A Biocompatible Arginine-Based Polycation

Self assembly between cations and anions is ubiquitous throughout nature. Important biological structures such as chromatin often use poly­valent assembly between a polycation and a polyanion. The biomedical importance of synthetic polycations arises from their affinity to polyanions such as nucleic...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 21; no. 3; pp. 434 - 440
Main Authors Zern, Blaine J., Chu, Hunghao, Osunkoya, Adeboye O., Gao, Jin, Wang, Yadong
Format Journal Article
LanguageEnglish
Published New York WILEY-VCH Verlag 08.02.2011
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Self assembly between cations and anions is ubiquitous throughout nature. Important biological structures such as chromatin often use poly­valent assembly between a polycation and a polyanion. The biomedical importance of synthetic polycations arises from their affinity to polyanions such as nucleic acid and heparan sulfate. However, the limited biocompatibility of synthetic polycations hampers the realization of their immense potential. By examining biocompatible cationic peptides, we hypothesize that a biocompatible polycation should be biodegradable and made from endogenous cations. We design an arginine‐based biodegradable polycation and demonstrate that it is more compatible by several orders of magnitude than conventional polycations in vitro and in vivo. This biocompatibility diminishes when L‐arginine is substituted with D‐arginine or when the biodegradable ester linker is changed to a biostable ether linker. We believe that this design can lead to many biocompatible polycations that can significantly advance a wide range of applications including controlled release, tissue engineering, biosensing, and medical devices. The design of PAGS and the control polymers that probe the importance of endogenous cations and their degradability in terms of biocompatibility is studied. The biocompatibility is shown to diminish when L‐arginine is substituted with D‐arginine or when the biodegradable ester linker is changed to a biostable ether linker.
AbstractList Self assembly between cations and anions is ubiquitous throughout nature. Important biological structures such as chromatin often use polyvalent assembly between a polycation and a polyaninon. Biomedical importance of synthetic polycations arises from their affinity to polyanions such as nucleic acid and heparan sulfate. However, the limited biocompatibility of synthetic polycations hampers the realization of their immense potential. By examining biocompatible cationic peptides, we hypothesize that a biocompatible polycation should be biodegradable and made from endogenous cations. We designed an arginine-based biodegradable polycation and demonstrated that it was orders of magnitude more compatible than conventional polycations in vitro and in vivo. This biocompatibility diminishes when L-arginine is substituted with D-arginine or when the biodegradable ester linker changes to a biostable ether linker. We believe this design can lead to many biocompatible polycations that can significantly advance a wide range of applications including controlled release, tissue engineering, biosensing, and medical devices.
Self assembly between cations and anions is ubiquitous throughout nature. Important biological structures such as chromatin often use poly-valent assembly between a polycation and a polyanion. The biomedical importance of synthetic polycations arises from their affinity to polyanions such as nucleic acid and heparan sulfate. However, the limited biocompatibility of synthetic polycations hampers the realization of their immense potential. By examining biocompatible cationic peptides, we hypothesize that a biocompatible polycation should be biodegradable and made from endogenous cations. We design an arginine-based biodegradable polycation and demonstrate that it is more compatible by several orders of magnitude than conventional polycations in vitro and in vivo. This biocompatibility diminishes when L -arginine is substituted with D -arginine or when the biodegradable ester linker is changed to a biostable ether linker. We believe that this design can lead to many biocompatible polycations that can significantly advance a wide range of applications including controlled release, tissue engineering, biosensing, and medical devices.
Self assembly between cations and anions is ubiquitous throughout nature. Important biological structures such as chromatin often use poly­valent assembly between a polycation and a polyanion. The biomedical importance of synthetic polycations arises from their affinity to polyanions such as nucleic acid and heparan sulfate. However, the limited biocompatibility of synthetic polycations hampers the realization of their immense potential. By examining biocompatible cationic peptides, we hypothesize that a biocompatible polycation should be biodegradable and made from endogenous cations. We design an arginine‐based biodegradable polycation and demonstrate that it is more compatible by several orders of magnitude than conventional polycations in vitro and in vivo. This biocompatibility diminishes when L‐arginine is substituted with D‐arginine or when the biodegradable ester linker is changed to a biostable ether linker. We believe that this design can lead to many biocompatible polycations that can significantly advance a wide range of applications including controlled release, tissue engineering, biosensing, and medical devices. The design of PAGS and the control polymers that probe the importance of endogenous cations and their degradability in terms of biocompatibility is studied. The biocompatibility is shown to diminish when L‐arginine is substituted with D‐arginine or when the biodegradable ester linker is changed to a biostable ether linker.
Abstract Self assembly between cations and anions is ubiquitous throughout nature. Important biological structures such as chromatin often use poly­valent assembly between a polycation and a polyanion. The biomedical importance of synthetic polycations arises from their affinity to polyanions such as nucleic acid and heparan sulfate. However, the limited biocompatibility of synthetic polycations hampers the realization of their immense potential. By examining biocompatible cationic peptides, we hypothesize that a biocompatible polycation should be biodegradable and made from endogenous cations. We design an arginine‐based biodegradable polycation and demonstrate that it is more compatible by several orders of magnitude than conventional polycations in vitro and in vivo. This biocompatibility diminishes when L ‐arginine is substituted with D ‐arginine or when the biodegradable ester linker is changed to a biostable ether linker. We believe that this design can lead to many biocompatible polycations that can significantly advance a wide range of applications including controlled release, tissue engineering, biosensing, and medical devices.
Self assembly between cations and anions is ubiquitous throughout nature. Important biological structures such as chromatin often use poly­valent assembly between a polycation and a polyanion. The biomedical importance of synthetic polycations arises from their affinity to polyanions such as nucleic acid and heparan sulfate. However, the limited biocompatibility of synthetic polycations hampers the realization of their immense potential. By examining biocompatible cationic peptides, we hypothesize that a biocompatible polycation should be biodegradable and made from endogenous cations. We design an arginine‐based biodegradable polycation and demonstrate that it is more compatible by several orders of magnitude than conventional polycations in vitro and in vivo. This biocompatibility diminishes when L‐arginine is substituted with D‐arginine or when the biodegradable ester linker is changed to a biostable ether linker. We believe that this design can lead to many biocompatible polycations that can significantly advance a wide range of applications including controlled release, tissue engineering, biosensing, and medical devices.
Self assembly between cations and anions is ubiquitous throughout nature. Important biological structures such as chromatin often use polyvalent assembly between a polycation and a polyaninon. Biomedical importance of synthetic polycations arises from their affinity to polyanions such as nucleic acid and heparan sulfate. However, the limited biocompatibility of synthetic polycations hampers the realization of their immense potential. By examining biocompatible cationic peptides, we hypothesize that a biocompatible polycation should be biodegradable and made from endogenous cations. We designed an arginine-based biodegradable polycation and demonstrated that it was orders of magnitude more compatible than conventional polycations in vitro and in vivo . This biocompatibility diminishes when L-arginine is substituted with D-arginine or when the biodegradable ester linker changes to a biostable ether linker. We believe this design can lead to many biocompatible polycations that can significantly advance a wide range of applications including controlled release, tissue engineering, biosensing, and medical devices.
Author Zern, Blaine J.
Chu, Hunghao
Gao, Jin
Osunkoya, Adeboye O.
Wang, Yadong
AuthorAffiliation 3 Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
1 Institutes for Translational Medicine and Therapeutics and Environmental Medicine, University of Pennsylvania School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104
2 Department of Bioengineering and the McGowan Institute of Regenerative Medicine, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15219
AuthorAffiliation_xml – name: 3 Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
– name: 2 Department of Bioengineering and the McGowan Institute of Regenerative Medicine, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15219
– name: 1 Institutes for Translational Medicine and Therapeutics and Environmental Medicine, University of Pennsylvania School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104
Author_xml – sequence: 1
  givenname: Blaine J.
  surname: Zern
  fullname: Zern, Blaine J.
  organization: Institutes for Translational Medicine and Therapeutics and Environmental Medicine, University of Pennsylvania School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
– sequence: 2
  givenname: Hunghao
  surname: Chu
  fullname: Chu, Hunghao
  organization: Department of Bioengineering and the McGowan Institute of Regenerative Medicine, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15219, USA
– sequence: 3
  givenname: Adeboye O.
  surname: Osunkoya
  fullname: Osunkoya, Adeboye O.
  organization: Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 4
  givenname: Jin
  surname: Gao
  fullname: Gao, Jin
  organization: Department of Bioengineering and the McGowan Institute of Regenerative Medicine, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15219, USA
– sequence: 5
  givenname: Yadong
  surname: Wang
  fullname: Wang, Yadong
  email: yaw20@pitt.edu
  organization: Department of Bioengineering and the McGowan Institute of Regenerative Medicine, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15219, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23393493$$D View this record in MEDLINE/PubMed
BookMark eNqFkctvEzEQxq2qqC-4ckSROJQeNvj9uCClpQ2I8lBVFG6WuztbXHbt1E5a8t_jKGVVOMBpRprf983Y3z7aDjEAQs8JHhOM6WvXtP2Y4tJjI80W2iOSyIphqreHnnzbRfs532BMlGJ8B-1Sxgzjhu2ho8no2Mc69nO38FcdjCbp2gcfoDp2GZrRl9it6jKK4Sl60rouw7OHeoC-np1enryrzj9P359MzqtaMG0qpxjWggFVAjvdcNICcNE4omRblmoKBhqpW0OBSUccGMJaYogToIl0kh2gNxvf-fKqh6aGsEius_Pke5dWNjpv_5wE_91exzvLhORS6mJw-GCQ4u0S8sL2PtfQdS5AXGarNZZKGIUL-eqfJNFMCM05WaMv_0Jv4jKF8hGWaioxN9jwQo03VJ1izgna4WyC7Tovu87LDnkVwYvHjx3w3wEVwGyAe9_B6j92dvL27ONj82qj9XkBPwetSz-sVEwJO_s0tYR-wLOLmbFT9guzWrCY
CitedBy_id crossref_primary_10_1016_j_mtbio_2022_100525
crossref_primary_10_1167_iovs_18_24087
crossref_primary_10_1039_C6SM01433J
crossref_primary_10_1039_D0NJ05719C
crossref_primary_10_1002_advs_201700550
crossref_primary_10_1016_j_biomaterials_2011_09_067
crossref_primary_10_1021_acssuschemeng_6b01805
crossref_primary_10_1002_ange_201511276
crossref_primary_10_1039_C4NR02657H
crossref_primary_10_1002_elsc_201400043
crossref_primary_10_1016_j_progpolymsci_2016_05_004
crossref_primary_10_1016_j_ijpharm_2012_01_051
crossref_primary_10_1021_acs_jpcc_6b08140
crossref_primary_10_1021_acs_jpcb_7b07100
crossref_primary_10_1016_j_actbio_2013_09_012
crossref_primary_10_1016_j_jconrel_2019_12_035
crossref_primary_10_1002_btpr_728
crossref_primary_10_1039_C6TB03052A
crossref_primary_10_1016_j_ijbiomac_2024_129667
crossref_primary_10_1007_s10118_015_1644_9
crossref_primary_10_1039_C7SM01763D
crossref_primary_10_1038_srep26848
crossref_primary_10_1517_17425247_2014_941355
crossref_primary_10_1021_acs_molpharmaceut_5b00967
crossref_primary_10_1002_anie_201511276
crossref_primary_10_1039_C5TB02254A
crossref_primary_10_3390_polym11040578
crossref_primary_10_1002_marc_202000534
crossref_primary_10_1002_chem_201602449
crossref_primary_10_1016_j_jcis_2014_05_016
crossref_primary_10_1002_adfm_201202503
Cites_doi 10.1016/0022-1759(83)90303-4
10.1517/17425240902967599
10.1002/jbm.a.31307
10.1126/science.1104742
10.1021/ma951759b
10.1016/0300-483X(95)03189-M
10.1021/bc050283q
10.1021/ja0015388
10.1016/S0142-9612(02)00445-3
10.1038/215934a0
10.1021/jp983011b
10.1126/science.1078708
10.1021/nl080694q
10.1016/j.jconrel.2009.01.028
10.1021/ja001033h
10.1021/bc049864q
10.1016/j.addr.2006.09.008
10.1073/pnas.0502067102
10.1016/S0167-7012(93)80010-4
10.1021/ja016062m
10.1002/3527600035.bpol4002
10.1021/ja005715g
10.1016/S0959-440X(00)00258-X
10.1038/35039551
10.1002/adma.200701748
10.1021/la025646e
10.1016/j.biomaterials.2006.02.048
10.1021/ma982004i
10.1021/nl0521219
10.1021/bm034176f
10.1038/35086680
10.1021/bc060077y
10.1016/S1473-3099(01)00092-5
10.1126/science.281.5381.1312
10.1016/S0168-3659(99)00235-7
10.1126/science.277.5330.1232
10.1126/science.271.5252.1116
ContentType Journal Article
Copyright Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright Wiley Subscription Services, Inc. Feb 2011
Copyright_xml – notice: Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright Wiley Subscription Services, Inc. Feb 2011
DBID BSCLL
NPM
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
5PM
DOI 10.1002/adfm.201000969
DatabaseName Istex
PubMed
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

PubMed
CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 440
ExternalDocumentID 10_1002_adfm_201000969
23393493
ADFM201000969
ark_67375_WNG_12K0WRW9_G
Genre article
Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R21 EB008565
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
NPM
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
5PM
ID FETCH-LOGICAL-c5389-a730853e2750a8d41fee45da176f39382e9ed68f92e36a1ae913f191a5e816a63
IEDL.DBID DR2
ISSN 1616-301X
1616-3028
IngestDate Tue Sep 17 21:27:26 EDT 2024
Sat Aug 17 03:31:37 EDT 2024
Fri Aug 16 05:25:51 EDT 2024
Thu Oct 10 18:03:15 EDT 2024
Fri Aug 23 00:33:16 EDT 2024
Sat Sep 28 07:53:14 EDT 2024
Sat Aug 24 01:20:54 EDT 2024
Wed Oct 30 09:49:34 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5389-a730853e2750a8d41fee45da176f39382e9ed68f92e36a1ae913f191a5e816a63
Notes istex:6EBB0DF84B98F298D143C9EAB73FFDE1CE9174F1
ark:/67375/WNG-12K0WRW9-G
ArticleID:ADFM201000969
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://europepmc.org/articles/pmc3564668?pdf=render
PMID 23393493
PQID 2826049094
PQPubID 2045204
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3564668
proquest_miscellaneous_880675970
proquest_miscellaneous_1835584410
proquest_journals_2826049094
crossref_primary_10_1002_adfm_201000969
pubmed_primary_23393493
wiley_primary_10_1002_adfm_201000969_ADFM201000969
istex_primary_ark_67375_WNG_12K0WRW9_G
PublicationCentury 2000
PublicationDate February 8, 2011
PublicationDateYYYYMMDD 2011-02-08
PublicationDate_xml – month: 02
  year: 2011
  text: February 8, 2011
  day: 08
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Germany
– name: Hoboken
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2011
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References M. Chanana, A. Gliozzi, A. Diaspro, I. Chodnevskaja, S. Huewel, V. Moskalenko, K. Ulrichs, H. J. Galla, S. Krol, Nano Lett. 2005, 5, 2605.
b) J. T. Wilson, W. Cui, E. L. Chaikof, Nano Lett. 2008, 8, 1940.
d) D. Putnam, R. Langer, Macromolecules 1999, 32, 3658.
b) D. Fischer, Y. Li, B. Ahlemeyer, J. Krieglstein, T. Kissel, Biomaterials 2003, 24, 1121.
H. Babich, H. L. Zuckerbraun, B. J. Wurzburger, Y. L. Rubin, E. Borenfreund, L. Blau, Toxicology 1996, 106, 187.
G. Orive, S. K. Tam, J. L. Pedraz, J. P. Halle, Biomaterials 2006, 27, 3691.
M. Thomas, J. J. Lu, Q. Ge, C. Zhang, J. Chen, A. M. Klibanov, Proc. Natl. Acad. Sci. 2005, 102, 5679.
A. Diaspro, D. Silvano, S. Krol, O. Cavalleri, A. Gliozzi, Langmuir 2002, 18, 5047.
a) L. Pellegrini, Curr. Opin. Struct. Biol. 2001, 11, 629
L. Pellegrini, D. F. Burke, F. von Delft, B. Mulloy, T. L. Blundell, Nature 2000, 407, 1029.
T. Mossman, J. Immunol. Methods 1983, 55.
b) T. Ganz, Nature 2001, 412, 392.
A. M. Funhoff, C. F. van Nostrum, M. C. Lok, M. M. Fretz, D. J. Crommelin, W. E. Hennink, Bioconjug. Chem. 2004, 15, 1212.
E. Kaneshiro, M. A. Wyder, Y. Wu, M. Cushion, J. Microbiol. Methods 1993, 17, 1.
E. Marsich, M. Borgogna, I. Donati, P. Mozetic, B. L. Strand, S. G. Salvador, F. Vittur, S. Paoletti, J. Biomed. Mater. Res. A 2008, 84, 364.
a) R. E. Hancock, Lancet Infect Dis. 2001, 1, 156
T.-I. Kim, C. Z. Bai, K. Nam, J.-S. Park, J Controlled Release 2009, 136, 132.
a) Y. Lim, S. M. Kim, Y. Lee, W. Lee, T. Yang, M. Lee, H. Suh, J. Park, J. Am. Chem. Soc. 2001, 123, 2460
c) J. Wang, H. Q. Mao, K. W. Leong, J. Am. Chem. Soc. 2001, 123, 9480
a) M. Chanana, A. Gliozzi, A. Diaspro, I. Chodnevskaja, S. Huewel, V. Moskalenko, K. Ulrichs, H. J. Galla, S. Krol, Nano Lett. 2005, 5, 2605
a) S. Jon, D. G. Anderson, R. Langer, Biomacromolecules 2003, 4, 1759
E. Nemeth, M. S. Tuttle, J. Powelson, M. B. Vaughn, A. Donovan, D. M. Ward, T. Ganz, J. Kaplan, Science 2004, 306, 2090.
S. Faham, R. E. Hileman, J. R. Fromm, R. J. Linhardt, D. C. Rees, Science 1996, 271, 1116.
b) D. Lynn, R. Langer, J. Am. Chem. Soc. 2000, 10761.
N. Bendifallah, F. W. Rasmussen, V. Zachar, P. Ebbesen, P. E. Nielsen, U. Koppelhus, Bioconjug. Chem. 2006, 17, 750.
H. Shirahama, M. Shiomi, M. Sakane, H. Yasuda, Macromolecules 1996, 29, 4821.
A. C. Hunter, Adv. Drug Deliv. Rev. 2006, 58, 1523.
G. Felsenfeld, Science 1978, 271, 115.
b) Y. B. Lim, C. H. Kim, K. Kim, S. W. Kim, J. S. Park, J. Am. Chem. Soc. 2000, 122, 6524
T. Ganz, Science 2002, 298, 977.
M. Braiman, J. Phys. Chem. B 1999, 4744.
a) D. M. Lynn, Adv. Mater. 2007, 19, 4118
b) G. Decher, Science 1997, 277, 1232.
b) H. J. Ryser, Nature 1967, 215, 934.
a) L. Dekie, V. Toncheva, P. Dubruel, E. H. Schacht, L. Barrett, L. W. Seymour, J. Controlled Release 2000, 65, 187
S. Mansouri, F. M. Winnik, M. Tabrizian, Exp. Opin. Drug Deliv. 2009, 6, 585.
N. A. Thornberry, Y. Lazebnik, Science 1998, 281, 1312.
A. Albertsson, I. Varma, in Aliphatic Polyesters: Synthesis, Properties and Applications, Springer-Verlag, Berlin 2002.
a) S. Hong, P. R. Leroueil, E. K. Janus, J. L. Peters, M. M. Kober, M. T. Islam, B. G. Orr, J. R. Baker, Jr., M. M. Banaszak Holl, Bioconjug. Chem. 2006, 17, 728
b) L. Pellegrini, D. F. Burke, F. von Delft, B. Mulloy, T. L. Blundell, Nature 2000, 407, 1029.
1998; 281
2002; 18
2001 2000; 11 407
2000 1967; 65 215
2007 1997; 19 277
2001 2001; 1 412
2006; 17
2003 2000; 4
2002; 298
2006; 58
2002
2004; 306
2009; 136
2005 2008; 5 8
1996; 106
1999
2000; 407
1996; 29
1993; 17
2005; 102
2006; 27
2004; 15
1978; 271
2005; 5
1996; 271
1983
2009; 6
2001 2000 2001 1999; 123 122 123 32
2008; 84
2006 2003; 17 24
340956 - Nature. 1978 Jan 12;271(5641):115-22
17079050 - Adv Drug Deliv Rev. 2006 Dec 1;58(14 ):1523-31
6606682 - J Immunol Methods. 1983 Dec 16;65(1-2):55-63
10699280 - J Control Release. 2000 Mar 1;65(1-2):187-202
17618521 - J Biomed Mater Res A. 2008 Feb;84(2):364-76
16351223 - Nano Lett. 2005 Dec;5(12):2605-12
15514116 - Science. 2004 Dec 17;306(5704):2090-3
15824322 - Proc Natl Acad Sci U S A. 2005 Apr 19;102(16):5679-84
16704214 - Bioconjug Chem. 2006 May-Jun;17(3):750-8
11785766 - Curr Opin Struct Biol. 2001 Oct;11(5):629-34
12411693 - Science. 2002 Nov 1;298(5595):977-9
11871492 - Lancet Infect Dis. 2001 Oct;1(3):156-64
16574222 - Biomaterials. 2006 Jul;27(20):3691-700
14606906 - Biomacromolecules. 2003 Nov-Dec;4(6):1759-62
18547122 - Nano Lett. 2008 Jul;8(7):1940-8
11562246 - J Am Chem Soc. 2001 Sep 26;123(38):9480-1
11456910 - J Am Chem Soc. 2001 Mar 14;123(10):2460-1
9721091 - Science. 1998 Aug 28;281(5381):1312-6
11069186 - Nature. 2000 Oct 26;407(6807):1029-34
16704211 - Bioconjug Chem. 2006 May-Jun;17 (3):728-34
15546186 - Bioconjug Chem. 2004 Nov-Dec;15(6):1212-20
6055419 - Nature. 1967 Aug 26;215(5104):934-6
12527253 - Biomaterials. 2003 Mar;24(7):1121-31
8571390 - Toxicology. 1996 Jan 8;106(1-3):187-96
8599088 - Science. 1996 Feb 23;271(5252):1116-20
19331841 - J Control Release. 2009 Jun 5;136(2):132-9
19480609 - Expert Opin Drug Deliv. 2009 Jun;6(6):585-97
11473296 - Nature. 2001 Jul 26;412(6845):392-3
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_1_3
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_6_3
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_1_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_27_3
e_1_2_7_28_2
e_1_2_7_27_4
e_1_2_7_28_3
e_1_2_7_29_2
e_1_2_7_27_5
e_1_2_7_29_3
Felsenfeld G. (e_1_2_7_2_2) 1978; 271
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_22_3
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_21_3
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_32_3
e_1_2_7_20_2
References_xml – volume: 4
  start-page: 1759 10761
  year: 2003 2000
  publication-title: Biomacromolecules J. Am. Chem. Soc.
– volume: 106
  start-page: 187
  year: 1996
  publication-title: Toxicology
– volume: 17
  start-page: 750
  year: 2006
  publication-title: Bioconjug. Chem.
– volume: 5 8
  start-page: 2605 1940
  year: 2005 2008
  publication-title: Nano Lett. Nano Lett.
– start-page: 4744
  year: 1999
  publication-title: J. Phys. Chem. B
– start-page: 55
  year: 1983
  publication-title: J. Immunol. Methods
– volume: 11 407
  start-page: 629 1029
  year: 2001 2000
  publication-title: Curr. Opin. Struct. Biol. Nature
– volume: 271
  start-page: 115
  year: 1978
  publication-title: Science
– volume: 5
  start-page: 2605
  year: 2005
  publication-title: Nano Lett.
– volume: 19 277
  start-page: 4118 1232
  year: 2007 1997
  publication-title: Adv. Mater. Science
– volume: 271
  start-page: 1116
  year: 1996
  publication-title: Science
– volume: 58
  start-page: 1523
  year: 2006
  publication-title: Adv. Drug Deliv. Rev.
– volume: 29
  start-page: 4821
  year: 1996
  publication-title: Macromolecules
– volume: 136
  start-page: 132
  year: 2009
  publication-title: J Controlled Release
– start-page: 1616
  year: 2002
– volume: 1 412
  start-page: 156 392
  year: 2001 2001
  publication-title: Lancet Infect Dis. Nature
– volume: 298
  start-page: 977
  year: 2002
  publication-title: Science
– volume: 6
  start-page: 585
  year: 2009
  publication-title: Exp. Opin. Drug Deliv.
– volume: 407
  start-page: 1029
  year: 2000
  publication-title: Nature
– volume: 123 122 123 32
  start-page: 2460 6524 9480 3658
  year: 2001 2000 2001 1999
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc. Macromolecules
– volume: 27
  start-page: 3691
  year: 2006
  publication-title: Biomaterials
– volume: 84
  start-page: 364
  year: 2008
  publication-title: J. Biomed. Mater. Res. A
– year: 2002
– volume: 17
  start-page: 1
  year: 1993
  publication-title: J. Microbiol. Methods
– volume: 15
  start-page: 1212
  year: 2004
  publication-title: Bioconjug. Chem.
– volume: 17 24
  start-page: 728 1121
  year: 2006 2003
  publication-title: Bioconjug. Chem. Biomaterials
– volume: 18
  start-page: 5047
  year: 2002
  publication-title: Langmuir
– volume: 306
  start-page: 2090
  year: 2004
  publication-title: Science
– volume: 281
  start-page: 1312
  year: 1998
  publication-title: Science
– volume: 65 215
  start-page: 187 934
  year: 2000 1967
  publication-title: J. Controlled Release Nature
– volume: 102
  start-page: 5679
  year: 2005
  publication-title: Proc. Natl. Acad. Sci.
– ident: e_1_2_7_10_2
– ident: e_1_2_7_15_2
  doi: 10.1016/0022-1759(83)90303-4
– ident: e_1_2_7_13_2
  doi: 10.1517/17425240902967599
– ident: e_1_2_7_30_2
  doi: 10.1002/jbm.a.31307
– ident: e_1_2_7_3_2
  doi: 10.1126/science.1104742
– ident: e_1_2_7_19_2
  doi: 10.1021/ma951759b
– ident: e_1_2_7_14_2
  doi: 10.1016/0300-483X(95)03189-M
– ident: e_1_2_7_23_2
  doi: 10.1021/bc050283q
– ident: e_1_2_7_1_3
  doi: 10.1021/ja0015388
– ident: e_1_2_7_21_3
  doi: 10.1016/S0142-9612(02)00445-3
– ident: e_1_2_7_22_3
  doi: 10.1038/215934a0
– ident: e_1_2_7_11_2
  doi: 10.1021/jp983011b
– ident: e_1_2_7_5_2
  doi: 10.1126/science.1078708
– ident: e_1_2_7_29_3
  doi: 10.1021/nl080694q
– ident: e_1_2_7_24_2
  doi: 10.1016/j.jconrel.2009.01.028
– ident: e_1_2_7_27_3
  doi: 10.1021/ja001033h
– ident: e_1_2_7_25_2
  doi: 10.1021/bc049864q
– ident: e_1_2_7_26_2
  doi: 10.1016/j.addr.2006.09.008
– ident: e_1_2_7_12_2
  doi: 10.1073/pnas.0502067102
– ident: e_1_2_7_17_2
  doi: 10.1016/S0167-7012(93)80010-4
– ident: e_1_2_7_27_4
  doi: 10.1021/ja016062m
– ident: e_1_2_7_9_2
– ident: e_1_2_7_7_2
  doi: 10.1002/3527600035.bpol4002
– ident: e_1_2_7_27_2
  doi: 10.1021/ja005715g
– ident: e_1_2_7_28_2
  doi: 10.1016/S0959-440X(00)00258-X
– ident: e_1_2_7_8_2
  doi: 10.1038/35039551
– volume: 271
  start-page: 115
  year: 1978
  ident: e_1_2_7_2_2
  publication-title: Science
  contributor:
    fullname: Felsenfeld G.
– ident: e_1_2_7_32_2
  doi: 10.1002/adma.200701748
– ident: e_1_2_7_18_2
  doi: 10.1021/la025646e
– ident: e_1_2_7_31_2
  doi: 10.1016/j.biomaterials.2006.02.048
– ident: e_1_2_7_27_5
  doi: 10.1021/ma982004i
– ident: e_1_2_7_20_2
  doi: 10.1021/nl0521219
– ident: e_1_2_7_28_3
  doi: 10.1038/35039551
– ident: e_1_2_7_29_2
  doi: 10.1021/nl0521219
– ident: e_1_2_7_1_2
  doi: 10.1021/bm034176f
– ident: e_1_2_7_6_3
  doi: 10.1038/35086680
– ident: e_1_2_7_21_2
  doi: 10.1021/bc060077y
– ident: e_1_2_7_6_2
  doi: 10.1016/S1473-3099(01)00092-5
– ident: e_1_2_7_16_2
  doi: 10.1126/science.281.5381.1312
– ident: e_1_2_7_22_2
  doi: 10.1016/S0168-3659(99)00235-7
– ident: e_1_2_7_32_3
  doi: 10.1126/science.277.5330.1232
– ident: e_1_2_7_4_2
  doi: 10.1126/science.271.5252.1116
SSID ssj0017734
Score 2.22376
Snippet Self assembly between cations and anions is ubiquitous throughout nature. Important biological structures such as chromatin often use poly­valent assembly...
Self assembly between cations and anions is ubiquitous throughout nature. Important biological structures such as chromatin often use polyvalent assembly...
Abstract Self assembly between cations and anions is ubiquitous throughout nature. Important biological structures such as chromatin often use poly­valent...
Self assembly between cations and anions is ubiquitous throughout nature. Important biological structures such as chromatin often use poly-valent assembly...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 434
SubjectTerms Biocompatibility
Biodegradability
Biomedical materials
Cations
Controlled release
Ethers
Heparan sulfate
Materials science
Nucleic acids
Peptides
Polyelectrolytes
Self assembly
Sulfates
Surgical implants
Tissue engineering
Title A Biocompatible Arginine-Based Polycation
URI https://api.istex.fr/ark:/67375/WNG-12K0WRW9-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201000969
https://www.ncbi.nlm.nih.gov/pubmed/23393493
https://www.proquest.com/docview/2826049094
https://search.proquest.com/docview/1835584410
https://search.proquest.com/docview/880675970
https://pubmed.ncbi.nlm.nih.gov/PMC3564668
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6h9gIHWt6BgoKE4IDSxo_Y8XFL2VagVqii2r1ZduLQVdts1d2VgBM_gd_IL2Fs74ZdHkKCY-SxlLHn6Rl_BniGHocqw1hWKFtjguJ4piSxWcWJbGpmqyrcrzg8Egcn_M2wGC7d4o_4EN2Bm9eMYK-9ghs72fkBGmrq5iK0Zvko3N_gI0z6nq694w4_ikgZy8qC-AYvMlygNuZ0Z3X6ilda9wv88Xch56-dk8sRbXBJ_Q0wC2ZiJ8rZ9mxqt6vPP-E8_g-3m3BzHq-mvShgt-Caa2_DjSUUwzvwspfujsahmX06sucOiT_4Zyfcty9fd9FJ1um78fmneDR4F076r9-_OsjmbzBkFZpClRm0AOjRnYeBN2XNSeMcL2pDpGiYYiV1ytWibBR1TBhinCKswRzQFK4kwgh2D9baceseQMpyZ0qPxl_UgqucWZwlm7xwXBhFS5vAi8Ue6MsItaEjqDLVnn3dsZ_A87BFHZm5OvMNarLQg6N9TejbfHA8UHo_ga3FHuq5bk40JpnC1zsVT-BpN4xa5UslpnXj2USjoSswNOMkTyD9Aw1aPsy2lESS-1Equv-hDNeGK5aAXJGXjsCDeq-OtKPTAO7NCsGFKBOgQRz-shK6t9c_7L4e_sukR3A9npPTLC-3YG16NXOPMdCa2idBmb4DNgAeNQ
link.rule.ids 230,315,783,787,888,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BewAOvAuBAkFCcEBp42fi45ayXWh3hapW25tlJw6sWrKo3ZWAEz-B38gvYRxvQpeHkOAYeSxl7Hl7_BngCXocqgxjiVC2xATF8URlxCYFJ1lVMlsUzf2K4UgODvnrI9F2E_q7MAEfoiu4ec1o7LVXcF-Q3vyBGmrK6n3Tm-XDcHURVlHnmX-9YXu_Q5AiWRYOliXxLV7kqMVtTOnm8vwlv7Tql_jj74LOX3snz8e0jVPqXwPbshN6UY435jO7UXz-Cenxv_i9DlcXIWvcCzJ2Ay64-iZcOQdkeAue9-KtybTpZ59N7IlD4rf-5Qn37cvXLfSTZfxmevIpVAdvw2H_5cGLQbJ4hiEp0BqqxOCqolN3Hgne5CUnlXNclIZksmKK5dQpV8q8UtQxaYhxirAK00AjXE6kkWwNVupp7e5CzFJncg_IL0rJVcoszsqqVDgujaK5jeBZuwn6Q0Db0AFXmWrPvu7Yj-Bps0cdmTk99j1qmdDj0Y4mdDcd74-V3olgvd1EvVDPM415pvRHnopH8LgbRsXypyWmdtP5mUZbJzA64ySNIP4DDRo_TLhUhiR3glh0_0MZrg1XLIJsSWA6Ao_rvTxST941-N5MSC5lHgFt5OEvK6F72_1h93XvXyY9gkuDg-Ge3ns12r0Pl0PZnCZpvg4rs9O5e4Bx18w-bDTrOwQcIk0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CTULwwLgNAgOChOABZYsvsePHjtENxqppYmrfLCdxoNpIp62VgKf9hP3G_RKO7Ta0XIQEj5GPpRz7XD7bx58BnmPGocowlmSqqHCBYnmiJCmSkhNZV6woS3-_Yq8ndg75u0E2mLvFH_gh2g035xk-XjsHP6nqjR-koaaqP_vSLIfC1VVY5gLhr4NFBy2BFJEynCsL4iq8yGBG25jSjcX-C2lp2Y3wl99hzl9LJ-chrc9J3RUwM21CKcrR-mRcrJfffiJ6_B91b8HNKWCNO8HCbsMV29yBG3M0hnfhVSfeHI58Nft4WBxbFP7o3p2wl-cXm5glq3h_dPw17A3eg8Pumw-vd5LpIwxJibFQJQZDAKZ063jgTV5xUlvLs8oQKWqmWE6tspXIa0UtE4YYqwircRFoMpsTYQRbhaVm1NgHELPUmtzR8WeV4CplBfaSdZpZLoyieRHBy9kc6JPAtaEDqzLVTn3dqh_BCz9FrZg5PXIVajLT_d62JnQ37R_0ld6OYG02h3rqnGcaV5nCHXgqHsGzthndyp2VmMaOJmcaI12G2IyTNIL4DzIY-nC5pSSK3A9W0f4PZTg2XLEI5IK9tAKO1XuxpRl-8uzeLBNciDwC6s3hLyOhO1vdvfbr4b90egrX9re6-v3b3u4juB72zGmS5muwND6d2McIusbFE-9X3wF7YCD8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Biocompatible+Arginine%E2%80%90Based+Polycation&rft.jtitle=Advanced+functional+materials&rft.au=Zern%2C+Blaine+J.&rft.au=Chu%2C+Hunghao&rft.au=Osunkoya%2C+Adeboye+O.&rft.au=Gao%2C+Jin&rft.date=2011-02-08&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=21&rft.issue=3&rft.spage=434&rft.epage=440&rft_id=info:doi/10.1002%2Fadfm.201000969&rft.externalDBID=10.1002%252Fadfm.201000969&rft.externalDocID=ADFM201000969
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon