In vitro 3D blood/lymph-vascularized human stromal tissues for preclinical assays of cancer metastasis
Tumour models mimicking in vivo three-dimensional (3D) microenvironments are of increasing interest in drug discovery because of the limitations inherent to current models. For example, preclinical assays that rely on monolayer or spheroid cell cultures cannot easily predict 3D cancer behaviours bec...
Saved in:
Published in | Biomaterials Vol. 179; pp. 144 - 155 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tumour models mimicking in vivo three-dimensional (3D) microenvironments are of increasing interest in drug discovery because of the limitations inherent to current models. For example, preclinical assays that rely on monolayer or spheroid cell cultures cannot easily predict 3D cancer behaviours because they have no vasculature. Furthermore, there are major differences in cancer behaviour between human and animal experiments. Here, we show the construction of 3D blood/lymph-vascularized human stromal tissues that can be combined with cancer cells to mimic dynamic metastasis for real-time throughput screening of secreted proteinases. We validated this tool using three human carcinoma cell types that are known to invade blood/lymph vessels and promote angiogenesis. These cell types exhibited characteristic haematogenous/lymphogenous metastasis and tumour angiogenesis properties. Importantly, these carcinoma cells selectively secreted different matrix metalloproteinases depending on their metastasis stage and target vasculature, suggesting the possibility of developing drugs that can target each secreted proteinase. We conclude that the 3D tissue tool will be a powerful throughput system for predicting cancer cell responses and time-dependent secretion of molecules in preclinical assays.
We present a tool for mimicking a series of early metastasis processes including invasion, tumour angiogenesis, intravasation, and extravasation using engineered 3D-blood/lymph-vascularized human stromal tissues. [Display omitted] |
---|---|
AbstractList | Tumour models mimicking in vivo three-dimensional (3D) microenvironments are of increasing interest in drug discovery because of the limitations inherent to current models. For example, preclinical assays that rely on monolayer or spheroid cell cultures cannot easily predict 3D cancer behaviours because they have no vasculature. Furthermore, there are major differences in cancer behaviour between human and animal experiments. Here, we show the construction of 3D blood/lymph-vascularized human stromal tissues that can be combined with cancer cells to mimic dynamic metastasis for real-time throughput screening of secreted proteinases. We validated this tool using three human carcinoma cell types that are known to invade blood/lymph vessels and promote angiogenesis. These cell types exhibited characteristic haematogenous/lymphogenous metastasis and tumour angiogenesis properties. Importantly, these carcinoma cells selectively secreted different matrix metalloproteinases depending on their metastasis stage and target vasculature, suggesting the possibility of developing drugs that can target each secreted proteinase. We conclude that the 3D tissue tool will be a powerful throughput system for predicting cancer cell responses and time-dependent secretion of molecules in preclinical assays. Tumour models mimicking in vivo three-dimensional (3D) microenvironments are of increasing interest in drug discovery because of the limitations inherent to current models. For example, preclinical assays that rely on monolayer or spheroid cell cultures cannot easily predict 3D cancer behaviours because they have no vasculature. Furthermore, there are major differences in cancer behaviour between human and animal experiments. Here, we show the construction of 3D blood/lymph-vascularized human stromal tissues that can be combined with cancer cells to mimic dynamic metastasis for real-time throughput screening of secreted proteinases. We validated this tool using three human carcinoma cell types that are known to invade blood/lymph vessels and promote angiogenesis. These cell types exhibited characteristic haematogenous/lymphogenous metastasis and tumour angiogenesis properties. Importantly, these carcinoma cells selectively secreted different matrix metalloproteinases depending on their metastasis stage and target vasculature, suggesting the possibility of developing drugs that can target each secreted proteinase. We conclude that the 3D tissue tool will be a powerful throughput system for predicting cancer cell responses and time-dependent secretion of molecules in preclinical assays.Tumour models mimicking in vivo three-dimensional (3D) microenvironments are of increasing interest in drug discovery because of the limitations inherent to current models. For example, preclinical assays that rely on monolayer or spheroid cell cultures cannot easily predict 3D cancer behaviours because they have no vasculature. Furthermore, there are major differences in cancer behaviour between human and animal experiments. Here, we show the construction of 3D blood/lymph-vascularized human stromal tissues that can be combined with cancer cells to mimic dynamic metastasis for real-time throughput screening of secreted proteinases. We validated this tool using three human carcinoma cell types that are known to invade blood/lymph vessels and promote angiogenesis. These cell types exhibited characteristic haematogenous/lymphogenous metastasis and tumour angiogenesis properties. Importantly, these carcinoma cells selectively secreted different matrix metalloproteinases depending on their metastasis stage and target vasculature, suggesting the possibility of developing drugs that can target each secreted proteinase. We conclude that the 3D tissue tool will be a powerful throughput system for predicting cancer cell responses and time-dependent secretion of molecules in preclinical assays. Tumour models mimicking in vivo three-dimensional (3D) microenvironments are of increasing interest in drug discovery because of the limitations inherent to current models. For example, preclinical assays that rely on monolayer or spheroid cell cultures cannot easily predict 3D cancer behaviours because they have no vasculature. Furthermore, there are major differences in cancer behaviour between human and animal experiments. Here, we show the construction of 3D blood/lymph-vascularized human stromal tissues that can be combined with cancer cells to mimic dynamic metastasis for real-time throughput screening of secreted proteinases. We validated this tool using three human carcinoma cell types that are known to invade blood/lymph vessels and promote angiogenesis. These cell types exhibited characteristic haematogenous/lymphogenous metastasis and tumour angiogenesis properties. Importantly, these carcinoma cells selectively secreted different matrix metalloproteinases depending on their metastasis stage and target vasculature, suggesting the possibility of developing drugs that can target each secreted proteinase. We conclude that the 3D tissue tool will be a powerful throughput system for predicting cancer cell responses and time-dependent secretion of molecules in preclinical assays. We present a tool for mimicking a series of early metastasis processes including invasion, tumour angiogenesis, intravasation, and extravasation using engineered 3D-blood/lymph-vascularized human stromal tissues. [Display omitted] Tumour models mimicking in vivo three-dimensional (3D) microenvironments are of increasing interest in drug discovery because of the limitations inherent to current models. For example, preclinical assays that rely on monolayer or spheroid cell cultures cannot easily predict 3D cancer behaviours because they have no vasculature. Furthermore, there are major differences in cancer behaviour between human and animal experiments. Here, we show the construction of 3D blood/lymph-vascularized human stromal tissues that can be combined with cancer cells to mimic dynamic metastasis for real-time throughput screening of secreted proteinases. We validated this tool using three human carcinoma cell types that are known to invade blood/lymph vessels and promote angiogenesis. These cell types exhibited characteristic haematogenous/lymphogenous metastasis and tumour angiogenesis properties. Importantly, these carcinoma cells selectively secreted different matrix metalloproteinases depending on their metastasis stage and target vasculature, suggesting the possibility of developing drugs that can target each secreted proteinase. We conclude that the 3D tissue tool will be a powerful throughput system for predicting cancer cell responses and time-dependent secretion of molecules in preclinical assays. |
Author | Matsusaki, Michiya Nishihara, Hiroshi Iwai, Soichi Nishiguchi, Akihiro Asano, Yoshiya Okano, Daisuke Kano, Mitsunobu R. Akashi, Mitsuru Shimoda, Hiroshi Kishimoto, Satoko |
Author_xml | – sequence: 1 givenname: Akihiro surname: Nishiguchi fullname: Nishiguchi, Akihiro organization: Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan – sequence: 2 givenname: Michiya surname: Matsusaki fullname: Matsusaki, Michiya organization: Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan – sequence: 3 givenname: Mitsunobu R. surname: Kano fullname: Kano, Mitsunobu R. organization: Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan – sequence: 4 givenname: Hiroshi surname: Nishihara fullname: Nishihara, Hiroshi organization: Department of Translational Pathology, Hokkaido University, Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo 060-8638, Japan – sequence: 5 givenname: Daisuke surname: Okano fullname: Okano, Daisuke organization: Department of Anatomical Science, and Cell Biology and Histology, Hirosaki University, Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan – sequence: 6 givenname: Yoshiya surname: Asano fullname: Asano, Yoshiya organization: Department of Anatomical Science, and Cell Biology and Histology, Hirosaki University, Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan – sequence: 7 givenname: Hiroshi surname: Shimoda fullname: Shimoda, Hiroshi organization: Department of Anatomical Science, and Cell Biology and Histology, Hirosaki University, Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan – sequence: 8 givenname: Satoko surname: Kishimoto fullname: Kishimoto, Satoko organization: Department of Oral and Maxillofacial Surgery II, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan – sequence: 9 givenname: Soichi surname: Iwai fullname: Iwai, Soichi organization: Department of Oral and Maxillofacial Surgery II, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan – sequence: 10 givenname: Mitsuru surname: Akashi fullname: Akashi, Mitsuru email: akashi@fbs.osaka-u.ac.jp organization: Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29986232$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkd9qHCEYxaWkNJu0r1CkV72ZiX9mXO1V26R_AoHcpNfiON80bp1xq87C9mnyLHmyumwWSm66IIhyvuPx_M7QyRQmQOgdJTUlVFys6s6F0WSIzvhUM0JlTURNqHqBFlQuZdUq0p6gBaENq5Sg7BSdpbQi5Uwa9gqdMqWkYJwt0M_r6fFh43IMmF_hzofQX_jtuL6vNibZ2Zvo_kCP7-fRTDgV2Wg8zi6lGRIeQsTrCNa7ydlyb1Iy24TDgK2ZLEQ8QjapLJdeo5dDCQtvnvZz9OPrl7vL79XN7bfry083lW25zBXtGkaM5LYB6IaO7mLaRkAjBgHlV6SRcskJ9ExQxVVnWmDCtE3De2kHOvBz9H7vu47hd8mY9eiSBe_NBGFOmpUGuSBM0v9LiVhKxahSRfr2STp3I_R6Hd1o4lYfeiyCj3uBjSGlCIO2LpvswpSjcV5Tonfo9Er_i07v0GkidEFXLD48szi8ctTw1X4YSrcbB1En66Aw6F3hk3Uf3HE2n5_ZHNj-gu2xJn8BUNHVGg |
CitedBy_id | crossref_primary_10_1002_adbi_202200041 crossref_primary_10_4236_jct_2019_1010071 crossref_primary_10_1002_advs_202003129 crossref_primary_10_1039_D0MH02058C crossref_primary_10_1093_gigascience_giab091 crossref_primary_10_3389_frlct_2024_1487377 crossref_primary_10_1254_fpj_24063 crossref_primary_10_1016_j_actbio_2024_05_037 crossref_primary_10_1016_j_tibtech_2021_08_007 crossref_primary_10_4236_jct_2019_1012086 crossref_primary_10_1002_cai2_102 crossref_primary_10_1002_jbm_a_36613 crossref_primary_10_3390_cancers13122970 crossref_primary_10_1039_C9PY00305C crossref_primary_10_1002_adma_201903975 crossref_primary_10_1016_j_jss_2020_12_046 crossref_primary_10_1039_D1CP04669A crossref_primary_10_1111_micc_12547 crossref_primary_10_2174_1389450120666190923162203 crossref_primary_10_1016_j_bbcan_2025_189293 crossref_primary_10_1002_adhm_202302713 crossref_primary_10_4274_tjod_galenos_2024_01613 crossref_primary_10_1007_s12195_020_00661_w crossref_primary_10_1016_j_actbio_2022_10_009 crossref_primary_10_1017_erm_2022_32 crossref_primary_10_1111_acel_14070 crossref_primary_10_3390_bioengineering9080335 crossref_primary_10_1038_s41598_021_01513_x crossref_primary_10_1002_adbi_202000045 crossref_primary_10_1038_s41378_021_00277_8 crossref_primary_10_1093_humupd_dmaa054 crossref_primary_10_1016_j_mtbio_2024_101097 crossref_primary_10_3390_biology9110361 crossref_primary_10_1088_1748_605X_aba5f1 crossref_primary_10_1002_jbm_a_37522 crossref_primary_10_3389_fbioe_2022_1057913 crossref_primary_10_2142_biophysico_bppb_v19_0029 crossref_primary_10_1002_adhm_202400040 crossref_primary_10_1016_j_mtbio_2022_100324 crossref_primary_10_3389_fcell_2020_594903 crossref_primary_10_1002_smtd_202100338 crossref_primary_10_1080_13880209_2025_2458149 crossref_primary_10_1016_j_biomaterials_2020_120077 crossref_primary_10_1038_s41598_020_59371_y crossref_primary_10_1002_adhm_202201836 crossref_primary_10_1089_ten_tec_2020_0195 crossref_primary_10_3389_fbioe_2022_837693 crossref_primary_10_1002_adfm_201909032 crossref_primary_10_2745_dds_36_256 crossref_primary_10_1002_adma_202002096 |
Cites_doi | 10.1007/s10585-015-9741-2 10.1161/01.RES.0000070112.80711.3D 10.1038/nm1469 10.1021/acsbiomaterials.5b00188 10.3109/14756366.2016.1161620 10.1016/j.cell.2010.03.015 10.1016/j.chempr.2018.02.016 10.1002/cncr.20321 10.1039/c3ib40170g 10.1038/nprot.2008.226 10.3892/ijo.2013.2172 10.1038/nrc2618 10.1016/j.cellsig.2013.08.008 10.1038/nrc1821 10.1038/nrc1098 10.1053/j.gastro.2008.02.061 10.1038/nature19076 10.1038/nrc3001 10.1002/jso.23316 10.1038/nrc745 10.1158/0008-5472.CAN-15-1325 10.1038/nmat4482 10.1016/j.tcb.2007.01.002 10.1158/0008-5472.CAN-04-4576 10.1111/j.1477-2574.2011.00333.x 10.1126/science.277.5330.1232 10.1038/sj.onc.1206457 10.1002/ijc.1358 10.1158/1078-0432.CCR-03-0825 10.1002/adma.201101787 10.1093/jmicro/dfu005 10.1038/nm.2537 10.1038/onc.2008.42 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biomaterials.2018.06.019 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1878-5905 |
EndPage | 155 |
ExternalDocumentID | 29986232 10_1016_j_biomaterials_2018_06_019 S014296121830440X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAIAV AAYOK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG RIG AAYXX AGRNS BNPGV CITATION SSH NPM PKN 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c538t-1b420a83c4eebfb19862c46e46f6e5900488730ed261939ba5e26a5443d8cf1f3 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 1878-5905 |
IngestDate | Fri Jul 11 16:17:45 EDT 2025 Fri Jul 11 15:15:26 EDT 2025 Wed Feb 19 02:36:45 EST 2025 Tue Jul 01 01:19:35 EDT 2025 Thu Apr 24 23:07:37 EDT 2025 Fri Feb 23 02:47:53 EST 2024 Tue Aug 26 20:00:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nanofilm Extracellular matrix Metastasis In vitro tumour model Layer-by-layer assembly Preclinical assay |
Language | English |
License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c538t-1b420a83c4eebfb19862c46e46f6e5900488730ed261939ba5e26a5443d8cf1f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 29986232 |
PQID | 2067892199 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2101360281 proquest_miscellaneous_2067892199 pubmed_primary_29986232 crossref_citationtrail_10_1016_j_biomaterials_2018_06_019 crossref_primary_10_1016_j_biomaterials_2018_06_019 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2018_06_019 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2018_06_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2018 2018-10-00 20181001 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: October 2018 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Armstrong, Packham, Murphy, Bateman, Conti, Fine, Johnson, Benyon, Iredale (bib8) 2004; 10 Visse, Nagase (bib5) 2003; 92 Egeblad, Werb (bib6) 2002; 2 Li, Sclabas, Peng, Hess, Abbruzzese, Evans, Chiao (bib32) 2004; 101 Joyce, Pollard (bib3) 2009; 9 Weis, Cheresh (bib4) 2011; 17 Curry, Thompson, Rao, Besmer, Murphy, Grdzelishvili, Ahrens, Mckillop, Sindram, Iannitti, Martinie, Mukherjee (bib22) 2013; 107 Streit, Detmar (bib18) 2003; 22 Asano, Nishiguchi, Matsusaki, Okano, Saito, Akashi, Shimoda (bib20) 2014; 63 Overall, Kleifeld (bib30) 2006; 6 Kessenbrock, Plaks, Werb (bib33) 2010; 141 Gilmour, Abdulkhalek, Cheng, Alghamdi, Jayanth, O'Shea, Geen, Arvizu, Szewczuk (bib21) 2013; 25 Unpublished data. Steeg (bib2) 2006; 12 Joblońska-Trypuć, Matejczyk, Rosochacki (bib7) 2016; 31 He, Rajantie, Pajusola, Jeotsch, Holopainen, Yia-Heur (bib11) 2005; 65 Chen, Lamar, Li, Hynes, Kamm (bib17) 2016; 76 Morita, Hata, Nakanishi, Omata, Moriat, Yura, Nishimura, Yoneda (bib28) 2015; 32 Friedrich, Seidel, Ebner, Kunz-Schughart (bib12) 2009; 4 Ehsan, Welch-Reardon, Waterman, Hughes, George (bib16) 2014; 6 Takeshita, Iwai, Morita, Niki-Yonekawa, hamada, Yura (bib29) 2014; 44 Awasthi, Schwarz, Schwarz (bib31) 2011; 13 Nishiguchi, Matsusaki, Akashi (bib25) 2015; 1 Strilic, Yang, Albarrán-Juárez, Wachsmuth, Han, Müller, Pasparakis, Offermanns (bib27) 2016; 536 Nishiguchi, Yoshida, Matsusaki, Akashi (bib19) 2011; 23 Dolznig, Walzl, Kramer, Rosner, Garin-Chesa, Hengstschläger (bib14) 2011; 8 Dong, Nemeth, Cher, Palmer, Bright, Fridman (bib9) 2001; 93 Fidler (bib1) 2003; 3 Linder (bib26) 2007; 17 Rodenhizer, Gaude, Cojocari, Mahadevan, Frezza, Wouters, McGuigan (bib13) 2016; 15 Noma, Smalley, Lioni, Naomoto, Tanaka, El-Deiry, King, Nakagawa, Heriyn (bib15) 2008; 134 Gouyer, Fontaine, Dumont, de Wever, Fontayne-Devaud, Leteurtre, Truant, Delacour, Drobecq, Kerckaert, de Launoit, Bracke, Gespach, desseyn, Huet (bib23) 2008; 27 Decher (bib24) 1997; 277 Francia, Cruz-Munoz, Man, Xu, Kerbel (bib10) 2011; 11 Su, Teoh, Park, Kim, Samanta, Bi, Dinish, Olivo, Piantino, Louis, Matsusaki, Kim, Bae, Chang (bib34) 2018; 4 Su (10.1016/j.biomaterials.2018.06.019_bib34) 2018; 4 Rodenhizer (10.1016/j.biomaterials.2018.06.019_bib13) 2016; 15 Weis (10.1016/j.biomaterials.2018.06.019_bib4) 2011; 17 Gouyer (10.1016/j.biomaterials.2018.06.019_bib23) 2008; 27 Kessenbrock (10.1016/j.biomaterials.2018.06.019_bib33) 2010; 141 Armstrong (10.1016/j.biomaterials.2018.06.019_bib8) 2004; 10 Takeshita (10.1016/j.biomaterials.2018.06.019_bib29) 2014; 44 Dong (10.1016/j.biomaterials.2018.06.019_bib9) 2001; 93 Noma (10.1016/j.biomaterials.2018.06.019_bib15) 2008; 134 Overall (10.1016/j.biomaterials.2018.06.019_bib30) 2006; 6 Streit (10.1016/j.biomaterials.2018.06.019_bib18) 2003; 22 Francia (10.1016/j.biomaterials.2018.06.019_bib10) 2011; 11 Nishiguchi (10.1016/j.biomaterials.2018.06.019_bib19) 2011; 23 Strilic (10.1016/j.biomaterials.2018.06.019_bib27) 2016; 536 Curry (10.1016/j.biomaterials.2018.06.019_bib22) 2013; 107 Joyce (10.1016/j.biomaterials.2018.06.019_bib3) 2009; 9 Friedrich (10.1016/j.biomaterials.2018.06.019_bib12) 2009; 4 10.1016/j.biomaterials.2018.06.019_bib35 He (10.1016/j.biomaterials.2018.06.019_bib11) 2005; 65 Visse (10.1016/j.biomaterials.2018.06.019_bib5) 2003; 92 Asano (10.1016/j.biomaterials.2018.06.019_bib20) 2014; 63 Gilmour (10.1016/j.biomaterials.2018.06.019_bib21) 2013; 25 Li (10.1016/j.biomaterials.2018.06.019_bib32) 2004; 101 Ehsan (10.1016/j.biomaterials.2018.06.019_bib16) 2014; 6 Linder (10.1016/j.biomaterials.2018.06.019_bib26) 2007; 17 Nishiguchi (10.1016/j.biomaterials.2018.06.019_bib25) 2015; 1 Dolznig (10.1016/j.biomaterials.2018.06.019_bib14) 2011; 8 Joblońska-Trypuć (10.1016/j.biomaterials.2018.06.019_bib7) 2016; 31 Morita (10.1016/j.biomaterials.2018.06.019_bib28) 2015; 32 Steeg (10.1016/j.biomaterials.2018.06.019_bib2) 2006; 12 Egeblad (10.1016/j.biomaterials.2018.06.019_bib6) 2002; 2 Fidler (10.1016/j.biomaterials.2018.06.019_bib1) 2003; 3 Awasthi (10.1016/j.biomaterials.2018.06.019_bib31) 2011; 13 Chen (10.1016/j.biomaterials.2018.06.019_bib17) 2016; 76 Decher (10.1016/j.biomaterials.2018.06.019_bib24) 1997; 277 |
References_xml | – volume: 4 start-page: 1128 year: 2018 end-page: 1138 ident: bib34 publication-title: Chemistry – volume: 92 start-page: 827 year: 2003 end-page: 839 ident: bib5 article-title: Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry publication-title: Circ. Res. – reference: Unpublished data. – volume: 32 start-page: 739 year: 2015 end-page: 753 ident: bib28 article-title: Cellular fibronectin 1 promotes VEGF-C expression, lymphangiogenesis and lymph node metastasis associated with human oral squamous cell carcinoma publication-title: Clin. Exp. Metastasis – volume: 141 start-page: 52 year: 2010 end-page: 67 ident: bib33 article-title: Matrix metalloproteinases: regulators of the tumor microenvironment publication-title: Cell – volume: 22 start-page: 3172 year: 2003 end-page: 3179 ident: bib18 article-title: Angiogenesis, lymphangiogenesis, and melanoma metastasis publication-title: Oncogene – volume: 23 start-page: 3506 year: 2011 end-page: 3510 ident: bib19 article-title: Rapid construction of three-dimensional multi-layered tissues with endothelial tube networks by the cell-accumulation technique publication-title: Adv. Mater. – volume: 8 start-page: 113 year: 2011 end-page: 119 ident: bib14 article-title: Organotypic spheroid cultures to study tumor–stroma interaction during cancer development publication-title: Drug Discov. Today – volume: 65 start-page: 4739 year: 2005 end-page: 4746 ident: bib11 article-title: Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels publication-title: Canc. Res. – volume: 6 start-page: 603 year: 2014 end-page: 610 ident: bib16 article-title: A three-dimensional publication-title: Integr. Biol. – volume: 6 start-page: 227 year: 2006 end-page: 239 ident: bib30 article-title: Validating matrix metalloproteinases as drug targets and antitargets for cancer therapy publication-title: Nat. Rev. Canc. – volume: 277 start-page: 1232 year: 1997 end-page: 1237 ident: bib24 article-title: Fuzzy nanoassemblies: toward layered polymeric multicomposites publication-title: Science – volume: 107 start-page: 713 year: 2013 end-page: 722 ident: bib22 article-title: The use of a novel MUC1 antibody to identify cancer stem cells and circulating MUC1 in mice and patients with pancreatic cancer publication-title: J. Surg. Oncol. – volume: 536 start-page: 215 year: 2016 end-page: 218 ident: bib27 article-title: Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis publication-title: Nature – volume: 4 start-page: 309 year: 2009 end-page: 324 ident: bib12 article-title: Spheroid-based drug screen: considerations and practical approach publication-title: Nat. Protoc. – volume: 25 start-page: 2587 year: 2013 end-page: 2603 ident: bib21 article-title: A novel epidermal growth factor receptor-signaling platform and its targeted translation in pancreatic cancer publication-title: Cell. Signal. – volume: 93 start-page: 507 year: 2001 end-page: 515 ident: bib9 article-title: Differential regulation of matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 expression in co-cultures of prostate cancer and stromal cells publication-title: Int. J. Canc. – volume: 13 start-page: 597 year: 2011 end-page: 604 ident: bib31 article-title: Antitumour activity of sunitinib in combination with gemcitabine in experimental pancreatic cancer publication-title: HPB – volume: 2 start-page: 161 year: 2002 end-page: 174 ident: bib6 article-title: New functions for the matrix metalloproteinases in cancer progression publication-title: Nat. Rev. Canc. – volume: 11 start-page: 135 year: 2011 end-page: 141 ident: bib10 article-title: Mouse models of advanced spontaneous metastasis for experimental therapeutics publication-title: Nat. Rev. Canc. – volume: 76 start-page: 2513 year: 2016 end-page: 2524 ident: bib17 article-title: Elucidation of the roles of tumor integrin β1 in the extravasation stage of the metastasis cascade publication-title: Canc. Res. – volume: 17 start-page: 107 year: 2007 end-page: 117 ident: bib26 article-title: The matrix corroded: podosomes and invadopodia in extracellular matrix degradation publication-title: Trends Cell Biol. – volume: 1 start-page: 816 year: 2015 end-page: 824 ident: bib25 article-title: Structural and viscoelastic properties of layer-by-layer ECM nanofilms and their interactions with living cells publication-title: ACS Biomater. Sci. Eng. – volume: 3 start-page: 453 year: 2003 end-page: 458 ident: bib1 article-title: The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited publication-title: Nat. Rev. Canc. – volume: 63 start-page: 219 year: 2014 end-page: 226 ident: bib20 article-title: Ultrastructure of blood and lymphatic vascular networks in three-dimensional cultured tissues fabricated by extracellular matrix nanofilm-based cell accumulation technique publication-title: Microscopy – volume: 15 start-page: 227 year: 2016 end-page: 234 ident: bib13 article-title: Three-dimensional engineered tumour for spatial snapshot analysis of cell metabolism and phenotype in hypoxic gradients publication-title: Nat. Mater. – volume: 31 start-page: 177 year: 2016 end-page: 183 ident: bib7 article-title: Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs publication-title: J. Enzym. Inhib. Med. Chem. – volume: 27 start-page: 4024 year: 2008 end-page: 4033 ident: bib23 article-title: Autocrine induction of invasion and metastasis by tumor-associated trypsin inhibitor in human colon cancer cells publication-title: Oncogene – volume: 9 start-page: 239 year: 2009 end-page: 252 ident: bib3 article-title: Microenvironmental regulation of metastasis publication-title: Nat. Rev. Canc. – volume: 44 start-page: 59 year: 2014 end-page: 68 ident: bib29 article-title: Wnt5b promotes the cell motility essential for metastasis of oral squamous cell carcinoma through active Cdc42 and RhoA publication-title: Int. J. Oncol. – volume: 101 start-page: 58 year: 2004 end-page: 65 ident: bib32 article-title: Overexpression of synuclein-γ in pancreatic adenocarcinoma publication-title: Cancer – volume: 12 start-page: 895 year: 2006 end-page: 904 ident: bib2 article-title: Tumor metastasis: mechanistic insights and clinical challenges publication-title: Nat. Med. – volume: 134 start-page: 1981 year: 2008 end-page: 1993 ident: bib15 article-title: The essential role of fibroblasts in esophageal squamous cell carcinoma–induced angiogenesis publication-title: Gastroenterology – volume: 10 start-page: 7427 year: 2004 end-page: 7437 ident: bib8 article-title: Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma publication-title: Clin. Canc. Res. – volume: 17 start-page: 1359 year: 2011 end-page: 1370 ident: bib4 article-title: Tumor angiogenesis: molecular pathways and therapeutic targets publication-title: Nat. Med. – volume: 32 start-page: 739 year: 2015 ident: 10.1016/j.biomaterials.2018.06.019_bib28 article-title: Cellular fibronectin 1 promotes VEGF-C expression, lymphangiogenesis and lymph node metastasis associated with human oral squamous cell carcinoma publication-title: Clin. Exp. Metastasis doi: 10.1007/s10585-015-9741-2 – volume: 92 start-page: 827 year: 2003 ident: 10.1016/j.biomaterials.2018.06.019_bib5 article-title: Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry publication-title: Circ. Res. doi: 10.1161/01.RES.0000070112.80711.3D – volume: 12 start-page: 895 year: 2006 ident: 10.1016/j.biomaterials.2018.06.019_bib2 article-title: Tumor metastasis: mechanistic insights and clinical challenges publication-title: Nat. Med. doi: 10.1038/nm1469 – volume: 1 start-page: 816 year: 2015 ident: 10.1016/j.biomaterials.2018.06.019_bib25 article-title: Structural and viscoelastic properties of layer-by-layer ECM nanofilms and their interactions with living cells publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.5b00188 – volume: 31 start-page: 177 year: 2016 ident: 10.1016/j.biomaterials.2018.06.019_bib7 article-title: Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs publication-title: J. Enzym. Inhib. Med. Chem. doi: 10.3109/14756366.2016.1161620 – volume: 141 start-page: 52 year: 2010 ident: 10.1016/j.biomaterials.2018.06.019_bib33 article-title: Matrix metalloproteinases: regulators of the tumor microenvironment publication-title: Cell doi: 10.1016/j.cell.2010.03.015 – volume: 4 start-page: 1128 year: 2018 ident: 10.1016/j.biomaterials.2018.06.019_bib34 publication-title: Chemistry doi: 10.1016/j.chempr.2018.02.016 – volume: 8 start-page: 113 year: 2011 ident: 10.1016/j.biomaterials.2018.06.019_bib14 article-title: Organotypic spheroid cultures to study tumor–stroma interaction during cancer development publication-title: Drug Discov. Today – volume: 101 start-page: 58 year: 2004 ident: 10.1016/j.biomaterials.2018.06.019_bib32 article-title: Overexpression of synuclein-γ in pancreatic adenocarcinoma publication-title: Cancer doi: 10.1002/cncr.20321 – volume: 6 start-page: 603 year: 2014 ident: 10.1016/j.biomaterials.2018.06.019_bib16 article-title: A three-dimensional in vitro model of tumor cell intravasation publication-title: Integr. Biol. doi: 10.1039/c3ib40170g – volume: 4 start-page: 309 year: 2009 ident: 10.1016/j.biomaterials.2018.06.019_bib12 article-title: Spheroid-based drug screen: considerations and practical approach publication-title: Nat. Protoc. doi: 10.1038/nprot.2008.226 – volume: 44 start-page: 59 year: 2014 ident: 10.1016/j.biomaterials.2018.06.019_bib29 article-title: Wnt5b promotes the cell motility essential for metastasis of oral squamous cell carcinoma through active Cdc42 and RhoA publication-title: Int. J. Oncol. doi: 10.3892/ijo.2013.2172 – volume: 9 start-page: 239 year: 2009 ident: 10.1016/j.biomaterials.2018.06.019_bib3 article-title: Microenvironmental regulation of metastasis publication-title: Nat. Rev. Canc. doi: 10.1038/nrc2618 – volume: 25 start-page: 2587 year: 2013 ident: 10.1016/j.biomaterials.2018.06.019_bib21 article-title: A novel epidermal growth factor receptor-signaling platform and its targeted translation in pancreatic cancer publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2013.08.008 – volume: 6 start-page: 227 year: 2006 ident: 10.1016/j.biomaterials.2018.06.019_bib30 article-title: Validating matrix metalloproteinases as drug targets and antitargets for cancer therapy publication-title: Nat. Rev. Canc. doi: 10.1038/nrc1821 – volume: 3 start-page: 453 year: 2003 ident: 10.1016/j.biomaterials.2018.06.019_bib1 article-title: The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited publication-title: Nat. Rev. Canc. doi: 10.1038/nrc1098 – volume: 134 start-page: 1981 year: 2008 ident: 10.1016/j.biomaterials.2018.06.019_bib15 article-title: The essential role of fibroblasts in esophageal squamous cell carcinoma–induced angiogenesis publication-title: Gastroenterology doi: 10.1053/j.gastro.2008.02.061 – volume: 536 start-page: 215 year: 2016 ident: 10.1016/j.biomaterials.2018.06.019_bib27 article-title: Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis publication-title: Nature doi: 10.1038/nature19076 – volume: 11 start-page: 135 year: 2011 ident: 10.1016/j.biomaterials.2018.06.019_bib10 article-title: Mouse models of advanced spontaneous metastasis for experimental therapeutics publication-title: Nat. Rev. Canc. doi: 10.1038/nrc3001 – ident: 10.1016/j.biomaterials.2018.06.019_bib35 – volume: 107 start-page: 713 year: 2013 ident: 10.1016/j.biomaterials.2018.06.019_bib22 article-title: The use of a novel MUC1 antibody to identify cancer stem cells and circulating MUC1 in mice and patients with pancreatic cancer publication-title: J. Surg. Oncol. doi: 10.1002/jso.23316 – volume: 2 start-page: 161 year: 2002 ident: 10.1016/j.biomaterials.2018.06.019_bib6 article-title: New functions for the matrix metalloproteinases in cancer progression publication-title: Nat. Rev. Canc. doi: 10.1038/nrc745 – volume: 76 start-page: 2513 year: 2016 ident: 10.1016/j.biomaterials.2018.06.019_bib17 article-title: Elucidation of the roles of tumor integrin β1 in the extravasation stage of the metastasis cascade publication-title: Canc. Res. doi: 10.1158/0008-5472.CAN-15-1325 – volume: 15 start-page: 227 year: 2016 ident: 10.1016/j.biomaterials.2018.06.019_bib13 article-title: Three-dimensional engineered tumour for spatial snapshot analysis of cell metabolism and phenotype in hypoxic gradients publication-title: Nat. Mater. doi: 10.1038/nmat4482 – volume: 17 start-page: 107 year: 2007 ident: 10.1016/j.biomaterials.2018.06.019_bib26 article-title: The matrix corroded: podosomes and invadopodia in extracellular matrix degradation publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2007.01.002 – volume: 65 start-page: 4739 year: 2005 ident: 10.1016/j.biomaterials.2018.06.019_bib11 article-title: Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels publication-title: Canc. Res. doi: 10.1158/0008-5472.CAN-04-4576 – volume: 13 start-page: 597 year: 2011 ident: 10.1016/j.biomaterials.2018.06.019_bib31 article-title: Antitumour activity of sunitinib in combination with gemcitabine in experimental pancreatic cancer publication-title: HPB doi: 10.1111/j.1477-2574.2011.00333.x – volume: 277 start-page: 1232 year: 1997 ident: 10.1016/j.biomaterials.2018.06.019_bib24 article-title: Fuzzy nanoassemblies: toward layered polymeric multicomposites publication-title: Science doi: 10.1126/science.277.5330.1232 – volume: 22 start-page: 3172 year: 2003 ident: 10.1016/j.biomaterials.2018.06.019_bib18 article-title: Angiogenesis, lymphangiogenesis, and melanoma metastasis publication-title: Oncogene doi: 10.1038/sj.onc.1206457 – volume: 93 start-page: 507 year: 2001 ident: 10.1016/j.biomaterials.2018.06.019_bib9 article-title: Differential regulation of matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 expression in co-cultures of prostate cancer and stromal cells publication-title: Int. J. Canc. doi: 10.1002/ijc.1358 – volume: 10 start-page: 7427 year: 2004 ident: 10.1016/j.biomaterials.2018.06.019_bib8 article-title: Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma publication-title: Clin. Canc. Res. doi: 10.1158/1078-0432.CCR-03-0825 – volume: 23 start-page: 3506 year: 2011 ident: 10.1016/j.biomaterials.2018.06.019_bib19 article-title: Rapid construction of three-dimensional multi-layered tissues with endothelial tube networks by the cell-accumulation technique publication-title: Adv. Mater. doi: 10.1002/adma.201101787 – volume: 63 start-page: 219 year: 2014 ident: 10.1016/j.biomaterials.2018.06.019_bib20 article-title: Ultrastructure of blood and lymphatic vascular networks in three-dimensional cultured tissues fabricated by extracellular matrix nanofilm-based cell accumulation technique publication-title: Microscopy doi: 10.1093/jmicro/dfu005 – volume: 17 start-page: 1359 year: 2011 ident: 10.1016/j.biomaterials.2018.06.019_bib4 article-title: Tumor angiogenesis: molecular pathways and therapeutic targets publication-title: Nat. Med. doi: 10.1038/nm.2537 – volume: 27 start-page: 4024 year: 2008 ident: 10.1016/j.biomaterials.2018.06.019_bib23 article-title: Autocrine induction of invasion and metastasis by tumor-associated trypsin inhibitor in human colon cancer cells publication-title: Oncogene doi: 10.1038/onc.2008.42 |
SSID | ssj0014042 |
Score | 2.470011 |
Snippet | Tumour models mimicking in vivo three-dimensional (3D) microenvironments are of increasing interest in drug discovery because of the limitations inherent to... Tumour models mimicking in vivo three-dimensional (3D) microenvironments are of increasing interest in drug discovery because of the limitations inherent to... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 144 |
SubjectTerms | angiogenesis blood cell culture drugs Extracellular matrix humans In vitro tumour model Layer-by-layer assembly lymph metalloproteinases Metastasis Nanofilm neoplasm cells neoplasms Preclinical assay prediction screening secretion tissues |
Title | In vitro 3D blood/lymph-vascularized human stromal tissues for preclinical assays of cancer metastasis |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S014296121830440X https://dx.doi.org/10.1016/j.biomaterials.2018.06.019 https://www.ncbi.nlm.nih.gov/pubmed/29986232 https://www.proquest.com/docview/2067892199 https://www.proquest.com/docview/2101360281 |
Volume | 179 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9tAEB2MCyU9lNZJWjet2UCuW3u1-rAIOQS3xm6xTzX4JnZXq6AQy8aSC-mhv6W_pb8sM_owCbTF0KPMjpF2Zmee0Js3ABfaCeJB7CjuCa24a4zmGmEzD7xQYXUmIgb1O8_m_mThfll6yxaMml4YolXWub_K6WW2rn_p17vZ36Rpn2hJTkgCWENJc5OX1MHuBhTlH3_uaR6kHuNUNEaH0-pGeLTkeFGLuyoqVxPNq9LyJNWdPxepv4HQshiNX8HLGkWy6-pGX0PLZh148UhbsAPPZ_VX82O4mWa_f31Pi-2ayU-spKr37-7RjbzhoaY_bMzKcX0sx2Ur_O-i9EjOENSyDW5R3UHJEGyr-5ytE2YoYLZsZQuFEDNP8xNYjD9_G014PWCBG8xzBRfadQZqKI1rrU60CPH1xri-df3EtzROFE83ZgAb02uWDLXyrOMrUsyLhyYRiTyFdrbO7FtgWpTC7kpb9IWQQgWeHsZaDsJAD0zsdyFsdjQytfo4DcG4ixqa2W302BsReSMizp0IuyD3tptKg-Mgq8vGcVGzR5gXIywVB1lf7a2fxOPB9udNrER4YOkrjMrsekeLEB-EWCj-tUaQlB5CP9GFN1Wg7Z8c8QO6STrv_vMOz-CIripi4ntoF9ud_YAAq9C98gT14Nn19Otk_gB5ASkH |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VIvFzQFAohN9FgqNJdtd2YqEeEKVKaNNTK-W27K7XyKh1othtFQ59lr5D36BPxoy9jooEKBLqNd5ZOTOzs9_K334D8M6IftpLhQ4ibnQQWmsCg7A56EeJxt2ZiBh033m8Hw8Pw6-TaLIGl-1dGKJV-trf1PS6Wvtfut6b3Vmed4mWJBISwBpI6ps88czKXbc4w3NbuTXaxiC_F2Lny8HnYeBbCwQWV3gVcBOKnh5IGzpnMoMn71jYMHZhnMWOGmliXmPuu5QOGDIxOnIi1qQVlw5sxjOJ896C2yFORm0TPpwveSUkVyMa3qQI6PVapdOaVEZ36nXV5BbxyhrxUJL5-fOu-DfUW-9-Ow_hgYet7FPjmUew5ooNuH9NzHAD7oz9Z_rH8H1UXF2c5tV8yuQ2q7nx3aMF5k3QEl_zny5ldX9AVuKwY5y7qlOgZIii2Qxj4q9sMkT3elGyacYsZeicHbtKI6Yt8_IJHN6I2zdhvZgW7hkww2sleW0cBp9LrvuRGaRG9pK-6dk07kDSelRZL3dOXTeOVMtr-6GuR0NRNBSR_HjSAbm0nTWiHytZfWwDp1ofYSFWuDetZL21tP5tAaxs_7bNFYUVgj776MJNT2gQApIEd6Z_jeGk3YdYk3fgaZNoy3-OgAXDJMXz_3zDN3B3eDDeU3uj_d0XcI-eNKzIl7BezU_cK0R3lXldryYG3256-f4CIyFjww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In%C2%A0vitro+3D+blood%2Flymph-vascularized+human+stromal+tissues+for+preclinical+assays+of+cancer+metastasis&rft.jtitle=Biomaterials&rft.au=Nishiguchi%2C+Akihiro&rft.au=Matsusaki%2C+Michiya&rft.au=Kano%2C+Mitsunobu+R.&rft.au=Nishihara%2C+Hiroshi&rft.date=2018-10-01&rft.issn=0142-9612&rft.volume=179&rft.spage=144&rft.epage=155&rft_id=info:doi/10.1016%2Fj.biomaterials.2018.06.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biomaterials_2018_06_019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |