Genomic Instability in Cancer: Teetering on the Limit of Tolerance
Cancer genomic instability contributes to the phenomenon of intratumoral genetic heterogeneity, provides the genetic diversity required for natural selection, and enables the extensive phenotypic diversity that is frequently observed among patients. Genomic instability has previously been associated...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 77; no. 9; pp. 2179 - 2185 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for Cancer Research, Inc
01.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cancer genomic instability contributes to the phenomenon of intratumoral genetic heterogeneity, provides the genetic diversity required for natural selection, and enables the extensive phenotypic diversity that is frequently observed among patients. Genomic instability has previously been associated with poor prognosis. However, we have evidence that for solid tumors of epithelial origin, extreme levels of genomic instability, where more than 75% of the genome is subject to somatic copy number alterations, are associated with a potentially better prognosis compared with intermediate levels under this threshold. This has been observed in clonal subpopulations of larger size, especially when genomic instability is shared among a limited number of clones. We hypothesize that cancers with extreme levels of genomic instability may be teetering on the brink of a threshold where so much of their genome is adversely altered that cells rarely replicate successfully. Another possibility is that tumors with high levels of genomic instability are more immunogenic than other cancers with a less extensive burden of genetic aberrations. Regardless of the exact mechanism, but hinging on our ability to quantify how a tumor's burden of genetic aberrations is distributed among coexisting clones, genomic instability has important therapeutic implications. Herein, we explore the possibility that a high genomic instability could be the basis for a tumor's sensitivity to DNA-damaging therapies. We primarily focus on studies of epithelial-derived solid tumors. Cancer Res; 77(9); 2179–85. ©2017 AACR. |
---|---|
AbstractList | Cancer genomic instability contributes to the phenomenon of intratumoral genetic heterogeneity, provides the genetic diversity required for natural selection, and enables the extensive phenotypic diversity that is frequently observed among patients. Genomic instability has previously been associated with poor prognosis. However, we have evidence that for solid tumors of epithelial origin, extreme levels of genomic instability, where more than 75% of the genome is subject to somatic copy number alterations, are associated with a potentially better prognosis compared with intermediate levels under this threshold. This has been observed in clonal subpopulations of larger size, especially when genomic instability is shared among a limited number of clones. We hypothesize that cancers with extreme levels of genomic instability may be teetering on the brink of a threshold where so much of their genome is adversely altered that cells rarely replicate successfully. Another possibility is that tumors with high levels of genomic instability are more immunogenic than other cancers with a less extensive burden of genetic aberrations. Regardless of the exact mechanism, but hinging on our ability to quantify how a tumor's burden of genetic aberrations is distributed among coexisting clones, genomic instability has important therapeutic implications. Herein, we explore the possibility that a high genomic instability could be the basis for a tumor's sensitivity to DNA-damaging therapies. We primarily focus on studies of epithelial-derived solid tumors. Cancer Res; 77(9); 2179–85. ©2017 AACR. Cancer genomic instability contributes to the phenomenon of intratumoral genetic heterogeneity, provides the genetic diversity required for natural selection and enables the extensive phenotypic diversity that is frequently observed among patients. Genomic instability has previously been associated with poor prognosis. However, we have evidence that for solid tumors of epithelial origin, extreme levels of genomic instability, where more than 75% of the genome is subject to somatic copy number alterations, are associated with a potentially better prognosis compared to intermediate levels under this threshold. This has been observed in clonal subpopulations of larger size , especially when genomic instability is shared among a limited number of clones . We hypothesize that cancers with extreme levels of genomic instability may be teetering on the brink of a threshold where so much of their genome is adversely altered that cells rarely replicate successfully. Another possibility is that tumors with high levels of genomic instability are more immunogenic than other cancers with a less extensive burden of genetic aberrations. Regardless of the exact mechanism, but hinging on our ability to quantify how a tumor’s burden of genetic aberrations is distributed among coexisting clones – genomic instability has important therapeutic implications. Herein, we explore the possibility that a high genomic instability could be the basis for a tumor’s sensitivity to DNA damaging therapies. We primarily focus on studies of epithelial-derived solid tumors. Cancer genomic instability contributes to the phenomenon of intratumoral genetic heterogeneity, provides the genetic diversity required for natural selection, and enables the extensive phenotypic diversity that is frequently observed among patients. Genomic instability has previously been associated with poor prognosis. However, we have evidence that for solid tumors of epithelial origin, extreme levels of genomic instability, where more than 75% of the genome is subject to somatic copy number alterations, are associated with a potentially better prognosis compared with intermediate levels under this threshold. This has been observed in clonal subpopulations of larger size, especially when genomic instability is shared among a limited number of clones. We hypothesize that cancers with extreme levels of genomic instability may be teetering on the brink of a threshold where so much of their genome is adversely altered that cells rarely replicate successfully. Another possibility is that tumors with high levels of genomic instability are more immunogenic than other cancers with a less extensive burden of genetic aberrations. Regardless of the exact mechanism, but hinging on our ability to quantify how a tumor's burden of genetic aberrations is distributed among coexisting clones, genomic instability has important therapeutic implications. Herein, we explore the possibility that a high genomic instability could be the basis for a tumor's sensitivity to DNA-damaging therapies. We primarily focus on studies of epithelial-derived solid tumors. . Cancer genomic instability contributes to the phenomenon of intratumoral genetic heterogeneity, provides the genetic diversity required for natural selection, and enables the extensive phenotypic diversity that is frequently observed among patients. Genomic instability has previously been associated with poor prognosis. However, we have evidence that for solid tumors of epithelial origin, extreme levels of genomic instability, where more than 75% of the genome is subject to somatic copy number alterations, are associated with a potentially better prognosis compared with intermediate levels under this threshold. This has been observed in clonal subpopulations of larger size, especially when genomic instability is shared among a limited number of clones. We hypothesize that cancers with extreme levels of genomic instability may be teetering on the brink of a threshold where so much of their genome is adversely altered that cells rarely replicate successfully. Another possibility is that tumors with high levels of genomic instability are more immunogenic than other cancers with a less extensive burden of genetic aberrations. Regardless of the exact mechanism, but hinging on our ability to quantify how a tumor's burden of genetic aberrations is distributed among coexisting clones, genomic instability has important therapeutic implications. Herein, we explore the possibility that a high genomic instability could be the basis for a tumor's sensitivity to DNA-damaging therapies. We primarily focus on studies of epithelial-derived solid tumors. Cancer Res; 77(9); 2179-85. copyright 2017 AACR. Cancer genomic instability contributes to the phenomenon of intratumoral genetic heterogeneity, provides the genetic diversity required for natural selection, and enables the extensive phenotypic diversity that is frequently observed among patients. Genomic instability has previously been associated with poor prognosis. However, we have evidence that for solid tumors of epithelial origin, extreme levels of genomic instability, where more than 75% of the genome is subject to somatic copy number alterations, are associated with a potentially better prognosis compared with intermediate levels under this threshold. This has been observed in clonal subpopulations of larger size, especially when genomic instability is shared among a limited number of clones. We hypothesize that cancers with extreme levels of genomic instability may be teetering on the brink of a threshold where so much of their genome is adversely altered that cells rarely replicate successfully. Another possibility is that tumors with high levels of genomic instability are more immunogenic than other cancers with a less extensive burden of genetic aberrations. Regardless of the exact mechanism, but hinging on our ability to quantify how a tumor's burden of genetic aberrations is distributed among coexisting clones, genomic instability has important therapeutic implications. Herein, we explore the possibility that a high genomic instability could be the basis for a tumor's sensitivity to DNA-damaging therapies. We primarily focus on studies of epithelial-derived solid tumors. Cancer Res; 77(9); 2179-85. ©2017 AACR.Cancer genomic instability contributes to the phenomenon of intratumoral genetic heterogeneity, provides the genetic diversity required for natural selection, and enables the extensive phenotypic diversity that is frequently observed among patients. Genomic instability has previously been associated with poor prognosis. However, we have evidence that for solid tumors of epithelial origin, extreme levels of genomic instability, where more than 75% of the genome is subject to somatic copy number alterations, are associated with a potentially better prognosis compared with intermediate levels under this threshold. This has been observed in clonal subpopulations of larger size, especially when genomic instability is shared among a limited number of clones. We hypothesize that cancers with extreme levels of genomic instability may be teetering on the brink of a threshold where so much of their genome is adversely altered that cells rarely replicate successfully. Another possibility is that tumors with high levels of genomic instability are more immunogenic than other cancers with a less extensive burden of genetic aberrations. Regardless of the exact mechanism, but hinging on our ability to quantify how a tumor's burden of genetic aberrations is distributed among coexisting clones, genomic instability has important therapeutic implications. Herein, we explore the possibility that a high genomic instability could be the basis for a tumor's sensitivity to DNA-damaging therapies. We primarily focus on studies of epithelial-derived solid tumors. Cancer Res; 77(9); 2179-85. ©2017 AACR. |
Author | Andor, Noemi Ji, Hanlee P. Maley, Carlo C. |
AuthorAffiliation | 4 Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA 1 Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA 2 Biodesign Center for Personalized Diagnostics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, U.S.A 3 Centre for Evolution and Cancer, Institute of Cancer Research, London UK |
AuthorAffiliation_xml | – name: 1 Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA – name: 2 Biodesign Center for Personalized Diagnostics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, U.S.A – name: 3 Centre for Evolution and Cancer, Institute of Cancer Research, London UK – name: 4 Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA |
Author_xml | – sequence: 1 givenname: Noemi surname: Andor fullname: Andor, Noemi – sequence: 2 givenname: Carlo C. surname: Maley fullname: Maley, Carlo C. – sequence: 3 givenname: Hanlee P. surname: Ji fullname: Ji, Hanlee P. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28432052$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9rFTEUxYNU7Gv1IygDbtxMzZ3JzWQUCvXR1sJDN891yKR32pSZpCZ5Qr-9GfoH7UJXIeR3Tu6554Dt-eCJsbfAjwBQfeScqxpF1xytT77VIGtAbF-wFWCr6k4I3GOrJ2afHaR0U64IHF-x_UaJtuHYrNiXc_Jhdra68CmbwU0u31XOV2vjLcVP1ZYoU3T-qgq-ytdUbdzschXGahsmigv1mr0czZTozcN5yH6cnW7XX-vN9_OL9cmmtmWkXDegFI3tqFCg4EbwXlyKccCOuLSt6CU1jZUj75QEtLwzXS-6XhpCGEiJoT1kx_e-t7thpktLPkcz6dvoZhPvdDBO__3i3bW-Cr80CmhL3mLw4cEghp87SlnPLlmaJuMp7JKGnkOHIJX8P6p6gJJDLq7vn6E3YRd92UQxVG2DohcL9e7P4Z-mfmyiAJ_vARtDSpFGbV022YUli5s0cL30rpdO9dKpLr1rkHrpvajxmfrxg3_rfgNhj640 |
CitedBy_id | crossref_primary_10_1186_s13008_018_0035_3 crossref_primary_10_1016_j_ctrv_2024_102766 crossref_primary_10_1038_s41577_022_00719_y crossref_primary_10_1002_ijc_33722 crossref_primary_10_1016_j_molmed_2019_04_004 crossref_primary_10_1186_s40425_019_0795_6 crossref_primary_10_4236_jbm_2022_101006 crossref_primary_10_1038_s41467_024_51847_z crossref_primary_10_1016_j_compbiomed_2023_106598 crossref_primary_10_3390_cells8101214 crossref_primary_10_1016_j_ebiom_2019_10_058 crossref_primary_10_3390_cancers16193252 crossref_primary_10_1007_s42764_021_00049_8 crossref_primary_10_1093_jnci_djz213 crossref_primary_10_1158_1535_7163_MCT_18_1203 crossref_primary_10_32604_or_2022_03529 crossref_primary_10_3390_ijerph192416721 crossref_primary_10_1158_2767_9764_CRC_23_0089 crossref_primary_10_1186_s12885_023_11132_6 crossref_primary_10_3389_fonc_2019_00119 crossref_primary_10_1002_mc_23341 crossref_primary_10_3390_biomedicines12040762 crossref_primary_10_3390_ijms222111440 crossref_primary_10_1080_16078454_2022_2107970 crossref_primary_10_1016_j_bbcan_2020_188459 crossref_primary_10_1016_j_dnarep_2020_103018 crossref_primary_10_1111_eva_12612 crossref_primary_10_1111_odi_14347 crossref_primary_10_1016_j_pharmthera_2020_107492 crossref_primary_10_3389_fcell_2023_1260423 crossref_primary_10_1177_11769351231154679 crossref_primary_10_3390_diagnostics12081907 crossref_primary_10_3389_fonc_2022_876531 crossref_primary_10_3390_ijms18081776 crossref_primary_10_1002_wrna_1736 crossref_primary_10_3389_fonc_2023_1209707 crossref_primary_10_1158_2159_8290_CD_19_0761 crossref_primary_10_1158_2767_9764_CRC_24_0240 crossref_primary_10_7759_cureus_24803 crossref_primary_10_1186_s12935_025_03734_w crossref_primary_10_3390_cancers16152725 crossref_primary_10_1210_jc_2018_02164 crossref_primary_10_1155_2017_2467940 crossref_primary_10_3390_life11121312 crossref_primary_10_1002_2211_5463_13211 crossref_primary_10_18632_genesandcancer_231 crossref_primary_10_1016_j_neo_2020_11_001 crossref_primary_10_1158_2767_9764_CRC_24_0558 crossref_primary_10_1002_path_5901 crossref_primary_10_1080_09553002_2018_1454617 crossref_primary_10_1016_j_biochi_2023_07_002 crossref_primary_10_3390_cells9102332 crossref_primary_10_31857_S0006302923030110 crossref_primary_10_1038_s41416_021_01587_4 crossref_primary_10_18632_aging_202891 crossref_primary_10_1158_0008_5472_CAN_17_1355 crossref_primary_10_1111_his_13642 crossref_primary_10_1038_s41525_022_00333_w crossref_primary_10_1186_s12967_023_04060_3 crossref_primary_10_1016_j_mednuc_2020_01_001 crossref_primary_10_1038_s43018_023_00643_7 crossref_primary_10_1080_19336950_2021_1965422 crossref_primary_10_1038_s41388_021_01884_5 crossref_primary_10_1016_j_celrep_2022_110421 crossref_primary_10_1002_jcp_29300 crossref_primary_10_3390_cancers15102709 crossref_primary_10_1038_s41598_021_90047_3 crossref_primary_10_3390_cancers13215328 crossref_primary_10_3389_fimmu_2023_1083069 crossref_primary_10_3390_ijms23031819 crossref_primary_10_1038_s44222_023_00087_9 crossref_primary_10_1177_10998004221132250 crossref_primary_10_1016_j_cca_2019_12_028 crossref_primary_10_1016_j_critrevonc_2023_104086 crossref_primary_10_1200_PO_22_00571 crossref_primary_10_3390_cancers13133200 crossref_primary_10_1080_09553002_2021_1962572 crossref_primary_10_3389_fmolb_2021_685440 crossref_primary_10_3390_diseases13030086 crossref_primary_10_1016_j_trecan_2020_12_012 crossref_primary_10_1016_j_tranon_2019_05_002 crossref_primary_10_3389_fimmu_2024_1493978 crossref_primary_10_1038_s41585_021_00500_1 crossref_primary_10_3390_ijms22179110 crossref_primary_10_1080_15592294_2019_1634985 crossref_primary_10_1360_SSC_2022_0158 crossref_primary_10_3390_cancers14174189 crossref_primary_10_1186_s12885_020_07062_2 crossref_primary_10_1155_2022_6530884 crossref_primary_10_1007_s00262_021_03076_2 crossref_primary_10_1158_0008_5472_CAN_21_2794 crossref_primary_10_1080_2162402X_2021_1975386 crossref_primary_10_1016_j_molcel_2023_01_003 crossref_primary_10_1016_j_neulet_2019_134680 crossref_primary_10_1080_15384101_2020_1743902 crossref_primary_10_32604_or_2023_029274 crossref_primary_10_1007_s10637_021_01120_7 crossref_primary_10_1158_0008_5472_CAN_20_0512 crossref_primary_10_1016_j_mednuc_2019_06_001 crossref_primary_10_1016_j_bbrc_2021_05_062 crossref_primary_10_3390_cimb44110372 crossref_primary_10_3390_cancers15133351 crossref_primary_10_1007_s42764_021_00043_0 crossref_primary_10_3390_cancers17040685 crossref_primary_10_1186_s12885_023_10831_4 crossref_primary_10_1080_21655979_2021_1924555 crossref_primary_10_3389_fonc_2020_611127 crossref_primary_10_1002_adfm_202416813 crossref_primary_10_1080_17460441_2019_1550066 crossref_primary_10_3390_ijms241813926 crossref_primary_10_18632_aging_203698 crossref_primary_10_3892_or_2022_8390 crossref_primary_10_1016_j_bj_2020_08_001 crossref_primary_10_1155_2019_9584504 crossref_primary_10_1016_j_ygeno_2021_06_029 crossref_primary_10_1126_sciadv_abm7981 crossref_primary_10_3892_ijo_2018_4589 crossref_primary_10_1186_s13058_020_01289_4 crossref_primary_10_1016_j_bbcan_2022_188703 crossref_primary_10_3390_cancers11060805 crossref_primary_10_1038_s41416_024_02873_7 crossref_primary_10_1002_jcb_29693 crossref_primary_10_3389_fonc_2021_587554 crossref_primary_10_1002_cam4_5074 crossref_primary_10_3390_ijms19072078 crossref_primary_10_1007_s00285_024_02134_4 crossref_primary_10_1073_pnas_2320804121 crossref_primary_10_1080_14740338_2022_2020243 crossref_primary_10_3389_fimmu_2021_806324 crossref_primary_10_3389_fonc_2024_1447807 crossref_primary_10_1186_s12964_022_00850_2 crossref_primary_10_1002_jcp_27321 crossref_primary_10_1002_ijc_34007 crossref_primary_10_1016_j_cell_2024_08_040 crossref_primary_10_3390_cancers13122879 crossref_primary_10_3389_fgene_2022_919391 crossref_primary_10_1007_s11538_020_00768_1 crossref_primary_10_1016_j_labinv_2023_100134 crossref_primary_10_3390_cancers12113300 crossref_primary_10_1371_journal_pone_0311085 crossref_primary_10_18632_aging_205336 crossref_primary_10_1134_S0006350923030107 crossref_primary_10_1016_j_dnarep_2023_103583 crossref_primary_10_3389_fcell_2021_657667 crossref_primary_10_3389_fmolb_2021_668888 crossref_primary_10_1021_acssensors_3c01060 crossref_primary_10_3389_fcell_2022_707405 crossref_primary_10_1016_j_isci_2022_105244 crossref_primary_10_1038_s41591_021_01233_9 crossref_primary_10_3389_fimmu_2023_1187160 crossref_primary_10_3390_cancers13205173 crossref_primary_10_1016_j_omto_2021_07_011 crossref_primary_10_18632_oncotarget_22939 crossref_primary_10_3390_epigenomes9010005 |
Cites_doi | 10.1016/S0022-5193(89)80036-0 10.1101/gad.1897010 10.1038/srep06866 10.1371/journal.pcbi.1004413 10.1038/ng.2760 10.1554/0014-3820(2001)055[0909:MMILYP]2.0.CO;2 10.1016/S0169-5347(03)00216-7 10.1177/1091581815625593 10.1186/s12916-015-0425-1 10.1111/acel.12060 10.1142/S0129183198000935 10.1371/journal.pgen.1003553 10.1146/annurev.genet.34.1.401 10.1158/1055-9965.EPI-11-0343 10.1038/nm.3984 10.1002/1521-1878(200012)22:12<1057::AID-BIES3>3.0.CO;2-W 10.1038/nrclinonc.2009.237 10.1111/nyas.12105 10.1073/pnas.212514799 10.1016/j.virusres.2004.11.002 10.1186/s13059-016-1010-4 10.1371/journal.pgen.1002282 10.1073/pnas.96.4.1492 10.1038/nature13600 10.1016/S0092-8674(00)81683-9 10.1158/2159-8290.CD-13-0285 10.1038/ncomms12158 10.1038/ncomms4756 10.1101/cshperspect.a001016 10.1186/s13059-015-0620-6 10.1038/nprot.2014.170 10.1186/1471-2148-10-298 10.1016/j.cub.2009.04.036 10.1016/j.cell.2015.01.026 10.1038/nbt.2203 10.1371/journal.pone.0005860 10.1038/nri3789 10.1093/mutage/13.5.475 10.1038/nrg2593 10.1002/tera.1420090224 10.1093/jhered/esp057 10.1093/nar/gkt671 10.1371/journal.pmed.1001786 10.1001/jama.2015.13134 10.1038/nature16478 10.1093/oxfordjournals.jhered.a111354 10.1126/science.1239947 10.1016/j.cell.2011.02.013 10.1038/ng.3173 10.1038/nature10738 10.1177/019459989310800616 10.1056/NEJMoa1003466 10.1056/NEJM198407263110405 10.1073/pnas.0904895106 10.1073/pnas.111085598 10.1038/nature10795 10.1158/0008-5472.CAN-10-3667 10.1016/j.molcel.2010.12.006 |
ContentType | Journal Article |
Copyright | 2017 American Association for Cancer Research. Copyright American Association for Cancer Research, Inc. May 1, 2017 |
Copyright_xml | – notice: 2017 American Association for Cancer Research. – notice: Copyright American Association for Cancer Research, Inc. May 1, 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TM 7TO 7U9 8FD FR3 H94 P64 RC3 7X8 5PM |
DOI | 10.1158/0008-5472.CAN-16-1553 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Genetics Abstracts Genetics Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 2185 |
ExternalDocumentID | PMC5413432 28432052 10_1158_0008_5472_CAN_16_1553 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA185138 – fundername: NCI NIH HHS grantid: R01 CA140657 – fundername: NCI NIH HHS grantid: R01 CA170595 – fundername: NCI NIH HHS grantid: P01 CA091955 – fundername: NCI NIH HHS grantid: R01 CA149566 – fundername: NCI NIH HHS grantid: K99 CA215256 – fundername: NHGRI NIH HHS grantid: P01 HG000205 |
GroupedDBID | --- -ET 18M 29B 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AETEA AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P PQQKQ RCR RHI RNS SJN TR2 W2D W8F WH7 WOQ YKV YZZ CGR CUY CVF ECM EIF NPM RHF 7T5 7TM 7TO 7U9 8FD FR3 H94 P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c538t-2188ef3f854540a4094d4fb57e06c3496e22c6f078615c07a794796ae51be84b3 |
ISSN | 0008-5472 1538-7445 |
IngestDate | Thu Aug 21 18:21:40 EDT 2025 Mon Jul 21 10:00:52 EDT 2025 Fri Jul 11 05:32:46 EDT 2025 Fri Jul 25 20:05:15 EDT 2025 Wed Feb 19 02:29:38 EST 2025 Tue Jul 01 01:12:46 EDT 2025 Thu Apr 24 23:03:38 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | 2017 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c538t-2188ef3f854540a4094d4fb57e06c3496e22c6f078615c07a794796ae51be84b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://cancerres.aacrjournals.org/content/canres/77/9/2179.full.pdf |
PMID | 28432052 |
PQID | 1983254942 |
PQPubID | 105549 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5413432 proquest_miscellaneous_1901751686 proquest_miscellaneous_1891145462 proquest_journals_1983254942 pubmed_primary_28432052 crossref_citationtrail_10_1158_0008_5472_CAN_16_1553 crossref_primary_10_1158_0008_5472_CAN_16_1553 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-01 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Baltimore |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2017 |
Publisher | American Association for Cancer Research, Inc |
Publisher_xml | – name: American Association for Cancer Research, Inc |
References | Schroedinger (2022061706174827700_bib38) 2000 Otto (2022061706174827700_bib30) 2000; 34 Kitamura (2022061706174827700_bib62) 2015; 15 Gambino (2022061706174827700_bib42) 2013; 12 Kostadinov (2022061706174827700_bib34) 2013; 9 Look (2022061706174827700_bib56) 1984; 311 Crotty (2022061706174827700_bib10) 2001; 98 Eigen (2022061706174827700_bib31) 2002; 99 Beckman (2022061706174827700_bib33) 2009; 4 Zack (2022061706174827700_bib27) 2013; 45 Abegglen (2022061706174827700_bib55) 2015; 314 Andor (2022061706174827700_bib3) 2016; 22 Kostadinov (2022061706174827700_bib47) 2016; 12 Gregg (2022061706174827700_bib57) 1993; 108 Singh (2022061706174827700_bib15) 2015; 3 Zeyl (2022061706174827700_bib39) 2001; 55 Fehrmann (2022061706174827700_bib5) 2015; 47 Cazier (2022061706174827700_bib18) 2014; 5 Degtyareva (2022061706174827700_bib43) 2013; 41 Ke (2022061706174827700_bib25) 2009; 19 Robles (2022061706174827700_bib41) 2010; 2 Kumar (2022061706174827700_bib52) 2016; 35 Hanahan (2022061706174827700_bib1) 2000; 100 Loeb (2022061706174827700_bib36) 1999; 96 Carter (2022061706174827700_bib28) 2012; 30 Oliver (2022061706174827700_bib54) 2010; 24 Vesely (2022061706174827700_bib12) 2013; 1284 Wang (2022061706174827700_bib50) 2014; 512 Khatibzadeh (2022061706174827700_bib26) 2014; 4 Birkbak (2022061706174827700_bib23) 2011; 71 Hanahan (2022061706174827700_bib2) 2011; 144 Nowak (2022061706174827700_bib7) 1989; 137 Lynch (2022061706174827700_bib40) 1993; 84 Chen (2022061706174827700_bib21) 2012; 482 Jiang (2022061706174827700_bib48) 2016; 17 Livraghi (2022061706174827700_bib60) 2015; 13 Bagnoli (2022061706174827700_bib8) 1998; 09 Biebricher (2022061706174827700_bib37) 2005; 107 Roylance (2022061706174827700_bib24) 2011; 20 Drummond (2022061706174827700_bib35) 2003; 18 Martinez (2022061706174827700_bib45) 2016; 7 Johnson (2022061706174827700_bib58) 2014; 343 Vilar (2022061706174827700_bib11) 2010; 7 Soukup (2022061706174827700_bib22) 1974; 9 Hastings (2022061706174827700_bib17) 2009; 10 Chen (2022061706174827700_bib20) 2015; 160 Morrissy (2022061706174827700_bib59) 2016; 529 Ding (2022061706174827700_bib53) 2012; 481 Angelova (2022061706174827700_bib14) 2015; 16 Jiang (2022061706174827700_bib32) 2010; 10 Denver (2022061706174827700_bib44) 2009; 106 Gourabi (2022061706174827700_bib51) 1998; 13 Gerstein (2022061706174827700_bib4) 2009; 100 Santarpia (2022061706174827700_bib13) 2015; 12 Hodi (2022061706174827700_bib16) 2010; 363 Kennedy (2022061706174827700_bib49) 2014; 9 Dewhurst (2022061706174827700_bib29) 2014; 4 Sniegowski (2022061706174827700_bib6) 2000; 22 Herr (2022061706174827700_bib9) 2011; 7 Mroz (2022061706174827700_bib19) 2015; 12 Rulten (2022061706174827700_bib61) 2011; 41 Nelson (2022061706174827700_bib46) 1994; 14 |
References_xml | – volume: 137 start-page: 375 year: 1989 ident: 2022061706174827700_bib7 article-title: Error thresholds of replication in finite populations mutation frequencies and the onset of muller's ratchet publication-title: J Theor Biol doi: 10.1016/S0022-5193(89)80036-0 – volume: 24 start-page: 837 year: 2010 ident: 2022061706174827700_bib54 article-title: Chronic cisplatin treatment promotes enhanced damage repair and tumor progression in a mouse model of lung cancer publication-title: Genes Dev doi: 10.1101/gad.1897010 – volume: 4 start-page: 6866 year: 2014 ident: 2022061706174827700_bib26 article-title: Determination of motility forces on isolated chromosomes with laser tweezers publication-title: Sci Rep doi: 10.1038/srep06866 – volume: 12 start-page: e1004413 year: 2016 ident: 2022061706174827700_bib47 article-title: Bulk genotyping of biopsies can create spurious evidence for hetereogeneity in mutation content publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004413 – volume: 45 start-page: 1134 year: 2013 ident: 2022061706174827700_bib27 article-title: Pan-cancer patterns of somatic copy number alteration publication-title: Nat Genet doi: 10.1038/ng.2760 – volume: 3 start-page: 289 year: 2015 ident: 2022061706174827700_bib15 article-title: Immune checkpoints and immunotherapy for colorectal cancer publication-title: Gastroenterol Rep – volume: 55 start-page: 909 year: 2001 ident: 2022061706174827700_bib39 article-title: Mutational meltdown in laboratory yeast populations publication-title: Evol Int J Org Evol doi: 10.1554/0014-3820(2001)055[0909:MMILYP]2.0.CO;2 – volume: 18 start-page: 481 year: 2003 ident: 2022061706174827700_bib35 article-title: Measurably evolving populations publication-title: Trends Ecol Evol doi: 10.1016/S0169-5347(03)00216-7 – volume: 35 start-page: 327 year: 2016 ident: 2022061706174827700_bib52 article-title: Genetic instability in lymphocytes is associated with blood plasma antioxidant levels in health care workers occupationally exposed to ionizing radiation publication-title: Int J Toxicol doi: 10.1177/1091581815625593 – volume: 13 start-page: 188 year: 2015 ident: 2022061706174827700_bib60 article-title: PARP inhibitors in the management of breast cancer: current data and future prospects publication-title: BMC Med doi: 10.1186/s12916-015-0425-1 – volume: 12 start-page: 435 year: 2013 ident: 2022061706174827700_bib42 article-title: Oxidative stress activates a specific p53 transcriptional response that regulates cellular senescence and aging publication-title: Aging Cell doi: 10.1111/acel.12060 – volume: 09 start-page: 999 year: 1998 ident: 2022061706174827700_bib8 article-title: Eigen's error threshold and mutational meltdown in a quasispecies model publication-title: Int J Mod Phys C doi: 10.1142/S0129183198000935 – volume: 9 start-page: e1003553 year: 2013 ident: 2022061706174827700_bib34 article-title: NSAIDs modulate clonal evolution in Barrett's esophagus publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003553 – volume: 34 start-page: 401 year: 2000 ident: 2022061706174827700_bib30 article-title: Polyploid incidence and evolution publication-title: Annu Rev Genet doi: 10.1146/annurev.genet.34.1.401 – volume: 20 start-page: 2183 year: 2011 ident: 2022061706174827700_bib24 article-title: Relationship of extreme chromosomal instability with long-term survival in a retrospective analysis of primary breast cancer publication-title: Cancer Epidemiol Biomarkers Prev doi: 10.1158/1055-9965.EPI-11-0343 – volume: 22 start-page: 105 year: 2016 ident: 2022061706174827700_bib3 article-title: Pan-cancer analysis of the extent and consequences of intratumor heterogeneity publication-title: Nat Med doi: 10.1038/nm.3984 – volume: 22 start-page: 1057 year: 2000 ident: 2022061706174827700_bib6 article-title: The evolution of mutation rates: separating causes from consequences publication-title: Bioessays doi: 10.1002/1521-1878(200012)22:12<1057::AID-BIES3>3.0.CO;2-W – volume: 7 start-page: 153 year: 2010 ident: 2022061706174827700_bib11 article-title: Microsatellite instability in colorectal cancer-the stable evidence publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2009.237 – volume: 1284 start-page: 1 year: 2013 ident: 2022061706174827700_bib12 article-title: Cancer immunoediting: antigens, mechanisms, and implications to cancer immunotherapy publication-title: Ann N Y Acad Sci doi: 10.1111/nyas.12105 – volume: 99 start-page: 13374 year: 2002 ident: 2022061706174827700_bib31 article-title: Error catastrophe and antiviral strategy publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.212514799 – volume: 107 start-page: 117 year: 2005 ident: 2022061706174827700_bib37 article-title: The error threshold publication-title: Virus Res doi: 10.1016/j.virusres.2004.11.002 – volume: 17 start-page: 144 year: 2016 ident: 2022061706174827700_bib48 article-title: GiniClust: detecting rare cell types from single-cell gene expression data with Gini index publication-title: Genome Biol doi: 10.1186/s13059-016-1010-4 – volume: 7 start-page: e1002282 year: 2011 ident: 2022061706174827700_bib9 article-title: Mutator suppression and escape from replication error-induced extinction in yeast publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002282 – volume: 96 start-page: 1492 year: 1999 ident: 2022061706174827700_bib36 article-title: Lethal mutagenesis of HIV with mutagenic nucleoside analogs publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.4.1492 – volume: 512 start-page: 155 year: 2014 ident: 2022061706174827700_bib50 article-title: Clonal evolution in breast cancer revealed by single nucleus genome sequencing publication-title: Nature doi: 10.1038/nature13600 – volume: 100 start-page: 57 year: 2000 ident: 2022061706174827700_bib1 article-title: The hallmarks of cancer publication-title: Cell doi: 10.1016/S0092-8674(00)81683-9 – year: 2000 ident: 2022061706174827700_bib38 article-title: What is life? The physical aspect of the living cell – volume: 12 start-page: 74 year: 2015 ident: 2022061706174827700_bib13 article-title: Tumor immune microenvironment characterization and response to anti-PD-1 therapy publication-title: Cancer Biol Med – volume: 4 start-page: 175 year: 2014 ident: 2022061706174827700_bib29 article-title: Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-13-0285 – volume: 7 start-page: 12158 year: 2016 ident: 2022061706174827700_bib45 article-title: Dynamic clonal equilibrium and predetermined cancer risk in Barrett's oesophagus publication-title: Nat Commun doi: 10.1038/ncomms12158 – volume: 5 start-page: 3756 year: 2014 ident: 2022061706174827700_bib18 article-title: Whole-genome sequencing of bladder cancers reveals somatic CDKN1A mutations and clinicopathological associations with mutation burden publication-title: Nat Commun doi: 10.1038/ncomms4756 – volume: 2 start-page: a001016 year: 2010 ident: 2022061706174827700_bib41 article-title: Clinical outcomes and correlates of TP53 mutations and cancer publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a001016 – volume: 16 start-page: 64 year: 2015 ident: 2022061706174827700_bib14 article-title: Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy publication-title: Genome Biol doi: 10.1186/s13059-015-0620-6 – volume: 9 start-page: 2586 year: 2014 ident: 2022061706174827700_bib49 article-title: Detecting ultralow-frequency mutations by Duplex Sequencing publication-title: Nat Protoc doi: 10.1038/nprot.2014.170 – volume: 10 start-page: 298 year: 2010 ident: 2022061706174827700_bib32 article-title: Impacts of mutation effects and population size on mutation rate in asexual populations: a simulation study publication-title: BMC Evol Biol doi: 10.1186/1471-2148-10-298 – volume: 19 start-page: 807 year: 2009 ident: 2022061706174827700_bib25 article-title: The distribution of polar ejection forces determines the amplitude of chromosome directional instability publication-title: Curr Biol doi: 10.1016/j.cub.2009.04.036 – volume: 160 start-page: 771 year: 2015 ident: 2022061706174827700_bib20 article-title: Targeting the adaptability of heterogeneous aneuploids publication-title: Cell doi: 10.1016/j.cell.2015.01.026 – volume: 30 start-page: 413 year: 2012 ident: 2022061706174827700_bib28 article-title: Absolute quantification of somatic DNA alterations in human cancer publication-title: Nat Biotechnol doi: 10.1038/nbt.2203 – volume: 4 start-page: e5860 year: 2009 ident: 2022061706174827700_bib33 article-title: Mutator mutations enhance tumorigenic efficiency across fitness landscapes publication-title: PLoS One doi: 10.1371/journal.pone.0005860 – volume: 15 start-page: 73 year: 2015 ident: 2022061706174827700_bib62 article-title: Immune cell promotion of metastasis publication-title: Nat Rev Immunol doi: 10.1038/nri3789 – volume: 14 start-page: 1815 year: 1994 ident: 2022061706174827700_bib46 article-title: DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways publication-title: Mol Cell Biol – volume: 13 start-page: 475 year: 1998 ident: 2022061706174827700_bib51 article-title: A cytokinesis-blocked micronucleus study of the radioadaptive response of lymphocytes of individuals occupationally exposed to chronic doses of radiation publication-title: Mutagenesis doi: 10.1093/mutage/13.5.475 – volume: 10 start-page: 551 year: 2009 ident: 2022061706174827700_bib17 article-title: Mechanisms of change in gene copy number publication-title: Nat Rev Genet doi: 10.1038/nrg2593 – volume: 9 start-page: 250 year: 1974 ident: 2022061706174827700_bib22 article-title: Evolution by gene duplication publication-title: Teratology doi: 10.1002/tera.1420090224 – volume: 100 start-page: 571 year: 2009 ident: 2022061706174827700_bib4 article-title: Ploidy and the causes of genomic evolution publication-title: J Hered doi: 10.1093/jhered/esp057 – volume: 41 start-page: 8995 year: 2013 ident: 2022061706174827700_bib43 article-title: Oxidative stress-induced mutagenesis in single-strand DNA occurs primarily at cytosines and is DNA polymerase zeta-dependent only for adenines and guanines publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt671 – volume: 12 start-page: e1001786 year: 2015 ident: 2022061706174827700_bib19 article-title: Intra-tumor genetic heterogeneity and mortality in head and neck cancer: analysis of data from the Cancer Genome Atlas publication-title: PLoS Med doi: 10.1371/journal.pmed.1001786 – volume: 314 start-page: 1850 year: 2015 ident: 2022061706174827700_bib55 article-title: Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans publication-title: JAMA doi: 10.1001/jama.2015.13134 – volume: 529 start-page: 351 year: 2016 ident: 2022061706174827700_bib59 article-title: Divergent clonal selection dominates medulloblastoma at recurrence publication-title: Nature doi: 10.1038/nature16478 – volume: 84 start-page: 339 year: 1993 ident: 2022061706174827700_bib40 article-title: The mutational meltdown in asexual populations publication-title: J Hered doi: 10.1093/oxfordjournals.jhered.a111354 – volume: 343 start-page: 189 year: 2014 ident: 2022061706174827700_bib58 article-title: Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma publication-title: Science doi: 10.1126/science.1239947 – volume: 144 start-page: 646 year: 2011 ident: 2022061706174827700_bib2 article-title: Hallmarks of cancer: the next generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 47 start-page: 115 year: 2015 ident: 2022061706174827700_bib5 article-title: Gene expression analysis identifies global gene dosage sensitivity in cancer publication-title: Nat Genet doi: 10.1038/ng.3173 – volume: 481 start-page: 506 year: 2012 ident: 2022061706174827700_bib53 article-title: Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing publication-title: Nature doi: 10.1038/nature10738 – volume: 108 start-page: 731 year: 1993 ident: 2022061706174827700_bib57 article-title: DNA content and tumor response to induction chemotherapy in patients with advanced laryngeal squamous cell carcinoma publication-title: Otolaryngol Head Neck Surg doi: 10.1177/019459989310800616 – volume: 363 start-page: 711 year: 2010 ident: 2022061706174827700_bib16 article-title: Improved survival with ipilimumab in patients with metastatic melanoma publication-title: N Engl J Med doi: 10.1056/NEJMoa1003466 – volume: 311 start-page: 231 year: 1984 ident: 2022061706174827700_bib56 article-title: Cellular DNA content as a predictor of response to chemotherapy in infants with unresectable neuroblastoma publication-title: N Engl J Med doi: 10.1056/NEJM198407263110405 – volume: 106 start-page: 16310 year: 2009 ident: 2022061706174827700_bib44 article-title: A genome-wide view of Caenorhabditis elegans base-substitution mutation processes publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0904895106 – volume: 98 start-page: 6895 year: 2001 ident: 2022061706174827700_bib10 article-title: RNA virus error catastrophe: direct molecular test by using ribavirin publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.111085598 – volume: 482 start-page: 246 year: 2012 ident: 2022061706174827700_bib21 article-title: Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy publication-title: Nature doi: 10.1038/nature10795 – volume: 71 start-page: 3447 year: 2011 ident: 2022061706174827700_bib23 article-title: Paradoxical relationship between chromosomal instability and survival outcome in cancer publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-10-3667 – volume: 41 start-page: 33 year: 2011 ident: 2022061706174827700_bib61 article-title: PARP-3 and APLF function together to accelerate nonhomologous end-joining publication-title: Mol Cell doi: 10.1016/j.molcel.2010.12.006 |
SSID | ssj0005105 |
Score | 2.601184 |
SecondaryResourceType | review_article |
Snippet | Cancer genomic instability contributes to the phenomenon of intratumoral genetic heterogeneity, provides the genetic diversity required for natural selection,... Cancer genomic instability contributes to the phenomenon of intratumoral genetic heterogeneity, provides the genetic diversity required for natural selection... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2179 |
SubjectTerms | Cancer Cloning Copy number DNA Copy Number Variations - genetics DNA damage DNA Damage - genetics Genetic diversity Genetic Heterogeneity Genome, Human Genomes Genomic instability Genomic Instability - genetics Humans Immunogenicity Natural selection Neoplasms - genetics Neoplasms - therapy Plutonium Prognosis Solid tumors Tumors |
Title | Genomic Instability in Cancer: Teetering on the Limit of Tolerance |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28432052 https://www.proquest.com/docview/1983254942 https://www.proquest.com/docview/1891145462 https://www.proquest.com/docview/1901751686 https://pubmed.ncbi.nlm.nih.gov/PMC5413432 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgSIgXxH1lAxmJt8ohF9txeRsVMIFWgdRJe4tix9EqZclUuhd-_Y4vcZpRDcZLVCW24_o7ORf7XBB6X1FWgmCVJNVZSajMM1LWCSMxyD7Jpa5iZWKHTxb8-JR-O2Nnw56ujS7ZyEj93hlX8j-owj3A1UTJ3gHZMCjcgN-AL1wBYbj-E8ZftQ0qtif-Lt-2i-IzSK7dxrnxdrGOzc6d0cYzGQVx2TV6HRAfUhVAx6lPAHRuT3idq4ZlJU0TjTYOKmfqLzp9sRp2tv0m-LxcN910HgUXHVceuzSp-ac_ou3dBpBgwbcvcFBBGHXldiI9MM2curSQPVf1xVkc9cxGLNJVj_HiFlQMtpuVM-F8H937ovnRgiScmDpHg-zqz-tviLTgaGhNHCbMEbsozDAFDFMkvDDD3EcPUjAuDHf8_nPIMc-842v_Zh_3BcN82DmbsUbzh5ly09t2S31ZPkGPvd2BjxwRPUX3dPsMPTzxnhXP0SdPS3iLlvCqxY4kPuJASbhrMVAStpSEuxoHSnqBTr98Xs6Pia-vQRQgtiGw9ELXWS2YScNYGku_orVkuY65MoUEdJoqXoMSCWqvivMSeHc-46VmidSCyuwl2mu7Vu8jDEoO0zLOKlExWiVK1nWm8oxzsEeUFukE0X6NCuWTz5saKE1xK0ITFIVuly77yt86HPYAFP5D_VUkMxBbjM4oTONdeAxs1JyNla3urqCNAKkPy8BvawO6c84SLvgEvXKYhlnBAmRpzKB3PkI7NDBp3MdP2tW5TefOQI-Ezq_v-l8P0KPhCz1Ee5v1lX4DGvJGvrUEfQ1Uxq6I |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genomic+Instability+in+Cancer%3A+Teetering+on+the+Limit+of+Tolerance&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Andor%2C+Noemi&rft.au=Maley%2C+Carlo+C.&rft.au=Ji%2C+Hanlee+P.&rft.date=2017-05-01&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=77&rft.issue=9&rft.spage=2179&rft.epage=2185&rft_id=info:doi/10.1158%2F0008-5472.CAN-16-1553&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_0008_5472_CAN_16_1553 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |