A Biocompatible Arginine-Based Polycation
Self assembly between cations and anions is ubiquitous throughout nature. Important biological structures such as chromatin often use polyvalent assembly between a polycation and a polyanion. The biomedical importance of synthetic polycations arises from their affinity to polyanions such as nucleic...
Saved in:
Published in | Advanced functional materials Vol. 21; no. 3; pp. 434 - 440 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
WILEY-VCH Verlag
08.02.2011
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Self assembly between cations and anions is ubiquitous throughout nature. Important biological structures such as chromatin often use polyvalent assembly between a polycation and a polyanion. The biomedical importance of synthetic polycations arises from their affinity to polyanions such as nucleic acid and heparan sulfate. However, the limited biocompatibility of synthetic polycations hampers the realization of their immense potential. By examining biocompatible cationic peptides, we hypothesize that a biocompatible polycation should be biodegradable and made from endogenous cations. We design an arginine‐based biodegradable polycation and demonstrate that it is more compatible by several orders of magnitude than conventional polycations in vitro and in vivo. This biocompatibility diminishes when L‐arginine is substituted with D‐arginine or when the biodegradable ester linker is changed to a biostable ether linker. We believe that this design can lead to many biocompatible polycations that can significantly advance a wide range of applications including controlled release, tissue engineering, biosensing, and medical devices.
The design of PAGS and the control polymers that probe the importance of endogenous cations and their degradability in terms of biocompatibility is studied. The biocompatibility is shown to diminish when L‐arginine is substituted with D‐arginine or when the biodegradable ester linker is changed to a biostable ether linker. |
---|---|
AbstractList | Self assembly between cations and anions is ubiquitous throughout nature. Important biological structures such as chromatin often use polyvalent assembly between a polycation and a polyaninon. Biomedical importance of synthetic polycations arises from their affinity to polyanions such as nucleic acid and heparan sulfate. However, the limited biocompatibility of synthetic polycations hampers the realization of their immense potential. By examining biocompatible cationic peptides, we hypothesize that a biocompatible polycation should be biodegradable and made from endogenous cations. We designed an arginine-based biodegradable polycation and demonstrated that it was orders of magnitude more compatible than conventional polycations in vitro and in vivo. This biocompatibility diminishes when L-arginine is substituted with D-arginine or when the biodegradable ester linker changes to a biostable ether linker. We believe this design can lead to many biocompatible polycations that can significantly advance a wide range of applications including controlled release, tissue engineering, biosensing, and medical devices. Self assembly between cations and anions is ubiquitous throughout nature. Important biological structures such as chromatin often use poly-valent assembly between a polycation and a polyanion. The biomedical importance of synthetic polycations arises from their affinity to polyanions such as nucleic acid and heparan sulfate. However, the limited biocompatibility of synthetic polycations hampers the realization of their immense potential. By examining biocompatible cationic peptides, we hypothesize that a biocompatible polycation should be biodegradable and made from endogenous cations. We design an arginine-based biodegradable polycation and demonstrate that it is more compatible by several orders of magnitude than conventional polycations in vitro and in vivo. This biocompatibility diminishes when L -arginine is substituted with D -arginine or when the biodegradable ester linker is changed to a biostable ether linker. We believe that this design can lead to many biocompatible polycations that can significantly advance a wide range of applications including controlled release, tissue engineering, biosensing, and medical devices. Self assembly between cations and anions is ubiquitous throughout nature. Important biological structures such as chromatin often use polyvalent assembly between a polycation and a polyanion. The biomedical importance of synthetic polycations arises from their affinity to polyanions such as nucleic acid and heparan sulfate. However, the limited biocompatibility of synthetic polycations hampers the realization of their immense potential. By examining biocompatible cationic peptides, we hypothesize that a biocompatible polycation should be biodegradable and made from endogenous cations. We design an arginine‐based biodegradable polycation and demonstrate that it is more compatible by several orders of magnitude than conventional polycations in vitro and in vivo. This biocompatibility diminishes when L‐arginine is substituted with D‐arginine or when the biodegradable ester linker is changed to a biostable ether linker. We believe that this design can lead to many biocompatible polycations that can significantly advance a wide range of applications including controlled release, tissue engineering, biosensing, and medical devices. The design of PAGS and the control polymers that probe the importance of endogenous cations and their degradability in terms of biocompatibility is studied. The biocompatibility is shown to diminish when L‐arginine is substituted with D‐arginine or when the biodegradable ester linker is changed to a biostable ether linker. Abstract Self assembly between cations and anions is ubiquitous throughout nature. Important biological structures such as chromatin often use polyvalent assembly between a polycation and a polyanion. The biomedical importance of synthetic polycations arises from their affinity to polyanions such as nucleic acid and heparan sulfate. However, the limited biocompatibility of synthetic polycations hampers the realization of their immense potential. By examining biocompatible cationic peptides, we hypothesize that a biocompatible polycation should be biodegradable and made from endogenous cations. We design an arginine‐based biodegradable polycation and demonstrate that it is more compatible by several orders of magnitude than conventional polycations in vitro and in vivo. This biocompatibility diminishes when L ‐arginine is substituted with D ‐arginine or when the biodegradable ester linker is changed to a biostable ether linker. We believe that this design can lead to many biocompatible polycations that can significantly advance a wide range of applications including controlled release, tissue engineering, biosensing, and medical devices. Self assembly between cations and anions is ubiquitous throughout nature. Important biological structures such as chromatin often use polyvalent assembly between a polycation and a polyanion. The biomedical importance of synthetic polycations arises from their affinity to polyanions such as nucleic acid and heparan sulfate. However, the limited biocompatibility of synthetic polycations hampers the realization of their immense potential. By examining biocompatible cationic peptides, we hypothesize that a biocompatible polycation should be biodegradable and made from endogenous cations. We design an arginine‐based biodegradable polycation and demonstrate that it is more compatible by several orders of magnitude than conventional polycations in vitro and in vivo. This biocompatibility diminishes when L‐arginine is substituted with D‐arginine or when the biodegradable ester linker is changed to a biostable ether linker. We believe that this design can lead to many biocompatible polycations that can significantly advance a wide range of applications including controlled release, tissue engineering, biosensing, and medical devices. Self assembly between cations and anions is ubiquitous throughout nature. Important biological structures such as chromatin often use polyvalent assembly between a polycation and a polyaninon. Biomedical importance of synthetic polycations arises from their affinity to polyanions such as nucleic acid and heparan sulfate. However, the limited biocompatibility of synthetic polycations hampers the realization of their immense potential. By examining biocompatible cationic peptides, we hypothesize that a biocompatible polycation should be biodegradable and made from endogenous cations. We designed an arginine-based biodegradable polycation and demonstrated that it was orders of magnitude more compatible than conventional polycations in vitro and in vivo . This biocompatibility diminishes when L-arginine is substituted with D-arginine or when the biodegradable ester linker changes to a biostable ether linker. We believe this design can lead to many biocompatible polycations that can significantly advance a wide range of applications including controlled release, tissue engineering, biosensing, and medical devices. |
Author | Zern, Blaine J. Chu, Hunghao Gao, Jin Osunkoya, Adeboye O. Wang, Yadong |
AuthorAffiliation | 3 Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322 1 Institutes for Translational Medicine and Therapeutics and Environmental Medicine, University of Pennsylvania School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104 2 Department of Bioengineering and the McGowan Institute of Regenerative Medicine, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15219 |
AuthorAffiliation_xml | – name: 3 Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322 – name: 2 Department of Bioengineering and the McGowan Institute of Regenerative Medicine, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15219 – name: 1 Institutes for Translational Medicine and Therapeutics and Environmental Medicine, University of Pennsylvania School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104 |
Author_xml | – sequence: 1 givenname: Blaine J. surname: Zern fullname: Zern, Blaine J. organization: Institutes for Translational Medicine and Therapeutics and Environmental Medicine, University of Pennsylvania School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104, USA – sequence: 2 givenname: Hunghao surname: Chu fullname: Chu, Hunghao organization: Department of Bioengineering and the McGowan Institute of Regenerative Medicine, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15219, USA – sequence: 3 givenname: Adeboye O. surname: Osunkoya fullname: Osunkoya, Adeboye O. organization: Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 4 givenname: Jin surname: Gao fullname: Gao, Jin organization: Department of Bioengineering and the McGowan Institute of Regenerative Medicine, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15219, USA – sequence: 5 givenname: Yadong surname: Wang fullname: Wang, Yadong email: yaw20@pitt.edu organization: Department of Bioengineering and the McGowan Institute of Regenerative Medicine, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15219, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23393493$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctvEzEQxq2qqC-4ckSROJQeNvj9uCClpQ2I8lBVFG6WuztbXHbt1E5a8t_jKGVVOMBpRprf983Y3z7aDjEAQs8JHhOM6WvXtP2Y4tJjI80W2iOSyIphqreHnnzbRfs532BMlGJ8B-1Sxgzjhu2ho8no2Mc69nO38FcdjCbp2gcfoDp2GZrRl9it6jKK4Sl60rouw7OHeoC-np1enryrzj9P359MzqtaMG0qpxjWggFVAjvdcNICcNE4omRblmoKBhqpW0OBSUccGMJaYogToIl0kh2gNxvf-fKqh6aGsEius_Pke5dWNjpv_5wE_91exzvLhORS6mJw-GCQ4u0S8sL2PtfQdS5AXGarNZZKGIUL-eqfJNFMCM05WaMv_0Jv4jKF8hGWaioxN9jwQo03VJ1izgna4WyC7Tovu87LDnkVwYvHjx3w3wEVwGyAe9_B6j92dvL27ONj82qj9XkBPwetSz-sVEwJO_s0tYR-wLOLmbFT9guzWrCY |
CitedBy_id | crossref_primary_10_1016_j_mtbio_2022_100525 crossref_primary_10_1167_iovs_18_24087 crossref_primary_10_1039_C6SM01433J crossref_primary_10_1039_D0NJ05719C crossref_primary_10_1002_advs_201700550 crossref_primary_10_1016_j_biomaterials_2011_09_067 crossref_primary_10_1021_acssuschemeng_6b01805 crossref_primary_10_1002_ange_201511276 crossref_primary_10_1039_C4NR02657H crossref_primary_10_1002_elsc_201400043 crossref_primary_10_1016_j_progpolymsci_2016_05_004 crossref_primary_10_1016_j_ijpharm_2012_01_051 crossref_primary_10_1021_acs_jpcc_6b08140 crossref_primary_10_1021_acs_jpcb_7b07100 crossref_primary_10_1016_j_actbio_2013_09_012 crossref_primary_10_1016_j_jconrel_2019_12_035 crossref_primary_10_1002_btpr_728 crossref_primary_10_1039_C6TB03052A crossref_primary_10_1016_j_ijbiomac_2024_129667 crossref_primary_10_1007_s10118_015_1644_9 crossref_primary_10_1039_C7SM01763D crossref_primary_10_1038_srep26848 crossref_primary_10_1517_17425247_2014_941355 crossref_primary_10_1021_acs_molpharmaceut_5b00967 crossref_primary_10_1002_anie_201511276 crossref_primary_10_1039_C5TB02254A crossref_primary_10_3390_polym11040578 crossref_primary_10_1002_marc_202000534 crossref_primary_10_1002_chem_201602449 crossref_primary_10_1016_j_jcis_2014_05_016 crossref_primary_10_1002_adfm_201202503 |
Cites_doi | 10.1016/0022-1759(83)90303-4 10.1517/17425240902967599 10.1002/jbm.a.31307 10.1126/science.1104742 10.1021/ma951759b 10.1016/0300-483X(95)03189-M 10.1021/bc050283q 10.1021/ja0015388 10.1016/S0142-9612(02)00445-3 10.1038/215934a0 10.1021/jp983011b 10.1126/science.1078708 10.1021/nl080694q 10.1016/j.jconrel.2009.01.028 10.1021/ja001033h 10.1021/bc049864q 10.1016/j.addr.2006.09.008 10.1073/pnas.0502067102 10.1016/S0167-7012(93)80010-4 10.1021/ja016062m 10.1002/3527600035.bpol4002 10.1021/ja005715g 10.1016/S0959-440X(00)00258-X 10.1038/35039551 10.1002/adma.200701748 10.1021/la025646e 10.1016/j.biomaterials.2006.02.048 10.1021/ma982004i 10.1021/nl0521219 10.1021/bm034176f 10.1038/35086680 10.1021/bc060077y 10.1016/S1473-3099(01)00092-5 10.1126/science.281.5381.1312 10.1016/S0168-3659(99)00235-7 10.1126/science.277.5330.1232 10.1126/science.271.5252.1116 |
ContentType | Journal Article |
Copyright | Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright Wiley Subscription Services, Inc. Feb 2011 |
Copyright_xml | – notice: Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright Wiley Subscription Services, Inc. Feb 2011 |
DBID | BSCLL NPM AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7X8 5PM |
DOI | 10.1002/adfm.201000969 |
DatabaseName | Istex PubMed CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | 440 |
ExternalDocumentID | 10_1002_adfm_201000969 23393493 ADFM201000969 ark_67375_WNG_12K0WRW9_G |
Genre | article Journal Article |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R21 EB008565 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT NPM AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7X8 5PM |
ID | FETCH-LOGICAL-c5389-a730853e2750a8d41fee45da176f39382e9ed68f92e36a1ae913f191a5e816a63 |
IEDL.DBID | DR2 |
ISSN | 1616-301X 1616-3028 |
IngestDate | Tue Sep 17 21:27:26 EDT 2024 Sat Aug 17 03:31:37 EDT 2024 Fri Aug 16 05:25:51 EDT 2024 Thu Oct 10 18:03:15 EDT 2024 Fri Aug 23 00:33:16 EDT 2024 Sat Sep 28 07:53:14 EDT 2024 Sat Aug 24 01:20:54 EDT 2024 Wed Oct 30 09:49:34 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5389-a730853e2750a8d41fee45da176f39382e9ed68f92e36a1ae913f191a5e816a63 |
Notes | istex:6EBB0DF84B98F298D143C9EAB73FFDE1CE9174F1 ark:/67375/WNG-12K0WRW9-G ArticleID:ADFM201000969 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://europepmc.org/articles/pmc3564668?pdf=render |
PMID | 23393493 |
PQID | 2826049094 |
PQPubID | 2045204 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3564668 proquest_miscellaneous_880675970 proquest_miscellaneous_1835584410 proquest_journals_2826049094 crossref_primary_10_1002_adfm_201000969 pubmed_primary_23393493 wiley_primary_10_1002_adfm_201000969_ADFM201000969 istex_primary_ark_67375_WNG_12K0WRW9_G |
PublicationCentury | 2000 |
PublicationDate | February 8, 2011 |
PublicationDateYYYYMMDD | 2011-02-08 |
PublicationDate_xml | – month: 02 year: 2011 text: February 8, 2011 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Germany – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv. Funct. Mater |
PublicationYear | 2011 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | M. Chanana, A. Gliozzi, A. Diaspro, I. Chodnevskaja, S. Huewel, V. Moskalenko, K. Ulrichs, H. J. Galla, S. Krol, Nano Lett. 2005, 5, 2605. b) J. T. Wilson, W. Cui, E. L. Chaikof, Nano Lett. 2008, 8, 1940. d) D. Putnam, R. Langer, Macromolecules 1999, 32, 3658. b) D. Fischer, Y. Li, B. Ahlemeyer, J. Krieglstein, T. Kissel, Biomaterials 2003, 24, 1121. H. Babich, H. L. Zuckerbraun, B. J. Wurzburger, Y. L. Rubin, E. Borenfreund, L. Blau, Toxicology 1996, 106, 187. G. Orive, S. K. Tam, J. L. Pedraz, J. P. Halle, Biomaterials 2006, 27, 3691. M. Thomas, J. J. Lu, Q. Ge, C. Zhang, J. Chen, A. M. Klibanov, Proc. Natl. Acad. Sci. 2005, 102, 5679. A. Diaspro, D. Silvano, S. Krol, O. Cavalleri, A. Gliozzi, Langmuir 2002, 18, 5047. a) L. Pellegrini, Curr. Opin. Struct. Biol. 2001, 11, 629 L. Pellegrini, D. F. Burke, F. von Delft, B. Mulloy, T. L. Blundell, Nature 2000, 407, 1029. T. Mossman, J. Immunol. Methods 1983, 55. b) T. Ganz, Nature 2001, 412, 392. A. M. Funhoff, C. F. van Nostrum, M. C. Lok, M. M. Fretz, D. J. Crommelin, W. E. Hennink, Bioconjug. Chem. 2004, 15, 1212. E. Kaneshiro, M. A. Wyder, Y. Wu, M. Cushion, J. Microbiol. Methods 1993, 17, 1. E. Marsich, M. Borgogna, I. Donati, P. Mozetic, B. L. Strand, S. G. Salvador, F. Vittur, S. Paoletti, J. Biomed. Mater. Res. A 2008, 84, 364. a) R. E. Hancock, Lancet Infect Dis. 2001, 1, 156 T.-I. Kim, C. Z. Bai, K. Nam, J.-S. Park, J Controlled Release 2009, 136, 132. a) Y. Lim, S. M. Kim, Y. Lee, W. Lee, T. Yang, M. Lee, H. Suh, J. Park, J. Am. Chem. Soc. 2001, 123, 2460 c) J. Wang, H. Q. Mao, K. W. Leong, J. Am. Chem. Soc. 2001, 123, 9480 a) M. Chanana, A. Gliozzi, A. Diaspro, I. Chodnevskaja, S. Huewel, V. Moskalenko, K. Ulrichs, H. J. Galla, S. Krol, Nano Lett. 2005, 5, 2605 a) S. Jon, D. G. Anderson, R. Langer, Biomacromolecules 2003, 4, 1759 E. Nemeth, M. S. Tuttle, J. Powelson, M. B. Vaughn, A. Donovan, D. M. Ward, T. Ganz, J. Kaplan, Science 2004, 306, 2090. S. Faham, R. E. Hileman, J. R. Fromm, R. J. Linhardt, D. C. Rees, Science 1996, 271, 1116. b) D. Lynn, R. Langer, J. Am. Chem. Soc. 2000, 10761. N. Bendifallah, F. W. Rasmussen, V. Zachar, P. Ebbesen, P. E. Nielsen, U. Koppelhus, Bioconjug. Chem. 2006, 17, 750. H. Shirahama, M. Shiomi, M. Sakane, H. Yasuda, Macromolecules 1996, 29, 4821. A. C. Hunter, Adv. Drug Deliv. Rev. 2006, 58, 1523. G. Felsenfeld, Science 1978, 271, 115. b) Y. B. Lim, C. H. Kim, K. Kim, S. W. Kim, J. S. Park, J. Am. Chem. Soc. 2000, 122, 6524 T. Ganz, Science 2002, 298, 977. M. Braiman, J. Phys. Chem. B 1999, 4744. a) D. M. Lynn, Adv. Mater. 2007, 19, 4118 b) G. Decher, Science 1997, 277, 1232. b) H. J. Ryser, Nature 1967, 215, 934. a) L. Dekie, V. Toncheva, P. Dubruel, E. H. Schacht, L. Barrett, L. W. Seymour, J. Controlled Release 2000, 65, 187 S. Mansouri, F. M. Winnik, M. Tabrizian, Exp. Opin. Drug Deliv. 2009, 6, 585. N. A. Thornberry, Y. Lazebnik, Science 1998, 281, 1312. A. Albertsson, I. Varma, in Aliphatic Polyesters: Synthesis, Properties and Applications, Springer-Verlag, Berlin 2002. a) S. Hong, P. R. Leroueil, E. K. Janus, J. L. Peters, M. M. Kober, M. T. Islam, B. G. Orr, J. R. Baker, Jr., M. M. Banaszak Holl, Bioconjug. Chem. 2006, 17, 728 b) L. Pellegrini, D. F. Burke, F. von Delft, B. Mulloy, T. L. Blundell, Nature 2000, 407, 1029. 1998; 281 2002; 18 2001 2000; 11 407 2000 1967; 65 215 2007 1997; 19 277 2001 2001; 1 412 2006; 17 2003 2000; 4 2002; 298 2006; 58 2002 2004; 306 2009; 136 2005 2008; 5 8 1996; 106 1999 2000; 407 1996; 29 1993; 17 2005; 102 2006; 27 2004; 15 1978; 271 2005; 5 1996; 271 1983 2009; 6 2001 2000 2001 1999; 123 122 123 32 2008; 84 2006 2003; 17 24 340956 - Nature. 1978 Jan 12;271(5641):115-22 17079050 - Adv Drug Deliv Rev. 2006 Dec 1;58(14 ):1523-31 6606682 - J Immunol Methods. 1983 Dec 16;65(1-2):55-63 10699280 - J Control Release. 2000 Mar 1;65(1-2):187-202 17618521 - J Biomed Mater Res A. 2008 Feb;84(2):364-76 16351223 - Nano Lett. 2005 Dec;5(12):2605-12 15514116 - Science. 2004 Dec 17;306(5704):2090-3 15824322 - Proc Natl Acad Sci U S A. 2005 Apr 19;102(16):5679-84 16704214 - Bioconjug Chem. 2006 May-Jun;17(3):750-8 11785766 - Curr Opin Struct Biol. 2001 Oct;11(5):629-34 12411693 - Science. 2002 Nov 1;298(5595):977-9 11871492 - Lancet Infect Dis. 2001 Oct;1(3):156-64 16574222 - Biomaterials. 2006 Jul;27(20):3691-700 14606906 - Biomacromolecules. 2003 Nov-Dec;4(6):1759-62 18547122 - Nano Lett. 2008 Jul;8(7):1940-8 11562246 - J Am Chem Soc. 2001 Sep 26;123(38):9480-1 11456910 - J Am Chem Soc. 2001 Mar 14;123(10):2460-1 9721091 - Science. 1998 Aug 28;281(5381):1312-6 11069186 - Nature. 2000 Oct 26;407(6807):1029-34 16704211 - Bioconjug Chem. 2006 May-Jun;17 (3):728-34 15546186 - Bioconjug Chem. 2004 Nov-Dec;15(6):1212-20 6055419 - Nature. 1967 Aug 26;215(5104):934-6 12527253 - Biomaterials. 2003 Mar;24(7):1121-31 8571390 - Toxicology. 1996 Jan 8;106(1-3):187-96 8599088 - Science. 1996 Feb 23;271(5252):1116-20 19331841 - J Control Release. 2009 Jun 5;136(2):132-9 19480609 - Expert Opin Drug Deliv. 2009 Jun;6(6):585-97 11473296 - Nature. 2001 Jul 26;412(6845):392-3 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_1_3 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_6_3 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_1_2 e_1_2_7_14_2 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_27_3 e_1_2_7_28_2 e_1_2_7_27_4 e_1_2_7_28_3 e_1_2_7_29_2 e_1_2_7_27_5 e_1_2_7_29_3 Felsenfeld G. (e_1_2_7_2_2) 1978; 271 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_22_3 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_21_3 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_21_2 e_1_2_7_32_3 e_1_2_7_20_2 |
References_xml | – volume: 4 start-page: 1759 10761 year: 2003 2000 publication-title: Biomacromolecules J. Am. Chem. Soc. – volume: 106 start-page: 187 year: 1996 publication-title: Toxicology – volume: 17 start-page: 750 year: 2006 publication-title: Bioconjug. Chem. – volume: 5 8 start-page: 2605 1940 year: 2005 2008 publication-title: Nano Lett. Nano Lett. – start-page: 4744 year: 1999 publication-title: J. Phys. Chem. B – start-page: 55 year: 1983 publication-title: J. Immunol. Methods – volume: 11 407 start-page: 629 1029 year: 2001 2000 publication-title: Curr. Opin. Struct. Biol. Nature – volume: 271 start-page: 115 year: 1978 publication-title: Science – volume: 5 start-page: 2605 year: 2005 publication-title: Nano Lett. – volume: 19 277 start-page: 4118 1232 year: 2007 1997 publication-title: Adv. Mater. Science – volume: 271 start-page: 1116 year: 1996 publication-title: Science – volume: 58 start-page: 1523 year: 2006 publication-title: Adv. Drug Deliv. Rev. – volume: 29 start-page: 4821 year: 1996 publication-title: Macromolecules – volume: 136 start-page: 132 year: 2009 publication-title: J Controlled Release – start-page: 1616 year: 2002 – volume: 1 412 start-page: 156 392 year: 2001 2001 publication-title: Lancet Infect Dis. Nature – volume: 298 start-page: 977 year: 2002 publication-title: Science – volume: 6 start-page: 585 year: 2009 publication-title: Exp. Opin. Drug Deliv. – volume: 407 start-page: 1029 year: 2000 publication-title: Nature – volume: 123 122 123 32 start-page: 2460 6524 9480 3658 year: 2001 2000 2001 1999 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc. Macromolecules – volume: 27 start-page: 3691 year: 2006 publication-title: Biomaterials – volume: 84 start-page: 364 year: 2008 publication-title: J. Biomed. Mater. Res. A – year: 2002 – volume: 17 start-page: 1 year: 1993 publication-title: J. Microbiol. Methods – volume: 15 start-page: 1212 year: 2004 publication-title: Bioconjug. Chem. – volume: 17 24 start-page: 728 1121 year: 2006 2003 publication-title: Bioconjug. Chem. Biomaterials – volume: 18 start-page: 5047 year: 2002 publication-title: Langmuir – volume: 306 start-page: 2090 year: 2004 publication-title: Science – volume: 281 start-page: 1312 year: 1998 publication-title: Science – volume: 65 215 start-page: 187 934 year: 2000 1967 publication-title: J. Controlled Release Nature – volume: 102 start-page: 5679 year: 2005 publication-title: Proc. Natl. Acad. Sci. – ident: e_1_2_7_10_2 – ident: e_1_2_7_15_2 doi: 10.1016/0022-1759(83)90303-4 – ident: e_1_2_7_13_2 doi: 10.1517/17425240902967599 – ident: e_1_2_7_30_2 doi: 10.1002/jbm.a.31307 – ident: e_1_2_7_3_2 doi: 10.1126/science.1104742 – ident: e_1_2_7_19_2 doi: 10.1021/ma951759b – ident: e_1_2_7_14_2 doi: 10.1016/0300-483X(95)03189-M – ident: e_1_2_7_23_2 doi: 10.1021/bc050283q – ident: e_1_2_7_1_3 doi: 10.1021/ja0015388 – ident: e_1_2_7_21_3 doi: 10.1016/S0142-9612(02)00445-3 – ident: e_1_2_7_22_3 doi: 10.1038/215934a0 – ident: e_1_2_7_11_2 doi: 10.1021/jp983011b – ident: e_1_2_7_5_2 doi: 10.1126/science.1078708 – ident: e_1_2_7_29_3 doi: 10.1021/nl080694q – ident: e_1_2_7_24_2 doi: 10.1016/j.jconrel.2009.01.028 – ident: e_1_2_7_27_3 doi: 10.1021/ja001033h – ident: e_1_2_7_25_2 doi: 10.1021/bc049864q – ident: e_1_2_7_26_2 doi: 10.1016/j.addr.2006.09.008 – ident: e_1_2_7_12_2 doi: 10.1073/pnas.0502067102 – ident: e_1_2_7_17_2 doi: 10.1016/S0167-7012(93)80010-4 – ident: e_1_2_7_27_4 doi: 10.1021/ja016062m – ident: e_1_2_7_9_2 – ident: e_1_2_7_7_2 doi: 10.1002/3527600035.bpol4002 – ident: e_1_2_7_27_2 doi: 10.1021/ja005715g – ident: e_1_2_7_28_2 doi: 10.1016/S0959-440X(00)00258-X – ident: e_1_2_7_8_2 doi: 10.1038/35039551 – volume: 271 start-page: 115 year: 1978 ident: e_1_2_7_2_2 publication-title: Science contributor: fullname: Felsenfeld G. – ident: e_1_2_7_32_2 doi: 10.1002/adma.200701748 – ident: e_1_2_7_18_2 doi: 10.1021/la025646e – ident: e_1_2_7_31_2 doi: 10.1016/j.biomaterials.2006.02.048 – ident: e_1_2_7_27_5 doi: 10.1021/ma982004i – ident: e_1_2_7_20_2 doi: 10.1021/nl0521219 – ident: e_1_2_7_28_3 doi: 10.1038/35039551 – ident: e_1_2_7_29_2 doi: 10.1021/nl0521219 – ident: e_1_2_7_1_2 doi: 10.1021/bm034176f – ident: e_1_2_7_6_3 doi: 10.1038/35086680 – ident: e_1_2_7_21_2 doi: 10.1021/bc060077y – ident: e_1_2_7_6_2 doi: 10.1016/S1473-3099(01)00092-5 – ident: e_1_2_7_16_2 doi: 10.1126/science.281.5381.1312 – ident: e_1_2_7_22_2 doi: 10.1016/S0168-3659(99)00235-7 – ident: e_1_2_7_32_3 doi: 10.1126/science.277.5330.1232 – ident: e_1_2_7_4_2 doi: 10.1126/science.271.5252.1116 |
SSID | ssj0017734 |
Score | 2.22376 |
Snippet | Self assembly between cations and anions is ubiquitous throughout nature. Important biological structures such as chromatin often use polyvalent assembly... Self assembly between cations and anions is ubiquitous throughout nature. Important biological structures such as chromatin often use polyvalent assembly... Abstract Self assembly between cations and anions is ubiquitous throughout nature. Important biological structures such as chromatin often use polyvalent... Self assembly between cations and anions is ubiquitous throughout nature. Important biological structures such as chromatin often use poly-valent assembly... |
SourceID | pubmedcentral proquest crossref pubmed wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 434 |
SubjectTerms | Biocompatibility Biodegradability Biomedical materials Cations Controlled release Ethers Heparan sulfate Materials science Nucleic acids Peptides Polyelectrolytes Self assembly Sulfates Surgical implants Tissue engineering |
Title | A Biocompatible Arginine-Based Polycation |
URI | https://api.istex.fr/ark:/67375/WNG-12K0WRW9-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201000969 https://www.ncbi.nlm.nih.gov/pubmed/23393493 https://www.proquest.com/docview/2826049094 https://search.proquest.com/docview/1835584410 https://search.proquest.com/docview/880675970 https://pubmed.ncbi.nlm.nih.gov/PMC3564668 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6h9gIHWt6BgoKE4IDSxo_Y8XFL2VagVqii2r1ZduLQVdts1d2VgBM_gd_IL2Fs74ZdHkKCY-SxlLHn6Rl_BniGHocqw1hWKFtjguJ4piSxWcWJbGpmqyrcrzg8Egcn_M2wGC7d4o_4EN2Bm9eMYK-9ghs72fkBGmrq5iK0Zvko3N_gI0z6nq694w4_ikgZy8qC-AYvMlygNuZ0Z3X6ilda9wv88Xch56-dk8sRbXBJ_Q0wC2ZiJ8rZ9mxqt6vPP-E8_g-3m3BzHq-mvShgt-Caa2_DjSUUwzvwspfujsahmX06sucOiT_4Zyfcty9fd9FJ1um78fmneDR4F076r9-_OsjmbzBkFZpClRm0AOjRnYeBN2XNSeMcL2pDpGiYYiV1ytWibBR1TBhinCKswRzQFK4kwgh2D9baceseQMpyZ0qPxl_UgqucWZwlm7xwXBhFS5vAi8Ue6MsItaEjqDLVnn3dsZ_A87BFHZm5OvMNarLQg6N9TejbfHA8UHo_ga3FHuq5bk40JpnC1zsVT-BpN4xa5UslpnXj2USjoSswNOMkTyD9Aw1aPsy2lESS-1Equv-hDNeGK5aAXJGXjsCDeq-OtKPTAO7NCsGFKBOgQRz-shK6t9c_7L4e_sukR3A9npPTLC-3YG16NXOPMdCa2idBmb4DNgAeNQ |
link.rule.ids | 230,315,783,787,888,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BewAOvAuBAkFCcEBp42fi45ayXWh3hapW25tlJw6sWrKo3ZWAEz-B38gvYRxvQpeHkOAYeSxl7Hl7_BngCXocqgxjiVC2xATF8URlxCYFJ1lVMlsUzf2K4UgODvnrI9F2E_q7MAEfoiu4ec1o7LVXcF-Q3vyBGmrK6n3Tm-XDcHURVlHnmX-9YXu_Q5AiWRYOliXxLV7kqMVtTOnm8vwlv7Tql_jj74LOX3snz8e0jVPqXwPbshN6UY435jO7UXz-Cenxv_i9DlcXIWvcCzJ2Ay64-iZcOQdkeAue9-KtybTpZ59N7IlD4rf-5Qn37cvXLfSTZfxmevIpVAdvw2H_5cGLQbJ4hiEp0BqqxOCqolN3Hgne5CUnlXNclIZksmKK5dQpV8q8UtQxaYhxirAK00AjXE6kkWwNVupp7e5CzFJncg_IL0rJVcoszsqqVDgujaK5jeBZuwn6Q0Db0AFXmWrPvu7Yj-Bps0cdmTk99j1qmdDj0Y4mdDcd74-V3olgvd1EvVDPM415pvRHnopH8LgbRsXypyWmdtP5mUZbJzA64ySNIP4DDRo_TLhUhiR3glh0_0MZrg1XLIJsSWA6Ao_rvTxST941-N5MSC5lHgFt5OEvK6F72_1h93XvXyY9gkuDg-Ge3ns12r0Pl0PZnCZpvg4rs9O5e4Bx18w-bDTrOwQcIk0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CTULwwLgNAgOChOABZYsvsePHjtENxqppYmrfLCdxoNpIp62VgKf9hP3G_RKO7Ta0XIQEj5GPpRz7XD7bx58BnmPGocowlmSqqHCBYnmiJCmSkhNZV6woS3-_Yq8ndg75u0E2mLvFH_gh2g035xk-XjsHP6nqjR-koaaqP_vSLIfC1VVY5gLhr4NFBy2BFJEynCsL4iq8yGBG25jSjcX-C2lp2Y3wl99hzl9LJ-chrc9J3RUwM21CKcrR-mRcrJfffiJ6_B91b8HNKWCNO8HCbsMV29yBG3M0hnfhVSfeHI58Nft4WBxbFP7o3p2wl-cXm5glq3h_dPw17A3eg8Pumw-vd5LpIwxJibFQJQZDAKZ063jgTV5xUlvLs8oQKWqmWE6tspXIa0UtE4YYqwircRFoMpsTYQRbhaVm1NgHELPUmtzR8WeV4CplBfaSdZpZLoyieRHBy9kc6JPAtaEDqzLVTn3dqh_BCz9FrZg5PXIVajLT_d62JnQ37R_0ld6OYG02h3rqnGcaV5nCHXgqHsGzthndyp2VmMaOJmcaI12G2IyTNIL4DzIY-nC5pSSK3A9W0f4PZTg2XLEI5IK9tAKO1XuxpRl-8uzeLBNciDwC6s3hLyOhO1vdvfbr4b90egrX9re6-v3b3u4juB72zGmS5muwND6d2McIusbFE-9X3wF7YCD8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Biocompatible+Arginine%E2%80%90Based+Polycation&rft.jtitle=Advanced+functional+materials&rft.au=Zern%2C+Blaine+J.&rft.au=Chu%2C+Hunghao&rft.au=Osunkoya%2C+Adeboye+O.&rft.au=Gao%2C+Jin&rft.date=2011-02-08&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=21&rft.issue=3&rft.spage=434&rft.epage=440&rft_id=info:doi/10.1002%2Fadfm.201000969&rft.externalDBID=10.1002%252Fadfm.201000969&rft.externalDocID=ADFM201000969 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |