critical domain of Sweet potato chlorotic fleck virus nucleotide‐binding protein (NaBp) for RNA silencing suppression, nuclear localization and viral pathogenesis
RNA silencing is an important mechanism of antiviral defence in plants. To counteract this resistance mechanism, many viruses have evolved RNA silencing suppressors. In this study, we analysed five proteins encoded by Sweet potato chlorotic fleck virus (SPCFV) for their abilities to suppress RNA sil...
Saved in:
Published in | Molecular plant pathology Vol. 16; no. 4; pp. 365 - 375 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Science in collaboration with the British Society of Plant Pathology
01.05.2015
Blackwell Publishing Ltd John Wiley & Sons, Inc John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | RNA silencing is an important mechanism of antiviral defence in plants. To counteract this resistance mechanism, many viruses have evolved RNA silencing suppressors. In this study, we analysed five proteins encoded by Sweet potato chlorotic fleck virus (SPCFV) for their abilities to suppress RNA silencing using a green fluorescent protein (GFP)‐based transient expression assay in Nicotiana benthamiana line 16c plants. Our results showed that a putative nucleotide‐binding protein (NaBp), but not other proteins encoded by the virus, could efficiently suppress local and systemic RNA silencing induced by either sense or double‐stranded RNA (dsRNA) molecules. Deletion mutation analysis of NaBp demonstrated that the basic motif (an arginine‐rich region) was critical for its RNA silencing suppression activity. Using confocal laser scanning microscopy imaging of transfected protoplasts expressing NaBp fused to GFP, we showed that NaBp accumulated predominantly in the nucleus. Mutational analysis of NaBp demonstrated that the basic motif represented part of the nuclear localization signal. In addition, we demonstrated that the basic motif in NaBp was a pathogenicity determinant in the Potato virus X (PVX) heterogeneous system. Overall, our results demonstrate that the basic motif of SPCFV NaBp plays a critical role in RNA silencing suppression, nuclear localization and viral pathogenesis. |
---|---|
AbstractList | RNA silencing is an important mechanism of antiviral defence in plants. To counteract this resistance mechanism, many viruses have evolved RNA silencing suppressors. In this study, we analysed five proteins encoded by Sweet potato chlorotic fleck virus (SPCFV) for their abilities to suppress RNA silencing using a green fluorescent protein (GFP)‐based transient expression assay in Nicotiana benthamiana line 16c plants. Our results showed that a putative nucleotide‐binding protein (NaBp), but not other proteins encoded by the virus, could efficiently suppress local and systemic RNA silencing induced by either sense or double‐stranded RNA (dsRNA) molecules. Deletion mutation analysis of NaBp demonstrated that the basic motif (an arginine‐rich region) was critical for its RNA silencing suppression activity. Using confocal laser scanning microscopy imaging of transfected protoplasts expressing NaBp fused to GFP, we showed that NaBp accumulated predominantly in the nucleus. Mutational analysis of NaBp demonstrated that the basic motif represented part of the nuclear localization signal. In addition, we demonstrated that the basic motif in NaBp was a pathogenicity determinant in the Potato virus X (PVX) heterogeneous system. Overall, our results demonstrate that the basic motif of SPCFV NaBp plays a critical role in RNA silencing suppression, nuclear localization and viral pathogenesis. RNA silencing is an important mechanism of antiviral defence in plants. To counteract this resistance mechanism, many viruses have evolved RNA silencing suppressors. In this study, we analysed five proteins encoded by Sweet potato chlorotic fleck virus ( SPCFV ) for their abilities to suppress RNA silencing using a green fluorescent protein ( GFP )‐based transient expression assay in N icotiana benthamiana line 16c plants. Our results showed that a putative nucleotide‐binding protein ( NaBp ), but not other proteins encoded by the virus, could efficiently suppress local and systemic RNA silencing induced by either sense or double‐stranded RNA ( dsRNA ) molecules. Deletion mutation analysis of NaBp demonstrated that the basic motif (an arginine‐rich region) was critical for its RNA silencing suppression activity. Using confocal laser scanning microscopy imaging of transfected protoplasts expressing NaBp fused to GFP , we showed that NaBp accumulated predominantly in the nucleus. Mutational analysis of NaBp demonstrated that the basic motif represented part of the nuclear localization signal. In addition, we demonstrated that the basic motif in NaBp was a pathogenicity determinant in the Potato virus X ( PVX ) heterogeneous system. Overall, our results demonstrate that the basic motif of SPCFV NaBp plays a critical role in RNA silencing suppression, nuclear localization and viral pathogenesis. Summary RNA silencing is an important mechanism of antiviral defence in plants. To counteract this resistance mechanism, many viruses have evolved RNA silencing suppressors. In this study, we analysed five proteins encoded by Sweet potato chlorotic fleck virus (SPCFV) for their abilities to suppress RNA silencing using a green fluorescent protein (GFP)-based transient expression assay in Nicotiana benthamiana line 16c plants. Our results showed that a putative nucleotide-binding protein (NaBp), but not other proteins encoded by the virus, could efficiently suppress local and systemic RNA silencing induced by either sense or double-stranded RNA (dsRNA) molecules. Deletion mutation analysis of NaBp demonstrated that the basic motif (an arginine-rich region) was critical for its RNA silencing suppression activity. Using confocal laser scanning microscopy imaging of transfected protoplasts expressing NaBp fused to GFP, we showed that NaBp accumulated predominantly in the nucleus. Mutational analysis of NaBp demonstrated that the basic motif represented part of the nuclear localization signal. In addition, we demonstrated that the basic motif in NaBp was a pathogenicity determinant in the Potato virus X (PVX) heterogeneous system. Overall, our results demonstrate that the basic motif of SPCFV NaBp plays a critical role in RNA silencing suppression, nuclear localization and viral pathogenesis. Summary RNA silencing is an important mechanism of antiviral defence in plants. To counteract this resistance mechanism, many viruses have evolved RNA silencing suppressors. In this study, we analysed five proteins encoded by Sweet potato chlorotic fleck virus (SPCFV) for their abilities to suppress RNA silencing using a green fluorescent protein (GFP)‐based transient expression assay in Nicotiana benthamiana line 16c plants. Our results showed that a putative nucleotide‐binding protein (NaBp), but not other proteins encoded by the virus, could efficiently suppress local and systemic RNA silencing induced by either sense or double‐stranded RNA (dsRNA) molecules. Deletion mutation analysis of NaBp demonstrated that the basic motif (an arginine‐rich region) was critical for its RNA silencing suppression activity. Using confocal laser scanning microscopy imaging of transfected protoplasts expressing NaBp fused to GFP, we showed that NaBp accumulated predominantly in the nucleus. Mutational analysis of NaBp demonstrated that the basic motif represented part of the nuclear localization signal. In addition, we demonstrated that the basic motif in NaBp was a pathogenicity determinant in the Potato virus X (PVX) heterogeneous system. Overall, our results demonstrate that the basic motif of SPCFV NaBp plays a critical role in RNA silencing suppression, nuclear localization and viral pathogenesis. |
Author | Lin, Hong‐Hui Deng, Xing‐Guang Zhu, Feng Chen, Ying‐Juan Qin, Shao‐Bo Xi, De‐Hui Peng, Xing‐Ji Zhu, Tong |
AuthorAffiliation | 1 Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment College of Life Science State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University Chengdu Sichuan 610064 China |
AuthorAffiliation_xml | – name: 1 Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment College of Life Science State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University Chengdu Sichuan 610064 China |
Author_xml | – sequence: 1 fullname: Deng, Xing‐Guang – sequence: 2 fullname: Peng, Xing‐Ji – sequence: 3 fullname: Zhu, Feng – sequence: 4 fullname: Chen, Ying‐Juan – sequence: 5 fullname: Zhu, Tong – sequence: 6 fullname: Qin, Shao‐Bo – sequence: 7 fullname: Xi, De‐Hui – sequence: 8 fullname: Lin, Hong‐Hui |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25138489$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1DAUhiNURC-w4AXAEptWYlo7TuxkU6mMoCC1w6gXwc464zgzbjN2sJOWsuIReAiejCfhTKcdQSXwxtbxd_5z3UzWnHcmSZ4zusvw7M3bdpelrBCPkg3GRTbgkvI1fGf4FjJN15PNGC8oZbJM8yfJepozXmRFuZH81MF2VkNDKj8H64ivyem1MR1pfQedJ3rW-OARIXVj9CW5sqGPxPW6MWitzK_vPybWVdZNSYucQYntEbxpd0jtAzkZHZBoG-P0Aoh92wYTo_Xu9VICAmk8RrffoEMrAVctImA6LXQzPzXORBufJo9raKJ5dndvJefv3p4N3w-OPh5-GB4cDXTOCzEwKWjBy0lNjQYJmmeMa2lKWkCZCl7JVOepyGidZxIonVScZRo0qwoJhQbDt5L9pW7bT-am0sZ1mIpqg51DuFEerPr7x9mZmvorJQS2k3IU2L4TCP5Lb2Kn5jZq0zTgjO-jYqLMcipyIRF99QC98H1wWB5SMhO0KAuK1Is_M1qlcj9ABHaWgA4-xmDqFcKoWiyHwuVQt8uB7N4DVtvutu9YjG3-53GNM7z5t7Q6Ho_vPQZLDxs783XlAeFSYdEyV59Gh-pzMc7zs-GxOkH-5ZKvwSuYBhvV-WlKWY7LWmYZY_w3ZVHoiQ |
CODEN | MPPAFD |
CitedBy_id | crossref_primary_10_1007_s12374_016_0035_2 crossref_primary_10_1128_genomeA_00414_16 crossref_primary_10_3390_v16020267 crossref_primary_10_1080_07388551_2019_1597830 crossref_primary_10_1371_journal_pone_0167769 crossref_primary_10_1111_mpp_13394 crossref_primary_10_1111_mpp_12513 crossref_primary_10_1093_jxb_erv328 crossref_primary_10_1094_MPMI_08_19_0239_IA crossref_primary_10_1186_s42483_021_00097_8 crossref_primary_10_1186_s42483_021_00104_y crossref_primary_10_1099_jgv_0_001144 crossref_primary_10_1007_s00705_019_04500_w crossref_primary_10_1016_j_jviromet_2016_10_015 crossref_primary_10_1016_j_plaphy_2019_06_033 crossref_primary_10_1007_s00468_016_1435_0 crossref_primary_10_1007_s00705_019_04279_w crossref_primary_10_1186_s12985_019_1124_x crossref_primary_10_3389_fmicb_2022_955089 |
Cites_doi | 10.1093/emboj/16.15.4738 10.1101/gad.1026102 10.1016/j.tplants.2011.02.010 10.1038/35005107 10.1105/tpc.112.106476 10.1094/MPMI-23-3-0294 10.1104/pp.109.137125 10.1101/gad.1201204 10.1016/S0168-9525(01)02367-8 10.1007/s00705-006-0891-z 10.1016/j.febslet.2005.08.041 10.1105/tpc.020719 10.1093/emboj/17.22.6739 10.1016/j.tplants.2013.04.001 10.1126/science.1128214 10.1016/S0092-8674(00)81614-1 10.1099/vir.0.81893-0 10.1038/sj.emboj.7601164 10.1046/j.0960-7412.2001.01242.x 10.1128/JVI.76.24.12981-12991.2002 10.1038/35053110 10.1371/journal.pone.0069255 10.1094/PDIS-93-1-0087 10.1038/35888 10.1016/0014-5793(90)80500-I 10.1099/vir.0.008243-0 10.1073/pnas.95.22.13079 10.1038/nrg1555 10.1111/j.1364-3703.2010.00634.x 10.1099/vir.0.79854-0 10.1038/39215 10.1016/S0092-8674(01)00431-7 10.1093/emboj/cdg431 10.1099/vir.0.83503-0 10.1111/j.1364-3703.2004.00207.x 10.1101/gad.1495506 10.1038/sj.emboj.7600096 10.1016/j.febslet.2008.11.031 10.1099/vir.0.011213-0 10.1111/mpp.12002 10.1186/1743-422X-2-18 10.1128/JVI.75.4.1941-1948.2001 10.1099/vir.0.82377-0 10.1099/vir.0.81099-0 10.1016/j.chom.2010.06.009 10.1038/nsb0901-746 10.1016/j.cell.2007.07.039 10.1038/nature02874 10.1111/j.1469-8137.2010.03253.x 10.1016/j.virol.2012.01.026 10.1128/JVI.79.20.13018-13027.2005 10.1094/PDIS-05-13-0578-PDN 10.1094/MPMI-08-12-0201-R 10.1023/A:1026395815980 10.1146/annurev.micro.60.080805.142205 10.1094/MPMI-02-13-0040-R 10.1099/vir.0.005025-0 10.1007/BF02773396 10.1128/JVI.01963-05 10.1126/science.1062039 10.1105/tpc.108.064147 10.1128/JVI.05273-11 10.1038/nprot.2007.199 10.1099/vir.0.043513-0 10.1128/JVI.02438-07 10.1038/sj.emboj.7601674 10.1016/j.virusres.2004.01.020 |
ContentType | Journal Article |
Copyright | 2014 BSPP AND JOHN WILEY & SONS LTD 2014 BSPP AND JOHN WILEY & SONS LTD. Molecular Plant Pathology © 2015 BSPP and John Wiley & Sons Ltd |
Copyright_xml | – notice: 2014 BSPP AND JOHN WILEY & SONS LTD – notice: 2014 BSPP AND JOHN WILEY & SONS LTD. – notice: Molecular Plant Pathology © 2015 BSPP and John Wiley & Sons Ltd |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7T7 7U9 8FD C1K FR3 H94 M7N P64 7S9 L.6 5PM |
DOI | 10.1111/mpp.12186 |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Biotechnology Research Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Virology and AIDS Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitleAlternate | NaBp silencing suppressor of SPCFV |
EISSN | 1364-3703 |
EndPage | 375 |
ExternalDocumentID | PMC6638403 3661202041 25138489 10_1111_mpp_12186 MPP12186 ark_67375_WNG_X8P55TCM_R US201500194411 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31470342; 31171835; 31270290; J1103518 – fundername: Doctoral Foundation of the Ministry of Education funderid: 20110181110059; 20120181130008 – fundername: Fundamental Research Funds for the Central Universities funderid: 2011SCU04B34 – fundername: Sichuan and Chengdu Science and Technology Foundation funderid: 2010JQ0080; 11DXYB097JH‐027; 2012JY0078 – fundername: Fundamental Research Funds for the Central Universities grantid: 2011SCU04B34 – fundername: Sichuan and Chengdu Science and Technology Foundation grantid: 2010JQ0080; 11DXYB097JH‐027; 2012JY0078 – fundername: National Natural Science Foundation of China grantid: 31470342; 31171835; 31270290; J1103518 – fundername: Doctoral Foundation of the Ministry of Education grantid: 20110181110059; 20120181130008 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29M 31~ 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 7X2 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANHP AAONW AAZKR ABCQN ABDBF ABEML ABPVW ACBWZ ACCFJ ACCMX ACGFO ACGFS ACIWK ACPRK ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADNMO ADZMN AEEZP AEGXH AEIMD AENEX AEQDE AEUYN AFBPY AFEBI AFKRA AFRAH AFZJQ AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATCPS ATUGU AUFTA AVUZU AVWKF AZBYB AZFZN AZVAB BAFTC BBNVY BCNDV BDRZF BENPR BFHJK BHBCM BHPHI BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DR2 DU5 EAD EAP EBD EBS ECGQY EDH EJD EMK EMOBN EST ESX F00 F01 F04 F5P FBQ FEDTE FRP G-S G.N GODZA GROUPED_DOAJ H.T H.X HCIFZ HF~ HVGLF HYE HZI HZ~ IAO IEP IGS IHE ITC IX1 J0M K48 LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 M0K M7P MK4 MRFUL MRSTM MSFUL MSSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PHGZT PIMPY Q.N Q11 QB0 R.K ROL RPM RX1 SUPJJ SV3 TUS UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WYISQ XG1 ~IA ~KM ~WT 33P AEUQT AFPWT BSCLL WIN WRC AAYXX AGQPQ CITATION PHGZM CGR CUY CVF ECM EIF NPM 7QL 7QO 7T7 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 M7N P64 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c5386-e2ac639bf0eca7ac3413c7e908a9263d72c52640f547a00bd314cac1d87a8cae3 |
IEDL.DBID | DR2 |
ISSN | 1464-6722 |
IngestDate | Thu Aug 21 14:09:34 EDT 2025 Fri Jul 11 18:38:46 EDT 2025 Wed Aug 13 11:10:21 EDT 2025 Thu Jan 02 22:36:36 EST 2025 Tue Jul 01 01:14:55 EDT 2025 Thu Apr 24 22:56:20 EDT 2025 Wed Jan 22 16:25:44 EST 2025 Wed Oct 30 09:49:48 EDT 2024 Thu Apr 03 09:42:22 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | viral pathogenesis nuclear localization SPCFV silencing suppressor NaBp |
Language | English |
License | 2014 BSPP AND JOHN WILEY & SONS LTD. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5386-e2ac639bf0eca7ac3413c7e908a9263d72c52640f547a00bd314cac1d87a8cae3 |
Notes | http://dx.doi.org/10.1111/mpp.12186 Fundamental Research Funds for the Central Universities - No. 2011SCU04B34 Table S1 Sequences and restriction sites of polymerase chain reaction (PCR) primers used in this study. Doctoral Foundation of the Ministry of Education - No. 20110181110059; No. 20120181130008 Sichuan and Chengdu Science and Technology Foundation - No. 2010JQ0080; No. 11DXYB097JH-027; No. 2012JY0078 ArticleID:MPP12186 ark:/67375/WNG-X8P55TCM-R National Natural Science Foundation of China - No. 31470342; No. 31171835; No. 31270290; No. J1103518 istex:B73FAC80759F825B04EF71F64F0D184EC50A795E ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mpp.12186 |
PMID | 25138489 |
PQID | 1674608980 |
PQPubID | 1006541 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6638403 proquest_miscellaneous_1694506567 proquest_journals_1674608980 pubmed_primary_25138489 crossref_primary_10_1111_mpp_12186 crossref_citationtrail_10_1111_mpp_12186 wiley_primary_10_1111_mpp_12186_MPP12186 istex_primary_ark_67375_WNG_X8P55TCM_R fao_agris_US201500194411 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2015 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: May 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
PublicationTitle | Molecular plant pathology |
PublicationTitleAlternate | Molecular Plant Pathology |
PublicationYear | 2015 |
Publisher | Blackwell Science in collaboration with the British Society of Plant Pathology Blackwell Publishing Ltd John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Science in collaboration with the British Society of Plant Pathology – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | Senshu, H., Yamaji, Y., Minato, N., Shiraishi, T., Maejima, K., Hashimoto, M., Miura, C., Neriya, Y. and Namba, S. (2011) A dual strategy for the suppression of host antiviral silencing: two distinct suppressors for viral replication and viral movement encoded by potato virus M. J. Virol. 85, 10 269-10 278. Zhang, X., Yuan, Y.R., Pei, Y., Lin, S.S., Tuschl, T., Patel, D.J. and Chua, N.H. (2006) Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev. 20, 3255-3268. Carmell, M.A., Xuan, Z., Zhang, M.Q. and Hannon, G.J. (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 16, 2733-2742. Dunoyer, P., Pfeffer, S., Fritsch, C., Hemmer, O., Voinnet, O. and Richards, K.E. (2002) Identification, subcellular localization and some properties of a cysteine rich suppressor of gene silencing encoded by peanut clump virus. Plant J. 29, 555-567. Moissiard, G. and Voinnet, O. (2004) Viral suppression of RNA silencing in plants. Mol. Plant Pathol. 5, 71-82. Guilley, H., Bortolamiol, D., Jonard, G., Bouzoubaa, S. and Ziegler-Graff, V. (2009) Rapid screening of RNA silencing suppressors by using a recombinant virus derived from beet necrotic yellow vein virus. J. Gen. Virol. 90, 2536-2541. Yaegashi, H., Takahashi, T., Isogai, M., Kobori, T., Ohki, S. and Yoshikawa, N. (2007) Apple chlorotic leaf spot virus 50 kDa movement protein acts as a suppressor of systemic silencing without interfering with local silencing in Nicotiana benthamiana. J. Gen. Virol. 88, 316-324. Te, J., Melcher, U., Howard, A. and Verchot-Lubicz, J. (2005) Soilborne wheat mosaic virus (SBWMV) 19K protein belongs to a class of cysteine rich proteins that suppress RNA silencing. Virol. J. 2, 18. Li, F. and Ding, S.W. (2006) Virus counter defense: diverse strategies for evading the RNA-silencing immunity. Annu. Rev. Microbiol. 60, 503-531. Li, Y.Y., Zhang, R.N., Xiang, H.Y., Abouelnasr, H., Li, D.W., Yu, J.L., McBeath, G.H. and Han, C.G. (2013) Discovery and characterization of a novel carlavirus infecting potatoes in China. PLoS ONE, 8, e69255. Bernstein, E., Caudy, A.A., Hammond, S.M. and Hannon, G.J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409, 363-366. Dunoyer, P., Herzog, E., Hemmer, O., Ritzenthaler, C. and Fritsch, C. (2001) Peanut clump virus RNA-1-encoded P15 regulates viral RNA accumulation but is not abundant at viral RNA replication sites. J. Virol. 75, 1941-1948. Lukhovitskaya, N.I., Solovieva, A.D., Boddeti, S.K., Thaduri, S., Solovyev, A.G. and Savenkov, E.I. (2013) An RNA virus-encoded zinc-finger protein acts as a plant transcription factor and induces a regulator of cell size and proliferation in two tobacco species. Plant Cell, 25, 960-973. Kasschau, K.D. and Carrington, J.C. (1998) A counter defensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell, 95, 461-470. Ghazala, W., Waltermann, A., Pilot, R., Winter, S. and Varrelmann, M. (2008) Functional characterization and subcellular localization of the 16K cysteine-rich suppressor of gene silencing protein of tobacco rattle virus. J. Gen. Virol. 89, 1748-1758. Chen, S., Songkumarn, P., Liu, J. and Wang, G.L. (2009) A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiol. 150, 1111-1121. Jyothishwaran, G., Kotresha, D., Selvaraj, T., Srideshikan, S.H., Rajvanshi, P.K. and Jayabaskaran, C. (2007) A modified freeze-thaw method for efficient transformation of Agrobacterium tumefaciens. Curr. Sci. 93, 770-772. Aritua, V., Barg, E., Adipala, E., Gibson, R., Lesemann, D. and Vetten, H. (2009) Host range, purification, and genetic variability in sweet potato chlorotic fleck virus. Plant Dis. 93, 87-93. Burgyán, J. and Havelda, Z. (2011) Viral suppressors of RNA silencing. Trends Plant Sci. 16, 265-272. González, I., Martínez, L., Rakitina, D.V., Lewsey, M.G., Atencio, F.A., Llave, C., Kalinina, N.O., Carr, J.P., Palukaitis, P. and Canto, T. (2010) Cucumber mosaic virus 2b protein subcellular targets and interactions: their significance to RNA silencing suppressor activity. Mol. Plant-Microbe. Interact. 23, 294-303. Zamore, P.D. (2001) RNA interference: listening to the sound of silence. Nat. Struct. Mol. Biol. 8, 746-750. Deleris, A., Gallego-Bartolome, J., Bao, J., Kasschau, K.D., Carrington, J.C. and Voinnet, O. (2006) Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science, 313, 68-71. Martín-Hernández, A.M. and Baulcombe, D.C. (2008) Tobacco rattle virus 16-kilodalton protein encodes a suppressor of RNA silencing that allows transient viral entry in meristems. J. Virol. 82, 4064-4071. Ding, S.W. and Voinnet, O. (2007) Antiviral immunity directed by small RNAs. Cell, 130, 413-426. Deng, X.G., Zhu, F., Zhu, T., Lin, H.H. and Xi, D.H. (2014) First report of sweet potato chlorotic fleck virus infecting sweet potato in Sichuan Province, China. Plant Dis. 98, 163-163. Knight, S.W. and Bass, B.L. (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science, 293, 2269-2271. Mérai, Z., Kerényi, Z., Kertész, S., Magna, M., Lakatos, L. and Silhavy, D. (2006) Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing. J. Virol. 80, 5747-5756. Senshu, H., Ozeki, J., Komatsu, K., Hashimoto, M., Hatada, K., Aoyama, M., Kagiwada, S., Yamaji, Y. and Namba, S. (2009) Variability in the level of RNA silencing suppression caused by triple gene block protein 1 (TGBp1) from various potexviruses during infection. J. Gen. Virol. 90, 1014-1024. Yelina, N.E., Savenkov, E.I., Solovyev, A.G., Morozov, S.Y. and Valkonen, J.P. (2002) Long-distance movement, virulence, and RNA silencing suppression controlled by a single protein in hordei- and potyviruses: complementary functions between virus families. J. Virol. 76, 12 981-12 991. Yoo, S.D., Cho, Y.H. and Sheen, J. (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565-1572. Rajamäki, M.L. and Valkonen, J.P. (2009) Control of nuclear and nucleolar localization of nuclear inclusion protein a of picorna-like Potato virus A in Nicotiana species. Plant Cell, 21, 2485-2502. Anandalakshmi, R., Pruss, G.J., Ge, X., Marathe, R., Mallory, A.C., Smith, T.H. and Vance, V.B. (1998) A viral suppressor of gene silencing in plants. Proc. Natl. Acad. Sci. USA, 95, 13 079-13 084. Aritua, V., Barg, E., Adipala, E. and Vetten, H. (2007) Sequence analysis of the entire RNA genome of a sweet potato chlorotic fleck virus isolate reveals that it belongs to a distinct carlavirus species. Arch. Virol. 152, 813-818. Zhou, Z.S., Dell'Orco, M., Saldarelli, P., Turturo, C., Minafra, A. and Martelli, G. (2006) Identification of an RNA-silencing suppressor in the genome of Grapevine virus A. J. Gen. Virol. 87, 2387-2395. Palauqui, J.C., Elmayan, T., Pollien, J.M. and Vaucheret, H. (1997) Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 16, 4738-4745. Andika, I.B., Kondo, H., Nishiguchi, M. and Tamada, T. (2012) The cysteine-rich proteins of beet necrotic yellow vein virus and tobacco rattle virus contribute to efficient suppression of silencing in roots. J. Gen. Virol. 93, 1841-1850. Brigneti, G., Voinnet, O., Li, W.X., Ji, L.H., Ding, S.W. and Baulcombe, D.C. (1998) Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J. 17, 6739-6746. Galiakparov, N., Tanne, E., Mawassi, M., Gafny, R. and Sela, I. (2003) ORF 5 of grapevine virus A encodes a nucleic acid-binding protein and affects pathogenesis. Virus Genes, 27, 257-262. Ruiz-Ruiz, S., Soler, N., Sanchez-Navarro, J., Fagoaga, C., Lopez, C., Navarro, L., Moreno, P., Pena, L. and Flores, R. (2013) Citrus tristeza virus p23: determinants for nucleolar localization and their influence on suppression of RNA silencing and pathogenesis. Mol. Plant-Microbe Interact. 26, 306-318. Gramstat, A., Courtpozanis, A. and Rohde, W. (1990) The 12 kDa protein of potato virus M displays properties of a nucleic acid-binding regulatory protein. FEBS Lett. 276, 34-38. Himber, C., Dunoyer, P., Moissiard, G., Ritzenthaler, C. and Voinnet, O. (2003) Transitivity dependent and independent cell-to-cell movement of RNA silencing. EMBO J. 22, 4523-4533. Goto, K., Kanazawa, A., Kusaba, M. and Masuta, C. (2003) A simple and rapid method to detect plant siRNAs using nonradioactive probes. Plant Mol. Biol. Rep. 21, 51-58. Voinnet, O. (2005) Induction and suppression of RNA silencing: insights from viral infections. Nat. Rev. Genet. 6, 206-220. Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E. and Mello, C.C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806-811. Lukhovitskaya, N.I., Yelina, N.E., Zamyatnin, A.A., Schepetilnikov, M.V., Solovyev, A.G., Sandgren, M., Morozov, S.Y., Valkonen, J.P. and Savenkov, E.I. (2005) Expression, localization and effects on virulence of the cysteine-rich 8 kDa protein of Potato mop-top virus. J. Gen. Virol. 86, 2879-2889. Voinnet, O. (2001) RNA silencing as a plant immune system against viruses. Trends Genet. 17, 449-459. Grishok, A., Pasquinelli, A.E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D.L., Fire, A., Ruvkun, G. and Mello, C.C. (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell, 106, 23-34. Dunoyer, P., Lecellier, C.H., Parizotto, E.A., Himber, C. and Voinnet, O. (2004) Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell, 16, 1235-1250. Voinnet, O. and Baulcombe, D.C. (1997) Systemic signalling in 2002; 16 2010; 11 2013; 26 2013; 25 2004; 23 2005; 579 2010; 187 2004; 5 2009; 150 2011; 16 2013; 8 2001; 106 2010; 23 2013; 18 2006; 60 1997; 389 1998; 17 2001; 293 2013; 14 2006; 20 2009; 93 2000; 404 2007; 130 2009; 90 2006; 25 1997; 16 2001; 17 2007; 2 1998; 95 2005; 79 2014; 98 2007; 26 2010; 8 2004; 85 2009; 21 2004; 102 2002; 76 2005; 86 2001; 409 2007; 93 2006; 313 2012; 426 2004; 431 2012; 93 1998; 391 2006; 80 2002; 29 2004; 18 2004; 16 2006; 87 2007; 152 2001; 8 2009; 583 2011; 85 2008; 89 2003; 27 2005; 6 2005; 2 2007; 88 1990; 276 2008; 82 2003; 21 2001; 75 2003; 22 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 Jyothishwaran G. (e_1_2_6_34_1) 2007; 93 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – reference: Senshu, H., Yamaji, Y., Minato, N., Shiraishi, T., Maejima, K., Hashimoto, M., Miura, C., Neriya, Y. and Namba, S. (2011) A dual strategy for the suppression of host antiviral silencing: two distinct suppressors for viral replication and viral movement encoded by potato virus M. J. Virol. 85, 10 269-10 278. – reference: González, I., Martínez, L., Rakitina, D.V., Lewsey, M.G., Atencio, F.A., Llave, C., Kalinina, N.O., Carr, J.P., Palukaitis, P. and Canto, T. (2010) Cucumber mosaic virus 2b protein subcellular targets and interactions: their significance to RNA silencing suppressor activity. Mol. Plant-Microbe. Interact. 23, 294-303. – reference: Voinnet, O. (2001) RNA silencing as a plant immune system against viruses. Trends Genet. 17, 449-459. – reference: Guilley, H., Bortolamiol, D., Jonard, G., Bouzoubaa, S. and Ziegler-Graff, V. (2009) Rapid screening of RNA silencing suppressors by using a recombinant virus derived from beet necrotic yellow vein virus. J. Gen. Virol. 90, 2536-2541. – reference: Brigneti, G., Voinnet, O., Li, W.X., Ji, L.H., Ding, S.W. and Baulcombe, D.C. (1998) Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J. 17, 6739-6746. – reference: Kim, S.H., Ryabov, E.V., Kalinina, N.O., Rakitina, D.V., Gillespie, T., MacFarlane, S., Haupt, S., Brown, J.W. and Taliansky, M. (2007) Cajal bodies and the nucleolus are required for a plant virus systemic infection. EMBO J. 26, 2169-2179. – reference: Voinnet, O. and Baulcombe, D.C. (1997) Systemic signalling in gene silencing. Nature, 389, 553. – reference: Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E. and Mello, C.C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806-811. – reference: Carmell, M.A., Xuan, Z., Zhang, M.Q. and Hannon, G.J. (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 16, 2733-2742. – reference: Sun, L., Andika, I.B., Kondo, H. and Chen, J. (2013) Identification of the amino acid residues and domains in the cysteine-rich protein of Chinese wheat mosaic virus that are important for RNA silencing suppression and subcellular localization. Mol. Plant Pathol. 14, 265-278. – reference: Voinnet, O. (2005) Induction and suppression of RNA silencing: insights from viral infections. Nat. Rev. Genet. 6, 206-220. – reference: Chiu, M.H., Chen, I., Baulcombe, D.C. and Tsai, C.H. (2010) The silencing suppressor P25 of potato virus X interacts with Argonaute1 and mediates its degradation through the proteasome pathway. Mol. Plant Pathol. 11, 641-649. – reference: Lakatos, L., Szittya, G., Silhavy, D. and Burgyán, J. (2004) Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J. 23, 876-884. – reference: Kasschau, K.D. and Carrington, J.C. (1998) A counter defensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell, 95, 461-470. – reference: Ruiz-Ruiz, S., Soler, N., Sanchez-Navarro, J., Fagoaga, C., Lopez, C., Navarro, L., Moreno, P., Pena, L. and Flores, R. (2013) Citrus tristeza virus p23: determinants for nucleolar localization and their influence on suppression of RNA silencing and pathogenesis. Mol. Plant-Microbe Interact. 26, 306-318. – reference: Moissiard, G. and Voinnet, O. (2004) Viral suppression of RNA silencing in plants. Mol. Plant Pathol. 5, 71-82. – reference: Incarbone, M. and Dunoyer, P. (2013) RNA silencing and its suppression: novel insights from in planta analyses. Trends Plant Sci. 18, 382-392. – reference: Yoo, S.D., Cho, Y.H. and Sheen, J. (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565-1572. – reference: Cao, X., Zhou, P., Zhang, X., Zhu, S., Zhong, X., Xiao, Q., Ding, B. and Li, Y. (2005) Identification of an RNA silencing suppressor from a plant double-stranded RNA virus. J. Virol. 79, 13 018-13 027. – reference: Dunoyer, P., Lecellier, C.H., Parizotto, E.A., Himber, C. and Voinnet, O. (2004) Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell, 16, 1235-1250. – reference: Bernstein, E., Caudy, A.A., Hammond, S.M. and Hannon, G.J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409, 363-366. – reference: Burgyán, J. and Havelda, Z. (2011) Viral suppressors of RNA silencing. Trends Plant Sci. 16, 265-272. – reference: Chapman, E.J., Prokhnevsky, A.I., Gopinath, K., Dolja, V.V. and Carrington, J.C. (2004) Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev. 18, 1179-1186. – reference: Yaegashi, H., Takahashi, T., Isogai, M., Kobori, T., Ohki, S. and Yoshikawa, N. (2007) Apple chlorotic leaf spot virus 50 kDa movement protein acts as a suppressor of systemic silencing without interfering with local silencing in Nicotiana benthamiana. J. Gen. Virol. 88, 316-324. – reference: Wu, Q., Wang, X. and Ding, S.W. (2010) Viral suppressors of RNA-based viral immunity: host targets. Cell Host Microbe, 8, 12-15. – reference: Martín-Hernández, A.M. and Baulcombe, D.C. (2008) Tobacco rattle virus 16-kilodalton protein encodes a suppressor of RNA silencing that allows transient viral entry in meristems. J. Virol. 82, 4064-4071. – reference: Deleris, A., Gallego-Bartolome, J., Bao, J., Kasschau, K.D., Carrington, J.C. and Voinnet, O. (2006) Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science, 313, 68-71. – reference: Deng, X.G., Zhu, F., Zhu, T., Lin, H.H. and Xi, D.H. (2014) First report of sweet potato chlorotic fleck virus infecting sweet potato in Sichuan Province, China. Plant Dis. 98, 163-163. – reference: Zamore, P.D. (2001) RNA interference: listening to the sound of silence. Nat. Struct. Mol. Biol. 8, 746-750. – reference: Dunoyer, P., Herzog, E., Hemmer, O., Ritzenthaler, C. and Fritsch, C. (2001) Peanut clump virus RNA-1-encoded P15 regulates viral RNA accumulation but is not abundant at viral RNA replication sites. J. Virol. 75, 1941-1948. – reference: Yelina, N.E., Savenkov, E.I., Solovyev, A.G., Morozov, S.Y. and Valkonen, J.P. (2002) Long-distance movement, virulence, and RNA silencing suppression controlled by a single protein in hordei- and potyviruses: complementary functions between virus families. J. Virol. 76, 12 981-12 991. – reference: Knight, S.W. and Bass, B.L. (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science, 293, 2269-2271. – reference: Fusaro, A., Correa, R., Nakasugi, K., Jackson, C., Kawchuk, L., Vaslin, M. and Waterhouse, P. (2012) The enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation. Virology, 426, 178-187. – reference: Lukhovitskaya, N.I., Ignatovich, I.V., Savenkov, E.I., Schiemann, J., Morozov, S.Y. and Solovyev, A.G. (2009) Role of the zinc-finger and basic motifs of chrysanthemum virus B p12 protein in nucleic acid binding, protein localization and induction of a hypersensitive response upon expression from a viral vector. J. Gen. Virol. 90, 723-733. – reference: Ghazala, W., Waltermann, A., Pilot, R., Winter, S. and Varrelmann, M. (2008) Functional characterization and subcellular localization of the 16K cysteine-rich suppressor of gene silencing protein of tobacco rattle virus. J. Gen. Virol. 89, 1748-1758. – reference: Hammond, S.M., Bernstein, E., Beach, D. and Hannon, G.J. (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 404, 293-296. – reference: Ryabov, E.V., Kim, S.H. and Taliansky, M. (2004) Identification of a nuclear localization signal and nuclear export signal of the umbraviral long-distance RNA movement protein. J. Gen. Virol. 85, 1329-1333. – reference: Li, F. and Ding, S.W. (2006) Virus counter defense: diverse strategies for evading the RNA-silencing immunity. Annu. Rev. Microbiol. 60, 503-531. – reference: Guo, H., Song, X., Xie, C., Huo, Y., Zhang, F., Chen, X.Y., Geng, Y. and Fang, R. (2013) Rice yellow stunt rhabdovirus protein 6 suppresses systemic RNA silencing by blocking RDR6-mediated secondary siRNA synthesis. Mol. Plant-Microbe Interact. 26, 927-936. – reference: Galiakparov, N., Tanne, E., Mawassi, M., Gafny, R. and Sela, I. (2003) ORF 5 of grapevine virus A encodes a nucleic acid-binding protein and affects pathogenesis. Virus Genes, 27, 257-262. – reference: Palauqui, J.C., Elmayan, T., Pollien, J.M. and Vaucheret, H. (1997) Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 16, 4738-4745. – reference: Senshu, H., Ozeki, J., Komatsu, K., Hashimoto, M., Hatada, K., Aoyama, M., Kagiwada, S., Yamaji, Y. and Namba, S. (2009) Variability in the level of RNA silencing suppression caused by triple gene block protein 1 (TGBp1) from various potexviruses during infection. J. Gen. Virol. 90, 1014-1024. – reference: Aritua, V., Barg, E., Adipala, E., Gibson, R., Lesemann, D. and Vetten, H. (2009) Host range, purification, and genetic variability in sweet potato chlorotic fleck virus. Plant Dis. 93, 87-93. – reference: Andika, I.B., Kondo, H., Nishiguchi, M. and Tamada, T. (2012) The cysteine-rich proteins of beet necrotic yellow vein virus and tobacco rattle virus contribute to efficient suppression of silencing in roots. J. Gen. Virol. 93, 1841-1850. – reference: Te, J., Melcher, U., Howard, A. and Verchot-Lubicz, J. (2005) Soilborne wheat mosaic virus (SBWMV) 19K protein belongs to a class of cysteine rich proteins that suppress RNA silencing. Virol. J. 2, 18. – reference: Zhang, X., Yuan, Y.R., Pei, Y., Lin, S.S., Tuschl, T., Patel, D.J. and Chua, N.H. (2006) Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev. 20, 3255-3268. – reference: Li, Y.Y., Zhang, R.N., Xiang, H.Y., Abouelnasr, H., Li, D.W., Yu, J.L., McBeath, G.H. and Han, C.G. (2013) Discovery and characterization of a novel carlavirus infecting potatoes in China. PLoS ONE, 8, e69255. – reference: Qu, F. and Morris, T.J. (2005) Suppressors of RNA silencing encoded by plant viruses and their role in viral infections. FEBS Lett. 579, 5958-5964. – reference: Anandalakshmi, R., Pruss, G.J., Ge, X., Marathe, R., Mallory, A.C., Smith, T.H. and Vance, V.B. (1998) A viral suppressor of gene silencing in plants. Proc. Natl. Acad. Sci. USA, 95, 13 079-13 084. – reference: Roth, B.M., Pruss, G.J. and Vance, V.B. (2004) Plant viral suppressors of RNA silencing. Virus Res. 102, 97-108. – reference: Aritua, V., Barg, E., Adipala, E. and Vetten, H. (2007) Sequence analysis of the entire RNA genome of a sweet potato chlorotic fleck virus isolate reveals that it belongs to a distinct carlavirus species. Arch. Virol. 152, 813-818. – reference: Gramstat, A., Courtpozanis, A. and Rohde, W. (1990) The 12 kDa protein of potato virus M displays properties of a nucleic acid-binding regulatory protein. FEBS Lett. 276, 34-38. – reference: Ding, S.W. and Voinnet, O. (2007) Antiviral immunity directed by small RNAs. Cell, 130, 413-426. – reference: Goto, K., Kanazawa, A., Kusaba, M. and Masuta, C. (2003) A simple and rapid method to detect plant siRNAs using nonradioactive probes. Plant Mol. Biol. Rep. 21, 51-58. – reference: Mérai, Z., Kerényi, Z., Kertész, S., Magna, M., Lakatos, L. and Silhavy, D. (2006) Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing. J. Virol. 80, 5747-5756. – reference: Xu, G., Sui, N., Tang, Y., Xie, K., Lai, Y. and Liu, Y. (2010) One-step, zero-background ligation-independent cloning intron-containing hairpin RNA constructs for RNAi in plants. New Phytol. 187, 240-250. – reference: Chen, S., Songkumarn, P., Liu, J. and Wang, G.L. (2009) A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiol. 150, 1111-1121. – reference: Rajamäki, M.L. and Valkonen, J.P. (2009) Control of nuclear and nucleolar localization of nuclear inclusion protein a of picorna-like Potato virus A in Nicotiana species. Plant Cell, 21, 2485-2502. – reference: Himber, C., Dunoyer, P., Moissiard, G., Ritzenthaler, C. and Voinnet, O. (2003) Transitivity dependent and independent cell-to-cell movement of RNA silencing. EMBO J. 22, 4523-4533. – reference: Zhou, Z.S., Dell'Orco, M., Saldarelli, P., Turturo, C., Minafra, A. and Martelli, G. (2006) Identification of an RNA-silencing suppressor in the genome of Grapevine virus A. J. Gen. Virol. 87, 2387-2395. – reference: Jyothishwaran, G., Kotresha, D., Selvaraj, T., Srideshikan, S.H., Rajvanshi, P.K. and Jayabaskaran, C. (2007) A modified freeze-thaw method for efficient transformation of Agrobacterium tumefaciens. Curr. Sci. 93, 770-772. – reference: Lakatos, L., Csorba, T., Pantaleo, V., Chapman, E.J., Carrington, J.C., Liu, Y.P., Dolja, V.V., Calvino, L.F., López-Moya, J.J. and Burgyán, J. (2006) Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J. 25, 2768-2780. – reference: Baulcombe, D. (2004) RNA silencing in plants. Nature, 431, 356-363. – reference: Lukhovitskaya, N.I., Yelina, N.E., Zamyatnin, A.A., Schepetilnikov, M.V., Solovyev, A.G., Sandgren, M., Morozov, S.Y., Valkonen, J.P. and Savenkov, E.I. (2005) Expression, localization and effects on virulence of the cysteine-rich 8 kDa protein of Potato mop-top virus. J. Gen. Virol. 86, 2879-2889. – reference: Ye, J., Qu, J., Zhang, J., Geng, Y. and Fang, R. (2009) A critical domain of the Cucumber mosaic virus 2b protein for RNA silencing suppressor activity. FEBS Lett. 583, 101-106. – reference: Dunoyer, P., Pfeffer, S., Fritsch, C., Hemmer, O., Voinnet, O. and Richards, K.E. (2002) Identification, subcellular localization and some properties of a cysteine rich suppressor of gene silencing encoded by peanut clump virus. Plant J. 29, 555-567. – reference: Lukhovitskaya, N.I., Solovieva, A.D., Boddeti, S.K., Thaduri, S., Solovyev, A.G. and Savenkov, E.I. (2013) An RNA virus-encoded zinc-finger protein acts as a plant transcription factor and induces a regulator of cell size and proliferation in two tobacco species. Plant Cell, 25, 960-973. – reference: Grishok, A., Pasquinelli, A.E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D.L., Fire, A., Ruvkun, G. and Mello, C.C. (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell, 106, 23-34. – volume: 17 start-page: 449 year: 2001 end-page: 459 article-title: RNA silencing as a plant immune system against viruses publication-title: Trends Genet. – volume: 150 start-page: 1111 year: 2009 end-page: 1121 article-title: A versatile zero background T‐vector system for gene cloning and functional genomics publication-title: Plant Physiol. – volume: 389 start-page: 553 year: 1997 article-title: Systemic signalling in gene silencing publication-title: Nature – volume: 187 start-page: 240 year: 2010 end-page: 250 article-title: One‐step, zero‐background ligation‐independent cloning intron‐containing hairpin RNA constructs for RNAi in plants publication-title: New Phytol. – volume: 102 start-page: 97 year: 2004 end-page: 108 article-title: Plant viral suppressors of RNA silencing publication-title: Virus Res. – volume: 90 start-page: 1014 year: 2009 end-page: 1024 article-title: Variability in the level of RNA silencing suppression caused by triple gene block protein 1 (TGBp1) from various potexviruses during infection publication-title: J. Gen. Virol. – volume: 25 start-page: 960 year: 2013 end-page: 973 article-title: An RNA virus‐encoded zinc‐finger protein acts as a plant transcription factor and induces a regulator of cell size and proliferation in two tobacco species publication-title: Plant Cell – volume: 391 start-page: 806 year: 1998 end-page: 811 article-title: Potent and specific genetic interference by double‐stranded RNA in publication-title: Nature – volume: 27 start-page: 257 year: 2003 end-page: 262 article-title: ORF 5 of grapevine virus A encodes a nucleic acid‐binding protein and affects pathogenesis publication-title: Virus Genes – volume: 130 start-page: 413 year: 2007 end-page: 426 article-title: Antiviral immunity directed by small RNAs publication-title: Cell – volume: 90 start-page: 723 year: 2009 end-page: 733 article-title: Role of the zinc‐finger and basic motifs of chrysanthemum virus B p12 protein in nucleic acid binding, protein localization and induction of a hypersensitive response upon expression from a viral vector publication-title: J. Gen. Virol. – volume: 26 start-page: 306 year: 2013 end-page: 318 article-title: Citrus tristeza virus p23: determinants for nucleolar localization and their influence on suppression of RNA silencing and pathogenesis publication-title: Mol. Plant–Microbe Interact. – volume: 583 start-page: 101 year: 2009 end-page: 106 article-title: A critical domain of the Cucumber mosaic virus 2b protein for RNA silencing suppressor activity publication-title: FEBS Lett. – volume: 25 start-page: 2768 year: 2006 end-page: 2780 article-title: Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors publication-title: EMBO J. – volume: 579 start-page: 5958 year: 2005 end-page: 5964 article-title: Suppressors of RNA silencing encoded by plant viruses and their role in viral infections publication-title: FEBS Lett. – volume: 16 start-page: 1235 year: 2004 end-page: 1250 article-title: Probing the microRNA and small interfering RNA pathways with virus‐encoded suppressors of RNA silencing publication-title: Plant Cell – volume: 93 start-page: 87 year: 2009 end-page: 93 article-title: Host range, purification, and genetic variability in sweet potato chlorotic fleck virus publication-title: Plant Dis. – volume: 80 start-page: 5747 year: 2006 end-page: 5756 article-title: Double‐stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing publication-title: J. Virol. – volume: 8 start-page: 12 year: 2010 end-page: 15 article-title: Viral suppressors of RNA‐based viral immunity: host targets publication-title: Cell Host Microbe – volume: 26 start-page: 927 year: 2013 end-page: 936 article-title: Rice yellow stunt rhabdovirus protein 6 suppresses systemic RNA silencing by blocking RDR6‐mediated secondary siRNA synthesis publication-title: Mol. Plant–Microbe Interact. – volume: 313 start-page: 68 year: 2006 end-page: 71 article-title: Hierarchical action and inhibition of plant Dicer‐like proteins in antiviral defense publication-title: Science – volume: 23 start-page: 876 year: 2004 end-page: 884 article-title: Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses publication-title: EMBO J. – volume: 21 start-page: 51 year: 2003 end-page: 58 article-title: A simple and rapid method to detect plant siRNAs using nonradioactive probes publication-title: Plant Mol. Biol. Rep. – volume: 79 start-page: 13 018 year: 2005 end-page: 13 027 article-title: Identification of an RNA silencing suppressor from a plant double‐stranded RNA virus publication-title: J. Virol. – volume: 16 start-page: 2733 year: 2002 end-page: 2742 article-title: The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis publication-title: Genes Dev. – volume: 404 start-page: 293 year: 2000 end-page: 296 article-title: An RNA‐directed nuclease mediates post‐transcriptional gene silencing in Drosophila cells publication-title: Nature – volume: 98 start-page: 163 year: 2014 end-page: 163 article-title: First report of sweet potato chlorotic fleck virus infecting sweet potato in Sichuan Province, China publication-title: Plant Dis. – volume: 93 start-page: 770 year: 2007 end-page: 772 article-title: A modified freeze–thaw method for efficient transformation of publication-title: Curr. Sci. – volume: 95 start-page: 461 year: 1998 end-page: 470 article-title: A counter defensive strategy of plant viruses: suppression of posttranscriptional gene silencing publication-title: Cell – volume: 90 start-page: 2536 year: 2009 end-page: 2541 article-title: Rapid screening of RNA silencing suppressors by using a recombinant virus derived from beet necrotic yellow vein virus publication-title: J. Gen. Virol. – volume: 2 start-page: 18 year: 2005 article-title: Soilborne wheat mosaic virus (SBWMV) 19K protein belongs to a class of cysteine rich proteins that suppress RNA silencing publication-title: Virol. J. – volume: 21 start-page: 2485 year: 2009 end-page: 2502 article-title: Control of nuclear and nucleolar localization of nuclear inclusion protein a of picorna‐like Potato virus A in species publication-title: Plant Cell – volume: 93 start-page: 1841 year: 2012 end-page: 1850 article-title: The cysteine‐rich proteins of beet necrotic yellow vein virus and tobacco rattle virus contribute to efficient suppression of silencing in roots publication-title: J. Gen. Virol. – volume: 409 start-page: 363 year: 2001 end-page: 366 article-title: Role for a bidentate ribonuclease in the initiation step of RNA interference publication-title: Nature – volume: 8 start-page: e69255 year: 2013 article-title: Discovery and characterization of a novel carlavirus infecting potatoes in China publication-title: PLoS ONE – volume: 20 start-page: 3255 year: 2006 end-page: 3268 article-title: Cucumber mosaic virus‐encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense publication-title: Genes Dev. – volume: 23 start-page: 294 year: 2010 end-page: 303 article-title: Cucumber mosaic virus 2b protein subcellular targets and interactions: their significance to RNA silencing suppressor activity publication-title: Mol. Plant–Microbe. Interact. – volume: 95 start-page: 13 079 year: 1998 end-page: 13 084 article-title: A viral suppressor of gene silencing in plants publication-title: Proc. Natl. Acad. Sci. USA – volume: 89 start-page: 1748 year: 2008 end-page: 1758 article-title: Functional characterization and subcellular localization of the 16K cysteine‐rich suppressor of gene silencing protein of tobacco rattle virus publication-title: J. Gen. Virol. – volume: 431 start-page: 356 year: 2004 end-page: 363 article-title: RNA silencing in plants publication-title: Nature – volume: 87 start-page: 2387 year: 2006 end-page: 2395 article-title: Identification of an RNA‐silencing suppressor in the genome of Grapevine virus A publication-title: J. Gen. Virol. – volume: 106 start-page: 23 year: 2001 end-page: 34 article-title: Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control developmental timing publication-title: Cell – volume: 60 start-page: 503 year: 2006 end-page: 531 article-title: Virus counter defense: diverse strategies for evading the RNA‐silencing immunity publication-title: Annu. Rev. Microbiol. – volume: 8 start-page: 746 year: 2001 end-page: 750 article-title: RNA interference: listening to the sound of silence publication-title: Nat. Struct. Mol. Biol. – volume: 85 start-page: 10 269 year: 2011 end-page: 10 278 article-title: A dual strategy for the suppression of host antiviral silencing: two distinct suppressors for viral replication and viral movement encoded by potato virus M publication-title: J. Virol. – volume: 85 start-page: 1329 year: 2004 end-page: 1333 article-title: Identification of a nuclear localization signal and nuclear export signal of the umbraviral long‐distance RNA movement protein publication-title: J. Gen. Virol. – volume: 276 start-page: 34 year: 1990 end-page: 38 article-title: The 12 kDa protein of potato virus M displays properties of a nucleic acid‐binding regulatory protein publication-title: FEBS Lett. – volume: 14 start-page: 265 year: 2013 end-page: 278 article-title: Identification of the amino acid residues and domains in the cysteine‐rich protein of Chinese wheat mosaic virus that are important for RNA silencing suppression and subcellular localization publication-title: Mol. Plant Pathol. – volume: 6 start-page: 206 year: 2005 end-page: 220 article-title: Induction and suppression of RNA silencing: insights from viral infections publication-title: Nat. Rev. Genet. – volume: 5 start-page: 71 year: 2004 end-page: 82 article-title: Viral suppression of RNA silencing in plants publication-title: Mol. Plant Pathol. – volume: 16 start-page: 4738 year: 1997 end-page: 4745 article-title: Systemic acquired silencing: transgene‐specific post‐transcriptional silencing is transmitted by grafting from silenced stocks to non‐silenced scions publication-title: EMBO J. – volume: 426 start-page: 178 year: 2012 end-page: 187 article-title: The enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation publication-title: Virology – volume: 29 start-page: 555 year: 2002 end-page: 567 article-title: Identification, subcellular localization and some properties of a cysteine rich suppressor of gene silencing encoded by peanut clump virus publication-title: Plant J. – volume: 18 start-page: 1179 year: 2004 end-page: 1186 article-title: Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step publication-title: Genes Dev. – volume: 152 start-page: 813 year: 2007 end-page: 818 article-title: Sequence analysis of the entire RNA genome of a sweet potato chlorotic fleck virus isolate reveals that it belongs to a distinct carlavirus species publication-title: Arch. Virol. – volume: 11 start-page: 641 year: 2010 end-page: 649 article-title: The silencing suppressor P25 of potato virus X interacts with Argonaute1 and mediates its degradation through the proteasome pathway publication-title: Mol. Plant Pathol. – volume: 75 start-page: 1941 year: 2001 end-page: 1948 article-title: Peanut clump virus RNA‐1‐encoded P15 regulates viral RNA accumulation but is not abundant at viral RNA replication sites publication-title: J. Virol. – volume: 88 start-page: 316 year: 2007 end-page: 324 article-title: Apple chlorotic leaf spot virus 50 kDa movement protein acts as a suppressor of systemic silencing without interfering with local silencing in publication-title: J. Gen. Virol. – volume: 76 start-page: 12 981 year: 2002 end-page: 12 991 article-title: Long‐distance movement, virulence, and RNA silencing suppression controlled by a single protein in hordei‐ and potyviruses: complementary functions between virus families publication-title: J. Virol. – volume: 17 start-page: 6739 year: 1998 end-page: 6746 article-title: Viral pathogenicity determinants are suppressors of transgene silencing in publication-title: EMBO J. – volume: 293 start-page: 2269 year: 2001 end-page: 2271 article-title: A role for the RNase III enzyme DCR‐1 in RNA interference and germ line development in publication-title: Science – volume: 16 start-page: 265 year: 2011 end-page: 272 article-title: Viral suppressors of RNA silencing publication-title: Trends Plant Sci. – volume: 18 start-page: 382 year: 2013 end-page: 392 article-title: RNA silencing and its suppression: novel insights from in planta analyses publication-title: Trends Plant Sci. – volume: 26 start-page: 2169 year: 2007 end-page: 2179 article-title: Cajal bodies and the nucleolus are required for a plant virus systemic infection publication-title: EMBO J. – volume: 86 start-page: 2879 year: 2005 end-page: 2889 article-title: Expression, localization and effects on virulence of the cysteine‐rich 8 kDa protein of Potato mop‐top virus publication-title: J. Gen. Virol. – volume: 22 start-page: 4523 year: 2003 end-page: 4533 article-title: Transitivity dependent and independent cell‐to‐cell movement of RNA silencing publication-title: EMBO J. – volume: 82 start-page: 4064 year: 2008 end-page: 4071 article-title: Tobacco rattle virus 16‐kilodalton protein encodes a suppressor of RNA silencing that allows transient viral entry in meristems publication-title: J. Virol. – volume: 2 start-page: 1565 year: 2007 end-page: 1572 article-title: Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis publication-title: Nat. Protoc. – ident: e_1_2_6_48_1 doi: 10.1093/emboj/16.15.4738 – ident: e_1_2_6_11_1 doi: 10.1101/gad.1026102 – ident: e_1_2_6_9_1 doi: 10.1016/j.tplants.2011.02.010 – ident: e_1_2_6_31_1 doi: 10.1038/35005107 – ident: e_1_2_6_44_1 doi: 10.1105/tpc.112.106476 – ident: e_1_2_6_25_1 doi: 10.1094/MPMI-23-3-0294 – ident: e_1_2_6_13_1 doi: 10.1104/pp.109.137125 – ident: e_1_2_6_12_1 doi: 10.1101/gad.1201204 – ident: e_1_2_6_58_1 doi: 10.1016/S0168-9525(01)02367-8 – ident: e_1_2_6_4_1 doi: 10.1007/s00705-006-0891-z – ident: e_1_2_6_49_1 doi: 10.1016/j.febslet.2005.08.041 – ident: e_1_2_6_20_1 doi: 10.1105/tpc.020719 – ident: e_1_2_6_8_1 doi: 10.1093/emboj/17.22.6739 – ident: e_1_2_6_33_1 doi: 10.1016/j.tplants.2013.04.001 – ident: e_1_2_6_15_1 doi: 10.1126/science.1128214 – ident: e_1_2_6_35_1 doi: 10.1016/S0092-8674(00)81614-1 – ident: e_1_2_6_69_1 doi: 10.1099/vir.0.81893-0 – ident: e_1_2_6_39_1 doi: 10.1038/sj.emboj.7601164 – ident: e_1_2_6_19_1 doi: 10.1046/j.0960-7412.2001.01242.x – ident: e_1_2_6_65_1 doi: 10.1128/JVI.76.24.12981-12991.2002 – ident: e_1_2_6_7_1 doi: 10.1038/35053110 – ident: e_1_2_6_41_1 doi: 10.1371/journal.pone.0069255 – ident: e_1_2_6_5_1 doi: 10.1094/PDIS-93-1-0087 – ident: e_1_2_6_21_1 doi: 10.1038/35888 – ident: e_1_2_6_27_1 doi: 10.1016/0014-5793(90)80500-I – ident: e_1_2_6_54_1 doi: 10.1099/vir.0.008243-0 – ident: e_1_2_6_2_1 doi: 10.1073/pnas.95.22.13079 – ident: e_1_2_6_59_1 doi: 10.1038/nrg1555 – ident: e_1_2_6_14_1 doi: 10.1111/j.1364-3703.2010.00634.x – ident: e_1_2_6_53_1 doi: 10.1099/vir.0.79854-0 – ident: e_1_2_6_60_1 doi: 10.1038/39215 – ident: e_1_2_6_28_1 doi: 10.1016/S0092-8674(01)00431-7 – ident: e_1_2_6_32_1 doi: 10.1093/emboj/cdg431 – ident: e_1_2_6_24_1 doi: 10.1099/vir.0.83503-0 – ident: e_1_2_6_47_1 doi: 10.1111/j.1364-3703.2004.00207.x – ident: e_1_2_6_68_1 doi: 10.1101/gad.1495506 – ident: e_1_2_6_38_1 doi: 10.1038/sj.emboj.7600096 – ident: e_1_2_6_64_1 doi: 10.1016/j.febslet.2008.11.031 – ident: e_1_2_6_29_1 doi: 10.1099/vir.0.011213-0 – ident: e_1_2_6_56_1 doi: 10.1111/mpp.12002 – ident: e_1_2_6_57_1 doi: 10.1186/1743-422X-2-18 – ident: e_1_2_6_18_1 doi: 10.1128/JVI.75.4.1941-1948.2001 – ident: e_1_2_6_63_1 doi: 10.1099/vir.0.82377-0 – ident: e_1_2_6_42_1 doi: 10.1099/vir.0.81099-0 – ident: e_1_2_6_61_1 doi: 10.1016/j.chom.2010.06.009 – ident: e_1_2_6_67_1 doi: 10.1038/nsb0901-746 – ident: e_1_2_6_17_1 doi: 10.1016/j.cell.2007.07.039 – ident: e_1_2_6_6_1 doi: 10.1038/nature02874 – ident: e_1_2_6_62_1 doi: 10.1111/j.1469-8137.2010.03253.x – ident: e_1_2_6_22_1 doi: 10.1016/j.virol.2012.01.026 – ident: e_1_2_6_10_1 doi: 10.1128/JVI.79.20.13018-13027.2005 – ident: e_1_2_6_16_1 doi: 10.1094/PDIS-05-13-0578-PDN – ident: e_1_2_6_52_1 doi: 10.1094/MPMI-08-12-0201-R – ident: e_1_2_6_23_1 doi: 10.1023/A:1026395815980 – ident: e_1_2_6_40_1 doi: 10.1146/annurev.micro.60.080805.142205 – ident: e_1_2_6_30_1 doi: 10.1094/MPMI-02-13-0040-R – ident: e_1_2_6_43_1 doi: 10.1099/vir.0.005025-0 – ident: e_1_2_6_26_1 doi: 10.1007/BF02773396 – ident: e_1_2_6_46_1 doi: 10.1128/JVI.01963-05 – ident: e_1_2_6_37_1 doi: 10.1126/science.1062039 – volume: 93 start-page: 770 year: 2007 ident: e_1_2_6_34_1 article-title: A modified freeze–thaw method for efficient transformation of Agrobacterium tumefaciens publication-title: Curr. Sci. – ident: e_1_2_6_50_1 doi: 10.1105/tpc.108.064147 – ident: e_1_2_6_55_1 doi: 10.1128/JVI.05273-11 – ident: e_1_2_6_66_1 doi: 10.1038/nprot.2007.199 – ident: e_1_2_6_3_1 doi: 10.1099/vir.0.043513-0 – ident: e_1_2_6_45_1 doi: 10.1128/JVI.02438-07 – ident: e_1_2_6_36_1 doi: 10.1038/sj.emboj.7601674 – ident: e_1_2_6_51_1 doi: 10.1016/j.virusres.2004.01.020 |
SSID | ssj0017925 |
Score | 2.2175133 |
Snippet | RNA silencing is an important mechanism of antiviral defence in plants. To counteract this resistance mechanism, many viruses have evolved RNA silencing... Summary RNA silencing is an important mechanism of antiviral defence in plants. To counteract this resistance mechanism, many viruses have evolved RNA... RNA silencing is an important mechanism of antiviral defence in plants. To counteract this resistance mechanism, many viruses have evolved RNA silencing... Summary RNA silencing is an important mechanism of antiviral defence in plants. To counteract this resistance mechanism, many viruses have evolved RNA... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 365 |
SubjectTerms | Cell Nucleus - metabolism confocal laser scanning microscopy double-stranded RNA green fluorescent protein image analysis Ipomoea batatas - virology Mutation NaBp Nicotiana benthamiana nuclear localization nuclear localization signals Original Pathogenesis pathogenicity Pathogens Plant Viruses - metabolism Plant Viruses - pathogenicity Potato virus X Potatoes Proteins protoplasts RNA Interference RNA Viruses - metabolism RNA Viruses - pathogenicity sequence deletion silencing suppressor SPCFV Sweet potato chlorotic fleck virus viral pathogenesis Viral Proteins - genetics Viral Proteins - metabolism Virulence viruses |
Title | critical domain of Sweet potato chlorotic fleck virus nucleotide‐binding protein (NaBp) for RNA silencing suppression, nuclear localization and viral pathogenesis |
URI | https://api.istex.fr/ark:/67375/WNG-X8P55TCM-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmpp.12186 https://www.ncbi.nlm.nih.gov/pubmed/25138489 https://www.proquest.com/docview/1674608980 https://www.proquest.com/docview/1694506567 https://pubmed.ncbi.nlm.nih.gov/PMC6638403 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF61PcGBlt8aSrUghIqEK8d_uxanUFEqpERR2ogckKz17rq1ktqWnRTEiUfgKXgwnoSZtWM1UCTEJYrisdc7np35vJn5hpAXbpT4ENi4rf0wtP1IKjtJgtSGYK48JSBkCdwaGAzDk4n_YRpMN8ibVS1Mww_RbbjhyjD-Ghe4SOpri_yyLJEagSPdNuZqISAad9RRYGem4So4At8Omeu2rEKYxdOduRaLNlNRAEJF5X65CW7-mTV5Hc2acHS8TT6tJtJkocwOl4vkUH79jePxP2e6Q-60MJX2G7u6SzZ0fo_c7p9XLVWHvk9-9Kls-yRQVVyKLKdFSk8_a72gZQEYtqDyYl5UBYjQdK7ljF5l1bKmOVIow69K__z2PclMWQ01fBFwiYOheFu-ogCl6XjYp3WGRVEoUC_LNmc3f91cQlTUROK2kpSKXOEIcDvYZrk4Ry-e1Q_I5Pjd2dGJ3XZ9sCU439DWrpAAm5LU0VIwITHMSqYjh4vIDT3FXBkAinPSwGfCcRLl9XwpZE9xJrgU2ntItvIi17uEpkKmLNLKTSMQVinnshdIZMiTiQqYssjB6vnHsqVEx84c83j1agSqj43qLfK8Ey0bHpCbhHbBiGIBD6OOJ6cu7iYBhAbE2bPIS2NZ3cmimmFOHQvij8P38ZSPguDsaBCPLbK3Mr24dSd1jKUiocMj7ljkWXcYHAH-uyNyXSxRJvIDAJQhs8ijxlK7wQDEetznkUXYmg13Akgyvn4kzy4M2TggUu47HqjKmOjfJx8PRiPz5fG_iz4ht1BJTQLpHtlaVEv9FEDeItknm64_2jdrGj6Ho8Ev9KVTMg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF615QAc-IcaCiwIoSLhyvHvWuISKkqAJorSRM0FWevddWsltS07AcSJR-ApeDCehJm1YzVQJMTNssc_O56d-bye-YaQZ3YYuxDYmKlc3zfdUEgzjr3EhGAuHckhZHFcGugP_N7EfT_1phvk1aoWpuaHaBfccGZof40THBekz83ys6JAbgTmb5JL2NFbf1CNWvIosDTdchVcgWv6gW03vEKYx9OeuhaNNhOeA0ZF9X65CHD-mTd5Hs_qgHRwnXxcDaXOQ5ntLRfxnvj6G8vj_471BrnWIFXarU3rJtlQ2S1ytXtSNmwd6jb50aWiaZVAZX7G04zmCT36rNSCFjnA2JyK03le5iBCk7kSM_opLZcVzZBFGfZK9fPb9zjVlTVUU0bAJXYH_HXxggKapqNBl1Yp1kWhQLUsmrTd7GV9CV5SHYybYlLKM4l3gMfBTsv5CTrytLpDJgdvxvs9s2n8YArwv76pbC4AOcWJpQQPuMBIKwIVWoyHtu_IwBYeADkr8dyAW1YsnY4ruOhIFnAmuHLukq0sz9Q2oQkXSRAqaSchCMuEMdHxBJLkiVh6gTTI7soAItGwomNzjnm0-joC1Uda9QZ52ooWNRXIRULbYEURh5dRRZMjGxeUAEUD6OwY5Lk2rfZkXs4wrS7wouPB22jKhp433u9HI4PsrGwvajxKFWG1iG-xkFkGedIeBl-AP3h4pvIlyoSuB5jSDwxyrzbV9maAYx3mstAgwZoRtwLIM75-JEtPNd84gFLmWg6oStvo3wcf9YdDvXH_30Ufk8u9cf8wOnw3-PCAXEGF1fmkO2RrUS7VQ8B8i_iRntq_AO3mVWo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bbtNAEF31IiF4QNxrKLAghIqEJce3XYunUAjlkihqmxLxslrvpbXa2lacAI98Al_Bh_ElzNiO1Ygi8WbZYzvZmdk5u545Q8gzP0lDCGzcNWEcu2GitJumkXUhmOtASwhZErcGhqN4bxJ-mEbTNfJqWQvT8EN0G27oGfV8jQ5eanvByc_LEqkReLxONpElD0x6s380-TLpPiKwpO65CnNB6MbM91tiIUzk6W5eCUfrVhYAUnF8v1-GOP9OnLwIaOuINLhBrrdQkvYb3d8kaya_Ra71j2ctnYa5TX71qWp7GVBdnMssp4WlB9-MmdOyAJxZUHUCK_YCRKg9M-qUfs1mi4rmSHMMZ7X5_eNnmtWlL7TmdIBH7Izk6_IFBbhL90d9WmVYuIQC1aJs82rzl80j5IzW0bKt9qQy1_gG-DnYCrk4xpk2q-6QyeDt4e6e23ZmcBVMkLFrfKkA2qTWM0oyqTAUKmYSj8vEjwPNfBUB0vJsFDLpeakOeqGSqqc5k1xJE9wlG3mRmy1CrVSWJUb7NgFhbTlXvUghi51KdcS0Q3aWChKqpS3H7hlnYrl8AV2KWpcOedqJlg1Xx2VCW6BlIUEZlZgc-LjjAzAXUGHPIc9r1Xc3y9kp5r2xSHwevRNTPo6iw92h2HfI9tI2ROvylcByjtjjCfcc8qS7DM6KX2BkbooFyiQh2GoUM4fca0ypexkAzYCHPHEIWzGyTgCJwFev5NlJTQgOqBHW6QEMVW2O__7zYjge1wf3_1_0MbkyfjMQn96PPj4gV3G8mnzPbbIxny3MQ8Bk8_RR63t_ADJTNZ4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+critical+domain+of+Sweet+potato+chlorotic+fleck+virus+nucleotide%E2%80%90binding+protein+%28NaBp%29+for+RNA+silencing+suppression%2C+nuclear+localization+and+viral+pathogenesis&rft.jtitle=Molecular+plant+pathology&rft.au=Deng%2C+Xing%E2%80%90Guang&rft.au=Peng%2C+Xing%E2%80%90Ji&rft.au=Zhu%2C+Feng&rft.au=Chen%2C+Ying%E2%80%90Juan&rft.date=2015-05-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1464-6722&rft.eissn=1364-3703&rft.volume=16&rft.issue=4&rft.spage=365&rft.epage=375&rft_id=info:doi/10.1111%2Fmpp.12186&rft_id=info%3Apmid%2F25138489&rft.externalDocID=PMC6638403 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-6722&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-6722&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-6722&client=summon |