
South Africa
water deficit stress
water stress
Zea mays - genetics
Title Genetic control of root architectural plasticity in maize
URI https://www.ncbi.nlm.nih.gov/pubmed/32080722
https://www.proquest.com/docview/2408194491
https://www.proquest.com/docview/2636467830
https://www.osti.gov/servlets/purl/1637590
https://pubmed.ncbi.nlm.nih.gov/PMC7260711
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3PS8MwFA4yPHgRf1uns8JOQlmbX02OKo6pqJcNditp0uJE27F14PzrfVm7uY2h57xHwntJ31fely8INQkOrOCp8uKEUo9Swz3BufBixUNYeErDmWT-8wvv9Ohjn_Urgux4Qwtfktb7V9xKRkr5wsp-Qvm1Evnd1_4vk8NnbC4KDoghrK7hrfmuFJ5aDgdo7U7bErRcZ0gulZz2HtqtsKJ7UyZ3H20l2QHavs0Bz00PkbSK0TDiVmxzN09dgMGFu9QbAO8hwGPLnC6m7iBzP9XgOzlCvfZ9967jVQ8heBq-R4VHsMY45izQOjXSBIphIbQRSvgp01QG9tVyQQPFhW80TnxtABcp6evAkJhpcoxqWZ4lp8hVWjKZ6pgwCckxRsUkTTV4wH9WCgfUQdfzKEW6Ugm3j1V8RGW3mkQQ0qgKqYOaC-NhKY6x2axuwx1BTbfCtNoyeHQRARIMmfQddAlZ-Nv_ap6hCDa_7WioLMkn48jqswWSQgT-sOGEQzUQBGY6KbO6mIxgAMwhxg4KV_K9MLDi26sj2eBtJsIdYqvMF5z9u_o62sH2H90yDvxzVCtGk-QCgEwRNwDCPzw1Zpv5B3ZF80E
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+control+of+root+architectural+plasticity+in+maize&rft.jtitle=Journal+of+experimental+botany&rft.au=Schneider%2C+Hannah+M&rft.au=Klein%2C+Stephanie+P&rft.au=Hanlon%2C+Meredith+T&rft.au=Nord%2C+Eric+A&rft.date=2020-05-30&rft.eissn=1460-2431&rft.volume=71&rft.issue=10&rft.spage=3185&rft_id=info:doi/10.1093%2Fjxb%2Feraa084&rft_id=info%3Apmid%2F32080722&rft.externalDocID=32080722
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon