Genomic Instability in Cancer: Teetering on the Limit of Tolerance

Cancer genomic instability contributes to the phenomenon of intratumoral genetic heterogeneity, provides the genetic diversity required for natural selection, and enables the extensive phenotypic diversity that is frequently observed among patients. Genomic instability has previously been associated...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 77; no. 9; pp. 2179 - 2185
Main Authors Andor, Noemi, Maley, Carlo C., Ji, Hanlee P.
Format Journal Article
LanguageEnglish
Published United States American Association for Cancer Research, Inc 01.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cancer genomic instability contributes to the phenomenon of intratumoral genetic heterogeneity, provides the genetic diversity required for natural selection, and enables the extensive phenotypic diversity that is frequently observed among patients. Genomic instability has previously been associated with poor prognosis. However, we have evidence that for solid tumors of epithelial origin, extreme levels of genomic instability, where more than 75% of the genome is subject to somatic copy number alterations, are associated with a potentially better prognosis compared with intermediate levels under this threshold. This has been observed in clonal subpopulations of larger size, especially when genomic instability is shared among a limited number of clones. We hypothesize that cancers with extreme levels of genomic instability may be teetering on the brink of a threshold where so much of their genome is adversely altered that cells rarely replicate successfully. Another possibility is that tumors with high levels of genomic instability are more immunogenic than other cancers with a less extensive burden of genetic aberrations. Regardless of the exact mechanism, but hinging on our ability to quantify how a tumor's burden of genetic aberrations is distributed among coexisting clones, genomic instability has important therapeutic implications. Herein, we explore the possibility that a high genomic instability could be the basis for a tumor's sensitivity to DNA-damaging therapies. We primarily focus on studies of epithelial-derived solid tumors. Cancer Res; 77(9); 2179–85. ©2017 AACR.
AbstractList Cancer genomic instability contributes to the phenomenon of intratumoral genetic heterogeneity, provides the genetic diversity required for natural selection, and enables the extensive phenotypic diversity that is frequently observed among patients. Genomic instability has previously been associated with poor prognosis. However, we have evidence that for solid tumors of epithelial origin, extreme levels of genomic instability, where more than 75% of the genome is subject to somatic copy number alterations, are associated with a potentially better prognosis compared with intermediate levels under this threshold. This has been observed in clonal subpopulations of larger size, especially when genomic instability is shared among a limited number of clones. We hypothesize that cancers with extreme levels of genomic instability may be teetering on the brink of a threshold where so much of their genome is adversely altered that cells rarely replicate successfully. Another possibility is that tumors with high levels of genomic instability are more immunogenic than other cancers with a less extensive burden of genetic aberrations. Regardless of the exact mechanism, but hinging on our ability to quantify how a tumor's burden of genetic aberrations is distributed among coexisting clones, genomic instability has important therapeutic implications. Herein, we explore the possibility that a high genomic instability could be the basis for a tumor's sensitivity to DNA-damaging therapies. We primarily focus on studies of epithelial-derived solid tumors. Cancer Res; 77(9); 2179–85. ©2017 AACR.
Cancer genomic instability contributes to the phenomenon of intratumoral genetic heterogeneity, provides the genetic diversity required for natural selection and enables the extensive phenotypic diversity that is frequently observed among patients. Genomic instability has previously been associated with poor prognosis. However, we have evidence that for solid tumors of epithelial origin, extreme levels of genomic instability, where more than 75% of the genome is subject to somatic copy number alterations, are associated with a potentially better prognosis compared to intermediate levels under this threshold. This has been observed in clonal subpopulations of larger size , especially when genomic instability is shared among a limited number of clones . We hypothesize that cancers with extreme levels of genomic instability may be teetering on the brink of a threshold where so much of their genome is adversely altered that cells rarely replicate successfully. Another possibility is that tumors with high levels of genomic instability are more immunogenic than other cancers with a less extensive burden of genetic aberrations. Regardless of the exact mechanism, but hinging on our ability to quantify how a tumor’s burden of genetic aberrations is distributed among coexisting clones – genomic instability has important therapeutic implications. Herein, we explore the possibility that a high genomic instability could be the basis for a tumor’s sensitivity to DNA damaging therapies. We primarily focus on studies of epithelial-derived solid tumors.
Cancer genomic instability contributes to the phenomenon of intratumoral genetic heterogeneity, provides the genetic diversity required for natural selection, and enables the extensive phenotypic diversity that is frequently observed among patients. Genomic instability has previously been associated with poor prognosis. However, we have evidence that for solid tumors of epithelial origin, extreme levels of genomic instability, where more than 75% of the genome is subject to somatic copy number alterations, are associated with a potentially better prognosis compared with intermediate levels under this threshold. This has been observed in clonal subpopulations of larger size, especially when genomic instability is shared among a limited number of clones. We hypothesize that cancers with extreme levels of genomic instability may be teetering on the brink of a threshold where so much of their genome is adversely altered that cells rarely replicate successfully. Another possibility is that tumors with high levels of genomic instability are more immunogenic than other cancers with a less extensive burden of genetic aberrations. Regardless of the exact mechanism, but hinging on our ability to quantify how a tumor's burden of genetic aberrations is distributed among coexisting clones, genomic instability has important therapeutic implications. Herein, we explore the possibility that a high genomic instability could be the basis for a tumor's sensitivity to DNA-damaging therapies. We primarily focus on studies of epithelial-derived solid tumors. .
Cancer genomic instability contributes to the phenomenon of intratumoral genetic heterogeneity, provides the genetic diversity required for natural selection, and enables the extensive phenotypic diversity that is frequently observed among patients. Genomic instability has previously been associated with poor prognosis. However, we have evidence that for solid tumors of epithelial origin, extreme levels of genomic instability, where more than 75% of the genome is subject to somatic copy number alterations, are associated with a potentially better prognosis compared with intermediate levels under this threshold. This has been observed in clonal subpopulations of larger size, especially when genomic instability is shared among a limited number of clones. We hypothesize that cancers with extreme levels of genomic instability may be teetering on the brink of a threshold where so much of their genome is adversely altered that cells rarely replicate successfully. Another possibility is that tumors with high levels of genomic instability are more immunogenic than other cancers with a less extensive burden of genetic aberrations. Regardless of the exact mechanism, but hinging on our ability to quantify how a tumor's burden of genetic aberrations is distributed among coexisting clones, genomic instability has important therapeutic implications. Herein, we explore the possibility that a high genomic instability could be the basis for a tumor's sensitivity to DNA-damaging therapies. We primarily focus on studies of epithelial-derived solid tumors. Cancer Res; 77(9); 2179-85. copyright 2017 AACR.
Cancer genomic instability contributes to the phenomenon of intratumoral genetic heterogeneity, provides the genetic diversity required for natural selection, and enables the extensive phenotypic diversity that is frequently observed among patients. Genomic instability has previously been associated with poor prognosis. However, we have evidence that for solid tumors of epithelial origin, extreme levels of genomic instability, where more than 75% of the genome is subject to somatic copy number alterations, are associated with a potentially better prognosis compared with intermediate levels under this threshold. This has been observed in clonal subpopulations of larger size, especially when genomic instability is shared among a limited number of clones. We hypothesize that cancers with extreme levels of genomic instability may be teetering on the brink of a threshold where so much of their genome is adversely altered that cells rarely replicate successfully. Another possibility is that tumors with high levels of genomic instability are more immunogenic than other cancers with a less extensive burden of genetic aberrations. Regardless of the exact mechanism, but hinging on our ability to quantify how a tumor's burden of genetic aberrations is distributed among coexisting clones, genomic instability has important therapeutic implications. Herein, we explore the possibility that a high genomic instability could be the basis for a tumor's sensitivity to DNA-damaging therapies. We primarily focus on studies of epithelial-derived solid tumors. Cancer Res; 77(9); 2179-85. ©2017 AACR.Cancer genomic instability contributes to the phenomenon of intratumoral genetic heterogeneity, provides the genetic diversity required for natural selection, and enables the extensive phenotypic diversity that is frequently observed among patients. Genomic instability has previously been associated with poor prognosis. However, we have evidence that for solid tumors of epithelial origin, extreme levels of genomic instability, where more than 75% of the genome is subject to somatic copy number alterations, are associated with a potentially better prognosis compared with intermediate levels under this threshold. This has been observed in clonal subpopulations of larger size, especially when genomic instability is shared among a limited number of clones. We hypothesize that cancers with extreme levels of genomic instability may be teetering on the brink of a threshold where so much of their genome is adversely altered that cells rarely replicate successfully. Another possibility is that tumors with high levels of genomic instability are more immunogenic than other cancers with a less extensive burden of genetic aberrations. Regardless of the exact mechanism, but hinging on our ability to quantify how a tumor's burden of genetic aberrations is distributed among coexisting clones, genomic instability has important therapeutic implications. Herein, we explore the possibility that a high genomic instability could be the basis for a tumor's sensitivity to DNA-damaging therapies. We primarily focus on studies of epithelial-derived solid tumors. Cancer Res; 77(9); 2179-85. ©2017 AACR.
Author Andor, Noemi
Ji, Hanlee P.
Maley, Carlo C.
AuthorAffiliation 4 Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
1 Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
2 Biodesign Center for Personalized Diagnostics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, U.S.A
3 Centre for Evolution and Cancer, Institute of Cancer Research, London UK
AuthorAffiliation_xml – name: 1 Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
– name: 2 Biodesign Center for Personalized Diagnostics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, U.S.A
– name: 3 Centre for Evolution and Cancer, Institute of Cancer Research, London UK
– name: 4 Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
Author_xml – sequence: 1
  givenname: Noemi
  surname: Andor
  fullname: Andor, Noemi
– sequence: 2
  givenname: Carlo C.
  surname: Maley
  fullname: Maley, Carlo C.
– sequence: 3
  givenname: Hanlee P.
  surname: Ji
  fullname: Ji, Hanlee P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28432052$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9rFTEUxYNU7Gv1IygDbtxMzZ3JzWQUCvXR1sJDN891yKR32pSZpCZ5Qr-9GfoH7UJXIeR3Tu6554Dt-eCJsbfAjwBQfeScqxpF1xytT77VIGtAbF-wFWCr6k4I3GOrJ2afHaR0U64IHF-x_UaJtuHYrNiXc_Jhdra68CmbwU0u31XOV2vjLcVP1ZYoU3T-qgq-ytdUbdzschXGahsmigv1mr0czZTozcN5yH6cnW7XX-vN9_OL9cmmtmWkXDegFI3tqFCg4EbwXlyKccCOuLSt6CU1jZUj75QEtLwzXS-6XhpCGEiJoT1kx_e-t7thpktLPkcz6dvoZhPvdDBO__3i3bW-Cr80CmhL3mLw4cEghp87SlnPLlmaJuMp7JKGnkOHIJX8P6p6gJJDLq7vn6E3YRd92UQxVG2DohcL9e7P4Z-mfmyiAJ_vARtDSpFGbV022YUli5s0cL30rpdO9dKpLr1rkHrpvajxmfrxg3_rfgNhj640
CitedBy_id crossref_primary_10_1186_s13008_018_0035_3
crossref_primary_10_1016_j_ctrv_2024_102766
crossref_primary_10_1038_s41577_022_00719_y
crossref_primary_10_1002_ijc_33722
crossref_primary_10_1016_j_molmed_2019_04_004
crossref_primary_10_1186_s40425_019_0795_6
crossref_primary_10_4236_jbm_2022_101006
crossref_primary_10_1038_s41467_024_51847_z
crossref_primary_10_1016_j_compbiomed_2023_106598
crossref_primary_10_3390_cells8101214
crossref_primary_10_1016_j_ebiom_2019_10_058
crossref_primary_10_3390_cancers16193252
crossref_primary_10_1007_s42764_021_00049_8
crossref_primary_10_1093_jnci_djz213
crossref_primary_10_1158_1535_7163_MCT_18_1203
crossref_primary_10_32604_or_2022_03529
crossref_primary_10_3390_ijerph192416721
crossref_primary_10_1158_2767_9764_CRC_23_0089
crossref_primary_10_1186_s12885_023_11132_6
crossref_primary_10_3389_fonc_2019_00119
crossref_primary_10_1002_mc_23341
crossref_primary_10_3390_biomedicines12040762
crossref_primary_10_3390_ijms222111440
crossref_primary_10_1080_16078454_2022_2107970
crossref_primary_10_1016_j_bbcan_2020_188459
crossref_primary_10_1016_j_dnarep_2020_103018
crossref_primary_10_1111_eva_12612
crossref_primary_10_1111_odi_14347
crossref_primary_10_1016_j_pharmthera_2020_107492
crossref_primary_10_3389_fcell_2023_1260423
crossref_primary_10_1177_11769351231154679
crossref_primary_10_3390_diagnostics12081907
crossref_primary_10_3389_fonc_2022_876531
crossref_primary_10_3390_ijms18081776
crossref_primary_10_1002_wrna_1736
crossref_primary_10_3389_fonc_2023_1209707
crossref_primary_10_1158_2159_8290_CD_19_0761
crossref_primary_10_1158_2767_9764_CRC_24_0240
crossref_primary_10_7759_cureus_24803
crossref_primary_10_1186_s12935_025_03734_w
crossref_primary_10_3390_cancers16152725
crossref_primary_10_1210_jc_2018_02164
crossref_primary_10_1155_2017_2467940
crossref_primary_10_3390_life11121312
crossref_primary_10_1002_2211_5463_13211
crossref_primary_10_18632_genesandcancer_231
crossref_primary_10_1016_j_neo_2020_11_001
crossref_primary_10_1158_2767_9764_CRC_24_0558
crossref_primary_10_1002_path_5901
crossref_primary_10_1080_09553002_2018_1454617
crossref_primary_10_1016_j_biochi_2023_07_002
crossref_primary_10_3390_cells9102332
crossref_primary_10_31857_S0006302923030110
crossref_primary_10_1038_s41416_021_01587_4
crossref_primary_10_18632_aging_202891
crossref_primary_10_1158_0008_5472_CAN_17_1355
crossref_primary_10_1111_his_13642
crossref_primary_10_1038_s41525_022_00333_w
crossref_primary_10_1186_s12967_023_04060_3
crossref_primary_10_1016_j_mednuc_2020_01_001
crossref_primary_10_1038_s43018_023_00643_7
crossref_primary_10_1080_19336950_2021_1965422
crossref_primary_10_1038_s41388_021_01884_5
crossref_primary_10_1016_j_celrep_2022_110421
crossref_primary_10_1002_jcp_29300
crossref_primary_10_3390_cancers15102709
crossref_primary_10_1038_s41598_021_90047_3
crossref_primary_10_3390_cancers13215328
crossref_primary_10_3389_fimmu_2023_1083069
crossref_primary_10_3390_ijms23031819
crossref_primary_10_1038_s44222_023_00087_9
crossref_primary_10_1177_10998004221132250
crossref_primary_10_1016_j_cca_2019_12_028
crossref_primary_10_1016_j_critrevonc_2023_104086
crossref_primary_10_1200_PO_22_00571
crossref_primary_10_3390_cancers13133200
crossref_primary_10_1080_09553002_2021_1962572
crossref_primary_10_3389_fmolb_2021_685440
crossref_primary_10_3390_diseases13030086
crossref_primary_10_1016_j_trecan_2020_12_012
crossref_primary_10_1016_j_tranon_2019_05_002
crossref_primary_10_3389_fimmu_2024_1493978
crossref_primary_10_1038_s41585_021_00500_1
crossref_primary_10_3390_ijms22179110
crossref_primary_10_1080_15592294_2019_1634985
crossref_primary_10_1360_SSC_2022_0158
crossref_primary_10_3390_cancers14174189
crossref_primary_10_1186_s12885_020_07062_2
crossref_primary_10_1155_2022_6530884
crossref_primary_10_1007_s00262_021_03076_2
crossref_primary_10_1158_0008_5472_CAN_21_2794
crossref_primary_10_1080_2162402X_2021_1975386
crossref_primary_10_1016_j_molcel_2023_01_003
crossref_primary_10_1016_j_neulet_2019_134680
crossref_primary_10_1080_15384101_2020_1743902
crossref_primary_10_32604_or_2023_029274
crossref_primary_10_1007_s10637_021_01120_7
crossref_primary_10_1158_0008_5472_CAN_20_0512
crossref_primary_10_1016_j_mednuc_2019_06_001
crossref_primary_10_1016_j_bbrc_2021_05_062
crossref_primary_10_3390_cimb44110372
crossref_primary_10_3390_cancers15133351
crossref_primary_10_1007_s42764_021_00043_0
crossref_primary_10_3390_cancers17040685
crossref_primary_10_1186_s12885_023_10831_4
crossref_primary_10_1080_21655979_2021_1924555
crossref_primary_10_3389_fonc_2020_611127
crossref_primary_10_1002_adfm_202416813
crossref_primary_10_1080_17460441_2019_1550066
crossref_primary_10_3390_ijms241813926
crossref_primary_10_18632_aging_203698
crossref_primary_10_3892_or_2022_8390
crossref_primary_10_1016_j_bj_2020_08_001
crossref_primary_10_1155_2019_9584504
crossref_primary_10_1016_j_ygeno_2021_06_029
crossref_primary_10_1126_sciadv_abm7981
crossref_primary_10_3892_ijo_2018_4589
crossref_primary_10_1186_s13058_020_01289_4
crossref_primary_10_1016_j_bbcan_2022_188703
crossref_primary_10_3390_cancers11060805
crossref_primary_10_1038_s41416_024_02873_7
crossref_primary_10_1002_jcb_29693
crossref_primary_10_3389_fonc_2021_587554
crossref_primary_10_1002_cam4_5074
crossref_primary_10_3390_ijms19072078
crossref_primary_10_1007_s00285_024_02134_4
crossref_primary_10_1073_pnas_2320804121
crossref_primary_10_1080_14740338_2022_2020243
crossref_primary_10_3389_fimmu_2021_806324
crossref_primary_10_3389_fonc_2024_1447807
crossref_primary_10_1186_s12964_022_00850_2
crossref_primary_10_1002_jcp_27321
crossref_primary_10_1002_ijc_34007
crossref_primary_10_1016_j_cell_2024_08_040
crossref_primary_10_3390_cancers13122879
crossref_primary_10_3389_fgene_2022_919391
crossref_primary_10_1007_s11538_020_00768_1
crossref_primary_10_1016_j_labinv_2023_100134
crossref_primary_10_3390_cancers12113300
crossref_primary_10_1371_journal_pone_0311085
crossref_primary_10_18632_aging_205336
crossref_primary_10_1134_S0006350923030107
crossref_primary_10_1016_j_dnarep_2023_103583
crossref_primary_10_3389_fcell_2021_657667
crossref_primary_10_3389_fmolb_2021_668888
crossref_primary_10_1021_acssensors_3c01060
crossref_primary_10_3389_fcell_2022_707405
crossref_primary_10_1016_j_isci_2022_105244
crossref_primary_10_1038_s41591_021_01233_9
crossref_primary_10_3389_fimmu_2023_1187160
crossref_primary_10_3390_cancers13205173
crossref_primary_10_1016_j_omto_2021_07_011
crossref_primary_10_18632_oncotarget_22939
crossref_primary_10_3390_epigenomes9010005
Cites_doi 10.1016/S0022-5193(89)80036-0
10.1101/gad.1897010
10.1038/srep06866
10.1371/journal.pcbi.1004413
10.1038/ng.2760
10.1554/0014-3820(2001)055[0909:MMILYP]2.0.CO;2
10.1016/S0169-5347(03)00216-7
10.1177/1091581815625593
10.1186/s12916-015-0425-1
10.1111/acel.12060
10.1142/S0129183198000935
10.1371/journal.pgen.1003553
10.1146/annurev.genet.34.1.401
10.1158/1055-9965.EPI-11-0343
10.1038/nm.3984
10.1002/1521-1878(200012)22:12<1057::AID-BIES3>3.0.CO;2-W
10.1038/nrclinonc.2009.237
10.1111/nyas.12105
10.1073/pnas.212514799
10.1016/j.virusres.2004.11.002
10.1186/s13059-016-1010-4
10.1371/journal.pgen.1002282
10.1073/pnas.96.4.1492
10.1038/nature13600
10.1016/S0092-8674(00)81683-9
10.1158/2159-8290.CD-13-0285
10.1038/ncomms12158
10.1038/ncomms4756
10.1101/cshperspect.a001016
10.1186/s13059-015-0620-6
10.1038/nprot.2014.170
10.1186/1471-2148-10-298
10.1016/j.cub.2009.04.036
10.1016/j.cell.2015.01.026
10.1038/nbt.2203
10.1371/journal.pone.0005860
10.1038/nri3789
10.1093/mutage/13.5.475
10.1038/nrg2593
10.1002/tera.1420090224
10.1093/jhered/esp057
10.1093/nar/gkt671
10.1371/journal.pmed.1001786
10.1001/jama.2015.13134
10.1038/nature16478
10.1093/oxfordjournals.jhered.a111354
10.1126/science.1239947
10.1016/j.cell.2011.02.013
10.1038/ng.3173
10.1038/nature10738
10.1177/019459989310800616
10.1056/NEJMoa1003466
10.1056/NEJM198407263110405
10.1073/pnas.0904895106
10.1073/pnas.111085598
10.1038/nature10795
10.1158/0008-5472.CAN-10-3667
10.1016/j.molcel.2010.12.006
ContentType Journal Article
Copyright 2017 American Association for Cancer Research.
Copyright American Association for Cancer Research, Inc. May 1, 2017
Copyright_xml – notice: 2017 American Association for Cancer Research.
– notice: Copyright American Association for Cancer Research, Inc. May 1, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TM
7TO
7U9
8FD
FR3
H94
P64
RC3
7X8
5PM
DOI 10.1158/0008-5472.CAN-16-1553
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
Genetics Abstracts
Genetics Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 2185
ExternalDocumentID PMC5413432
28432052
10_1158_0008_5472_CAN_16_1553
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA185138
– fundername: NCI NIH HHS
  grantid: R01 CA140657
– fundername: NCI NIH HHS
  grantid: R01 CA170595
– fundername: NCI NIH HHS
  grantid: P01 CA091955
– fundername: NCI NIH HHS
  grantid: R01 CA149566
– fundername: NCI NIH HHS
  grantid: K99 CA215256
– fundername: NHGRI NIH HHS
  grantid: P01 HG000205
GroupedDBID ---
-ET
18M
29B
2WC
34G
39C
53G
5GY
5RE
5VS
6J9
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
ADNWM
AENEX
AETEA
AFHIN
AFOSN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
OK1
P0W
P2P
PQQKQ
RCR
RHI
RNS
SJN
TR2
W2D
W8F
WH7
WOQ
YKV
YZZ
CGR
CUY
CVF
ECM
EIF
NPM
RHF
7T5
7TM
7TO
7U9
8FD
FR3
H94
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c538t-2188ef3f854540a4094d4fb57e06c3496e22c6f078615c07a794796ae51be84b3
ISSN 0008-5472
1538-7445
IngestDate Thu Aug 21 18:21:40 EDT 2025
Mon Jul 21 10:00:52 EDT 2025
Fri Jul 11 05:32:46 EDT 2025
Fri Jul 25 20:05:15 EDT 2025
Wed Feb 19 02:29:38 EST 2025
Tue Jul 01 01:12:46 EDT 2025
Thu Apr 24 23:03:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License 2017 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c538t-2188ef3f854540a4094d4fb57e06c3496e22c6f078615c07a794796ae51be84b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://cancerres.aacrjournals.org/content/canres/77/9/2179.full.pdf
PMID 28432052
PQID 1983254942
PQPubID 105549
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5413432
proquest_miscellaneous_1901751686
proquest_miscellaneous_1891145462
proquest_journals_1983254942
pubmed_primary_28432052
crossref_citationtrail_10_1158_0008_5472_CAN_16_1553
crossref_primary_10_1158_0008_5472_CAN_16_1553
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Baltimore
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2017
Publisher American Association for Cancer Research, Inc
Publisher_xml – name: American Association for Cancer Research, Inc
References Schroedinger (2022061706174827700_bib38) 2000
Otto (2022061706174827700_bib30) 2000; 34
Kitamura (2022061706174827700_bib62) 2015; 15
Gambino (2022061706174827700_bib42) 2013; 12
Kostadinov (2022061706174827700_bib34) 2013; 9
Look (2022061706174827700_bib56) 1984; 311
Crotty (2022061706174827700_bib10) 2001; 98
Eigen (2022061706174827700_bib31) 2002; 99
Beckman (2022061706174827700_bib33) 2009; 4
Zack (2022061706174827700_bib27) 2013; 45
Abegglen (2022061706174827700_bib55) 2015; 314
Andor (2022061706174827700_bib3) 2016; 22
Kostadinov (2022061706174827700_bib47) 2016; 12
Gregg (2022061706174827700_bib57) 1993; 108
Singh (2022061706174827700_bib15) 2015; 3
Zeyl (2022061706174827700_bib39) 2001; 55
Fehrmann (2022061706174827700_bib5) 2015; 47
Cazier (2022061706174827700_bib18) 2014; 5
Degtyareva (2022061706174827700_bib43) 2013; 41
Ke (2022061706174827700_bib25) 2009; 19
Robles (2022061706174827700_bib41) 2010; 2
Kumar (2022061706174827700_bib52) 2016; 35
Hanahan (2022061706174827700_bib1) 2000; 100
Loeb (2022061706174827700_bib36) 1999; 96
Carter (2022061706174827700_bib28) 2012; 30
Oliver (2022061706174827700_bib54) 2010; 24
Vesely (2022061706174827700_bib12) 2013; 1284
Wang (2022061706174827700_bib50) 2014; 512
Khatibzadeh (2022061706174827700_bib26) 2014; 4
Birkbak (2022061706174827700_bib23) 2011; 71
Hanahan (2022061706174827700_bib2) 2011; 144
Nowak (2022061706174827700_bib7) 1989; 137
Lynch (2022061706174827700_bib40) 1993; 84
Chen (2022061706174827700_bib21) 2012; 482
Jiang (2022061706174827700_bib48) 2016; 17
Livraghi (2022061706174827700_bib60) 2015; 13
Bagnoli (2022061706174827700_bib8) 1998; 09
Biebricher (2022061706174827700_bib37) 2005; 107
Roylance (2022061706174827700_bib24) 2011; 20
Drummond (2022061706174827700_bib35) 2003; 18
Martinez (2022061706174827700_bib45) 2016; 7
Johnson (2022061706174827700_bib58) 2014; 343
Vilar (2022061706174827700_bib11) 2010; 7
Soukup (2022061706174827700_bib22) 1974; 9
Hastings (2022061706174827700_bib17) 2009; 10
Chen (2022061706174827700_bib20) 2015; 160
Morrissy (2022061706174827700_bib59) 2016; 529
Ding (2022061706174827700_bib53) 2012; 481
Angelova (2022061706174827700_bib14) 2015; 16
Jiang (2022061706174827700_bib32) 2010; 10
Denver (2022061706174827700_bib44) 2009; 106
Gourabi (2022061706174827700_bib51) 1998; 13
Gerstein (2022061706174827700_bib4) 2009; 100
Santarpia (2022061706174827700_bib13) 2015; 12
Hodi (2022061706174827700_bib16) 2010; 363
Kennedy (2022061706174827700_bib49) 2014; 9
Dewhurst (2022061706174827700_bib29) 2014; 4
Sniegowski (2022061706174827700_bib6) 2000; 22
Herr (2022061706174827700_bib9) 2011; 7
Mroz (2022061706174827700_bib19) 2015; 12
Rulten (2022061706174827700_bib61) 2011; 41
Nelson (2022061706174827700_bib46) 1994; 14
References_xml – volume: 137
  start-page: 375
  year: 1989
  ident: 2022061706174827700_bib7
  article-title: Error thresholds of replication in finite populations mutation frequencies and the onset of muller's ratchet
  publication-title: J Theor Biol
  doi: 10.1016/S0022-5193(89)80036-0
– volume: 24
  start-page: 837
  year: 2010
  ident: 2022061706174827700_bib54
  article-title: Chronic cisplatin treatment promotes enhanced damage repair and tumor progression in a mouse model of lung cancer
  publication-title: Genes Dev
  doi: 10.1101/gad.1897010
– volume: 4
  start-page: 6866
  year: 2014
  ident: 2022061706174827700_bib26
  article-title: Determination of motility forces on isolated chromosomes with laser tweezers
  publication-title: Sci Rep
  doi: 10.1038/srep06866
– volume: 12
  start-page: e1004413
  year: 2016
  ident: 2022061706174827700_bib47
  article-title: Bulk genotyping of biopsies can create spurious evidence for hetereogeneity in mutation content
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004413
– volume: 45
  start-page: 1134
  year: 2013
  ident: 2022061706174827700_bib27
  article-title: Pan-cancer patterns of somatic copy number alteration
  publication-title: Nat Genet
  doi: 10.1038/ng.2760
– volume: 3
  start-page: 289
  year: 2015
  ident: 2022061706174827700_bib15
  article-title: Immune checkpoints and immunotherapy for colorectal cancer
  publication-title: Gastroenterol Rep
– volume: 55
  start-page: 909
  year: 2001
  ident: 2022061706174827700_bib39
  article-title: Mutational meltdown in laboratory yeast populations
  publication-title: Evol Int J Org Evol
  doi: 10.1554/0014-3820(2001)055[0909:MMILYP]2.0.CO;2
– volume: 18
  start-page: 481
  year: 2003
  ident: 2022061706174827700_bib35
  article-title: Measurably evolving populations
  publication-title: Trends Ecol Evol
  doi: 10.1016/S0169-5347(03)00216-7
– volume: 35
  start-page: 327
  year: 2016
  ident: 2022061706174827700_bib52
  article-title: Genetic instability in lymphocytes is associated with blood plasma antioxidant levels in health care workers occupationally exposed to ionizing radiation
  publication-title: Int J Toxicol
  doi: 10.1177/1091581815625593
– volume: 13
  start-page: 188
  year: 2015
  ident: 2022061706174827700_bib60
  article-title: PARP inhibitors in the management of breast cancer: current data and future prospects
  publication-title: BMC Med
  doi: 10.1186/s12916-015-0425-1
– volume: 12
  start-page: 435
  year: 2013
  ident: 2022061706174827700_bib42
  article-title: Oxidative stress activates a specific p53 transcriptional response that regulates cellular senescence and aging
  publication-title: Aging Cell
  doi: 10.1111/acel.12060
– volume: 09
  start-page: 999
  year: 1998
  ident: 2022061706174827700_bib8
  article-title: Eigen's error threshold and mutational meltdown in a quasispecies model
  publication-title: Int J Mod Phys C
  doi: 10.1142/S0129183198000935
– volume: 9
  start-page: e1003553
  year: 2013
  ident: 2022061706174827700_bib34
  article-title: NSAIDs modulate clonal evolution in Barrett's esophagus
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003553
– volume: 34
  start-page: 401
  year: 2000
  ident: 2022061706174827700_bib30
  article-title: Polyploid incidence and evolution
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.genet.34.1.401
– volume: 20
  start-page: 2183
  year: 2011
  ident: 2022061706174827700_bib24
  article-title: Relationship of extreme chromosomal instability with long-term survival in a retrospective analysis of primary breast cancer
  publication-title: Cancer Epidemiol Biomarkers Prev
  doi: 10.1158/1055-9965.EPI-11-0343
– volume: 22
  start-page: 105
  year: 2016
  ident: 2022061706174827700_bib3
  article-title: Pan-cancer analysis of the extent and consequences of intratumor heterogeneity
  publication-title: Nat Med
  doi: 10.1038/nm.3984
– volume: 22
  start-page: 1057
  year: 2000
  ident: 2022061706174827700_bib6
  article-title: The evolution of mutation rates: separating causes from consequences
  publication-title: Bioessays
  doi: 10.1002/1521-1878(200012)22:12<1057::AID-BIES3>3.0.CO;2-W
– volume: 7
  start-page: 153
  year: 2010
  ident: 2022061706174827700_bib11
  article-title: Microsatellite instability in colorectal cancer-the stable evidence
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2009.237
– volume: 1284
  start-page: 1
  year: 2013
  ident: 2022061706174827700_bib12
  article-title: Cancer immunoediting: antigens, mechanisms, and implications to cancer immunotherapy
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/nyas.12105
– volume: 99
  start-page: 13374
  year: 2002
  ident: 2022061706174827700_bib31
  article-title: Error catastrophe and antiviral strategy
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.212514799
– volume: 107
  start-page: 117
  year: 2005
  ident: 2022061706174827700_bib37
  article-title: The error threshold
  publication-title: Virus Res
  doi: 10.1016/j.virusres.2004.11.002
– volume: 17
  start-page: 144
  year: 2016
  ident: 2022061706174827700_bib48
  article-title: GiniClust: detecting rare cell types from single-cell gene expression data with Gini index
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-1010-4
– volume: 7
  start-page: e1002282
  year: 2011
  ident: 2022061706174827700_bib9
  article-title: Mutator suppression and escape from replication error-induced extinction in yeast
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002282
– volume: 96
  start-page: 1492
  year: 1999
  ident: 2022061706174827700_bib36
  article-title: Lethal mutagenesis of HIV with mutagenic nucleoside analogs
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.96.4.1492
– volume: 512
  start-page: 155
  year: 2014
  ident: 2022061706174827700_bib50
  article-title: Clonal evolution in breast cancer revealed by single nucleus genome sequencing
  publication-title: Nature
  doi: 10.1038/nature13600
– volume: 100
  start-page: 57
  year: 2000
  ident: 2022061706174827700_bib1
  article-title: The hallmarks of cancer
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81683-9
– year: 2000
  ident: 2022061706174827700_bib38
  article-title: What is life? The physical aspect of the living cell
– volume: 12
  start-page: 74
  year: 2015
  ident: 2022061706174827700_bib13
  article-title: Tumor immune microenvironment characterization and response to anti-PD-1 therapy
  publication-title: Cancer Biol Med
– volume: 4
  start-page: 175
  year: 2014
  ident: 2022061706174827700_bib29
  article-title: Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-13-0285
– volume: 7
  start-page: 12158
  year: 2016
  ident: 2022061706174827700_bib45
  article-title: Dynamic clonal equilibrium and predetermined cancer risk in Barrett's oesophagus
  publication-title: Nat Commun
  doi: 10.1038/ncomms12158
– volume: 5
  start-page: 3756
  year: 2014
  ident: 2022061706174827700_bib18
  article-title: Whole-genome sequencing of bladder cancers reveals somatic CDKN1A mutations and clinicopathological associations with mutation burden
  publication-title: Nat Commun
  doi: 10.1038/ncomms4756
– volume: 2
  start-page: a001016
  year: 2010
  ident: 2022061706174827700_bib41
  article-title: Clinical outcomes and correlates of TP53 mutations and cancer
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a001016
– volume: 16
  start-page: 64
  year: 2015
  ident: 2022061706174827700_bib14
  article-title: Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0620-6
– volume: 9
  start-page: 2586
  year: 2014
  ident: 2022061706174827700_bib49
  article-title: Detecting ultralow-frequency mutations by Duplex Sequencing
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2014.170
– volume: 10
  start-page: 298
  year: 2010
  ident: 2022061706174827700_bib32
  article-title: Impacts of mutation effects and population size on mutation rate in asexual populations: a simulation study
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-10-298
– volume: 19
  start-page: 807
  year: 2009
  ident: 2022061706174827700_bib25
  article-title: The distribution of polar ejection forces determines the amplitude of chromosome directional instability
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2009.04.036
– volume: 160
  start-page: 771
  year: 2015
  ident: 2022061706174827700_bib20
  article-title: Targeting the adaptability of heterogeneous aneuploids
  publication-title: Cell
  doi: 10.1016/j.cell.2015.01.026
– volume: 30
  start-page: 413
  year: 2012
  ident: 2022061706174827700_bib28
  article-title: Absolute quantification of somatic DNA alterations in human cancer
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2203
– volume: 4
  start-page: e5860
  year: 2009
  ident: 2022061706174827700_bib33
  article-title: Mutator mutations enhance tumorigenic efficiency across fitness landscapes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0005860
– volume: 15
  start-page: 73
  year: 2015
  ident: 2022061706174827700_bib62
  article-title: Immune cell promotion of metastasis
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3789
– volume: 14
  start-page: 1815
  year: 1994
  ident: 2022061706174827700_bib46
  article-title: DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways
  publication-title: Mol Cell Biol
– volume: 13
  start-page: 475
  year: 1998
  ident: 2022061706174827700_bib51
  article-title: A cytokinesis-blocked micronucleus study of the radioadaptive response of lymphocytes of individuals occupationally exposed to chronic doses of radiation
  publication-title: Mutagenesis
  doi: 10.1093/mutage/13.5.475
– volume: 10
  start-page: 551
  year: 2009
  ident: 2022061706174827700_bib17
  article-title: Mechanisms of change in gene copy number
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2593
– volume: 9
  start-page: 250
  year: 1974
  ident: 2022061706174827700_bib22
  article-title: Evolution by gene duplication
  publication-title: Teratology
  doi: 10.1002/tera.1420090224
– volume: 100
  start-page: 571
  year: 2009
  ident: 2022061706174827700_bib4
  article-title: Ploidy and the causes of genomic evolution
  publication-title: J Hered
  doi: 10.1093/jhered/esp057
– volume: 41
  start-page: 8995
  year: 2013
  ident: 2022061706174827700_bib43
  article-title: Oxidative stress-induced mutagenesis in single-strand DNA occurs primarily at cytosines and is DNA polymerase zeta-dependent only for adenines and guanines
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt671
– volume: 12
  start-page: e1001786
  year: 2015
  ident: 2022061706174827700_bib19
  article-title: Intra-tumor genetic heterogeneity and mortality in head and neck cancer: analysis of data from the Cancer Genome Atlas
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1001786
– volume: 314
  start-page: 1850
  year: 2015
  ident: 2022061706174827700_bib55
  article-title: Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans
  publication-title: JAMA
  doi: 10.1001/jama.2015.13134
– volume: 529
  start-page: 351
  year: 2016
  ident: 2022061706174827700_bib59
  article-title: Divergent clonal selection dominates medulloblastoma at recurrence
  publication-title: Nature
  doi: 10.1038/nature16478
– volume: 84
  start-page: 339
  year: 1993
  ident: 2022061706174827700_bib40
  article-title: The mutational meltdown in asexual populations
  publication-title: J Hered
  doi: 10.1093/oxfordjournals.jhered.a111354
– volume: 343
  start-page: 189
  year: 2014
  ident: 2022061706174827700_bib58
  article-title: Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma
  publication-title: Science
  doi: 10.1126/science.1239947
– volume: 144
  start-page: 646
  year: 2011
  ident: 2022061706174827700_bib2
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 47
  start-page: 115
  year: 2015
  ident: 2022061706174827700_bib5
  article-title: Gene expression analysis identifies global gene dosage sensitivity in cancer
  publication-title: Nat Genet
  doi: 10.1038/ng.3173
– volume: 481
  start-page: 506
  year: 2012
  ident: 2022061706174827700_bib53
  article-title: Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing
  publication-title: Nature
  doi: 10.1038/nature10738
– volume: 108
  start-page: 731
  year: 1993
  ident: 2022061706174827700_bib57
  article-title: DNA content and tumor response to induction chemotherapy in patients with advanced laryngeal squamous cell carcinoma
  publication-title: Otolaryngol Head Neck Surg
  doi: 10.1177/019459989310800616
– volume: 363
  start-page: 711
  year: 2010
  ident: 2022061706174827700_bib16
  article-title: Improved survival with ipilimumab in patients with metastatic melanoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1003466
– volume: 311
  start-page: 231
  year: 1984
  ident: 2022061706174827700_bib56
  article-title: Cellular DNA content as a predictor of response to chemotherapy in infants with unresectable neuroblastoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJM198407263110405
– volume: 106
  start-page: 16310
  year: 2009
  ident: 2022061706174827700_bib44
  article-title: A genome-wide view of Caenorhabditis elegans base-substitution mutation processes
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0904895106
– volume: 98
  start-page: 6895
  year: 2001
  ident: 2022061706174827700_bib10
  article-title: RNA virus error catastrophe: direct molecular test by using ribavirin
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.111085598
– volume: 482
  start-page: 246
  year: 2012
  ident: 2022061706174827700_bib21
  article-title: Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy
  publication-title: Nature
  doi: 10.1038/nature10795
– volume: 71
  start-page: 3447
  year: 2011
  ident: 2022061706174827700_bib23
  article-title: Paradoxical relationship between chromosomal instability and survival outcome in cancer
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-10-3667
– volume: 41
  start-page: 33
  year: 2011
  ident: 2022061706174827700_bib61
  article-title: PARP-3 and APLF function together to accelerate nonhomologous end-joining
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2010.12.006
SSID ssj0005105
Score 2.601184
SecondaryResourceType review_article
Snippet Cancer genomic instability contributes to the phenomenon of intratumoral genetic heterogeneity, provides the genetic diversity required for natural selection,...
Cancer genomic instability contributes to the phenomenon of intratumoral genetic heterogeneity, provides the genetic diversity required for natural selection...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2179
SubjectTerms Cancer
Cloning
Copy number
DNA Copy Number Variations - genetics
DNA damage
DNA Damage - genetics
Genetic diversity
Genetic Heterogeneity
Genome, Human
Genomes
Genomic instability
Genomic Instability - genetics
Humans
Immunogenicity
Natural selection
Neoplasms - genetics
Neoplasms - therapy
Plutonium
Prognosis
Solid tumors
Tumors
Title Genomic Instability in Cancer: Teetering on the Limit of Tolerance
URI https://www.ncbi.nlm.nih.gov/pubmed/28432052
https://www.proquest.com/docview/1983254942
https://www.proquest.com/docview/1891145462
https://www.proquest.com/docview/1901751686
https://pubmed.ncbi.nlm.nih.gov/PMC5413432
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgSIgXxH1lAxmJt8ohF9txeRsVMIFWgdRJe4tix9EqZclUuhd-_Y4vcZpRDcZLVCW24_o7ORf7XBB6X1FWgmCVJNVZSajMM1LWCSMxyD7Jpa5iZWKHTxb8-JR-O2Nnw56ujS7ZyEj93hlX8j-owj3A1UTJ3gHZMCjcgN-AL1wBYbj-E8ZftQ0qtif-Lt-2i-IzSK7dxrnxdrGOzc6d0cYzGQVx2TV6HRAfUhVAx6lPAHRuT3idq4ZlJU0TjTYOKmfqLzp9sRp2tv0m-LxcN910HgUXHVceuzSp-ac_ou3dBpBgwbcvcFBBGHXldiI9MM2curSQPVf1xVkc9cxGLNJVj_HiFlQMtpuVM-F8H937ovnRgiScmDpHg-zqz-tviLTgaGhNHCbMEbsozDAFDFMkvDDD3EcPUjAuDHf8_nPIMc-842v_Zh_3BcN82DmbsUbzh5ly09t2S31ZPkGPvd2BjxwRPUX3dPsMPTzxnhXP0SdPS3iLlvCqxY4kPuJASbhrMVAStpSEuxoHSnqBTr98Xs6Pia-vQRQgtiGw9ELXWS2YScNYGku_orVkuY65MoUEdJoqXoMSCWqvivMSeHc-46VmidSCyuwl2mu7Vu8jDEoO0zLOKlExWiVK1nWm8oxzsEeUFukE0X6NCuWTz5saKE1xK0ITFIVuly77yt86HPYAFP5D_VUkMxBbjM4oTONdeAxs1JyNla3urqCNAKkPy8BvawO6c84SLvgEvXKYhlnBAmRpzKB3PkI7NDBp3MdP2tW5TefOQI-Ezq_v-l8P0KPhCz1Ee5v1lX4DGvJGvrUEfQ1Uxq6I
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genomic+Instability+in+Cancer%3A+Teetering+on+the+Limit+of+Tolerance&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Andor%2C+Noemi&rft.au=Maley%2C+Carlo+C.&rft.au=Ji%2C+Hanlee+P.&rft.date=2017-05-01&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=77&rft.issue=9&rft.spage=2179&rft.epage=2185&rft_id=info:doi/10.1158%2F0008-5472.CAN-16-1553&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_0008_5472_CAN_16_1553
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon