Low-Temperature Synthesis of Nanosized Bismuth Ferrite by Soft Chemical Route

The present research describes a simple low‐temperature synthesis route of preparing bismuth ferrite nanopowders through soft chemical route using nitrates of Bismuth and Iron. Tartaric acid is used as a template material and nitric acid as an oxidizing agent. The synthesized powders are characteriz...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Ceramic Society Vol. 88; no. 5; pp. 1349 - 1352
Main Authors Ghosh, Sushmita, Dasgupta, Subrata, Sen, Amarnath, Sekhar Maiti, Himadri
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Inc 01.05.2005
Blackwell
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The present research describes a simple low‐temperature synthesis route of preparing bismuth ferrite nanopowders through soft chemical route using nitrates of Bismuth and Iron. Tartaric acid is used as a template material and nitric acid as an oxidizing agent. The synthesized powders are characterized by X‐ray diffractometry, thermogravimetry and differential thermal analysis, infrared spectroscopy, and scanning electron microscopy. The particle size of the powder lies between 3 and 16 nm. In the process, phase pure bismuth ferrite can be obtained at a temperature as low as 400°C, in contrast to 550°C for coprecipitation route. On the other hand, we find that, like solid state reaction route, Pechini's autocombustion method of synthesis generates a lot of impurity phases along with bismuth ferrite.
AbstractList The present research describes a simple low-temperature synthesis route of preparing bismuth ferrite nanopowders through soft chemical route using nitrates of Bismuth and Iron. Tartaric acid is used as a template material and nitric acid as an oxidizing agent. The synthesized powders are characterized by X-ray diffractometry, thermogravimetry and differential thermal analysis, infrared spectroscopy, and scanning electron microscopy. The particle size of the powder lies between 3 and 16 nm. In the process, phase pure bismuth ferrite can be obtained at a temperature as low as 400 degrees C, in contrast to 550 degrees C for coprecipitation route. On the other hand, we find that, like solid state reaction route, Pechini's autocombustion method of synthesis generates a lot of impurity phases along with bismuth ferrite.[PUBLICATION ABSTRACT]
The present research describes a simple low‐temperature synthesis route of preparing bismuth ferrite nanopowders through soft chemical route using nitrates of Bismuth and Iron. Tartaric acid is used as a template material and nitric acid as an oxidizing agent. The synthesized powders are characterized by X‐ray diffractometry, thermogravimetry and differential thermal analysis, infrared spectroscopy, and scanning electron microscopy. The particle size of the powder lies between 3 and 16 nm. In the process, phase pure bismuth ferrite can be obtained at a temperature as low as 400°C, in contrast to 550°C for coprecipitation route. On the other hand, we find that, like solid state reaction route, Pechini's autocombustion method of synthesis generates a lot of impurity phases along with bismuth ferrite.
The present research describes a simple low-temperature synthesis route of preparing bismuth ferrite nanopowders through soft chemical route using nitrates of Bismuth and Iron. Tartaric acid is used as a template material and nitric acid as an oxidizing agent. The synthesized powders are characterized by X-ray diffractometry, thermogravimetry and differential thermal analysis, infrared spectroscopy, and scanning electron microscopy. The particle size of the powder lies between 3 and 16 nm. In the process, phase pure bismuth ferrite can be obtained at a temperature as low as 400DGC, in contrast to 550DGC for coprecipitation route. On the other hand, we find that, like solid state reaction route, Pechini's autocombustion method of synthesis generates a lot of impurity phases along with bismuth ferrite.
A soft chemical route using nitrates of bismuth and iron provided a simple low-temperature synthesis of bismuth ferrite nanopowders. Tartaric acid was used as a template material and nitric acid as an oxidising agent. The synthesised powders were characterised by XRD, TG/DTA, IR spectroscopy, and SEM. The particle size of the powder lay between 3 and 16 nm. In the process, phase pure bismuth ferrite could be obtained at a temperature as low as 400 C, in contrast to 550 C for the coprecipitation route. On the other hand, as with the solid state reaction route, Pechini's autocombustion method of synthesis generated a lot of impurity phases along with the bismuth ferrite. 12 refs.
Author Dasgupta, Subrata
Sen, Amarnath
Ghosh, Sushmita
Sekhar Maiti, Himadri
Author_xml – sequence: 1
  givenname: Sushmita
  surname: Ghosh
  fullname: Ghosh, Sushmita
  organization: Central Glass & Ceramic Research Institute, Kolkata 700 032, India
– sequence: 2
  givenname: Subrata
  surname: Dasgupta
  fullname: Dasgupta, Subrata
  email: sdasgupta@cgcri.res.in
  organization: Central Glass & Ceramic Research Institute, Kolkata 700 032, India
– sequence: 3
  givenname: Amarnath
  surname: Sen
  fullname: Sen, Amarnath
  organization: Central Glass & Ceramic Research Institute, Kolkata 700 032, India
– sequence: 4
  givenname: Himadri
  surname: Sekhar Maiti
  fullname: Sekhar Maiti, Himadri
  organization: Central Glass & Ceramic Research Institute, Kolkata 700 032, India
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17184358$$DView record in Pascal Francis
BookMark eNqNkUtv1DAQgC1UJLaF_2AhwS2p305OqCx9LwXRoh6tPCZaL0m82Im6219fZ7cqEhfwxR7NN581M4fooHc9IIQpSWk8x6uUSkkTllOVMkJkSggnKt28QrOXxAGaEUJYojNG3qDDEFYxpHkmZujrwj0kd9CtwRfD6AHfbvthCcEG7Bp8U_Qu2Eeo8WcbunFY4jPw3g6Ayy2-dc2A50vobFW0-IcbB3iLXjdFG-Dd832Efp6d3s0vksW388v5ySKpJM9UUpa6VrVsGkqV1gCc1DwXPFcllY2uoayAiTxm6-mUSoCAnEWAlVUMKT9CH_fetXe_RwiD6WyooG2LHtwYTGxacC70v8FMCkKUiuD7v8CVG30fmzCM6pxnbGfL9lDlXQgeGrP2tiv81lBipm2YlZmGPv2vzLQNs9uG2cTSD8_-IsRxNb7oKxv-1GuaCS6zyH3acw-2he1_-83Vyfx0946GZG-wYYDNi6Hwv4zSXEtzf3NuNP1-z_nVF3PNnwAlL63B
CODEN JACTAW
CitedBy_id crossref_primary_10_1016_j_ceramint_2010_01_020
crossref_primary_10_1007_s10854_012_0855_x
crossref_primary_10_1063_1_4921433
crossref_primary_10_1016_j_actamat_2017_11_055
crossref_primary_10_1016_j_matdes_2024_113118
crossref_primary_10_1088_0953_8984_24_4_045905
crossref_primary_10_4028_www_scientific_net_AMR_418_420_1752
crossref_primary_10_1007_s10854_011_0605_5
crossref_primary_10_1088_0957_4484_24_41_415703
crossref_primary_10_1063_1_3502481
crossref_primary_10_1007_s10854_014_2126_5
crossref_primary_10_1080_01411594_2013_771738
crossref_primary_10_1016_j_materresbull_2009_03_015
crossref_primary_10_1016_j_materresbull_2011_08_010
crossref_primary_10_1080_10667857_2020_1782061
crossref_primary_10_1111_j_1551_2916_2006_01062_x
crossref_primary_10_2139_ssrn_4016053
crossref_primary_10_1016_j_physb_2014_03_080
crossref_primary_10_4283_JMAG_2011_16_1_019
crossref_primary_10_1016_j_commatsci_2023_112420
crossref_primary_10_1111_j_1551_2916_2010_03945_x
crossref_primary_10_3390_inorganics11030134
crossref_primary_10_1007_s12034_019_1871_8
crossref_primary_10_4028_www_scientific_net_AMR_418_420_278
crossref_primary_10_1016_j_jallcom_2009_11_049
crossref_primary_10_1016_j_jallcom_2017_10_087
crossref_primary_10_1016_j_matchemphys_2014_09_007
crossref_primary_10_1016_j_matchemphys_2017_04_020
crossref_primary_10_1016_j_materresbull_2005_07_017
crossref_primary_10_1016_j_matpr_2021_05_460
crossref_primary_10_1016_j_materresbull_2013_04_008
crossref_primary_10_1016_j_mssp_2014_12_007
crossref_primary_10_1016_j_scp_2021_100547
crossref_primary_10_1039_C6RA02316A
crossref_primary_10_1080_10584587_2011_574986
crossref_primary_10_1016_j_cdc_2022_100968
crossref_primary_10_1016_j_jeurceramsoc_2009_05_018
crossref_primary_10_1080_17458080_2012_685954
crossref_primary_10_1007_s10854_017_8347_7
crossref_primary_10_1016_j_mseb_2010_01_040
crossref_primary_10_1016_j_colsurfa_2022_129332
crossref_primary_10_1088_0964_1726_21_8_085012
crossref_primary_10_1016_j_matchemphys_2014_02_044
crossref_primary_10_1039_C5NR00185D
crossref_primary_10_1016_j_jallcom_2016_07_094
crossref_primary_10_1039_c3tc30446a
crossref_primary_10_1039_C9CS00283A
crossref_primary_10_1016_j_jallcom_2010_09_213
crossref_primary_10_1186_s11671_017_1868_4
crossref_primary_10_1143_JJAP_47_8498
crossref_primary_10_1007_s10832_024_00346_0
crossref_primary_10_1007_s10854_019_02526_z
crossref_primary_10_2109_jcersj2_116_837
crossref_primary_10_1007_s40033_014_0051_7
crossref_primary_10_1016_j_jallcom_2020_156564
crossref_primary_10_1016_j_matchemphys_2009_05_001
crossref_primary_10_1080_00150193_2021_1890467
crossref_primary_10_1111_jace_12897
crossref_primary_10_1021_acs_jpcc_0c05778
crossref_primary_10_1088_0957_4484_24_35_355701
crossref_primary_10_1016_j_surfin_2023_103417
crossref_primary_10_1149_1_2364305
crossref_primary_10_1016_j_mseb_2011_01_009
crossref_primary_10_1016_j_jallcom_2012_09_010
crossref_primary_10_1063_1_4861151
crossref_primary_10_1155_2016_6917950
crossref_primary_10_1016_j_jcrysgro_2006_02_048
crossref_primary_10_1103_PhysRevB_83_184412
crossref_primary_10_1016_j_ceramint_2018_04_256
crossref_primary_10_1039_b509960a
crossref_primary_10_1007_s00339_010_6024_2
crossref_primary_10_2298_CICEQ200820025N
crossref_primary_10_1016_j_ceramint_2007_04_013
crossref_primary_10_1016_j_materresbull_2013_01_032
crossref_primary_10_1039_c0jm00729c
crossref_primary_10_1063_1_5006264
crossref_primary_10_1557_mrc_2015_8
crossref_primary_10_1007_s10971_012_2834_3
crossref_primary_10_1063_1_4972806
crossref_primary_10_3390_act11120380
crossref_primary_10_1016_j_mseb_2013_09_004
crossref_primary_10_1103_PhysRevMaterials_2_084401
crossref_primary_10_1556_566_2017_0010
crossref_primary_10_1016_j_jallcom_2023_172066
crossref_primary_10_1016_j_matlet_2006_08_026
crossref_primary_10_1007_s12034_020_02118_2
crossref_primary_10_1016_j_jmmm_2018_05_063
crossref_primary_10_1016_j_ssc_2011_01_029
crossref_primary_10_1016_j_progsolidstchem_2012_03_001
crossref_primary_10_1111_jace_12186
crossref_primary_10_1007_s10832_007_9265_5
crossref_primary_10_1038_s41598_022_08687_y
crossref_primary_10_1007_s10948_023_06553_0
crossref_primary_10_13005_msri_110206
crossref_primary_10_1080_21870764_2020_1856312
crossref_primary_10_1016_j_jmmm_2015_05_066
crossref_primary_10_1016_j_matpr_2015_07_153
crossref_primary_10_1021_jp3025683
crossref_primary_10_1007_s10853_006_1401_0
crossref_primary_10_1016_j_jallcom_2021_162738
crossref_primary_10_1103_PhysRevB_79_212415
crossref_primary_10_1155_2011_797639
crossref_primary_10_1134_S0020168509100185
crossref_primary_10_1039_C4NR03150D
crossref_primary_10_1109_TMAG_2015_2438954
crossref_primary_10_1088_0964_1726_24_4_045028
crossref_primary_10_1016_j_tsf_2008_10_030
crossref_primary_10_1016_j_matlet_2009_11_059
crossref_primary_10_1039_D0RA00177E
crossref_primary_10_1155_2018_3019586
crossref_primary_10_1016_j_jmmm_2015_09_062
crossref_primary_10_1016_j_solidstatesciences_2020_106142
crossref_primary_10_1007_s10854_012_0966_4
crossref_primary_10_1007_s10854_017_7164_3
crossref_primary_10_1016_j_solidstatesciences_2010_02_009
crossref_primary_10_4028_www_scientific_net_AMR_415_417_1925
crossref_primary_10_1007_s10948_013_2176_6
crossref_primary_10_1016_j_jct_2020_106347
crossref_primary_10_1021_nl063039w
crossref_primary_10_1007_s10948_020_05661_5
crossref_primary_10_1007_s10948_016_3461_y
crossref_primary_10_1016_j_jmmm_2010_07_001
crossref_primary_10_1039_c1jm13072b
crossref_primary_10_1111_j_1551_2916_2011_04522_x
crossref_primary_10_1080_10584587_2019_1592621
crossref_primary_10_4283_JMAG_2011_16_1_001
crossref_primary_10_1007_s11664_017_5463_3
crossref_primary_10_1016_j_matchemphys_2009_04_036
crossref_primary_10_1063_1_2229667
crossref_primary_10_1016_j_jece_2022_109229
crossref_primary_10_1038_s41598_018_28557_w
crossref_primary_10_1016_j_ijleo_2023_170945
crossref_primary_10_1002_adfm_201904259
crossref_primary_10_1016_j_jeurceramsoc_2007_02_163
crossref_primary_10_1080_17458080801935597
crossref_primary_10_1088_2053_1591_aa6d1e
crossref_primary_10_1016_j_jallcom_2009_02_068
crossref_primary_10_1016_j_ceramint_2018_07_085
crossref_primary_10_1063_1_4969047
crossref_primary_10_1016_j_ceramint_2013_08_088
crossref_primary_10_1007_s10971_015_3683_7
crossref_primary_10_1016_j_solidstatesciences_2023_107359
crossref_primary_10_1111_jace_12296
crossref_primary_10_1016_j_ceramint_2014_08_020
crossref_primary_10_1016_j_jallcom_2009_12_157
crossref_primary_10_1016_j_envres_2023_116241
crossref_primary_10_1039_C6RA12413E
crossref_primary_10_1039_C6RA22077K
crossref_primary_10_1515_ijmr_2021_8462
crossref_primary_10_1111_jace_12855
crossref_primary_10_4028_www_scientific_net_AMR_105_106_286
crossref_primary_10_1016_j_ccr_2006_06_005
crossref_primary_10_3389_fmicb_2019_02461
crossref_primary_10_1007_s10973_019_08251_3
crossref_primary_10_1038_srep09093
crossref_primary_10_1002_crat_201000545
crossref_primary_10_1007_s10854_014_1820_7
crossref_primary_10_1007_s10971_011_2625_2
crossref_primary_10_1007_s10832_024_00356_y
crossref_primary_10_1016_j_jpcs_2018_03_042
crossref_primary_10_1016_j_ssc_2009_02_010
crossref_primary_10_1016_j_cossms_2022_101016
crossref_primary_10_1016_j_jssc_2021_122162
crossref_primary_10_1007_s11595_006_4507_y
crossref_primary_10_1016_j_vacuum_2019_109143
crossref_primary_10_4028_www_scientific_net_MSF_745_746_393
crossref_primary_10_1016_j_physb_2012_03_007
crossref_primary_10_1016_j_jallcom_2022_167274
crossref_primary_10_1021_acsami_5b00069
crossref_primary_10_4313_JKEM_2012_25_9_692
crossref_primary_10_1039_D2RA07902J
crossref_primary_10_1021_acs_cgd_9b00896
crossref_primary_10_1016_j_ceramint_2016_04_083
crossref_primary_10_1016_j_matchemphys_2015_05_002
crossref_primary_10_1142_S0218863522500126
crossref_primary_10_1007_s10854_021_05762_4
crossref_primary_10_1021_cm070790c
crossref_primary_10_1016_j_ceramint_2012_06_014
crossref_primary_10_1016_j_ceramint_2015_03_322
crossref_primary_10_1111_j_1551_2916_2007_01735_x
crossref_primary_10_1016_j_ceramint_2012_10_212
crossref_primary_10_15541_jim20200594
crossref_primary_10_1016_j_matlet_2008_01_103
crossref_primary_10_1007_s10854_014_2507_9
crossref_primary_10_1016_j_jallcom_2017_03_292
crossref_primary_10_1007_s10854_023_09877_8
crossref_primary_10_1142_S0217984924502786
crossref_primary_10_1007_s10971_014_3566_3
crossref_primary_10_1016_j_jallcom_2021_159008
crossref_primary_10_1007_s00339_024_07383_0
crossref_primary_10_1007_s10973_008_9145_5
crossref_primary_10_1016_j_materresbull_2013_07_027
crossref_primary_10_1002_smll_202200992
crossref_primary_10_1007_s11051_012_1310_x
crossref_primary_10_1007_s12034_020_02328_8
crossref_primary_10_4303_jfrea_R101204
crossref_primary_10_1016_j_ceramint_2022_07_208
crossref_primary_10_1016_j_matchemphys_2010_04_012
crossref_primary_10_4028_www_scientific_net_MSF_1028_9
crossref_primary_10_1016_j_jallcom_2020_155878
crossref_primary_10_1088_1757_899X_178_1_012007
crossref_primary_10_1007_s10854_023_11486_4
crossref_primary_10_1016_j_jallcom_2008_07_082
crossref_primary_10_1007_s10854_020_05079_8
crossref_primary_10_1007_s11664_018_6715_6
crossref_primary_10_1063_1_4914965
crossref_primary_10_1016_j_ceramint_2011_03_081
crossref_primary_10_1111_j_1551_2916_2011_04536_x
crossref_primary_10_1007_s10854_022_09691_8
crossref_primary_10_1111_j_1551_2916_2010_03882_x
crossref_primary_10_1111_j_1551_2916_2010_03636_x
crossref_primary_10_1134_S0036023621020157
crossref_primary_10_1039_C6RA11021E
crossref_primary_10_1039_C8RA04599B
crossref_primary_10_1134_S0020168513030035
crossref_primary_10_1179_175355509X387165
crossref_primary_10_1016_j_ceramint_2018_07_038
crossref_primary_10_1016_j_ceramint_2021_02_018
crossref_primary_10_1016_j_jallcom_2010_04_049
crossref_primary_10_1016_j_poly_2010_08_019
crossref_primary_10_12677_ms_2011_13019
crossref_primary_10_1007_s11664_020_08645_2
crossref_primary_10_1007_s10971_017_4537_2
crossref_primary_10_3390_ma15010213
crossref_primary_10_1111_j_1551_2916_2007_01937_x
crossref_primary_10_1016_j_matlet_2008_05_051
crossref_primary_10_3390_nano10020359
crossref_primary_10_1111_j_1551_2916_2007_01952_x
crossref_primary_10_1016_j_ceramint_2008_04_016
crossref_primary_10_1016_j_matchemphys_2021_124402
crossref_primary_10_1039_c3tc30335g
crossref_primary_10_1016_j_jallcom_2010_05_029
crossref_primary_10_1016_j_jpcs_2011_07_017
crossref_primary_10_1016_j_ceramint_2022_12_064
crossref_primary_10_4028_www_scientific_net_MSF_745_746_107
crossref_primary_10_1111_j_1551_2916_2009_03238_x
crossref_primary_10_1016_j_ceramint_2015_03_244
crossref_primary_10_1111_j_1551_2916_2007_01779_x
crossref_primary_10_1007_s10971_010_2383_6
crossref_primary_10_1007_s10948_016_3552_9
crossref_primary_10_1016_j_ceramint_2018_04_153
crossref_primary_10_1016_j_jpcs_2020_109607
crossref_primary_10_1016_j_jallcom_2012_01_075
crossref_primary_10_1016_j_ceramint_2008_04_013
crossref_primary_10_1039_c002287j
crossref_primary_10_1111_j_1551_2916_2011_04624_x
crossref_primary_10_4028_www_scientific_net_AMR_906_178
crossref_primary_10_1016_j_physb_2011_11_055
crossref_primary_10_1080_10426910802384201
crossref_primary_10_1111_j_1551_2916_2009_03325_x
crossref_primary_10_1016_j_matchemphys_2012_02_042
crossref_primary_10_1016_j_jallcom_2010_11_153
crossref_primary_10_1007_s11664_023_10563_y
crossref_primary_10_1007_s10948_018_4596_9
crossref_primary_10_1016_j_materresbull_2012_06_068
crossref_primary_10_1016_j_jallcom_2013_09_107
crossref_primary_10_1039_C5RA24602D
crossref_primary_10_1016_j_msea_2006_12_147
crossref_primary_10_1016_j_mseb_2020_114842
crossref_primary_10_1016_j_ceramint_2011_05_019
crossref_primary_10_1063_1_4803549
crossref_primary_10_1111_j_1551_2916_2008_02689_x
crossref_primary_10_1016_j_jmmm_2023_171361
crossref_primary_10_52547_ijcm_30_4_751
crossref_primary_10_1016_j_materresbull_2015_09_007
crossref_primary_10_1016_j_jallcom_2015_03_102
crossref_primary_10_1080_10426910802104070
crossref_primary_10_1016_j_matpr_2017_10_196
crossref_primary_10_1016_j_materresbull_2008_07_017
crossref_primary_10_1016_j_ceramint_2021_10_039
crossref_primary_10_2478_awutp_2020_0004
crossref_primary_10_1039_C6CP04369K
crossref_primary_10_1016_j_physb_2011_03_011
crossref_primary_10_1021_acsomega_2c00219
crossref_primary_10_1109_TMAG_2019_2957249
crossref_primary_10_1016_j_jallcom_2013_01_039
crossref_primary_10_1016_j_jmmm_2014_10_158
crossref_primary_10_1016_j_jallcom_2014_12_108
crossref_primary_10_3989_cyv_12014
Cites_doi 10.1002/cber.19931260109
10.1107/S0108768190006887
10.1007/s12043-002-0211-4
10.1107/S0021889872009173
10.1016/S0898-8838(00)50007-5
10.1063/1.1672186
10.1063/1.1667612
10.1111/j.1151-2916.1967.tb15153.x
10.1107/S0567740870005319
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright American Ceramic Society May 2005
Copyright_xml – notice: 2006 INIST-CNRS
– notice: Copyright American Ceramic Society May 2005
DBID BSCLL
IQODW
AAYXX
CITATION
7QQ
7SR
8FD
JG9
8BQ
DOI 10.1111/j.1551-2916.2005.00306.x
DatabaseName Istex
Pascal-Francis
CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
METADEX
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
CrossRef
Materials Research Database
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
Physics
EISSN 1551-2916
EndPage 1352
ExternalDocumentID 846332831
10_1111_j_1551_2916_2005_00306_x
17184358
JACE00306
ark_67375_WNG_71PW33JD_K
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABDBF
ABEFU
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACNCT
ACPOU
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AHEFC
AI.
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBO
EBS
EDO
EJD
EMK
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
G8K
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
H~9
I-F
IRD
ITF
ITG
ITH
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PK8
PQQKQ
Q.N
Q11
QB0
QF4
QM1
QN7
QO4
R.K
RAX
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TAE
TH9
TN5
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WFSAM
WH7
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YQT
ZCG
ZE2
ZY4
ZZTAW
~02
~IA
~WT
AITYG
HGLYW
OIG
WTY
08R
IQODW
AAYXX
CITATION
7QQ
7SR
8FD
ADMHG
JG9
8BQ
ID FETCH-LOGICAL-c5386-bb7d6d5ff11677ee30d394396b15f7debce249f11dddddb64e4e924392bcdb613
IEDL.DBID DR2
ISSN 0002-7820
IngestDate Fri Aug 16 10:31:47 EDT 2024
Sat Oct 05 05:43:31 EDT 2024
Thu Oct 10 16:23:11 EDT 2024
Fri Aug 23 00:26:27 EDT 2024
Sun Oct 29 17:07:34 EDT 2023
Sat Aug 24 01:02:31 EDT 2024
Wed Jan 17 05:02:39 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Scanning electron microscopy
Inorganic compounds
Transition element compounds
Thermogravimetry
Oxides
Bismuth Iron Oxides Mixed
Bismuth oxides
Differential thermal analysis
XRD
Evaporation
Experimental study
Ultrafine powder
Characterization
Ferrites
Ferroelectric materials
Iron oxides
Chemical synthesis
Soft chemistry
Nanostructured materials
Low temperature
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5386-bb7d6d5ff11677ee30d394396b15f7debce249f11dddddb64e4e924392bcdb613
Notes ark:/67375/WNG-71PW33JD-K
istex:D963254C4B59A9FAF44D60F4861927E61CBB1850
ArticleID:JACE00306
L. C. Klein—contributing editor
Supported by the CSIR Network project CMM 002.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 217938247
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_29143347
proquest_miscellaneous_28540066
proquest_journals_217938247
crossref_primary_10_1111_j_1551_2916_2005_00306_x
pascalfrancis_primary_17184358
wiley_primary_10_1111_j_1551_2916_2005_00306_x_JACE00306
istex_primary_ark_67375_WNG_71PW33JD_K
PublicationCentury 2000
PublicationDate May 2005
PublicationDateYYYYMMDD 2005-05-01
PublicationDate_xml – month: 05
  year: 2005
  text: May 2005
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Malden,MA
– name: Columbus
PublicationTitle Journal of the American Ceramic Society
PublicationYear 2005
Publisher Blackwell Science Inc
Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Science Inc
– name: Blackwell
– name: Wiley Subscription Services, Inc
References J. D. Bucci, B. K. Robertson, and W. J. James, "The Precision Determination of the Lattice Parameters and the Coefficients of Thermal Expansion of BiFeO3,"J. Appl. Cryst., 5, 187-91 (1972).
I. Nakagawa and J. L. Walter, "Optically Active Crystal Vibrations of the Alkali-Metal Nitrates,"J. Chem. Phys., 51 [4] 1389-97 (1969).
V. R. Palkar and R. Pinto, "BiFeO3 Thin Films: Novel Effects,"Pramana J. Phys., 58 [5, 6] 1003-8 (2002).
S. Shetty, V. R. Palkar, and R. Pinto, "Size Effect Study in Magnetoelectric BiFeO3 System,"Pramana J. Phys., 58 [5, 6] 1027-30 (2002).
F. Kubel and H. Schmid, "Structure of a Ferroelectric and Ferroelastic Monodomain Crystal of the Perovskite BiFeO3,"Acta Crystallogr., 46, 698-702 (1990).
Y. P. Wang, L. Zohu, M. F. Zhang, X. Y. Chen, J. M. Liu, and Z. G. Liu, "Room-Temperature Saturated Ferroelectric Polarization in BiFeO3 Ceramics Synthesized by Rapid Liquid Phase Sintering,"Appl. Phys. Lett., 84 [10] 1731-3 (2004).
M. Marezio, J. P. Remeiko, and P. D. Dernier, "The Crystal Chemistry of the Rare Earth Orthoferrites,"Acta Crystallogr., B26, 2008-22 (1970).
G. D. Achenbach, W. J. James, and R. Gerson, "Preparation of Single-Phase Polycrystalline BiFeO3,"J. Am. Ceram. Soc., 8, 437 (1967).
A. W. Herrmann, E. Herdtweck, K. Wolfgang, and P. Paul, "Metal Complexes in Biology and Medicine, V. New Bismuth Hydroxycarboxylate Complexes-Synthesis and Structure of Bismuth (III) Malate Monohydrate and Bismuth (III) Tartarate Trihydrate,"Chem. Ber., 126 [1] 51-6 (1993).
2000; 50
2002; 58
1967; 8
1961
2004; 84
1990; 46
1972; 5
1970; B26
1993; 126
1969; 51
e_1_2_5_13_2
e_1_2_5_8_2
e_1_2_5_7_2
e_1_2_5_10_2
e_1_2_5_6_2
e_1_2_5_5_2
e_1_2_5_12_2
e_1_2_5_11_2
e_1_2_5_3_2
e_1_2_5_2_2
Vogel A. I. (e_1_2_5_9_2) 1961
Palkar V. R. (e_1_2_5_4_2) 2002; 58
References_xml – volume: 5
  start-page: 187
  year: 1972
  end-page: 91
  article-title: The Precision Determination of the Lattice Parameters and the Coefficients of Thermal Expansion of BiFeO
  publication-title: J. Appl. Cryst.
– volume: 8
  start-page: 437
  year: 1967
  article-title: Preparation of Single‐Phase Polycrystalline BiFeO
  publication-title: J. Am. Ceram. Soc.
– volume: 58
  start-page: 1027
  issue: [5, 6]
  year: 2002
  end-page: 30
  article-title: Size Effect Study in Magnetoelectric BiFeO System
  publication-title: Pramana J. Phys.
– volume: 46
  start-page: 698
  year: 1990
  end-page: 702
  article-title: Structure of a Ferroelectric and Ferroelastic Monodomain Crystal of the Perovskite BiFeO
  publication-title: Acta Crystallogr.
– volume: 50
  start-page: 285
  year: 2000
  end-page: 357
– volume: 84
  start-page: 1731
  issue: [10]
  year: 2004
  end-page: 3
  article-title: Room‐Temperature Saturated Ferroelectric Polarization in BiFeO Ceramics Synthesized by Rapid Liquid Phase Sintering
  publication-title: Appl. Phys. Lett.
– volume: B26
  start-page: 2008
  year: 1970
  end-page: 22
  article-title: The Crystal Chemistry of the Rare Earth Orthoferrites
  publication-title: Acta Crystallogr.
– volume: 58
  start-page: 1003
  issue: [5, 6]
  year: 2002
  end-page: 8
  article-title: BiFeO Thin Films
  publication-title: Novel Effects
– start-page: 442
  year: 1961
– volume: 51
  start-page: 1389
  issue: [4]
  year: 1969
  end-page: 97
  article-title: Optically Active Crystal Vibrations of the Alkali‐Metal Nitrates
  publication-title: J. Chem. Phys.
– volume: 126
  start-page: 51
  issue: [1]
  year: 1993
  end-page: 6
  article-title: Metal Complexes in Biology and Medicine, V. New Bismuth Hydroxycarboxylate Complexes‐Synthesis and Structure of Bismuth (III) Malate Monohydrate and Bismuth (III) Tartarate Trihydrate
  publication-title: Chem. Ber.
– ident: e_1_2_5_12_2
  doi: 10.1002/cber.19931260109
– ident: e_1_2_5_3_2
  doi: 10.1107/S0108768190006887
– ident: e_1_2_5_7_2
  doi: 10.1007/s12043-002-0211-4
– start-page: 442
  volume-title: A Text Book of Inorganic Analysis
  year: 1961
  ident: e_1_2_5_9_2
  contributor:
    fullname: Vogel A. I.
– volume: 58
  start-page: 1003
  issue: 5
  year: 2002
  ident: e_1_2_5_4_2
  article-title: BiFeO3 Thin Films
  publication-title: Novel Effects
  contributor:
    fullname: Palkar V. R.
– ident: e_1_2_5_2_2
  doi: 10.1107/S0021889872009173
– ident: e_1_2_5_11_2
  doi: 10.1016/S0898-8838(00)50007-5
– ident: e_1_2_5_10_2
  doi: 10.1063/1.1672186
– ident: e_1_2_5_5_2
  doi: 10.1063/1.1667612
– ident: e_1_2_5_6_2
  doi: 10.1111/j.1151-2916.1967.tb15153.x
– ident: e_1_2_5_8_2
– ident: e_1_2_5_13_2
  doi: 10.1107/S0567740870005319
SSID ssj0001984
Score 2.3750787
Snippet The present research describes a simple low‐temperature synthesis route of preparing bismuth ferrite nanopowders through soft chemical route using nitrates of...
The present research describes a simple low-temperature synthesis route of preparing bismuth ferrite nanopowders through soft chemical route using nitrates of...
A soft chemical route using nitrates of bismuth and iron provided a simple low-temperature synthesis of bismuth ferrite nanopowders. Tartaric acid was used as...
SourceID proquest
crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1349
SubjectTerms Ceramics
Cross-disciplinary physics: materials science; rheology
Electrons
Exact sciences and technology
Iron
Materials science
Microscopy
Nanopowders
Nanoscale materials and structures: fabrication and characterization
Physics
Title Low-Temperature Synthesis of Nanosized Bismuth Ferrite by Soft Chemical Route
URI https://api.istex.fr/ark:/67375/WNG-71PW33JD-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1551-2916.2005.00306.x
https://www.proquest.com/docview/217938247
https://search.proquest.com/docview/28540066
https://search.proquest.com/docview/29143347
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQe4ED0AIiFBYfELesNokdJ8fdtku1hYJoS3uz4tgWqxUJqhPR9sQj8Iw8SWeSzXaDEEKInGL5J_LYM_7Gnnwm5JUSYaQTy_0o5spnyUj7qQmMn2bhSFmuuFboKL47ig9O2eycny_jn_BfmJYfYrXhhprR2GtU8Ey5vpLDau-HgG-6rRGAv0PEk8irh_jo4y2TFPjWrEPCSBHXD-r5bUO9lWoThX6JkZOZA-HZ9taLHixdB7fN6jR9QBZdv9qglMWwrtQwv_6F8vH_dPwhub8EsXTczrotcscU2-TeGrUhpD7NXd2WcY_I-7flt5_ff5wYAOktiTM9vioAe7q5o6WlYONLN782mk7m7ktdfaZTZIysDFVX9BhWCtoRG1AMYTKPyel0_2T3wF9e5eDnYFFjXymhY82txWMfYUw00lEKWChWAbdCG5Ub8AMhV-OjYmaYAc8QwJvKIRlET8hGURbmKaFCZWGeiUArYRkXLNHcJFznljORch16JOiGTX5tGTvkmqcDopMoOrx_k8tGdPLSI6-b8V1VyC4WGPEmuDw7eiNF8OEsimZ78tAjg94EuP2CwItzeOKRnW5GyKU1cDJEK5iETHjk5SoX1BjPZrLClDUUSQA6A_z7Q4kUoG2EbSTN7PjrzsnZeHe_eX_271V3yN2GtLYJ9XxONqqL2rwAOFapAdkcT_Ym00GjcDe8Sifi
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQewAOtPyJtLT1AXHLapPYcXIsbZdlu10Q3dLerDh2xKo0qZpEtD3xCDwjT8KMs9luEEIIkVMiO4k8mRl_Y0--IeSVEn6go4y7QciVy6K-dmPjGTdO_L7KuOJaYaB4NAmHJ2x0xs_m5YDwX5iGH2Kx4IaWYf01GjguSHetHKZ71weA066NAP7tAaBcBevnaKX7H--4pCC6Zi0WRpK4blrPb5_UmatWUezXmDuZlCC-rKl70QGmy_DWzk-DNfKlHVmTlnLeqyvVS29_IX38T0NfJ4_mOJbuNor3mNwz-RPycIndEK4-zcq66VM-Je_Hxdcf375PDeD0hseZHt_kAD_LWUmLjIKbL8rZrdH0zay8qKvPdICkkZWh6oYew2RBW24DillM5hk5GRxM94buvJqDm4JTDV2lhA41zzLc-RHGBH0dxACHQuXxTGijUgOhILRqPFTIDDMQHAJ-UylcesFzspIXuXlBqFCJnybC00pkjAsWaW4irtOMMxFz7TvEa7-bvGxIO-RSsAOikyg6LMHJpRWdvHbIa_uBFzckV-eY9Ca4PJ28lcL7cBoEo3156JDtjgbcvUFg7RweOWSzVQk5dwil9NERRj4TDtlZtIIl4_ZMkpuihi4RoGdAgH_oEQO6DfAZkVWPvx6cHO3uHdjzjX-_dYfcH06PxnL8bnK4SR5YDlub-fmSrFRXtdkCdFapbWt1PwH4HSqQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQKyE48I8IhdYHxC2rTWzHybF0u5RtWSra0t6sOLbFakVSNYloe-IReEaehJlks90ghBAip1j-iTz2jL-xJ58JeaVlyEzshM8ioX0eD42f2MD6SRoOtRNaGI2O4vtptHfCJ2fibBH_hP_CtPwQyw031IzGXqOCnxvXV3JY7f0Q8E23NQLwdwB4cp1HLERHbPTxhkoKnGveQWHkiOtH9fy2pd5StY5Sv8TQybQE6bn22oseLl1Ft83yNL5P5l3H2qiU-aCu9CC7_oXz8f_0_AG5t0CxdLuddg_JLZs_IndXuA0h9WlW1m2Z8jH5cFB8_fHt-7EFlN6yONOjqxzAZzkraeEoGPminF1bQ9_Myi919ZmOkTKyslRf0SNYKmjHbEAxhsk-ISfj3eOdPX9xl4OfgUmNfK2liYxwDs99pLVsaFgCYCjSgXDSWJ1ZcAQh1-CjI265BdcQ0JvOIBmwp2QtL3L7jFCp0zBLZWC0dFxIHhthY2EyJ7hMhAk9EnTDps5byg614uqA6BSKDi_gFKoRnbr0yOtmfJcV0os5hrxJoU6nb5UMDk8Zm4zUvkc2exPg5gsSb84RsUc2uhmhFuagVCGawTjk0iNby1zQYzycSXNb1FAkBuwM-O8PJRLAtgzbiJvZ8dedU5Ptnd3m_fm_V90itw9HY3Xwbrq_Qe40BLZN2OcLslZd1PYlQLNKbzY69xNGrCk_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Temperature+Synthesis+of+Nanosized+Bismuth+Ferrite+by+Soft+Chemical+Route&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Ghosh%2C+Sushmita&rft.au=Dasgupta%2C+Subrata&rft.au=Sen%2C+T+Amarnath&rft.au=Maiti%2C+Himadri+Sekhar&rft.date=2005-05-01&rft.issn=0002-7820&rft.volume=88&rft.issue=5&rft.spage=1349&rft.epage=1352&rft_id=info:doi/10.1111%2Fj.1551-2916.2005.00306.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon