In vitro 3D blood/lymph-vascularized human stromal tissues for preclinical assays of cancer metastasis

Tumour models mimicking in vivo three-dimensional (3D) microenvironments are of increasing interest in drug discovery because of the limitations inherent to current models. For example, preclinical assays that rely on monolayer or spheroid cell cultures cannot easily predict 3D cancer behaviours bec...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 179; pp. 144 - 155
Main Authors Nishiguchi, Akihiro, Matsusaki, Michiya, Kano, Mitsunobu R., Nishihara, Hiroshi, Okano, Daisuke, Asano, Yoshiya, Shimoda, Hiroshi, Kishimoto, Satoko, Iwai, Soichi, Akashi, Mitsuru
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tumour models mimicking in vivo three-dimensional (3D) microenvironments are of increasing interest in drug discovery because of the limitations inherent to current models. For example, preclinical assays that rely on monolayer or spheroid cell cultures cannot easily predict 3D cancer behaviours because they have no vasculature. Furthermore, there are major differences in cancer behaviour between human and animal experiments. Here, we show the construction of 3D blood/lymph-vascularized human stromal tissues that can be combined with cancer cells to mimic dynamic metastasis for real-time throughput screening of secreted proteinases. We validated this tool using three human carcinoma cell types that are known to invade blood/lymph vessels and promote angiogenesis. These cell types exhibited characteristic haematogenous/lymphogenous metastasis and tumour angiogenesis properties. Importantly, these carcinoma cells selectively secreted different matrix metalloproteinases depending on their metastasis stage and target vasculature, suggesting the possibility of developing drugs that can target each secreted proteinase. We conclude that the 3D tissue tool will be a powerful throughput system for predicting cancer cell responses and time-dependent secretion of molecules in preclinical assays. We present a tool for mimicking a series of early metastasis processes including invasion, tumour angiogenesis, intravasation, and extravasation using engineered 3D-blood/lymph-vascularized human stromal tissues. [Display omitted]
AbstractList Tumour models mimicking in vivo three-dimensional (3D) microenvironments are of increasing interest in drug discovery because of the limitations inherent to current models. For example, preclinical assays that rely on monolayer or spheroid cell cultures cannot easily predict 3D cancer behaviours because they have no vasculature. Furthermore, there are major differences in cancer behaviour between human and animal experiments. Here, we show the construction of 3D blood/lymph-vascularized human stromal tissues that can be combined with cancer cells to mimic dynamic metastasis for real-time throughput screening of secreted proteinases. We validated this tool using three human carcinoma cell types that are known to invade blood/lymph vessels and promote angiogenesis. These cell types exhibited characteristic haematogenous/lymphogenous metastasis and tumour angiogenesis properties. Importantly, these carcinoma cells selectively secreted different matrix metalloproteinases depending on their metastasis stage and target vasculature, suggesting the possibility of developing drugs that can target each secreted proteinase. We conclude that the 3D tissue tool will be a powerful throughput system for predicting cancer cell responses and time-dependent secretion of molecules in preclinical assays.
Tumour models mimicking in vivo three-dimensional (3D) microenvironments are of increasing interest in drug discovery because of the limitations inherent to current models. For example, preclinical assays that rely on monolayer or spheroid cell cultures cannot easily predict 3D cancer behaviours because they have no vasculature. Furthermore, there are major differences in cancer behaviour between human and animal experiments. Here, we show the construction of 3D blood/lymph-vascularized human stromal tissues that can be combined with cancer cells to mimic dynamic metastasis for real-time throughput screening of secreted proteinases. We validated this tool using three human carcinoma cell types that are known to invade blood/lymph vessels and promote angiogenesis. These cell types exhibited characteristic haematogenous/lymphogenous metastasis and tumour angiogenesis properties. Importantly, these carcinoma cells selectively secreted different matrix metalloproteinases depending on their metastasis stage and target vasculature, suggesting the possibility of developing drugs that can target each secreted proteinase. We conclude that the 3D tissue tool will be a powerful throughput system for predicting cancer cell responses and time-dependent secretion of molecules in preclinical assays.Tumour models mimicking in vivo three-dimensional (3D) microenvironments are of increasing interest in drug discovery because of the limitations inherent to current models. For example, preclinical assays that rely on monolayer or spheroid cell cultures cannot easily predict 3D cancer behaviours because they have no vasculature. Furthermore, there are major differences in cancer behaviour between human and animal experiments. Here, we show the construction of 3D blood/lymph-vascularized human stromal tissues that can be combined with cancer cells to mimic dynamic metastasis for real-time throughput screening of secreted proteinases. We validated this tool using three human carcinoma cell types that are known to invade blood/lymph vessels and promote angiogenesis. These cell types exhibited characteristic haematogenous/lymphogenous metastasis and tumour angiogenesis properties. Importantly, these carcinoma cells selectively secreted different matrix metalloproteinases depending on their metastasis stage and target vasculature, suggesting the possibility of developing drugs that can target each secreted proteinase. We conclude that the 3D tissue tool will be a powerful throughput system for predicting cancer cell responses and time-dependent secretion of molecules in preclinical assays.
Tumour models mimicking in vivo three-dimensional (3D) microenvironments are of increasing interest in drug discovery because of the limitations inherent to current models. For example, preclinical assays that rely on monolayer or spheroid cell cultures cannot easily predict 3D cancer behaviours because they have no vasculature. Furthermore, there are major differences in cancer behaviour between human and animal experiments. Here, we show the construction of 3D blood/lymph-vascularized human stromal tissues that can be combined with cancer cells to mimic dynamic metastasis for real-time throughput screening of secreted proteinases. We validated this tool using three human carcinoma cell types that are known to invade blood/lymph vessels and promote angiogenesis. These cell types exhibited characteristic haematogenous/lymphogenous metastasis and tumour angiogenesis properties. Importantly, these carcinoma cells selectively secreted different matrix metalloproteinases depending on their metastasis stage and target vasculature, suggesting the possibility of developing drugs that can target each secreted proteinase. We conclude that the 3D tissue tool will be a powerful throughput system for predicting cancer cell responses and time-dependent secretion of molecules in preclinical assays. We present a tool for mimicking a series of early metastasis processes including invasion, tumour angiogenesis, intravasation, and extravasation using engineered 3D-blood/lymph-vascularized human stromal tissues. [Display omitted]
Tumour models mimicking in vivo three-dimensional (3D) microenvironments are of increasing interest in drug discovery because of the limitations inherent to current models. For example, preclinical assays that rely on monolayer or spheroid cell cultures cannot easily predict 3D cancer behaviours because they have no vasculature. Furthermore, there are major differences in cancer behaviour between human and animal experiments. Here, we show the construction of 3D blood/lymph-vascularized human stromal tissues that can be combined with cancer cells to mimic dynamic metastasis for real-time throughput screening of secreted proteinases. We validated this tool using three human carcinoma cell types that are known to invade blood/lymph vessels and promote angiogenesis. These cell types exhibited characteristic haematogenous/lymphogenous metastasis and tumour angiogenesis properties. Importantly, these carcinoma cells selectively secreted different matrix metalloproteinases depending on their metastasis stage and target vasculature, suggesting the possibility of developing drugs that can target each secreted proteinase. We conclude that the 3D tissue tool will be a powerful throughput system for predicting cancer cell responses and time-dependent secretion of molecules in preclinical assays.
Author Matsusaki, Michiya
Nishihara, Hiroshi
Iwai, Soichi
Nishiguchi, Akihiro
Asano, Yoshiya
Okano, Daisuke
Kano, Mitsunobu R.
Akashi, Mitsuru
Shimoda, Hiroshi
Kishimoto, Satoko
Author_xml – sequence: 1
  givenname: Akihiro
  surname: Nishiguchi
  fullname: Nishiguchi, Akihiro
  organization: Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
– sequence: 2
  givenname: Michiya
  surname: Matsusaki
  fullname: Matsusaki, Michiya
  organization: Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
– sequence: 3
  givenname: Mitsunobu R.
  surname: Kano
  fullname: Kano, Mitsunobu R.
  organization: Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan
– sequence: 4
  givenname: Hiroshi
  surname: Nishihara
  fullname: Nishihara, Hiroshi
  organization: Department of Translational Pathology, Hokkaido University, Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo 060-8638, Japan
– sequence: 5
  givenname: Daisuke
  surname: Okano
  fullname: Okano, Daisuke
  organization: Department of Anatomical Science, and Cell Biology and Histology, Hirosaki University, Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
– sequence: 6
  givenname: Yoshiya
  surname: Asano
  fullname: Asano, Yoshiya
  organization: Department of Anatomical Science, and Cell Biology and Histology, Hirosaki University, Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
– sequence: 7
  givenname: Hiroshi
  surname: Shimoda
  fullname: Shimoda, Hiroshi
  organization: Department of Anatomical Science, and Cell Biology and Histology, Hirosaki University, Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
– sequence: 8
  givenname: Satoko
  surname: Kishimoto
  fullname: Kishimoto, Satoko
  organization: Department of Oral and Maxillofacial Surgery II, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
– sequence: 9
  givenname: Soichi
  surname: Iwai
  fullname: Iwai, Soichi
  organization: Department of Oral and Maxillofacial Surgery II, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
– sequence: 10
  givenname: Mitsuru
  surname: Akashi
  fullname: Akashi, Mitsuru
  email: akashi@fbs.osaka-u.ac.jp
  organization: Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29986232$$D View this record in MEDLINE/PubMed
BookMark eNqNkd9qHCEYxaWkNJu0r1CkV72ZiX9mXO1V26R_AoHcpNfiON80bp1xq87C9mnyLHmyumwWSm66IIhyvuPx_M7QyRQmQOgdJTUlVFys6s6F0WSIzvhUM0JlTURNqHqBFlQuZdUq0p6gBaENq5Sg7BSdpbQi5Uwa9gqdMqWkYJwt0M_r6fFh43IMmF_hzofQX_jtuL6vNibZ2Zvo_kCP7-fRTDgV2Wg8zi6lGRIeQsTrCNa7ydlyb1Iy24TDgK2ZLEQ8QjapLJdeo5dDCQtvnvZz9OPrl7vL79XN7bfry083lW25zBXtGkaM5LYB6IaO7mLaRkAjBgHlV6SRcskJ9ExQxVVnWmDCtE3De2kHOvBz9H7vu47hd8mY9eiSBe_NBGFOmpUGuSBM0v9LiVhKxahSRfr2STp3I_R6Hd1o4lYfeiyCj3uBjSGlCIO2LpvswpSjcV5Tonfo9Er_i07v0GkidEFXLD48szi8ctTw1X4YSrcbB1En66Aw6F3hk3Uf3HE2n5_ZHNj-gu2xJn8BUNHVGg
CitedBy_id crossref_primary_10_1002_adbi_202200041
crossref_primary_10_4236_jct_2019_1010071
crossref_primary_10_1002_advs_202003129
crossref_primary_10_1039_D0MH02058C
crossref_primary_10_1093_gigascience_giab091
crossref_primary_10_3389_frlct_2024_1487377
crossref_primary_10_1254_fpj_24063
crossref_primary_10_1016_j_actbio_2024_05_037
crossref_primary_10_1016_j_tibtech_2021_08_007
crossref_primary_10_4236_jct_2019_1012086
crossref_primary_10_1002_cai2_102
crossref_primary_10_1002_jbm_a_36613
crossref_primary_10_3390_cancers13122970
crossref_primary_10_1039_C9PY00305C
crossref_primary_10_1002_adma_201903975
crossref_primary_10_1016_j_jss_2020_12_046
crossref_primary_10_1039_D1CP04669A
crossref_primary_10_1111_micc_12547
crossref_primary_10_2174_1389450120666190923162203
crossref_primary_10_1016_j_bbcan_2025_189293
crossref_primary_10_1002_adhm_202302713
crossref_primary_10_4274_tjod_galenos_2024_01613
crossref_primary_10_1007_s12195_020_00661_w
crossref_primary_10_1016_j_actbio_2022_10_009
crossref_primary_10_1017_erm_2022_32
crossref_primary_10_1111_acel_14070
crossref_primary_10_3390_bioengineering9080335
crossref_primary_10_1038_s41598_021_01513_x
crossref_primary_10_1002_adbi_202000045
crossref_primary_10_1038_s41378_021_00277_8
crossref_primary_10_1093_humupd_dmaa054
crossref_primary_10_1016_j_mtbio_2024_101097
crossref_primary_10_3390_biology9110361
crossref_primary_10_1088_1748_605X_aba5f1
crossref_primary_10_1002_jbm_a_37522
crossref_primary_10_3389_fbioe_2022_1057913
crossref_primary_10_2142_biophysico_bppb_v19_0029
crossref_primary_10_1002_adhm_202400040
crossref_primary_10_1016_j_mtbio_2022_100324
crossref_primary_10_3389_fcell_2020_594903
crossref_primary_10_1002_smtd_202100338
crossref_primary_10_1080_13880209_2025_2458149
crossref_primary_10_1016_j_biomaterials_2020_120077
crossref_primary_10_1038_s41598_020_59371_y
crossref_primary_10_1002_adhm_202201836
crossref_primary_10_1089_ten_tec_2020_0195
crossref_primary_10_3389_fbioe_2022_837693
crossref_primary_10_1002_adfm_201909032
crossref_primary_10_2745_dds_36_256
crossref_primary_10_1002_adma_202002096
Cites_doi 10.1007/s10585-015-9741-2
10.1161/01.RES.0000070112.80711.3D
10.1038/nm1469
10.1021/acsbiomaterials.5b00188
10.3109/14756366.2016.1161620
10.1016/j.cell.2010.03.015
10.1016/j.chempr.2018.02.016
10.1002/cncr.20321
10.1039/c3ib40170g
10.1038/nprot.2008.226
10.3892/ijo.2013.2172
10.1038/nrc2618
10.1016/j.cellsig.2013.08.008
10.1038/nrc1821
10.1038/nrc1098
10.1053/j.gastro.2008.02.061
10.1038/nature19076
10.1038/nrc3001
10.1002/jso.23316
10.1038/nrc745
10.1158/0008-5472.CAN-15-1325
10.1038/nmat4482
10.1016/j.tcb.2007.01.002
10.1158/0008-5472.CAN-04-4576
10.1111/j.1477-2574.2011.00333.x
10.1126/science.277.5330.1232
10.1038/sj.onc.1206457
10.1002/ijc.1358
10.1158/1078-0432.CCR-03-0825
10.1002/adma.201101787
10.1093/jmicro/dfu005
10.1038/nm.2537
10.1038/onc.2008.42
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.biomaterials.2018.06.019
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1878-5905
EndPage 155
ExternalDocumentID 29986232
10_1016_j_biomaterials_2018_06_019
S014296121830440X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAIAV
AAYOK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
RIG
AAYXX
AGRNS
BNPGV
CITATION
SSH
NPM
PKN
7X8
7S9
L.6
ID FETCH-LOGICAL-c538t-1b420a83c4eebfb19862c46e46f6e5900488730ed261939ba5e26a5443d8cf1f3
IEDL.DBID .~1
ISSN 0142-9612
1878-5905
IngestDate Fri Jul 11 16:17:45 EDT 2025
Fri Jul 11 15:15:26 EDT 2025
Wed Feb 19 02:36:45 EST 2025
Tue Jul 01 01:19:35 EDT 2025
Thu Apr 24 23:07:37 EDT 2025
Fri Feb 23 02:47:53 EST 2024
Tue Aug 26 20:00:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Nanofilm
Extracellular matrix
Metastasis
In vitro tumour model
Layer-by-layer assembly
Preclinical assay
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c538t-1b420a83c4eebfb19862c46e46f6e5900488730ed261939ba5e26a5443d8cf1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29986232
PQID 2067892199
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2101360281
proquest_miscellaneous_2067892199
pubmed_primary_29986232
crossref_citationtrail_10_1016_j_biomaterials_2018_06_019
crossref_primary_10_1016_j_biomaterials_2018_06_019
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2018_06_019
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2018_06_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2018
2018-10-00
20181001
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: October 2018
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Armstrong, Packham, Murphy, Bateman, Conti, Fine, Johnson, Benyon, Iredale (bib8) 2004; 10
Visse, Nagase (bib5) 2003; 92
Egeblad, Werb (bib6) 2002; 2
Li, Sclabas, Peng, Hess, Abbruzzese, Evans, Chiao (bib32) 2004; 101
Joyce, Pollard (bib3) 2009; 9
Weis, Cheresh (bib4) 2011; 17
Curry, Thompson, Rao, Besmer, Murphy, Grdzelishvili, Ahrens, Mckillop, Sindram, Iannitti, Martinie, Mukherjee (bib22) 2013; 107
Streit, Detmar (bib18) 2003; 22
Asano, Nishiguchi, Matsusaki, Okano, Saito, Akashi, Shimoda (bib20) 2014; 63
Overall, Kleifeld (bib30) 2006; 6
Kessenbrock, Plaks, Werb (bib33) 2010; 141
Gilmour, Abdulkhalek, Cheng, Alghamdi, Jayanth, O'Shea, Geen, Arvizu, Szewczuk (bib21) 2013; 25
Unpublished data.
Steeg (bib2) 2006; 12
Joblońska-Trypuć, Matejczyk, Rosochacki (bib7) 2016; 31
He, Rajantie, Pajusola, Jeotsch, Holopainen, Yia-Heur (bib11) 2005; 65
Chen, Lamar, Li, Hynes, Kamm (bib17) 2016; 76
Morita, Hata, Nakanishi, Omata, Moriat, Yura, Nishimura, Yoneda (bib28) 2015; 32
Friedrich, Seidel, Ebner, Kunz-Schughart (bib12) 2009; 4
Ehsan, Welch-Reardon, Waterman, Hughes, George (bib16) 2014; 6
Takeshita, Iwai, Morita, Niki-Yonekawa, hamada, Yura (bib29) 2014; 44
Awasthi, Schwarz, Schwarz (bib31) 2011; 13
Nishiguchi, Matsusaki, Akashi (bib25) 2015; 1
Strilic, Yang, Albarrán-Juárez, Wachsmuth, Han, Müller, Pasparakis, Offermanns (bib27) 2016; 536
Nishiguchi, Yoshida, Matsusaki, Akashi (bib19) 2011; 23
Dolznig, Walzl, Kramer, Rosner, Garin-Chesa, Hengstschläger (bib14) 2011; 8
Dong, Nemeth, Cher, Palmer, Bright, Fridman (bib9) 2001; 93
Fidler (bib1) 2003; 3
Linder (bib26) 2007; 17
Rodenhizer, Gaude, Cojocari, Mahadevan, Frezza, Wouters, McGuigan (bib13) 2016; 15
Noma, Smalley, Lioni, Naomoto, Tanaka, El-Deiry, King, Nakagawa, Heriyn (bib15) 2008; 134
Gouyer, Fontaine, Dumont, de Wever, Fontayne-Devaud, Leteurtre, Truant, Delacour, Drobecq, Kerckaert, de Launoit, Bracke, Gespach, desseyn, Huet (bib23) 2008; 27
Decher (bib24) 1997; 277
Francia, Cruz-Munoz, Man, Xu, Kerbel (bib10) 2011; 11
Su, Teoh, Park, Kim, Samanta, Bi, Dinish, Olivo, Piantino, Louis, Matsusaki, Kim, Bae, Chang (bib34) 2018; 4
Su (10.1016/j.biomaterials.2018.06.019_bib34) 2018; 4
Rodenhizer (10.1016/j.biomaterials.2018.06.019_bib13) 2016; 15
Weis (10.1016/j.biomaterials.2018.06.019_bib4) 2011; 17
Gouyer (10.1016/j.biomaterials.2018.06.019_bib23) 2008; 27
Kessenbrock (10.1016/j.biomaterials.2018.06.019_bib33) 2010; 141
Armstrong (10.1016/j.biomaterials.2018.06.019_bib8) 2004; 10
Takeshita (10.1016/j.biomaterials.2018.06.019_bib29) 2014; 44
Dong (10.1016/j.biomaterials.2018.06.019_bib9) 2001; 93
Noma (10.1016/j.biomaterials.2018.06.019_bib15) 2008; 134
Overall (10.1016/j.biomaterials.2018.06.019_bib30) 2006; 6
Streit (10.1016/j.biomaterials.2018.06.019_bib18) 2003; 22
Francia (10.1016/j.biomaterials.2018.06.019_bib10) 2011; 11
Nishiguchi (10.1016/j.biomaterials.2018.06.019_bib19) 2011; 23
Strilic (10.1016/j.biomaterials.2018.06.019_bib27) 2016; 536
Curry (10.1016/j.biomaterials.2018.06.019_bib22) 2013; 107
Joyce (10.1016/j.biomaterials.2018.06.019_bib3) 2009; 9
Friedrich (10.1016/j.biomaterials.2018.06.019_bib12) 2009; 4
10.1016/j.biomaterials.2018.06.019_bib35
He (10.1016/j.biomaterials.2018.06.019_bib11) 2005; 65
Visse (10.1016/j.biomaterials.2018.06.019_bib5) 2003; 92
Asano (10.1016/j.biomaterials.2018.06.019_bib20) 2014; 63
Gilmour (10.1016/j.biomaterials.2018.06.019_bib21) 2013; 25
Li (10.1016/j.biomaterials.2018.06.019_bib32) 2004; 101
Ehsan (10.1016/j.biomaterials.2018.06.019_bib16) 2014; 6
Linder (10.1016/j.biomaterials.2018.06.019_bib26) 2007; 17
Nishiguchi (10.1016/j.biomaterials.2018.06.019_bib25) 2015; 1
Dolznig (10.1016/j.biomaterials.2018.06.019_bib14) 2011; 8
Joblońska-Trypuć (10.1016/j.biomaterials.2018.06.019_bib7) 2016; 31
Morita (10.1016/j.biomaterials.2018.06.019_bib28) 2015; 32
Steeg (10.1016/j.biomaterials.2018.06.019_bib2) 2006; 12
Egeblad (10.1016/j.biomaterials.2018.06.019_bib6) 2002; 2
Fidler (10.1016/j.biomaterials.2018.06.019_bib1) 2003; 3
Awasthi (10.1016/j.biomaterials.2018.06.019_bib31) 2011; 13
Chen (10.1016/j.biomaterials.2018.06.019_bib17) 2016; 76
Decher (10.1016/j.biomaterials.2018.06.019_bib24) 1997; 277
References_xml – volume: 4
  start-page: 1128
  year: 2018
  end-page: 1138
  ident: bib34
  publication-title: Chemistry
– volume: 92
  start-page: 827
  year: 2003
  end-page: 839
  ident: bib5
  article-title: Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry
  publication-title: Circ. Res.
– reference: Unpublished data.
– volume: 32
  start-page: 739
  year: 2015
  end-page: 753
  ident: bib28
  article-title: Cellular fibronectin 1 promotes VEGF-C expression, lymphangiogenesis and lymph node metastasis associated with human oral squamous cell carcinoma
  publication-title: Clin. Exp. Metastasis
– volume: 141
  start-page: 52
  year: 2010
  end-page: 67
  ident: bib33
  article-title: Matrix metalloproteinases: regulators of the tumor microenvironment
  publication-title: Cell
– volume: 22
  start-page: 3172
  year: 2003
  end-page: 3179
  ident: bib18
  article-title: Angiogenesis, lymphangiogenesis, and melanoma metastasis
  publication-title: Oncogene
– volume: 23
  start-page: 3506
  year: 2011
  end-page: 3510
  ident: bib19
  article-title: Rapid construction of three-dimensional multi-layered tissues with endothelial tube networks by the cell-accumulation technique
  publication-title: Adv. Mater.
– volume: 8
  start-page: 113
  year: 2011
  end-page: 119
  ident: bib14
  article-title: Organotypic spheroid cultures to study tumor–stroma interaction during cancer development
  publication-title: Drug Discov. Today
– volume: 65
  start-page: 4739
  year: 2005
  end-page: 4746
  ident: bib11
  article-title: Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels
  publication-title: Canc. Res.
– volume: 6
  start-page: 603
  year: 2014
  end-page: 610
  ident: bib16
  article-title: A three-dimensional
  publication-title: Integr. Biol.
– volume: 6
  start-page: 227
  year: 2006
  end-page: 239
  ident: bib30
  article-title: Validating matrix metalloproteinases as drug targets and antitargets for cancer therapy
  publication-title: Nat. Rev. Canc.
– volume: 277
  start-page: 1232
  year: 1997
  end-page: 1237
  ident: bib24
  article-title: Fuzzy nanoassemblies: toward layered polymeric multicomposites
  publication-title: Science
– volume: 107
  start-page: 713
  year: 2013
  end-page: 722
  ident: bib22
  article-title: The use of a novel MUC1 antibody to identify cancer stem cells and circulating MUC1 in mice and patients with pancreatic cancer
  publication-title: J. Surg. Oncol.
– volume: 536
  start-page: 215
  year: 2016
  end-page: 218
  ident: bib27
  article-title: Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis
  publication-title: Nature
– volume: 4
  start-page: 309
  year: 2009
  end-page: 324
  ident: bib12
  article-title: Spheroid-based drug screen: considerations and practical approach
  publication-title: Nat. Protoc.
– volume: 25
  start-page: 2587
  year: 2013
  end-page: 2603
  ident: bib21
  article-title: A novel epidermal growth factor receptor-signaling platform and its targeted translation in pancreatic cancer
  publication-title: Cell. Signal.
– volume: 93
  start-page: 507
  year: 2001
  end-page: 515
  ident: bib9
  article-title: Differential regulation of matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 expression in co-cultures of prostate cancer and stromal cells
  publication-title: Int. J. Canc.
– volume: 13
  start-page: 597
  year: 2011
  end-page: 604
  ident: bib31
  article-title: Antitumour activity of sunitinib in combination with gemcitabine in experimental pancreatic cancer
  publication-title: HPB
– volume: 2
  start-page: 161
  year: 2002
  end-page: 174
  ident: bib6
  article-title: New functions for the matrix metalloproteinases in cancer progression
  publication-title: Nat. Rev. Canc.
– volume: 11
  start-page: 135
  year: 2011
  end-page: 141
  ident: bib10
  article-title: Mouse models of advanced spontaneous metastasis for experimental therapeutics
  publication-title: Nat. Rev. Canc.
– volume: 76
  start-page: 2513
  year: 2016
  end-page: 2524
  ident: bib17
  article-title: Elucidation of the roles of tumor integrin β1 in the extravasation stage of the metastasis cascade
  publication-title: Canc. Res.
– volume: 17
  start-page: 107
  year: 2007
  end-page: 117
  ident: bib26
  article-title: The matrix corroded: podosomes and invadopodia in extracellular matrix degradation
  publication-title: Trends Cell Biol.
– volume: 1
  start-page: 816
  year: 2015
  end-page: 824
  ident: bib25
  article-title: Structural and viscoelastic properties of layer-by-layer ECM nanofilms and their interactions with living cells
  publication-title: ACS Biomater. Sci. Eng.
– volume: 3
  start-page: 453
  year: 2003
  end-page: 458
  ident: bib1
  article-title: The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited
  publication-title: Nat. Rev. Canc.
– volume: 63
  start-page: 219
  year: 2014
  end-page: 226
  ident: bib20
  article-title: Ultrastructure of blood and lymphatic vascular networks in three-dimensional cultured tissues fabricated by extracellular matrix nanofilm-based cell accumulation technique
  publication-title: Microscopy
– volume: 15
  start-page: 227
  year: 2016
  end-page: 234
  ident: bib13
  article-title: Three-dimensional engineered tumour for spatial snapshot analysis of cell metabolism and phenotype in hypoxic gradients
  publication-title: Nat. Mater.
– volume: 31
  start-page: 177
  year: 2016
  end-page: 183
  ident: bib7
  article-title: Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs
  publication-title: J. Enzym. Inhib. Med. Chem.
– volume: 27
  start-page: 4024
  year: 2008
  end-page: 4033
  ident: bib23
  article-title: Autocrine induction of invasion and metastasis by tumor-associated trypsin inhibitor in human colon cancer cells
  publication-title: Oncogene
– volume: 9
  start-page: 239
  year: 2009
  end-page: 252
  ident: bib3
  article-title: Microenvironmental regulation of metastasis
  publication-title: Nat. Rev. Canc.
– volume: 44
  start-page: 59
  year: 2014
  end-page: 68
  ident: bib29
  article-title: Wnt5b promotes the cell motility essential for metastasis of oral squamous cell carcinoma through active Cdc42 and RhoA
  publication-title: Int. J. Oncol.
– volume: 101
  start-page: 58
  year: 2004
  end-page: 65
  ident: bib32
  article-title: Overexpression of synuclein-γ in pancreatic adenocarcinoma
  publication-title: Cancer
– volume: 12
  start-page: 895
  year: 2006
  end-page: 904
  ident: bib2
  article-title: Tumor metastasis: mechanistic insights and clinical challenges
  publication-title: Nat. Med.
– volume: 134
  start-page: 1981
  year: 2008
  end-page: 1993
  ident: bib15
  article-title: The essential role of fibroblasts in esophageal squamous cell carcinoma–induced angiogenesis
  publication-title: Gastroenterology
– volume: 10
  start-page: 7427
  year: 2004
  end-page: 7437
  ident: bib8
  article-title: Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma
  publication-title: Clin. Canc. Res.
– volume: 17
  start-page: 1359
  year: 2011
  end-page: 1370
  ident: bib4
  article-title: Tumor angiogenesis: molecular pathways and therapeutic targets
  publication-title: Nat. Med.
– volume: 32
  start-page: 739
  year: 2015
  ident: 10.1016/j.biomaterials.2018.06.019_bib28
  article-title: Cellular fibronectin 1 promotes VEGF-C expression, lymphangiogenesis and lymph node metastasis associated with human oral squamous cell carcinoma
  publication-title: Clin. Exp. Metastasis
  doi: 10.1007/s10585-015-9741-2
– volume: 92
  start-page: 827
  year: 2003
  ident: 10.1016/j.biomaterials.2018.06.019_bib5
  article-title: Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.0000070112.80711.3D
– volume: 12
  start-page: 895
  year: 2006
  ident: 10.1016/j.biomaterials.2018.06.019_bib2
  article-title: Tumor metastasis: mechanistic insights and clinical challenges
  publication-title: Nat. Med.
  doi: 10.1038/nm1469
– volume: 1
  start-page: 816
  year: 2015
  ident: 10.1016/j.biomaterials.2018.06.019_bib25
  article-title: Structural and viscoelastic properties of layer-by-layer ECM nanofilms and their interactions with living cells
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.5b00188
– volume: 31
  start-page: 177
  year: 2016
  ident: 10.1016/j.biomaterials.2018.06.019_bib7
  article-title: Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs
  publication-title: J. Enzym. Inhib. Med. Chem.
  doi: 10.3109/14756366.2016.1161620
– volume: 141
  start-page: 52
  year: 2010
  ident: 10.1016/j.biomaterials.2018.06.019_bib33
  article-title: Matrix metalloproteinases: regulators of the tumor microenvironment
  publication-title: Cell
  doi: 10.1016/j.cell.2010.03.015
– volume: 4
  start-page: 1128
  year: 2018
  ident: 10.1016/j.biomaterials.2018.06.019_bib34
  publication-title: Chemistry
  doi: 10.1016/j.chempr.2018.02.016
– volume: 8
  start-page: 113
  year: 2011
  ident: 10.1016/j.biomaterials.2018.06.019_bib14
  article-title: Organotypic spheroid cultures to study tumor–stroma interaction during cancer development
  publication-title: Drug Discov. Today
– volume: 101
  start-page: 58
  year: 2004
  ident: 10.1016/j.biomaterials.2018.06.019_bib32
  article-title: Overexpression of synuclein-γ in pancreatic adenocarcinoma
  publication-title: Cancer
  doi: 10.1002/cncr.20321
– volume: 6
  start-page: 603
  year: 2014
  ident: 10.1016/j.biomaterials.2018.06.019_bib16
  article-title: A three-dimensional in vitro model of tumor cell intravasation
  publication-title: Integr. Biol.
  doi: 10.1039/c3ib40170g
– volume: 4
  start-page: 309
  year: 2009
  ident: 10.1016/j.biomaterials.2018.06.019_bib12
  article-title: Spheroid-based drug screen: considerations and practical approach
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.226
– volume: 44
  start-page: 59
  year: 2014
  ident: 10.1016/j.biomaterials.2018.06.019_bib29
  article-title: Wnt5b promotes the cell motility essential for metastasis of oral squamous cell carcinoma through active Cdc42 and RhoA
  publication-title: Int. J. Oncol.
  doi: 10.3892/ijo.2013.2172
– volume: 9
  start-page: 239
  year: 2009
  ident: 10.1016/j.biomaterials.2018.06.019_bib3
  article-title: Microenvironmental regulation of metastasis
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc2618
– volume: 25
  start-page: 2587
  year: 2013
  ident: 10.1016/j.biomaterials.2018.06.019_bib21
  article-title: A novel epidermal growth factor receptor-signaling platform and its targeted translation in pancreatic cancer
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2013.08.008
– volume: 6
  start-page: 227
  year: 2006
  ident: 10.1016/j.biomaterials.2018.06.019_bib30
  article-title: Validating matrix metalloproteinases as drug targets and antitargets for cancer therapy
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc1821
– volume: 3
  start-page: 453
  year: 2003
  ident: 10.1016/j.biomaterials.2018.06.019_bib1
  article-title: The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc1098
– volume: 134
  start-page: 1981
  year: 2008
  ident: 10.1016/j.biomaterials.2018.06.019_bib15
  article-title: The essential role of fibroblasts in esophageal squamous cell carcinoma–induced angiogenesis
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2008.02.061
– volume: 536
  start-page: 215
  year: 2016
  ident: 10.1016/j.biomaterials.2018.06.019_bib27
  article-title: Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis
  publication-title: Nature
  doi: 10.1038/nature19076
– volume: 11
  start-page: 135
  year: 2011
  ident: 10.1016/j.biomaterials.2018.06.019_bib10
  article-title: Mouse models of advanced spontaneous metastasis for experimental therapeutics
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc3001
– ident: 10.1016/j.biomaterials.2018.06.019_bib35
– volume: 107
  start-page: 713
  year: 2013
  ident: 10.1016/j.biomaterials.2018.06.019_bib22
  article-title: The use of a novel MUC1 antibody to identify cancer stem cells and circulating MUC1 in mice and patients with pancreatic cancer
  publication-title: J. Surg. Oncol.
  doi: 10.1002/jso.23316
– volume: 2
  start-page: 161
  year: 2002
  ident: 10.1016/j.biomaterials.2018.06.019_bib6
  article-title: New functions for the matrix metalloproteinases in cancer progression
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc745
– volume: 76
  start-page: 2513
  year: 2016
  ident: 10.1016/j.biomaterials.2018.06.019_bib17
  article-title: Elucidation of the roles of tumor integrin β1 in the extravasation stage of the metastasis cascade
  publication-title: Canc. Res.
  doi: 10.1158/0008-5472.CAN-15-1325
– volume: 15
  start-page: 227
  year: 2016
  ident: 10.1016/j.biomaterials.2018.06.019_bib13
  article-title: Three-dimensional engineered tumour for spatial snapshot analysis of cell metabolism and phenotype in hypoxic gradients
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4482
– volume: 17
  start-page: 107
  year: 2007
  ident: 10.1016/j.biomaterials.2018.06.019_bib26
  article-title: The matrix corroded: podosomes and invadopodia in extracellular matrix degradation
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2007.01.002
– volume: 65
  start-page: 4739
  year: 2005
  ident: 10.1016/j.biomaterials.2018.06.019_bib11
  article-title: Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels
  publication-title: Canc. Res.
  doi: 10.1158/0008-5472.CAN-04-4576
– volume: 13
  start-page: 597
  year: 2011
  ident: 10.1016/j.biomaterials.2018.06.019_bib31
  article-title: Antitumour activity of sunitinib in combination with gemcitabine in experimental pancreatic cancer
  publication-title: HPB
  doi: 10.1111/j.1477-2574.2011.00333.x
– volume: 277
  start-page: 1232
  year: 1997
  ident: 10.1016/j.biomaterials.2018.06.019_bib24
  article-title: Fuzzy nanoassemblies: toward layered polymeric multicomposites
  publication-title: Science
  doi: 10.1126/science.277.5330.1232
– volume: 22
  start-page: 3172
  year: 2003
  ident: 10.1016/j.biomaterials.2018.06.019_bib18
  article-title: Angiogenesis, lymphangiogenesis, and melanoma metastasis
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1206457
– volume: 93
  start-page: 507
  year: 2001
  ident: 10.1016/j.biomaterials.2018.06.019_bib9
  article-title: Differential regulation of matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 expression in co-cultures of prostate cancer and stromal cells
  publication-title: Int. J. Canc.
  doi: 10.1002/ijc.1358
– volume: 10
  start-page: 7427
  year: 2004
  ident: 10.1016/j.biomaterials.2018.06.019_bib8
  article-title: Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma
  publication-title: Clin. Canc. Res.
  doi: 10.1158/1078-0432.CCR-03-0825
– volume: 23
  start-page: 3506
  year: 2011
  ident: 10.1016/j.biomaterials.2018.06.019_bib19
  article-title: Rapid construction of three-dimensional multi-layered tissues with endothelial tube networks by the cell-accumulation technique
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201101787
– volume: 63
  start-page: 219
  year: 2014
  ident: 10.1016/j.biomaterials.2018.06.019_bib20
  article-title: Ultrastructure of blood and lymphatic vascular networks in three-dimensional cultured tissues fabricated by extracellular matrix nanofilm-based cell accumulation technique
  publication-title: Microscopy
  doi: 10.1093/jmicro/dfu005
– volume: 17
  start-page: 1359
  year: 2011
  ident: 10.1016/j.biomaterials.2018.06.019_bib4
  article-title: Tumor angiogenesis: molecular pathways and therapeutic targets
  publication-title: Nat. Med.
  doi: 10.1038/nm.2537
– volume: 27
  start-page: 4024
  year: 2008
  ident: 10.1016/j.biomaterials.2018.06.019_bib23
  article-title: Autocrine induction of invasion and metastasis by tumor-associated trypsin inhibitor in human colon cancer cells
  publication-title: Oncogene
  doi: 10.1038/onc.2008.42
SSID ssj0014042
Score 2.470011
Snippet Tumour models mimicking in vivo three-dimensional (3D) microenvironments are of increasing interest in drug discovery because of the limitations inherent to...
Tumour models mimicking in vivo three-dimensional (3D) microenvironments are of increasing interest in drug discovery because of the limitations inherent to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 144
SubjectTerms angiogenesis
blood
cell culture
drugs
Extracellular matrix
humans
In vitro tumour model
Layer-by-layer assembly
lymph
metalloproteinases
Metastasis
Nanofilm
neoplasm cells
neoplasms
Preclinical assay
prediction
screening
secretion
tissues
Title In vitro 3D blood/lymph-vascularized human stromal tissues for preclinical assays of cancer metastasis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S014296121830440X
https://dx.doi.org/10.1016/j.biomaterials.2018.06.019
https://www.ncbi.nlm.nih.gov/pubmed/29986232
https://www.proquest.com/docview/2067892199
https://www.proquest.com/docview/2101360281
Volume 179
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9tAEB2MCyU9lNZJWjet2UCuW3u1-rAIOQS3xm6xTzX4JnZXq6AQy8aSC-mhv6W_pb8sM_owCbTF0KPMjpF2Zmee0Js3ABfaCeJB7CjuCa24a4zmGmEzD7xQYXUmIgb1O8_m_mThfll6yxaMml4YolXWub_K6WW2rn_p17vZ36Rpn2hJTkgCWENJc5OX1MHuBhTlH3_uaR6kHuNUNEaH0-pGeLTkeFGLuyoqVxPNq9LyJNWdPxepv4HQshiNX8HLGkWy6-pGX0PLZh148UhbsAPPZ_VX82O4mWa_f31Pi-2ayU-spKr37-7RjbzhoaY_bMzKcX0sx2Ur_O-i9EjOENSyDW5R3UHJEGyr-5ytE2YoYLZsZQuFEDNP8xNYjD9_G014PWCBG8xzBRfadQZqKI1rrU60CPH1xri-df3EtzROFE83ZgAb02uWDLXyrOMrUsyLhyYRiTyFdrbO7FtgWpTC7kpb9IWQQgWeHsZaDsJAD0zsdyFsdjQytfo4DcG4ixqa2W302BsReSMizp0IuyD3tptKg-Mgq8vGcVGzR5gXIywVB1lf7a2fxOPB9udNrER4YOkrjMrsekeLEB-EWCj-tUaQlB5CP9GFN1Wg7Z8c8QO6STrv_vMOz-CIripi4ntoF9ud_YAAq9C98gT14Nn19Otk_gB5ASkH
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VIvFzQFAohN9FgqNJdtd2YqEeEKVKaNNTK-W27K7XyKh1othtFQ59lr5D36BPxoy9jooEKBLqNd5ZOTOzs9_K334D8M6IftpLhQ4ibnQQWmsCg7A56EeJxt2ZiBh033m8Hw8Pw6-TaLIGl-1dGKJV-trf1PS6Wvtfut6b3Vmed4mWJBISwBpI6ps88czKXbc4w3NbuTXaxiC_F2Lny8HnYeBbCwQWV3gVcBOKnh5IGzpnMoMn71jYMHZhnMWOGmliXmPuu5QOGDIxOnIi1qQVlw5sxjOJ896C2yFORm0TPpwveSUkVyMa3qQI6PVapdOaVEZ36nXV5BbxyhrxUJL5-fOu-DfUW-9-Ow_hgYet7FPjmUew5ooNuH9NzHAD7oz9Z_rH8H1UXF2c5tV8yuQ2q7nx3aMF5k3QEl_zny5ldX9AVuKwY5y7qlOgZIii2Qxj4q9sMkT3elGyacYsZeicHbtKI6Yt8_IJHN6I2zdhvZgW7hkww2sleW0cBp9LrvuRGaRG9pK-6dk07kDSelRZL3dOXTeOVMtr-6GuR0NRNBSR_HjSAbm0nTWiHytZfWwDp1ofYSFWuDetZL21tP5tAaxs_7bNFYUVgj776MJNT2gQApIEd6Z_jeGk3YdYk3fgaZNoy3-OgAXDJMXz_3zDN3B3eDDeU3uj_d0XcI-eNKzIl7BezU_cK0R3lXldryYG3256-f4CIyFjww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In%C2%A0vitro+3D+blood%2Flymph-vascularized+human+stromal+tissues+for+preclinical+assays+of+cancer+metastasis&rft.jtitle=Biomaterials&rft.au=Nishiguchi%2C+Akihiro&rft.au=Matsusaki%2C+Michiya&rft.au=Kano%2C+Mitsunobu+R.&rft.au=Nishihara%2C+Hiroshi&rft.date=2018-10-01&rft.issn=0142-9612&rft.volume=179&rft.spage=144&rft.epage=155&rft_id=info:doi/10.1016%2Fj.biomaterials.2018.06.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biomaterials_2018_06_019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon