Directed evolution of the transcription factor XylS for development of improved expression systems

Summary The inducible Pm promoter together with its cognate positive transcription regulator XylS has been shown to be useful for recombinant protein production under high cell density conditions. Here we report directed evolution of XylS resulting in mutant proteins with increased ability to stimul...

Full description

Saved in:
Bibliographic Details
Published inMicrobial biotechnology Vol. 3; no. 1; pp. 38 - 47
Main Authors Vee Aune, Trond Erik, Bakke, Ingrid, Drabløs, Finn, Lale, Rahmi, Brautaset, Trygve, Valla, Svein
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.01.2010
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary The inducible Pm promoter together with its cognate positive transcription regulator XylS has been shown to be useful for recombinant protein production under high cell density conditions. Here we report directed evolution of XylS resulting in mutant proteins with increased ability to stimulate transcription in Escherichia coli from Pm. A first round of mutagenesis using error‐prone PCR on xylS was used to construct a library consisting of about 430 000 clones, and this library could be efficiently screened with respect to stimulation of expression from Pm due to a positive correlation between the level of expression of the reporter gene, bla (encoding β‐lactamase), and the ampicillin tolerance of the corresponding host cells. Fourteen different amino acid substitutions in XylS were found to separately lead to up to nearly a threefold stimulation of expression under induced conditions, relative to wild type. These mutations were all located in the part corresponding to the N‐terminal half of the protein. Varying combinations of the mutations resulted in further stimulation, and the best results (about 10‐fold stimulation under induced conditions) were obtained by using a random shuffling procedure followed by a new round of screening. The uninduced levels of expression for the same mutants also increased, but only about four times. Through in silico 3D modelling of the N‐terminal domain of XylS, it was observed that the evolved mutant proteins contained substitutions that were positioned in different parts of the predicted structure, including a β‐barrel putatively responsible for effector binding and a coiled coil probably important for dimerization. The total production of the host‐toxic antibody fragment scFv‐phOx expressed from Pm with the evolved XylS mutant protein StEP‐13 was about ninefold higher than with wild‐type XylS, demonstrating that directed evolution of transcription factors can be an important new tool to achieve high‐level recombinant protein production.
AbstractList Summary The inducible Pm promoter together with its cognate positive transcription regulator XylS has been shown to be useful for recombinant protein production under high cell density conditions. Here we report directed evolution of XylS resulting in mutant proteins with increased ability to stimulate transcription in Escherichia coli from Pm. A first round of mutagenesis using error‐prone PCR on xylS was used to construct a library consisting of about 430 000 clones, and this library could be efficiently screened with respect to stimulation of expression from Pm due to a positive correlation between the level of expression of the reporter gene, bla (encoding β‐lactamase), and the ampicillin tolerance of the corresponding host cells. Fourteen different amino acid substitutions in XylS were found to separately lead to up to nearly a threefold stimulation of expression under induced conditions, relative to wild type. These mutations were all located in the part corresponding to the N‐terminal half of the protein. Varying combinations of the mutations resulted in further stimulation, and the best results (about 10‐fold stimulation under induced conditions) were obtained by using a random shuffling procedure followed by a new round of screening. The uninduced levels of expression for the same mutants also increased, but only about four times. Through in silico 3D modelling of the N‐terminal domain of XylS, it was observed that the evolved mutant proteins contained substitutions that were positioned in different parts of the predicted structure, including a β‐barrel putatively responsible for effector binding and a coiled coil probably important for dimerization. The total production of the host‐toxic antibody fragment scFv‐phOx expressed from Pm with the evolved XylS mutant protein StEP‐13 was about ninefold higher than with wild‐type XylS, demonstrating that directed evolution of transcription factors can be an important new tool to achieve high‐level recombinant protein production.
The inducible Pm promoter together with its cognate positive transcription regulator XylS has been shown to be useful for recombinant protein production under high cell density conditions. Here we report directed evolution of XylS resulting in mutant proteins with increased ability to stimulate transcription in Escherichia coli from Pm. A first round of mutagenesis using error-prone PCR on xylS was used to construct a library consisting of about 430,000 clones, and this library could be efficiently screened with respect to stimulation of expression from Pm due to a positive correlation between the level of expression of the reporter gene, bla (encoding β-lactamase), and the ampicillin tolerance of the corresponding host cells. Fourteen different amino acid substitutions in XylS were found to separately lead to up to nearly a threefold stimulation of expression under induced conditions, relative to wild type. These mutations were all located in the part corresponding to the N-terminal half of the protein. Varying combinations of the mutations resulted in further stimulation, and the best results (about 10-fold stimulation under induced conditions) were obtained by using a random shuffling procedure followed by a new round of screening. The uninduced levels of expression for the same mutants also increased, but only about four times. Through in silico 3D modelling of the N-terminal domain of XylS, it was observed that the evolved mutant proteins contained substitutions that were positioned in different parts of the predicted structure, including a β-barrel putatively responsible for effector binding and a coiled coil probably important for dimerization. The total production of the host-toxic antibody fragment scFv-phOx expressed from Pm with the evolved XylS mutant protein StEP-13 was about ninefold higher than with wild-type XylS, demonstrating that directed evolution of transcription factors can be an important new tool to achieve high-level recombinant protein production.
Summary The inducible Pm promoter together with its cognate positive transcription regulator XylS has been shown to be useful for recombinant protein production under high cell density conditions. Here we report directed evolution of XylS resulting in mutant proteins with increased ability to stimulate transcription in Escherichia coli from Pm. A first round of mutagenesis using error‐prone PCR on xylS was used to construct a library consisting of about 430 000 clones, and this library could be efficiently screened with respect to stimulation of expression from Pm due to a positive correlation between the level of expression of the reporter gene, bla (encoding β‐lactamase), and the ampicillin tolerance of the corresponding host cells. Fourteen different amino acid substitutions in XylS were found to separately lead to up to nearly a threefold stimulation of expression under induced conditions, relative to wild type. These mutations were all located in the part corresponding to the N‐terminal half of the protein. Varying combinations of the mutations resulted in further stimulation, and the best results (about 10‐fold stimulation under induced conditions) were obtained by using a random shuffling procedure followed by a new round of screening. The uninduced levels of expression for the same mutants also increased, but only about four times. Through in silico 3D modelling of the N‐terminal domain of XylS, it was observed that the evolved mutant proteins contained substitutions that were positioned in different parts of the predicted structure, including a β‐barrel putatively responsible for effector binding and a coiled coil probably important for dimerization. The total production of the host‐toxic antibody fragment scFv‐phOx expressed from Pm with the evolved XylS mutant protein StEP‐13 was about ninefold higher than with wild‐type XylS, demonstrating that directed evolution of transcription factors can be an important new tool to achieve high‐level recombinant protein production.
The inducible Pm promoter together with its cognate positive transcription regulator XylS has been shown to be useful for recombinant protein production under high cell density conditions. Here we report directed evolution of XylS resulting in mutant proteins with increased ability to stimulate transcription in Escherichia coli from Pm. A first round of mutagenesis using error‐prone PCR on xylS was used to construct a library consisting of about 430 000 clones, and this library could be efficiently screened with respect to stimulation of expression from Pm due to a positive correlation between the level of expression of the reporter gene, bla (encoding β‐lactamase), and the ampicillin tolerance of the corresponding host cells. Fourteen different amino acid substitutions in XylS were found to separately lead to up to nearly a threefold stimulation of expression under induced conditions, relative to wild type. These mutations were all located in the part corresponding to the N‐terminal half of the protein. Varying combinations of the mutations resulted in further stimulation, and the best results (about 10‐fold stimulation under induced conditions) were obtained by using a random shuffling procedure followed by a new round of screening. The uninduced levels of expression for the same mutants also increased, but only about four times. Through in silico 3D modelling of the N‐terminal domain of XylS, it was observed that the evolved mutant proteins contained substitutions that were positioned in different parts of the predicted structure, including a β‐barrel putatively responsible for effector binding and a coiled coil probably important for dimerization. The total production of the host‐toxic antibody fragment scFv‐phOx expressed from Pm with the evolved XylS mutant protein StEP‐13 was about ninefold higher than with wild‐type XylS, demonstrating that directed evolution of transcription factors can be an important new tool to achieve high‐level recombinant protein production.
Author Vee Aune, Trond Erik
Brautaset, Trygve
Drabløs, Finn
Valla, Svein
Bakke, Ingrid
Lale, Rahmi
AuthorAffiliation 1 Department of Biotechnology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
3 SINTEF Materials and Chemistry, Department of Biotechnology, SINTEF, 7465 Trondheim, Norway
2 Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7006 Trondheim, Norway
AuthorAffiliation_xml – name: 1 Department of Biotechnology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
– name: 3 SINTEF Materials and Chemistry, Department of Biotechnology, SINTEF, 7465 Trondheim, Norway
– name: 2 Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7006 Trondheim, Norway
Author_xml – sequence: 1
  givenname: Trond Erik
  surname: Vee Aune
  fullname: Vee Aune, Trond Erik
  organization: Department of Biotechnology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
– sequence: 2
  givenname: Ingrid
  surname: Bakke
  fullname: Bakke, Ingrid
  organization: Department of Biotechnology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
– sequence: 3
  givenname: Finn
  surname: Drabløs
  fullname: Drabløs, Finn
  organization: Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7006 Trondheim, Norway
– sequence: 4
  givenname: Rahmi
  surname: Lale
  fullname: Lale, Rahmi
  organization: Department of Biotechnology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
– sequence: 5
  givenname: Trygve
  surname: Brautaset
  fullname: Brautaset, Trygve
  organization: SINTEF Materials and Chemistry, Department of Biotechnology, SINTEF, 7465 Trondheim, Norway
– sequence: 6
  givenname: Svein
  surname: Valla
  fullname: Valla, Svein
  email: svein.valla@biotech.ntnu.no
  organization: Department of Biotechnology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21255304$$D View this record in MEDLINE/PubMed
BookMark eNqNUdtu1DAQtVARvcAvoEg8J_gS24mEkKCFUrHAQ8tFfRnlMqZekjjY2WX37-t0y6q84RePZs45cznH5GBwAxKSMJqx-F4uM6YlS3XJZMYpLTNKGVfZ5hE52hcOHsSH5DiEJaWKUsmfkEPOuJSC5kekPrMemwnbBNeuW03WDYkzyXSDyeSrITTejndJUzWT88mPbXeZmBi0uMbOjT0O00yw_ejdepbZjB5DmClhGybsw1Py2FRdwGf3_wn5-v7d1emHdPHl_OL0zSJtpChUqlGgMDmrDYqaNW2R50aWCjVnOjeKK1MXUrcNtrJgkuWG6pjkNVMlFkWuxAl5vdMdV3WPETjEDToYve0rvwVXWfi3Mtgb-OnWIKJemcso8OJewLvfKwwTLN3KD3Fm4LwsY6NCsogqdqjGuxA8mn0HRmF2B5YwHx7mw8PsDty5A5tIff5wwj3xrx0R8GoH-GM73P63MHx6exWDSE93dBsPv9nTK_8LlBZawvfP53CpGf328foaFuIWxX-xDw
CitedBy_id crossref_primary_10_1111_j_1574_6976_2010_00238_x
crossref_primary_10_1007_s00253_017_8644_3
crossref_primary_10_1016_j_bej_2023_109153
crossref_primary_10_1093_synbio_ysac009
crossref_primary_10_1021_acssynbio_9b00237
crossref_primary_10_1186_1475_2859_11_133
crossref_primary_10_1186_1471_2180_13_262
crossref_primary_10_1016_j_bios_2022_114205
crossref_primary_10_1111_1751_7915_13383
crossref_primary_10_4161_bioe_24703
crossref_primary_10_1021_acssynbio_6b00136
crossref_primary_10_1186_1475_2859_12_26
crossref_primary_10_1371_journal_pone_0023055
crossref_primary_10_1007_s12257_013_0085_y
crossref_primary_10_1111_1751_7915_12701
crossref_primary_10_1002_biot_201300021
crossref_primary_10_1186_1475_2859_12_101
crossref_primary_10_1371_journal_pone_0066429
crossref_primary_10_1021_acssynbio_9b00191
crossref_primary_10_1128_AEM_02407_12
crossref_primary_10_1186_s12934_015_0320_7
Cites_doi 10.1128/JB.185.10.3036-3041.2003
10.1128/jb.177.14.4121-4130.1995
10.1128/MMBR.69.3.373-392.2005
10.1002/pro.5560020916
10.1016/S0167-7799(99)01376-1
10.1006/bbrc.2001.5615
10.1038/nbt1209
10.1007/BF00279387
10.1128/AEM.01804-06
10.1007/s00253-004-1656-9
10.1016/j.jmb.2007.10.047
10.1128/.61.4.393-410.1997
10.1128/jb.176.11.3171-3176.1994
10.1093/nar/30.1.318
10.1016/S0076-6879(04)88005-4
10.1111/j.1751-7915.2009.00107.x
10.1128/JB.182.4.1118-1126.2000
10.1006/mben.1999.0143
10.1073/pnas.80.1.21
10.1111/j.1365-2958.2004.04437.x
10.1007/s00253-006-0465-8
10.1128/AEM.02315-08
10.1016/S0014-5793(00)01749-X
10.1126/science.276.5311.421
10.1002/elps.1150181505
10.1016/0147-619X(77)90003-8
10.1111/j.1751-7915.2008.00048.x
10.1128/AEM.70.12.7033-7039.2004
10.1128/JB.180.5.1277-1286.1998
10.1006/plas.1997.1294
10.1038/nrmicro787
10.1093/nar/gkg520
10.1093/nar/28.1.235
10.1016/0022-2836(90)90358-S
10.1016/S0167-7799(97)01155-4
10.1006/mben.1999.0142
ContentType Journal Article
Copyright 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd
2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.
Copyright John Wiley & Sons, Inc. Jan 2010
Copyright © 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd 2009
Copyright_xml – notice: 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd
– notice: 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.
– notice: Copyright John Wiley & Sons, Inc. Jan 2010
– notice: Copyright © 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd 2009
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QO
7T7
7X7
7XB
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M7P
M7S
P64
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
RC3
5PM
DOI 10.1111/j.1751-7915.2009.00126.x
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
Health & Medical Collection (Alumni Edition)
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Genetics Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList
MEDLINE
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-7915
EndPage 47
ExternalDocumentID 10_1111_j_1751_7915_2009_00126_x
21255304
MBT126
ark_67375_WNG_S710VKZZ_L
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Norway
GeographicLocations_xml – name: Norway
GroupedDBID ---
0R~
123
1OC
24P
29M
31~
4.4
53G
5DZ
5VS
7X7
8-1
8FE
8FG
8FH
8FI
8FJ
A8Z
AAHHS
AAZKR
ABDBF
ABJCF
ABPTK
ABUWG
ACBWZ
ACCFJ
ACGFO
ACIWK
ACPRK
ACXQS
ADBBV
ADKYN
ADPDF
ADRAZ
ADZMN
AEEZP
AEGXH
AENEX
AEQDE
AEUQT
AFKRA
AFRAH
AHMBA
AIAGR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ASPBG
AVUZU
AVWKF
AZFZN
BAWUL
BBNVY
BCNDV
BDRZF
BENPR
BGLVJ
BHPHI
BPHCQ
BSCLL
BVXVI
CAG
CCPQU
COF
CS3
D-9
DIK
EBD
EBS
EJD
EMOBN
ESTFP
ESX
F5P
FEDTE
FYUFA
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HVGLF
HYE
IAO
IHR
KQ8
L6V
LH4
LK8
LW6
M48
M7P
M7S
ML0
MM.
O9-
OK1
OVD
OVEED
P2P
PIMPY
PQQKQ
PROAC
PTHSS
RNS
RPM
SV3
TEORI
TUS
UKHRP
WIN
ALIPV
ALUQN
OIG
CGR
CUY
CVF
ECM
EIF
ITC
NPM
AAYXX
CITATION
3V.
7QO
7T7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PQEST
PQUKI
PRINS
RC3
5PM
ID FETCH-LOGICAL-c5386-7e3e3f41bfe3b1cd844f596e72174f626fb857dced581514f076262b169e88463
IEDL.DBID RPM
ISSN 1751-7915
IngestDate Tue Sep 17 21:22:28 EDT 2024
Fri Sep 13 04:31:33 EDT 2024
Thu Sep 26 15:48:43 EDT 2024
Sat Sep 28 08:06:17 EDT 2024
Sat Aug 24 00:40:39 EDT 2024
Wed Jan 17 05:02:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5386-7e3e3f41bfe3b1cd844f596e72174f626fb857dced581514f076262b169e88463
Notes ArticleID:MBT126
istex:C83E6F0A13B4450A059760E294BE76706A9C2D35
ark:/67375/WNG-S710VKZZ-L
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815945/
PMID 21255304
PQID 2299169851
PQPubID 1016378
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3815945
proquest_journals_2299169851
crossref_primary_10_1111_j_1751_7915_2009_00126_x
pubmed_primary_21255304
wiley_primary_10_1111_j_1751_7915_2009_00126_x_MBT126
istex_primary_ark_67375_WNG_S710VKZZ_L
PublicationCentury 2000
PublicationDate January 2010
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: January 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: United States
– name: Bedford
PublicationTitle Microbial biotechnology
PublicationTitleAlternate Microbial Biotechnology
PublicationYear 2010
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References Ramos, J.L., Michan, C., Rojo, F., Dwyer, D., and Timmis, K. (1990) Signal-regulator interactions. Genetic analysis of the effector binding site of xylS, the benzoate-activated positive regulator of Pseudomonas TOL plasmid meta-cleavage pathway operon. J Mol Biol 211: 373-382.
Bakke, I., Berg, L., Aune, T.E.V., Brautaset, T., Sletta, H., Tøndervik, A., and Valla, S. (2009) Random mutagenesis of the pm promoter as a powerful strategy for improvement of recombinant gene expression. Appl Env Microbiol 75: 2002-2011.
Colovos, C., and Yeates, T.O. (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2: 1511-1519.
Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. New York, NY, USA: Cold Spring Harbor Laboratory Press.
Schwede, T., Kopp, J., Guex, N., and Peitsch, M.C. (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31: 3381-3385.
Collins, C.H., Arnold, F.H., and Leadbetter, J.R. (2005) Directed evolution of Vibrio fischeri LuxR for increased sensitivity to a broad spectrum of acyl-homoserine lactones. Mol Microbiol 55: 712-723.
Guzman, L.-M., Belin, D., Carson, M.J., and Beckwith, J. (1995) Tight regulation, modulation, and high-level expression by vectors containing the PBAD promoter. J Bacteriol 177: 4121-4130.
Michán, C., Kessler, B., De Lorenzo, V., Timmis, K.N., and Ramos, J.L. (1992) XylS domain interactions can be deduced from intraallelic dominance in double mutants of Pseudomonas putida. Mol Gen Genet 235: 406-412.
Haldimann, A., Daniels, L.L., and Wanner, B.L. (1998) Use of new methods for construction of tightly regulated arabinose and rhamnose promoter fusions in studies of the Escherichia coli phosphate regulon. J Bacteriol 180: 1277-1286.
De Boer, H., Comstock, L.J., and Vasser, M. (1983). The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc Nat Acad Sci USA 80: 21-25.
Schmidt, F.R. (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65: 363-372.
Zhao, H. (2004) Staggered extension process in vitro DNA recombination. Methods Enzymol 388: 42-49.
Collins, C.H., Leadbettter, J.R., and Arnold, F.H. (2006) Dual selection enhances the signalling specificity of a variant of the quorom-sensing transcriptional activator LuxR. Nat Biotechnol 24: 708-712.
Winther-Larsen, H.C., Josefsen, K.D., Brautaset, T., and Valla, S. (2000b) Parameters affecting gene expression from the Pm promoter in gram-negative bacteria. Metab Eng 2: 79-91.
Berg, L., Lale, R., Bakke, I., and Valla, S. (2009) The expression of recombinant genes in Escherichia coli can be strongly stimulated at the transcript production level by mutating the DNA-region corresponding to the 5′-untranslated part of mRNA. Microb Biotechnol 2: 379-389.
Winther-Larsen, H.C., Blatny, J.M., Valand, B., Brautaset, T., and Valla, S. (2000a) Pm promoter expression mutants and their use in broad-host-range RK2 plasmid vectors. Metab Eng 2: 92-103.
Ruíz, R., and Ramos, J.L. (2001) Residues 137 and 153 of XylS influence contacts with the C-terminal domain of the RNA polymerase alpha subunit. Biochem Biophys Res Commun 287: 519-521.
Domínguez-Cuevas, P., Marín, P., Marqués, S., and Ramos, J.L. (2008) XylS-Pm promoter interactions through two helix-turn-helix motifs: identifying XylS residues important for DNA binding and activation. J Mol Biol 375: 59-69.
Blatny, J.M., Brautaset, T., Winther-Larsen, H.C., Karunakaran, P., and Valla, S. (1997) Improved broad-host-range RK2 vectors useful for high and low regulated gene expression levels in gram-negative bacteria. Plasmid 38: 35-51.
Browning, D.F., and Busby, S.J.W. (2004) The regulation of bacterial transcription initiation. Nat Rev Microbiol 2: 57-65.
Kessler, B., Herrero, M., Timmis, K.N., and De Lorenzo, V. (1993) Genetic evidence that the XylS regulator of the Pseudomonas TOL meta operon controls the Pm promoter through weak DNA-protein interactions. J Bacteriol 176: 3171-3176.
Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., et al. (2000) The protein data bank. Nucleic Acids Res 28: 235-242.
Sletta, H., Nedal, A., Aune, T.E.V., Hellebust, H., Hakvåg, S., Aune, R., et al. (2004) Broad-host-range plasmid pJB658 can be used for industrial-level production of a secreted host-toxic single-chain antibody fragment in Escherichia coli. Appl Env Microbiol 70: 7033-7039.
Brautaset, T., Lale, R., and Valla, S. (2009) Positively regulated bacterial expresssion systems. Microb Biotechnol 2: 15-30.
Hannig, G., and Makrides, S.C. (1998) Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol 16: 54-60.
Manzanera, M., Marqués, S., and Ramos, J.L. (2000) Mutational analysis of the highly conserved C-terminal residues of the XylS protein, a member of the AraC family of transcriptional regulators. FEBS Lett 476: 312-317.
Gallegos, M.-T., Schleif, R., Bairoch, A., Hofmann, K., and Ramos, J.L. (1997) AraC/XylS family of transcriptional regulators. Microbiol Mol Biol Rev 61: 393-410.
Keasling, J.D. (1999) Gene-expression tools for the metabolic engineering of bacteria. Trends Biotechnol 17: 452-460.
Soisson, S., MacDougall-Shackleton, B., Schleif, R., and Wolberger, C. (1997) Structural basis for ligand-regulated oligomerization of AraC. Science 278: 421-425.
Yuan, L., Kurek, I., English, J., and Keenan, R. (2005) Laboratory-directed protein evolution. Microbiol Mol Biol Rev 69: 373-392.
Guex, N., and Peitsch, M.C. (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18: 2714-2723.
Sletta, H., Tøndervik, A., Hakvåg, S., Aune, T.E.V., Nedal, A., Aune, R., et al. (2007) The presence of N-terminal secretion signal sequences leads to strong stimulation of the total expression levels of three tested medically important proteins during high-cell-density cultivations of Escherichia coli. Appl Env Microbiol 73: 906-912.
Tobes, R., and Ramos, J.L. (2002) AraC-XylS database: a family of positive transcription regulators in bacteria. Nucleic Acids Res 30: 318-321.
Uhlin, B., and Nordström, K. (1977) R plasmid gene dosage in Escherichia coli K-12: copy mutants of the R plasmid R1drd-19. Plasmid 1: 1-7.
Kaldalu, N., Toots, U., De Lorenzo, V., and Ustav, M. (2000) Functional domains of the TOL plasmid transcription factor XylS. J Bacteriol 182: 1118-1126.
Ruíz, R., Marques, S., and Ramos, J.L. (2003) Leucines 193 and 194 at the N-terminal domain of the XylS protein, the positive transcriptional regulator of the TOL meta-cleavage pathway, are involved in dimerization. J Bacteriol 185: 3036-3041.
Terpe, K. (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72: 211-222.
1998; 180
2001; 287
2004; 65
1997; 278
1997; 61
2006; 72
2000; 28
2004; 388
2000; 476
2002; 30
2000b; 2
2000a; 2
2004; 2
1995; 177
2007; 73
1993; 2
2003; 31
2005; 69
1998; 16
2004; 70
2009; 75
2001
2006; 24
1999; 17
1992; 235
2000; 182
1997; 18
1977; 1
1997; 38
1983; 80
1990; 211
2009; 2
2008; 375
2005; 55
1993; 176
1989
2003; 185
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
Matsumura I. (e_1_2_6_22_1) 2001
e_1_2_6_30_1
Kessler B. (e_1_2_6_20_1) 1993; 176
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
Sambrook J. (e_1_2_6_27_1) 1989
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_26_1
References_xml – volume: 177
  start-page: 4121
  year: 1995
  end-page: 4130
  article-title: Tight regulation, modulation, and high‐level expression by vectors containing the PBAD promoter
  publication-title: J Bacteriol
– volume: 2
  start-page: 1511
  year: 1993
  end-page: 1519
  article-title: Verification of protein structures: patterns of nonbonded atomic interactions
  publication-title: Protein Sci
– volume: 55
  start-page: 712
  year: 2005
  end-page: 723
  article-title: Directed evolution of Vibrio fischeri LuxR for increased sensitivity to a broad spectrum of acyl‐homoserine lactones
  publication-title: Mol Microbiol
– volume: 278
  start-page: 421
  year: 1997
  end-page: 425
  article-title: Structural basis for ligand‐regulated oligomerization of AraC
  publication-title: Science
– volume: 375
  start-page: 59
  year: 2008
  end-page: 69
  article-title: XylS–Pm promoter interactions through two helix–turn–helix motifs: identifying XylS residues important for DNA binding and activation
  publication-title: J Mol Biol
– volume: 2
  start-page: 92
  year: 2000a
  end-page: 103
  article-title: Pm promoter expression mutants and their use in broad‐host‐range RK2 plasmid vectors
  publication-title: Metab Eng
– year: 1989
– volume: 2
  start-page: 79
  year: 2000b
  end-page: 91
  article-title: Parameters affecting gene expression from the Pm promoter in gram‐negative bacteria
  publication-title: Metab Eng
– volume: 72
  start-page: 211
  year: 2006
  end-page: 222
  article-title: Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems
  publication-title: Appl Microbiol Biotechnol
– volume: 185
  start-page: 3036
  year: 2003
  end-page: 3041
  article-title: Leucines 193 and 194 at the N‐terminal domain of the XylS protein, the positive transcriptional regulator of the TOL meta‐cleavage pathway, are involved in dimerization
  publication-title: J Bacteriol
– volume: 1
  start-page: 1
  year: 1977
  end-page: 7
  article-title: R plasmid gene dosage in K‐12: copy mutants of the R plasmid R1drd‐19
  publication-title: Plasmid
– volume: 61
  start-page: 393
  year: 1997
  end-page: 410
  article-title: AraC/XylS family of transcriptional regulators
  publication-title: Microbiol Mol Biol Rev
– volume: 30
  start-page: 318
  year: 2002
  end-page: 321
  article-title: AraC‐XylS database: a family of positive transcription regulators in bacteria
  publication-title: Nucleic Acids Res
– volume: 388
  start-page: 42
  year: 2004
  end-page: 49
  article-title: Staggered extension process DNA recombination
  publication-title: Methods Enzymol
– volume: 28
  start-page: 235
  year: 2000
  end-page: 242
  article-title: The protein data bank
  publication-title: Nucleic Acids Res
– volume: 24
  start-page: 708
  year: 2006
  end-page: 712
  article-title: Dual selection enhances the signalling specificity of a variant of the quorom‐sensing transcriptional activator LuxR
  publication-title: Nat Biotechnol
– volume: 2
  start-page: 15
  year: 2009
  end-page: 30
  article-title: Positively regulated bacterial expresssion systems
  publication-title: Microb Biotechnol
– volume: 69
  start-page: 373
  year: 2005
  end-page: 392
  article-title: Laboratory‐directed protein evolution
  publication-title: Microbiol Mol Biol Rev
– volume: 476
  start-page: 312
  year: 2000
  end-page: 317
  article-title: Mutational analysis of the highly conserved C‐terminal residues of the XylS protein, a member of the AraC family of transcriptional regulators
  publication-title: FEBS Lett
– volume: 80
  start-page: 21
  year: 1983
  end-page: 25
  article-title: The tac promoter: a functional hybrid derived from the trp and lac promoters
  publication-title: Proc Nat Acad Sci USA
– volume: 17
  start-page: 452
  year: 1999
  end-page: 460
  article-title: Gene‐expression tools for the metabolic engineering of bacteria
  publication-title: Trends Biotechnol
– volume: 65
  start-page: 363
  year: 2004
  end-page: 372
  article-title: Recombinant expression systems in the pharmaceutical industry
  publication-title: Appl Microbiol Biotechnol
– volume: 2
  start-page: 379
  year: 2009
  end-page: 389
  article-title: The expression of recombinant genes in can be strongly stimulated at the transcript production level by mutating the DNA‐region corresponding to the 5′‐untranslated part of mRNA
  publication-title: Microb Biotechnol
– volume: 211
  start-page: 373
  year: 1990
  end-page: 382
  article-title: Signal‐regulator interactions. Genetic analysis of the effector binding site of xylS, the benzoate‐activated positive regulator of Pseudomonas TOL plasmid meta‐cleavage pathway operon
  publication-title: J Mol Biol
– volume: 18
  start-page: 2714
  year: 1997
  end-page: 2723
  article-title: SWISS‐MODEL and the Swiss‐PdbViewer: An environment for comparative protein modeling
  publication-title: Electrophoresis
– volume: 73
  start-page: 906
  year: 2007
  end-page: 912
  article-title: The presence of N‐terminal secretion signal sequences leads to strong stimulation of the total expression levels of three tested medically important proteins during high‐cell‐density cultivations of
  publication-title: Appl Env Microbiol
– volume: 16
  start-page: 54
  year: 1998
  end-page: 60
  article-title: Strategies for optimizing heterologous protein expression in
  publication-title: Trends Biotechnol
– volume: 75
  start-page: 2002
  year: 2009
  end-page: 2011
  article-title: Random mutagenesis of the promoter as a powerful strategy for improvement of recombinant gene expression
  publication-title: Appl Env Microbiol
– volume: 176
  start-page: 3171
  year: 1993
  end-page: 3176
  article-title: Genetic evidence that the XylS regulator of the Pseudomonas TOL meta operon controls the Pm promoter through weak DNA‐protein interactions
  publication-title: J Bacteriol
– volume: 31
  start-page: 3381
  year: 2003
  end-page: 3385
  article-title: SWISS‐MODEL: an automated protein homology‐modeling server
  publication-title: Nucleic Acids Res
– volume: 235
  start-page: 406
  year: 1992
  end-page: 412
  article-title: XylS domain interactions can be deduced from intraallelic dominance in double mutants of Pseudomonas putida
  publication-title: Mol Gen Genet
– volume: 182
  start-page: 1118
  year: 2000
  end-page: 1126
  article-title: Functional domains of the TOL plasmid transcription factor XylS
  publication-title: J Bacteriol
– start-page: 259
  year: 2001
  end-page: 264
– volume: 38
  start-page: 35
  year: 1997
  end-page: 51
  article-title: Improved broad‐host‐range RK2 vectors useful for high and low regulated gene expression levels in gram‐negative bacteria
  publication-title: Plasmid
– volume: 180
  start-page: 1277
  year: 1998
  end-page: 1286
  article-title: Use of new methods for construction of tightly regulated arabinose and rhamnose promoter fusions in studies of the phosphate regulon
  publication-title: J Bacteriol
– volume: 2
  start-page: 57
  year: 2004
  end-page: 65
  article-title: The regulation of bacterial transcription initiation
  publication-title: Nat Rev Microbiol
– volume: 287
  start-page: 519
  year: 2001
  end-page: 521
  article-title: Residues 137 and 153 of XylS influence contacts with the C‐terminal domain of the RNA polymerase alpha subunit
  publication-title: Biochem Biophys Res Commun
– volume: 70
  start-page: 7033
  year: 2004
  end-page: 7039
  article-title: Broad‐host‐range plasmid pJB658 can be used for industrial‐level production of a secreted host‐toxic single‐chain antibody fragment in
  publication-title: Appl Env Microbiol
– ident: e_1_2_6_26_1
  doi: 10.1128/JB.185.10.3036-3041.2003
– ident: e_1_2_6_15_1
  doi: 10.1128/jb.177.14.4121-4130.1995
– ident: e_1_2_6_38_1
  doi: 10.1128/MMBR.69.3.373-392.2005
– ident: e_1_2_6_11_1
  doi: 10.1002/pro.5560020916
– ident: e_1_2_6_19_1
  doi: 10.1016/S0167-7799(99)01376-1
– ident: e_1_2_6_25_1
  doi: 10.1006/bbrc.2001.5615
– ident: e_1_2_6_10_1
  doi: 10.1038/nbt1209
– ident: e_1_2_6_23_1
  doi: 10.1007/BF00279387
– ident: e_1_2_6_31_1
  doi: 10.1128/AEM.01804-06
– ident: e_1_2_6_28_1
  doi: 10.1007/s00253-004-1656-9
– ident: e_1_2_6_12_1
  doi: 10.1016/j.jmb.2007.10.047
– ident: e_1_2_6_13_1
  doi: 10.1128/.61.4.393-410.1997
– volume: 176
  start-page: 3171
  year: 1993
  ident: e_1_2_6_20_1
  article-title: Genetic evidence that the XylS regulator of the Pseudomonas TOL meta operon controls the Pm promoter through weak DNA‐protein interactions
  publication-title: J Bacteriol
  doi: 10.1128/jb.176.11.3171-3176.1994
  contributor:
    fullname: Kessler B.
– ident: e_1_2_6_34_1
  doi: 10.1093/nar/30.1.318
– ident: e_1_2_6_39_1
  doi: 10.1016/S0076-6879(04)88005-4
– ident: e_1_2_6_3_1
  doi: 10.1111/j.1751-7915.2009.00107.x
– ident: e_1_2_6_18_1
  doi: 10.1128/JB.182.4.1118-1126.2000
– ident: e_1_2_6_36_1
  doi: 10.1006/mben.1999.0143
– ident: e_1_2_6_6_1
  doi: 10.1073/pnas.80.1.21
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1365-2958.2004.04437.x
– ident: e_1_2_6_33_1
  doi: 10.1007/s00253-006-0465-8
– ident: e_1_2_6_2_1
  doi: 10.1128/AEM.02315-08
– ident: e_1_2_6_21_1
  doi: 10.1016/S0014-5793(00)01749-X
– ident: e_1_2_6_32_1
  doi: 10.1126/science.276.5311.421
– ident: e_1_2_6_14_1
  doi: 10.1002/elps.1150181505
– ident: e_1_2_6_35_1
  doi: 10.1016/0147-619X(77)90003-8
– ident: e_1_2_6_7_1
  doi: 10.1111/j.1751-7915.2008.00048.x
– ident: e_1_2_6_30_1
  doi: 10.1128/AEM.70.12.7033-7039.2004
– ident: e_1_2_6_16_1
  doi: 10.1128/JB.180.5.1277-1286.1998
– ident: e_1_2_6_5_1
  doi: 10.1006/plas.1997.1294
– ident: e_1_2_6_8_1
  doi: 10.1038/nrmicro787
– start-page: 259
  volume-title: Methods in Molecular Biology, vol. 182: In vitro Mutagenesis
  year: 2001
  ident: e_1_2_6_22_1
  contributor:
    fullname: Matsumura I.
– ident: e_1_2_6_29_1
  doi: 10.1093/nar/gkg520
– volume-title: Molecular Cloning: A Laboratory Manual
  year: 1989
  ident: e_1_2_6_27_1
  contributor:
    fullname: Sambrook J.
– ident: e_1_2_6_4_1
  doi: 10.1093/nar/28.1.235
– ident: e_1_2_6_24_1
  doi: 10.1016/0022-2836(90)90358-S
– ident: e_1_2_6_17_1
  doi: 10.1016/S0167-7799(97)01155-4
– ident: e_1_2_6_37_1
  doi: 10.1006/mben.1999.0142
SSID ssj0060052
Score 2.0179486
Snippet Summary The inducible Pm promoter together with its cognate positive transcription regulator XylS has been shown to be useful for recombinant protein...
The inducible Pm promoter together with its cognate positive transcription regulator XylS has been shown to be useful for recombinant protein production under...
Summary The inducible Pm promoter together with its cognate positive transcription regulator XylS has been shown to be useful for recombinant protein...
The inducible Pm promoter together with its cognate positive transcription regulator XylS has been shown to be useful for recombinant protein production under...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 38
SubjectTerms Amino Acid Substitution - genetics
Amino acids
Ampicillin
Ampicillin Resistance
Antibiotics
Antibodies
Artificial Gene Fusion
beta-Lactamases - genetics
beta-Lactamases - metabolism
Cell density
Coils
Deoxyribonucleic acid
Dimerization
Directed evolution
Directed Molecular Evolution
DNA
E coli
Engineering
Escherichia coli - genetics
Evolution
Gene expression
Gene Expression Regulation, Bacterial
Genes, Reporter
Immunological tolerance
Medical research
Models, Molecular
Mutagenesis
Mutants
Mutation
Polymerase Chain Reaction - methods
Promoter Regions, Genetic
Protein Structure, Tertiary
Proteins
Reporter gene
RNA polymerase
Stimulation
Three dimensional models
Trans-Activators - genetics
Trans-Activators - metabolism
Transcription factors
Transcription, Genetic
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED-x9mU8oA0GC7DJD4i3qEn8EecJwQSrBlRowFbxYtWxo1WbUqDd1P33u8tHKRtCe4vk2Ip9l7ufz-ffAexxPvLoZVWIzSoUNtPhyAkXChU567XnWU6Xk88Hqn8tPg3lcAX67V0YSqtsbWJlqN0kpxh5L0kIyWQIEHojS1GAfNY7uL0LqX4UnbM2xTReQDeJBR3Ydo-OBxefW6usKP75VyaPjImsUS5IKxPVEiA17qlLKz1_Cnv-m0K5DG0r33TyCtYaUMkOay14DSu-XIfVJarBDbC1bfOO-V-NtrFJwRD-sRm5q9Z4sLoADxv-_nHJENAy95BVRB3GVRCChpk3KbQlq9mgp2_g-uT46kM_bOorhDmaORWmnnteiNgWnts4d1qIQmbKp7RNKXCnU1gtU5yikxqBgSgitJwqsSgGrxG38E3olJPSvwVW1x9KIhzIC82dFbpwmfCJi1ykNA8gbpfV3NY0GmZp-4GiMCQKKoqZmUoUZh7AfrX-iw6j---UhpZK83Xw0VwiNvpyenNjzgLYbQVkmj9wah70JYCtWlaLgdBdU7UkEUD6SIqLF4hz-3FLOf5WcW8jwJGZkAHISt7_PRlzfnSFD9vPf-oOvKyzEyjEswud2f1P_w5Bz8y-b_T5D2fBAAo
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9xADLYQeykH1NICKRTNAfUWlGQemRwQaiseKl0usLDiMtrZmQgECrAsaPff186ru2UP3CJNbGlsx_488dgAu5wPPEZZFeKyCoXNdDhwwoVCRc567Xk2pMvJ3TN10hO_-7K_BM11xVqAzwtTO5on1Rvd702epgf4we_PVuXImBovyrYBZaL2EFl2EsEF2X1XtP8WFJ2Eltcka5r_6nsWcZoLWh2S_2QRIn1bWDkLeMuIdfQRVmuoyX5UtvEJlnyxBiszDQg_g608nnfMv9Y2yB5yhqCQjSmINS6FVWN5WH96f84Q5jL3r9aICG7LowliM6kLawtW9Yh-_gK9o8OLXydhPXUhHKLzU2Hquee5iG3uuY2HTguRy0z5lJKXHPOf3GqZ4had1AgXRB6hP1WJjVXmNaIZvg7LxUPhN4FVU4mSCBl5obmzQucuEz5xkYuU5gHEjVjNY9Vcw8wkJagKQ6qgUZmZKVVhJgF8L-XfEgxGd1SclkpzdXZszhExXZ5eX5s_AWw3CjKNWZkkITycIcwMYKPSVcsIgzjNUBIBpHNabF-gTtzzK8XtTdmRG2GPzIQMQJb6fvdmTPfnBT58fe-etuBDVb1AR0DbsDwevfhvCIrGdqe08b8z3ATJ
  priority: 102
  providerName: Scholars Portal
– databaseName: Open Access: Wiley-Blackwell Open Access Journals
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5VcCkHBOWVApUPiFtQEj_iHAuCorYgJF4rLtZ67QjUKlTsUi3_nhk7m-5SDohbJGdGsuf1eTSeAdjhvO8xyqoUl1UqbKXTvhMuFSpz1mvPqwE9Tj45VceX4ntP9tr6J3oLE_tDdAk3sozgr8nA-3Y4a-SlzKndouzaThZqD_HkPKIcTRpeiLOJV1aU_wyPI1uaF1U9r3GaCVXzdOrj13Do_-WU0zA3xKmjJVhsASb7GjViGT745hMsTLUdXAEb_Zx3zP9tNY_d1wyhIBtR6Jo4EhaH8bDe0-9zhuCWuX8VRkRwFxISxGbcltM2LHaGHq7C5dHhxcFx2s5aSAfo8lRaeu55LXJbe27zgdNC1LJSvqQrS423ntpqWeIWndQIEkSdoRdVhc1V5TViGL4Gc8194zeAxVlERYaMvNDcWaFrVwlfuMxlSvME8smxmj-xpYaZuoqgKAyJggZkViaIwowT2A3n3xH0H35RSVopzfXpN3OOOOnqx82N-ZnA1kRAprXGoSkKQsEVgssE1qOsOkYYumlykkignJFi9wP1355dae5uQx9uBDuyEjIBGeT95s2Yk_0L_Pj8TrpN-BhLGCgPtAVzo4dHv43IaGS_BJV_Bo29Ass
  priority: 102
  providerName: Wiley-Blackwell
Title Directed evolution of the transcription factor XylS for development of improved expression systems
URI https://api.istex.fr/ark:/67375/WNG-S710VKZZ-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1751-7915.2009.00126.x
https://www.ncbi.nlm.nih.gov/pubmed/21255304
https://www.proquest.com/docview/2299169851/abstract/
https://pubmed.ncbi.nlm.nih.gov/PMC3815945
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH-icBmHaV-wbFD5MO0WmsQfcY4DUdC2VtWAUXGx6tgR1SAg6Kbuv-fZTrp22wFxsZI4dmI_-72frZ_fA_hA6cSilRUxZouY6ULGE8NMzERitJWWFqU7nDwYiuMz9nnMx2vA27MwnrRf6ulefXW9V08vPbfy9rrstTyx3mhwgFaGF4z3OtDJKW2X6EH9CrfR6U9B8tT5YuR_0XeapwtPlZnwvqhRg7sAOmzFPG24np7_D3v-S6FchrbeNvVfwPMGVJJP4edfwpqtX8HmkqvB16CDbrOG2F_NaCM3FUH4R2bOXLXKg4QAPGT8--qEIKAl5g-ryBWY-k0IV828odDWJHiDvn8DZ_3D04PjuImvEJeo5kScW2ppxVJdWarT0kjGKl4Im7tlSoUrnUpLnmMTDccOT1mVoOYUmU5FYSXiFroF6_VNbd8CCfGHsgQrskxSo5msTMFsZhKTCEkjSNtuVbfBjYZaWn6gVJSTiguKWSgvFTWP4KPv_0WByd0PR0PLuTofHqkTxEbfv1xcqK8R7LQCUs0MvFdZ5pBvgYAygu0gq0VFrbAjyFekuHjB-dxezcGh6H1vN0MvAu7l_ejGqMH-KV68e_IX38OzQFxwuz87sD67-2l3EQ_NdBc6GRthmo9zTGX_qAsb-4fD0Te8GzDZ9fPjAbLzCsM
link.rule.ids 230,315,733,786,790,891,2236,11589,12083,12792,21416,24346,27957,27958,31754,33408,33779,43345,43635,43840,46087,46511,50849,50958,53827,53829,74102,74392,74659
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6x7WHsAQFjI6OAH6a9RaTxjzhPCBClsLYv66Dai1XXjphA6bZ2qPz33CVO1sGE9hbJsRXfOXffXS7fARxyPvXoZVWMwyoWNtfx1AkXC5U467Xn-Yx-Th6OVP9UfJnISUi4LUJZZWMTK0Pt5jPKkb9JU0IyOQKEtxeXMXWNoq-roYXGBmwJzgWV9GWTNuBSlPP8q3pHdomgUbZElalqSI-CS9oi6a7uwpv_lk2uw9nKH_Uew6MAJNm7WvNP4IEvn8LOGr3gLtjannnH_K9wwti8YAj52JJcVGMwWN10h01-_zxhCGKZu6kkognnVeKBllmFstmS1QzQi2dw2vs4_tCPQ0-FeIamTcWZ554XomsLz2135rQQhcyVzyg0KTC6KayWGW7RSY1gQBQJWkuVWhS914hV-B5slvPSPwdW9xxKE1zIC82dFbpwufCpS1yiNI-g24jVXNTUGWYt5EBVGFIFNcLMTaUKs4rgqJJ_O2F69YNKzzJpvo0-mRPEQ1-Pz87MIIJOoyAT3rqFuTkjEezXumoXQhdNHZJEBNktLbY3EM_27ZHy_HvFt42gRuZCRiArfd97M2b4fowXB_9_1New3R8PB2bweXT8Ah7W1QmU4unA5vLq2r9E0LO0r6qT_QfuwP3I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4xKk3bwzT2MxtsfkC8RaTxjzhP0xh0MKBCA7aKF6uubQ2BUka7qfvvd5c4pbBp2lskx1bsu9x9dr58B7DO-dBjllUpNqtU2FKnQydcKlTmrNeelyP6Ofmwr3ZPxaeBHET-0yTSKtuYWAdqNx7RGflmnhOSKREgbIZIizja7r27-p5SBSn60hrLadyDTiGURA_vbO30jz63cVnRCegdLo_sklyjnMtW5qqVQIoJqkNrPfsb-vyTRLkIbuvs1HsMjyKsZO8bP1iBJV89gYcLYoNPwTbRzTvmf0Z_Y-PAEACyKSWsNnywpgQPG_y6PGYIaZm74RVRh_P6GIKGmUUSbcUaPejJMzjt7Zx82E1jhYV0hIFOpYXnngfRtcFz2x05LUSQpfIFbVQC7nWC1bLAKTqpERqIkGHsVLlFQ3iNyIU_h-VqXPmXwJoKRHmGA3mhubNCB1cKn7vMZUrzBLrtspqrRkjDLGxA0BSGTEFlMUtTm8LMEtio13_eYXh9QUS0Qpqv_Y_mGNHRl_2zM3OQwGprIBPfwYm58ZgEXjS2mg-ECZvqJYkEiltWnN9Aqtu3W6rzb7X6NkIcWQqZgKzt_d-TMYdbJ3jx6t-P-hbuo1ubg73-_mt40FAV6LxnFZan1z_8GiKgqX0TXfs3ZFgDeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Directed+evolution+of+the+transcription+factor+XylS+for+development+of+improved+expression+systems&rft.jtitle=Microbial+biotechnology&rft.au=Vee+Aune%2C+Trond+Erik&rft.au=Bakke%2C+Ingrid&rft.au=Drabl%C3%B8s%2C+Finn&rft.au=Lale%2C+Rahmi&rft.date=2010-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1751-7915&rft.eissn=1751-7915&rft.volume=3&rft.issue=1&rft.spage=38&rft.epage=47&rft_id=info:doi/10.1111%2Fj.1751-7915.2009.00126.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_S710VKZZ_L
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-7915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-7915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-7915&client=summon