Synchronous deficits in cumulative muscle protein synthesis and ribosomal biogenesis underlie age‐related anabolic resistance to exercise in humans
Key points Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age. Hypertrophic responses to RET with age are diminished compared to younger individuals. In response to 6 weeks RET, we found blunted hypertrophi...
Saved in:
Published in | The Journal of physiology Vol. 594; no. 24; pp. 7399 - 7417 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
15.12.2016
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Key points
Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age.
Hypertrophic responses to RET with age are diminished compared to younger individuals.
In response to 6 weeks RET, we found blunted hypertrophic responses with age are underpinned by chronic deficits in long‐term muscle protein synthesis.
We show this is likely to be the result of multifactorial deficits in anabolic hormones and blunted translational efficiency and capacity.
These results provide great insight into age‐related exercise adaptations and provide a platform on which to devise appropriate nutritional and exercise interventions on a longer term basis.
Ageing is associated with impaired hypertrophic responses to resistance exercise training (RET). Here we investigated the aetiology of ‘anabolic resistance’ in older humans. Twenty healthy male individuals, 10 younger (Y; 23 ± 1 years) and 10 older (O; 69 ± 3 years), performed 6 weeks unilateral RET (6 × 8 repetitions, 75% of one repetition maximum (1‐RM), 3 times per week). After baseline bilateral vastus lateralis (VL) muscle biopsies, subjects consumed 150 ml D2O (70 atom%; thereafter 50 ml week−1), further bilateral VL muscle biopsies were taken at 3 and 6 weeks to quantify muscle protein synthesis (MPS) via gas chromatography–pyrolysis–isotope ratio mass spectrometry. After RET, 1‐RM increased in Y (+35 ± 4%) and O (+25 ± 3%; P < 0.01), while MVC increased in Y (+21 ± 5%; P < 0.01) but not O (+6 ± 3%; not significant (NS)). In comparison to Y, O displayed blunted RET‐induced increases in muscle thickness (at 3 and 6 weeks, respectively, Y: +8 ± 1% and +11 ± 2%, P < 0.01; O: +2.6 ± 1% and +3.5 ± 2%, NS). While ‘basal’ longer term MPS was identical between Y and O (∼1.35 ± 0.1% day−1), MPS increased in response to RET only in Y (3 weeks, Y: 1.61 ± 0.1% day−1; O: 1.49 ± 0.1% day−1). Consistent with this, O exhibited inferior ribosomal biogenesis (RNA:DNA ratio and c‐MYC induction: Y: +4 ± 2 fold change; O: +1.9 ± 1 fold change), translational efficiency (S6K1 phosphorylation, Y: +10 ± 4 fold change; O: +4 ± 2 fold change) and anabolic hormone milieu (testosterone, Y: 367 ± 19; O: 274 ± 19 ng dl−1 (all P < 0.05). Anabolic resistance is thus multifactorial.
Key points
Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age.
Hypertrophic responses to RET with age are diminished compared to younger individuals.
In response to 6 weeks RET, we found blunted hypertrophic responses with age are underpinned by chronic deficits in long‐term muscle protein synthesis.
We show this is likely to be the result of multifactorial deficits in anabolic hormones and blunted translational efficiency and capacity.
These results provide great insight into age‐related exercise adaptations and provide a platform on which to devise appropriate nutritional and exercise interventions on a longer term basis. |
---|---|
AbstractList | Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age.
Hypertrophic responses to RET with age are diminished compared to younger individuals.
In response to 6 weeks RET, we found blunted hypertrophic responses with age are underpinned by chronic deficits in long‐term muscle protein synthesis.
We show this is likely to be the result of multifactorial deficits in anabolic hormones and blunted translational efficiency and capacity.
These results provide great insight into age‐related exercise adaptations and provide a platform on which to devise appropriate nutritional and exercise interventions on a longer term basis. KEY POINTSResistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age. Hypertrophic responses to RET with age are diminished compared to younger individuals. In response to 6 weeks RET, we found blunted hypertrophic responses with age are underpinned by chronic deficits in long-term muscle protein synthesis. We show this is likely to be the result of multifactorial deficits in anabolic hormones and blunted translational efficiency and capacity. These results provide great insight into age-related exercise adaptations and provide a platform on which to devise appropriate nutritional and exercise interventions on a longer term basis.ABSTRACTAgeing is associated with impaired hypertrophic responses to resistance exercise training (RET). Here we investigated the aetiology of 'anabolic resistance' in older humans. Twenty healthy male individuals, 10 younger (Y; 23 ± 1 years) and 10 older (O; 69 ± 3 years), performed 6 weeks unilateral RET (6 × 8 repetitions, 75% of one repetition maximum (1-RM), 3 times per week). After baseline bilateral vastus lateralis (VL) muscle biopsies, subjects consumed 150 ml D2 O (70 atom%; thereafter 50 ml week-1 ), further bilateral VL muscle biopsies were taken at 3 and 6 weeks to quantify muscle protein synthesis (MPS) via gas chromatography-pyrolysis-isotope ratio mass spectrometry. After RET, 1-RM increased in Y (+35 ± 4%) and O (+25 ± 3%; P < 0.01), while MVC increased in Y (+21 ± 5%; P < 0.01) but not O (+6 ± 3%; not significant (NS)). In comparison to Y, O displayed blunted RET-induced increases in muscle thickness (at 3 and 6 weeks, respectively, Y: +8 ± 1% and +11 ± 2%, P < 0.01; O: +2.6 ± 1% and +3.5 ± 2%, NS). While 'basal' longer term MPS was identical between Y and O (∼1.35 ± 0.1% day-1 ), MPS increased in response to RET only in Y (3 weeks, Y: 1.61 ± 0.1% day-1 ; O: 1.49 ± 0.1% day-1 ). Consistent with this, O exhibited inferior ribosomal biogenesis (RNA:DNA ratio and c-MYC induction: Y: +4 ± 2 fold change; O: +1.9 ± 1 fold change), translational efficiency (S6K1 phosphorylation, Y: +10 ± 4 fold change; O: +4 ± 2 fold change) and anabolic hormone milieu (testosterone, Y: 367 ± 19; O: 274 ± 19 ng dl-1 (all P < 0.05). Anabolic resistance is thus multifactorial. Key points Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age. Hypertrophic responses to RET with age are diminished compared to younger individuals. In response to 6 weeks RET, we found blunted hypertrophic responses with age are underpinned by chronic deficits in long‐term muscle protein synthesis. We show this is likely to be the result of multifactorial deficits in anabolic hormones and blunted translational efficiency and capacity. These results provide great insight into age‐related exercise adaptations and provide a platform on which to devise appropriate nutritional and exercise interventions on a longer term basis. Ageing is associated with impaired hypertrophic responses to resistance exercise training (RET). Here we investigated the aetiology of ‘anabolic resistance’ in older humans. Twenty healthy male individuals, 10 younger (Y; 23 ± 1 years) and 10 older (O; 69 ± 3 years), performed 6 weeks unilateral RET (6 × 8 repetitions, 75% of one repetition maximum (1‐RM), 3 times per week). After baseline bilateral vastus lateralis (VL) muscle biopsies, subjects consumed 150 ml D2O (70 atom%; thereafter 50 ml week−1), further bilateral VL muscle biopsies were taken at 3 and 6 weeks to quantify muscle protein synthesis (MPS) via gas chromatography–pyrolysis–isotope ratio mass spectrometry. After RET, 1‐RM increased in Y (+35 ± 4%) and O (+25 ± 3%; P < 0.01), while MVC increased in Y (+21 ± 5%; P < 0.01) but not O (+6 ± 3%; not significant (NS)). In comparison to Y, O displayed blunted RET‐induced increases in muscle thickness (at 3 and 6 weeks, respectively, Y: +8 ± 1% and +11 ± 2%, P < 0.01; O: +2.6 ± 1% and +3.5 ± 2%, NS). While ‘basal’ longer term MPS was identical between Y and O (∼1.35 ± 0.1% day−1), MPS increased in response to RET only in Y (3 weeks, Y: 1.61 ± 0.1% day−1; O: 1.49 ± 0.1% day−1). Consistent with this, O exhibited inferior ribosomal biogenesis (RNA:DNA ratio and c‐MYC induction: Y: +4 ± 2 fold change; O: +1.9 ± 1 fold change), translational efficiency (S6K1 phosphorylation, Y: +10 ± 4 fold change; O: +4 ± 2 fold change) and anabolic hormone milieu (testosterone, Y: 367 ± 19; O: 274 ± 19 ng dl−1 (all P < 0.05). Anabolic resistance is thus multifactorial. Key points Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age. Hypertrophic responses to RET with age are diminished compared to younger individuals. In response to 6 weeks RET, we found blunted hypertrophic responses with age are underpinned by chronic deficits in long‐term muscle protein synthesis. We show this is likely to be the result of multifactorial deficits in anabolic hormones and blunted translational efficiency and capacity. These results provide great insight into age‐related exercise adaptations and provide a platform on which to devise appropriate nutritional and exercise interventions on a longer term basis. Key points Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age. Hypertrophic responses to RET with age are diminished compared to younger individuals. In response to 6 weeks RET, we found blunted hypertrophic responses with age are underpinned by chronic deficits in long-term muscle protein synthesis. We show this is likely to be the result of multifactorial deficits in anabolic hormones and blunted translational efficiency and capacity. These results provide great insight into age-related exercise adaptations and provide a platform on which to devise appropriate nutritional and exercise interventions on a longer term basis. Ageing is associated with impaired hypertrophic responses to resistance exercise training (RET). Here we investigated the aetiology of 'anabolic resistance' in older humans. Twenty healthy male individuals, 10 younger (Y; 23 ± 1 years) and 10 older (O; 69 ± 3 years), performed 6 weeks unilateral RET (6 × 8 repetitions, 75% of one repetition maximum (1-RM), 3 times per week). After baseline bilateral vastus lateralis (VL) muscle biopsies, subjects consumed 150 ml D2O (70 atom%; thereafter 50 ml week-1), further bilateral VL muscle biopsies were taken at 3 and 6 weeks to quantify muscle protein synthesis (MPS) via gas chromatography-pyrolysis-isotope ratio mass spectrometry. After RET, 1-RM increased in Y (+35 ± 4%) and O (+25 ± 3%; P < 0.01), while MVC increased in Y (+21 ± 5%; P < 0.01) but not O (+6 ± 3%; not significant (NS)). In comparison to Y, O displayed blunted RET-induced increases in muscle thickness (at 3 and 6 weeks, respectively, Y: +8 ± 1% and +11 ± 2%, P < 0.01; O: +2.6 ± 1% and +3.5 ± 2%, NS). While 'basal' longer term MPS was identical between Y and O (1.35 ± 0.1% day-1), MPS increased in response to RET only in Y (3 weeks, Y: 1.61 ± 0.1% day-1; O: 1.49 ± 0.1% day-1). Consistent with this, O exhibited inferior ribosomal biogenesis (RNA:DNA ratio and c-MYC induction: Y: +4 ± 2 fold change; O: +1.9 ± 1 fold change), translational efficiency (S6K1 phosphorylation, Y: +10 ± 4 fold change; O: +4 ± 2 fold change) and anabolic hormone milieu (testosterone, Y: 367 ± 19; O: 274 ± 19 ng dl-1 (all P < 0.05). Anabolic resistance is thus multifactorial. Key points Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age. Hypertrophic responses to RET with age are diminished compared to younger individuals. In response to 6 weeks RET, we found blunted hypertrophic responses with age are underpinned by chronic deficits in long-term muscle protein synthesis. We show this is likely to be the result of multifactorial deficits in anabolic hormones and blunted translational efficiency and capacity. These results provide great insight into age-related exercise adaptations and provide a platform on which to devise appropriate nutritional and exercise interventions on a longer term basis. Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age. Hypertrophic responses to RET with age are diminished compared to younger individuals. In response to 6 weeks RET, we found blunted hypertrophic responses with age are underpinned by chronic deficits in long-term muscle protein synthesis. We show this is likely to be the result of multifactorial deficits in anabolic hormones and blunted translational efficiency and capacity. These results provide great insight into age-related exercise adaptations and provide a platform on which to devise appropriate nutritional and exercise interventions on a longer term basis. Ageing is associated with impaired hypertrophic responses to resistance exercise training (RET). Here we investigated the aetiology of 'anabolic resistance' in older humans. Twenty healthy male individuals, 10 younger (Y; 23 ± 1 years) and 10 older (O; 69 ± 3 years), performed 6 weeks unilateral RET (6 × 8 repetitions, 75% of one repetition maximum (1-RM), 3 times per week). After baseline bilateral vastus lateralis (VL) muscle biopsies, subjects consumed 150 ml D O (70 atom%; thereafter 50 ml week ), further bilateral VL muscle biopsies were taken at 3 and 6 weeks to quantify muscle protein synthesis (MPS) via gas chromatography-pyrolysis-isotope ratio mass spectrometry. After RET, 1-RM increased in Y (+35 ± 4%) and O (+25 ± 3%; P < 0.01), while MVC increased in Y (+21 ± 5%; P < 0.01) but not O (+6 ± 3%; not significant (NS)). In comparison to Y, O displayed blunted RET-induced increases in muscle thickness (at 3 and 6 weeks, respectively, Y: +8 ± 1% and +11 ± 2%, P < 0.01; O: +2.6 ± 1% and +3.5 ± 2%, NS). While 'basal' longer term MPS was identical between Y and O (∼1.35 ± 0.1% day ), MPS increased in response to RET only in Y (3 weeks, Y: 1.61 ± 0.1% day ; O: 1.49 ± 0.1% day ). Consistent with this, O exhibited inferior ribosomal biogenesis (RNA:DNA ratio and c-MYC induction: Y: +4 ± 2 fold change; O: +1.9 ± 1 fold change), translational efficiency (S6K1 phosphorylation, Y: +10 ± 4 fold change; O: +4 ± 2 fold change) and anabolic hormone milieu (testosterone, Y: 367 ± 19; O: 274 ± 19 ng dl (all P < 0.05). Anabolic resistance is thus multifactorial. Key points * Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age. * Hypertrophic responses to RET with age are diminished compared to younger individuals. * In response to 6 weeks RET, we found blunted hypertrophic responses with age are underpinned by chronic deficits in long-term muscle protein synthesis. * We show this is likely to be the result of multifactorial deficits in anabolic hormones and blunted translational efficiency and capacity. * These results provide great insight into age-related exercise adaptations and provide a platform on which to devise appropriate nutritional and exercise interventions on a longer term basis. Ageing is associated with impaired hypertrophic responses to resistance exercise training (RET). Here we investigated the aetiology of 'anabolic resistance' in older humans. Twenty healthy male individuals, 10 younger (Y; 23 plus or minus 1 years) and 10 older (O; 69 plus or minus 3 years), performed 6 weeks unilateral RET (6 8 repetitions, 75% of one repetition maximum (1-RM), 3 times per week). After baseline bilateral vastus lateralis (VL) muscle biopsies, subjects consumed 150 ml D sub(2)O (70 atom%; thereafter 50 ml week super(-1)), further bilateral VL muscle biopsies were taken at 3 and 6 weeks to quantify muscle protein synthesis (MPS) via gas chromatography-pyrolysis-isotope ratio mass spectrometry. After RET, 1-RM increased in Y (+35 plus or minus 4%) and O (+25 plus or minus 3%; P < 0.01), while MVC increased in Y (+21 plus or minus 5%; P < 0.01) but not O (+6 plus or minus 3%; not significant (NS)). In comparison to Y, O displayed blunted RET-induced increases in muscle thickness (at 3 and 6 weeks, respectively, Y: +8 plus or minus 1% and +11 plus or minus 2%, P < 0.01; O: +2.6 plus or minus 1% and +3.5 plus or minus 2%, NS). While 'basal' longer term MPS was identical between Y and O (1.35 plus or minus 0.1% day super(-1)), MPS increased in response to RET only in Y (3 weeks, Y: 1.61 plus or minus 0.1% day super(-1); O: 1.49 plus or minus 0.1% day super(-1)). Consistent with this, O exhibited inferior ribosomal biogenesis (RNA:DNA ratio and c-MYC induction: Y: +4 plus or minus 2 fold change; O: +1.9 plus or minus 1 fold change), translational efficiency (S6K1 phosphorylation, Y: +10 plus or minus 4 fold change; O: +4 plus or minus 2 fold change) and anabolic hormone milieu (testosterone, Y: 367 plus or minus 19; O: 274 plus or minus 19 ng dl super(-1) (all P < 0.05). Anabolic resistance is thus multifactorial. Key points * Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age. * Hypertrophic responses to RET with age are diminished compared to younger individuals. * In response to 6 weeks RET, we found blunted hypertrophic responses with age are underpinned by chronic deficits in long-term muscle protein synthesis. * We show this is likely to be the result of multifactorial deficits in anabolic hormones and blunted translational efficiency and capacity. * These results provide great insight into age-related exercise adaptations and provide a platform on which to devise appropriate nutritional and exercise interventions on a longer term basis. |
Author | Szewczyk, Nathaniel J. Wilkinson, Daniel J. Smith, Kenneth Atherton, Philip J. Brook, Matthew S. Lund, Jonathan N. Phillips, Bethan E. Mitchell, William K. Greenhaff, Paul L. |
AuthorAffiliation | 1 MRC‐ARUK Centre of Excellence for Musculoskeletal Ageing Research Clinical, Metabolic and Molecular Physiology University of Nottingham Derby UK 2 Departments of Surgery Royal Derby Hospital Derby UK |
AuthorAffiliation_xml | – name: 1 MRC‐ARUK Centre of Excellence for Musculoskeletal Ageing Research Clinical, Metabolic and Molecular Physiology University of Nottingham Derby UK – name: 2 Departments of Surgery Royal Derby Hospital Derby UK |
Author_xml | – sequence: 1 givenname: Matthew S. surname: Brook fullname: Brook, Matthew S. organization: University of Nottingham – sequence: 2 givenname: Daniel J. surname: Wilkinson fullname: Wilkinson, Daniel J. organization: University of Nottingham – sequence: 3 givenname: William K. surname: Mitchell fullname: Mitchell, William K. organization: Royal Derby Hospital – sequence: 4 givenname: Jonathan N. surname: Lund fullname: Lund, Jonathan N. organization: Royal Derby Hospital – sequence: 5 givenname: Bethan E. surname: Phillips fullname: Phillips, Bethan E. organization: University of Nottingham – sequence: 6 givenname: Nathaniel J. orcidid: 0000-0003-4425-9746 surname: Szewczyk fullname: Szewczyk, Nathaniel J. organization: University of Nottingham – sequence: 7 givenname: Paul L. surname: Greenhaff fullname: Greenhaff, Paul L. organization: University of Nottingham – sequence: 8 givenname: Kenneth surname: Smith fullname: Smith, Kenneth organization: University of Nottingham – sequence: 9 givenname: Philip J. surname: Atherton fullname: Atherton, Philip J. email: philip.atherton@nottingham.ac.uk organization: University of Nottingham |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27654940$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstuFDEQRS0URCYBiS9Altiw6eBHu93eIKGIR6JIRCKsLbe7esaR2x7s7sDs-AQ2_CBfgifkRSQQKy_q-FbVrbuHdkIMgNBTSg4opfzl8SmTrBXyAVrQulGVlIrvoAUhjFVcCrqL9nI-J4RyotQjtMtkI2pVkwX68XET7CrFEOeMexicdVPGLmA7j7M3k7sAPM7ZesDrFCcolbwJ0wqyy9iEHifXxRxH43Hn4hLCZWEOPSTvAJsl_Pz2PUFRgr7wpoveWZy21GSCBTxFDF8hWZdh23Y1jybkx-jhYHyGJ1fvPvr09s3Z4fvq5MO7o8PXJ5UVvBVV0xLa1z0TBAgMphNld6pkxylYIRmpFRhlbQs1BdEK1hWvCKiatY3lbOj5Pnr1W3c9dyP0FsKUjNfr5EaTNjoap_-sBLfSy3ihBRWSSFkEXlwJpPh5hjzp0WUL3psAxVFNWyGI5E3L_welTNaCk4I-v4eexzmF4kSh6lZSoQgr1LO7w99MfX3c2442xZwTDDcIJXqbG32dm4Ie3ENLDsr143Zt5__x4YvzsPmrsD47PqWMMMF_Aff31YY |
CODEN | JPHYA7 |
CitedBy_id | crossref_primary_10_1093_jn_nxz038 crossref_primary_10_1016_j_clnesp_2021_09_729 crossref_primary_10_1017_jns_2022_106 crossref_primary_10_1016_j_clnu_2021_01_002 crossref_primary_10_1113_EP091937 crossref_primary_10_1152_japplphysiol_00343_2021 crossref_primary_10_1016_j_clnu_2018_06_963 crossref_primary_10_1152_ajpcell_00209_2019 crossref_primary_10_3390_nu13020656 crossref_primary_10_1519_JSC_0000000000004409 crossref_primary_10_1097_MCO_0000000000000427 crossref_primary_10_1007_s00125_017_4461_6 crossref_primary_10_1152_ajpcell_00357_2021 crossref_primary_10_1161_CIRCHEARTFAILURE_119_006427 crossref_primary_10_1002_jcsm_13738 crossref_primary_10_3389_fphys_2018_01373 crossref_primary_10_1016_j_exger_2020_110965 crossref_primary_10_1051_sm_2023007 crossref_primary_10_1113_JP274154 crossref_primary_10_1249_MSS_0000000000002929 crossref_primary_10_1249_MSS_0000000000003061 crossref_primary_10_3389_fphys_2019_01084 crossref_primary_10_3389_fphys_2020_621226 crossref_primary_10_4103_jbjd_jbjd_9_23 crossref_primary_10_1016_j_mam_2024_101319 crossref_primary_10_3389_fphys_2022_892749 crossref_primary_10_1097_MCO_0000000000000413 crossref_primary_10_1152_ajpregu_00061_2020 crossref_primary_10_1016_j_nutos_2021_01_004 crossref_primary_10_1113_EP086361 crossref_primary_10_1123_ijsnem_2020_0274 crossref_primary_10_3390_ijms232314716 crossref_primary_10_1002_jcsm_13335 crossref_primary_10_1152_ajpendo_00034_2020 crossref_primary_10_1152_physiol_00034_2018 crossref_primary_10_1007_s11357_022_00658_5 crossref_primary_10_1113_JP283836 crossref_primary_10_1007_s11357_022_00651_y crossref_primary_10_1007_s11357_022_00636_x crossref_primary_10_1016_j_arr_2021_101463 crossref_primary_10_1002_jcsm_12470 crossref_primary_10_1096_fj_201700158RR crossref_primary_10_3390_physiologia2040014 crossref_primary_10_3390_nu12103029 crossref_primary_10_1016_j_arr_2021_101344 crossref_primary_10_1113_EP092328 crossref_primary_10_12688_f1000research_11894_1 crossref_primary_10_1002_jcp_31182 crossref_primary_10_12688_f1000research_11894_2 crossref_primary_10_1096_fj_202000196R crossref_primary_10_1002_jcsm_12472 crossref_primary_10_1111_apha_13806 crossref_primary_10_1186_s12859_022_04791_y crossref_primary_10_1016_j_arr_2018_07_005 crossref_primary_10_1017_S0029665120007879 crossref_primary_10_1152_ajpregu_00131_2024 crossref_primary_10_3389_fnut_2021_615849 crossref_primary_10_1016_j_celrep_2020_107980 crossref_primary_10_1101_cshperspect_a029751 crossref_primary_10_1097_MCO_0000000000000392 crossref_primary_10_1152_japplphysiol_00946_2018 crossref_primary_10_1017_S0029665123003750 crossref_primary_10_1096_fj_201700329R crossref_primary_10_1152_japplphysiol_00886_2023 crossref_primary_10_1016_j_aggp_2024_100058 crossref_primary_10_1016_j_ajcnut_2024_05_009 crossref_primary_10_1016_j_tjnut_2024_09_012 crossref_primary_10_3390_sports10060095 crossref_primary_10_1038_s41467_021_21738_8 crossref_primary_10_1038_s41580_023_00606_x crossref_primary_10_1073_pnas_2216141120 crossref_primary_10_1113_JP275430 crossref_primary_10_1152_japplphysiol_00205_2023 crossref_primary_10_1152_physrev_00054_2021 crossref_primary_10_1172_jci_insight_95581 crossref_primary_10_3389_fendo_2020_00033 crossref_primary_10_1016_j_beem_2021_101598 crossref_primary_10_1016_j_reach_2019_100025 crossref_primary_10_3390_jcm9072188 crossref_primary_10_1152_ajpcell_00418_2022 crossref_primary_10_3390_nu10030309 crossref_primary_10_1152_ajpendo_00230_2016 crossref_primary_10_1152_physiol_00044_2018 crossref_primary_10_3390_nu12030845 crossref_primary_10_1113_JP273773 crossref_primary_10_1152_physrev_00039_2022 crossref_primary_10_1007_s00018_021_03888_6 crossref_primary_10_1038_s41598_021_94930_x crossref_primary_10_1002_jcsm_12843 crossref_primary_10_1016_j_nutos_2021_02_005 crossref_primary_10_1002_jcsm_12688 crossref_primary_10_1007_s11357_023_00833_2 crossref_primary_10_1113_EP087492 crossref_primary_10_1002_jcsm_12724 crossref_primary_10_3390_ijms22052741 crossref_primary_10_1016_j_nut_2022_111829 crossref_primary_10_1016_j_nut_2017_11_018 crossref_primary_10_1042_CS20231197 crossref_primary_10_1007_s00109_023_02326_3 crossref_primary_10_1007_s00421_019_04200_y crossref_primary_10_3389_fnut_2019_00040 crossref_primary_10_1152_japplphysiol_01031_2018 crossref_primary_10_1152_physrev_00037_2021 crossref_primary_10_1152_japplphysiol_00041_2024 crossref_primary_10_1038_s43587_023_00521_y crossref_primary_10_12688_f1000research_21588_1 crossref_primary_10_1152_ajpregu_00224_2024 crossref_primary_10_1152_ajpregu_00162_2019 crossref_primary_10_1249_JES_0000000000000179 crossref_primary_10_1249_JES_0000000000000333 crossref_primary_10_1152_ajpgi_00373_2020 crossref_primary_10_1038_s44319_024_00299_z crossref_primary_10_3389_fnut_2023_1037200 crossref_primary_10_1097_MCC_0000000000000488 crossref_primary_10_18632_aging_102653 crossref_primary_10_1093_ajcn_nqaa372 crossref_primary_10_1038_s41598_022_11621_x crossref_primary_10_1096_fj_202100276RR crossref_primary_10_3389_fphys_2019_00649 crossref_primary_10_1152_japplphysiol_00610_2017 crossref_primary_10_1113_JP278455 crossref_primary_10_1002_jcsm_12706 crossref_primary_10_1113_JP280652 crossref_primary_10_1007_s11357_022_00541_3 crossref_primary_10_3390_nu12072067 crossref_primary_10_1186_s12915_023_01779_9 crossref_primary_10_3390_nu13020647 crossref_primary_10_1111_apha_13056 crossref_primary_10_1186_s12891_024_07945_6 crossref_primary_10_1515_teb_2024_2006 crossref_primary_10_3389_fphys_2018_01915 crossref_primary_10_3390_nu12072057 crossref_primary_10_1007_s40279_023_01932_y crossref_primary_10_1016_j_clnu_2017_09_008 crossref_primary_10_1113_JP282273 crossref_primary_10_1519_SSC_0000000000000432 crossref_primary_10_1038_s41598_017_18887_6 crossref_primary_10_1016_j_exger_2018_06_007 |
Cites_doi | 10.1152/japplphysiol.01366.2013 10.1001/jama.286.10.1206 10.1016/j.nutres.2015.09.006 10.1111/jgs.12279 10.1093/fampra/cmr054 10.1007/s11357-014-9742-0 10.1152/jappl.2000.89.1.81 10.1042/bj1760419 10.1152/ajpcell.1999.276.1.C120 10.1152/japplphysiol.01474.2005 10.1152/japplphysiol.91481.2008 10.1210/jc.2012-3695 10.1113/jphysiol.2009.169854 10.1186/1477-7525-7-70 10.1111/j.1532-5415.2004.52014.x 10.1113/JP271365 10.14814/phy2.12433 10.1042/CS20100597 10.1152/jappl.1999.86.1.195 10.1016/j.exger.2011.07.010 10.1046/j.1365-2265.2000.01159.x 10.1152/japplphysiol.01031.2011 10.1093/gerona/56.suppl_2.13 10.1016/j.gene.2014.11.010 10.1152/japplphysiol.91234.2008 10.1021/pr1011476 10.1096/fj.15-273755 10.1152/jappl.1998.84.4.1341 10.1152/japplphysiol.00426.2013 10.1096/fj.11-186437 10.1152/ajpendo.00050.2015 10.1186/s13395-015-0047-5 10.1096/fj.04-2640fje 10.1111/j.1532-5415.1997.tb02928.x 10.1113/jphysiol.2011.225003 10.1016/j.arr.2010.03.004 10.1113/jphysiol.2008.163816 10.1152/japplphysiol.01161.2012 10.14814/phy2.12670 10.1016/j.exger.2014.01.027 10.1113/jphysiol.2005.093690 10.1016/j.arr.2011.03.003 10.1093/ageing/24.6.468 10.1096/fj.05-4809fje 10.1093/gerona/glt199 10.1073/pnas.95.26.15603 10.1371/journal.pone.0089431 10.1093/gerona/gls141 10.1093/gerona/gls209 10.1093/gerona/53A.6.B415 10.1152/japplphysiol.00977.2009 10.1113/jphysiol.2008.164087 10.1152/ajpendo.00481.2014 10.1210/jc.2008-2338 10.1152/japplphysiol.01069.2014 10.1093/gerona/62.12.1407 10.1093/gerona/glu103 10.1152/japplphysiol.00296.2015 10.1136/jnnp.36.2.174 10.1111/j.1469-7793.2001.00301.x 10.1007/s40279-015-0305-z 10.3945/ajcn.2010.29819 10.1056/NEJM199406233302501 10.1001/jama.299.11.1259 10.1038/nprot.2008.73 10.1371/journal.pone.0140903 10.1249/MSS.0b013e3181eb6265 10.1152/ajpendo.00541.2012 10.1186/2044-5040-1-11 10.3945/ajcn.2008.26626 10.1016/S0006-291X(02)02953-4 10.1152/ajpendo.00143.2006 10.1152/jappl.1999.87.3.982 10.3389/fphys.2012.00260 10.1152/jappl.1977.43.6.1001 10.1056/NEJM199607043350101 10.1152/ajpendo.00650.2013 10.1016/S0140-6736(09)61460-4 10.1152/jappl.1992.73.4.1383 10.1111/apha.12225 10.1113/jphysiol.2008.164483 10.1136/jnnp.50.11.1461 10.1210/jcem.87.2.8201 10.1152/ajpendo.2001.281.6.E1172 10.1007/s00421-012-2466-x 10.1002/mus.23969 10.1152/japplphysiol.00489.2015 10.1249/mss.0b013e31815a51b3 10.1210/jc.2013-1502 10.1152/ajpendo.1997.273.1.E99 10.1093/gerona/51A.6.M270 10.3389/fphys.2014.00030 |
ContentType | Journal Article |
Copyright | 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society. Journal compilation © 2016 The Physiological Society |
Copyright_xml | – notice: 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society – notice: 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society. – notice: Journal compilation © 2016 The Physiological Society |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 7TM 5PM |
DOI | 10.1113/JP272857 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Nucleic Acids Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts MEDLINE - Academic Nucleic Acids Abstracts |
DatabaseTitleList | CrossRef MEDLINE - Academic Technology Research Database MEDLINE Calcium & Calcified Tissue Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | M. S. Brook and others |
EISSN | 1469-7793 |
EndPage | 7417 |
ExternalDocumentID | PMC5157077 4277964081 27654940 10_1113_JP272857 TJP12025 |
Genre | article Clinical Trial Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: BBSRC – fundername: University of Nottingham – fundername: Medical Research Council funderid: CIC12019 – fundername: Dunhill Medical Trust funderid: R264/1112 – fundername: Medical Research Council grantid: MC_PC_12019 – fundername: Medical Research Council grantid: MC_PC_13072 – fundername: Medical Research Council grantid: CIC12019 – fundername: Dunhill Medical Trust grantid: R264/1112 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 0YM 10A 123 18M 1OC 24P 29L 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAFWJ AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABITZ ABIVO ABJNI ABOCM ABPPZ ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AEQDE AEUYR AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGYGG AHBTC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EBS EJD EMOBN EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HGLYW HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K ROL RPM RX1 SUPJJ TEORI TLM TN5 TR2 UB1 UMC UPT V8K VH1 W8F W8V W99 WBKPD WH7 WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WXI WXSBR WYISQ XG1 YBU YHG YKV YQT YSK YZZ ZZTAW ~IA ~WT AAYXX AEYWJ CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 7TM 5PM |
ID | FETCH-LOGICAL-c5385-6801d4d250e0efab5469197b31ec572049ea9cc8e41e5852b1130e94286c32fd3 |
IEDL.DBID | DR2 |
ISSN | 0022-3751 |
IngestDate | Thu Aug 21 18:13:43 EDT 2025 Fri Jul 11 06:27:15 EDT 2025 Fri Jul 11 07:32:27 EDT 2025 Fri Jul 25 12:20:11 EDT 2025 Mon Jul 21 06:01:36 EDT 2025 Thu Apr 24 23:00:34 EDT 2025 Tue Jul 01 04:29:15 EDT 2025 Tue Apr 29 03:01:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | ageing hypertrophy muscle exercise protein synthesis ribosomal biogenesis stable isotope signalling |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5385-6801d4d250e0efab5469197b31ec572049ea9cc8e41e5852b1130e94286c32fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0003-4425-9746 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP272857 |
PMID | 27654940 |
PQID | 1848715902 |
PQPubID | 1086388 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5157077 proquest_miscellaneous_1855073683 proquest_miscellaneous_1851274530 proquest_journals_1848715902 pubmed_primary_27654940 crossref_primary_10_1113_JP272857 crossref_citationtrail_10_1113_JP272857 wiley_primary_10_1113_JP272857_TJP12025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 December 2016 |
PublicationDateYYYYMMDD | 2016-12-15 |
PublicationDate_xml | – month: 12 year: 2016 text: 15 December 2016 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London – name: Hoboken |
PublicationTitle | The Journal of physiology |
PublicationTitleAlternate | J Physiol |
PublicationYear | 2016 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2015; 35 2009; 89 1994; 330 2015; 37 2010; 108 2015; 70 2013; 68 2000; 89 1997; 273 2013; 61 1997; 45 2015; 309 2014; 69 2015; 308 1999; 87 1978; 176 2011; 10 2006; 291 1999; 86 2008; 3 2014; 210 1998; 84 1978 2015; 45 2014; 5 2006; 20 2013; 98 2009; 94 1995; 24 2002; 87 2000; 53 2013; 114 2013; 113 2016; 594 2012; 29 2007; 62 2011; 25 1996; 335 2014; 9 1998; 95 2001; 56 2012; 67 1998; 53 2001; 535 2010; 9 2011; 121 2014; 53 2001; 286 2014; 116 2015; 5 2011; 1 2015; 3 1987; 50 2001; 281 1973; 36 2002; 6 2013; 305 2015; 10 2009; 374 2014; 49 1977; 41 1996; 51 1977; 43 1992; 73 2012; 590 2016; 4 2014; 306 2004; 52 2005; 19 2012; 3 2012; 112 2015; 29 2015; 556 2005; 567 2011; 43 2011; 46 2015; 119 2009; 7 1999; 276 2015; 118 2010; 92 2009; 107 2008; 299 2008; 40 2003; 300 2009; 587 2006; 101 2009; 106 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 Yarasheski KE (e_1_2_6_96_1) 2002; 6 e_1_2_6_9_1 Laurent GJ (e_1_2_6_51_1) 1977; 41 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_94_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_92_1 Waterlow JC (e_1_2_6_89_1) 1978 e_1_2_6_90_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_80_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_4_1 Troiando RP (e_1_2_6_84_1) 2008; 40 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 28105708 - J Physiol. 2017 Mar 1;595(5):1447-1448. doi: 10.1113/JP273773. 28233314 - J Physiol. 2017 May 1;595(9):2781-2782. doi: 10.1113/JP274154. |
References_xml | – volume: 330 start-page: 1769 year: 1994 end-page: 1775 article-title: Exercise training and nutritional supplementation for physical frailty in very elderly people publication-title: N Engl J Med – volume: 6 start-page: 343 year: 2002 end-page: 348 article-title: Serum myostatin‐immunoreactive protein is increased in 60‐92 year old women and men with muscle wasting publication-title: J Nutr Health Aging – volume: 107 start-page: 1655 year: 2009 end-page: 1662 article-title: Translational signaling responses preceding resistance training‐mediated myofiber hypertrophy in young and old humans publication-title: J Appl Physiol – volume: 112 start-page: 347 year: 2012 end-page: 353 article-title: Resistance exercise training improves age‐related declines in leg vascular conductance and rejuvenates acute leg blood flow responses to feeding and exercise publication-title: J Appl Physiol – volume: 113 start-page: 641 year: 2013 end-page: 650 article-title: Resistance training induced increase in muscle fiber size in young and older men publication-title: Eur J Appl Physiol – volume: 9 start-page: 226 year: 2010 end-page: 237 article-title: Resistance exercise for muscular strength in older adults: a meta‐analysis mark publication-title: Ageing Res Rev – volume: 98 start-page: 2604 year: 2013 end-page: 2612 article-title: Two weeks of reduced activity decreases leg lean mass and induces “anabolic resistance” of myofibrillar protein synthesis in healthy elderly publication-title: J Clin Endocrinol Metab – volume: 300 start-page: 965 year: 2003 end-page: 971 article-title: Inhibition of myostatin in adult mice increases skeletal muscle mass and strength publication-title: Biochem Biophys Res Commun – volume: 101 start-page: 531 year: 2006 end-page: 544 article-title: Efficacy of 3 days/week resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults publication-title: J Appl Physiol – volume: 51 start-page: M270 year: 1996 end-page: M275 article-title: Effect of age on muscle hypertrophy induced by resistance training publication-title: J Gerontol A Biol Sci Med Sci – volume: 25 start-page: 3240 year: 2011 end-page: 3249 article-title: Long‐term synthesis rates of skeletal muscle DNA and protein are higher during aerobic training in older humans than in sedentary young subjects but are not altered by protein supplementation publication-title: FASEB J – volume: 273 start-page: E99 year: 1997 end-page: E107 article-title: Mixed muscle protein synthesis and breakdown after resistance exercise in humans publication-title: Am J Physiol Endocrinol Metab – volume: 45 start-page: 641 year: 2015 end-page: 658 article-title: Muscle quality in aging: a multi‐dimensional approach to muscle functioning with applications for treatment publication-title: Sport Med – volume: 10 start-page: 430 year: 2011 end-page: 439 article-title: Aging with multimorbidity: A systematic review of the literature publication-title: Ageing Res Rev – volume: 45 start-page: 1302 year: 1997 end-page: 1309 article-title: Factors predicting fractures during falling impacts among home‐dwelling older adults publication-title: J Am Geriatr Soc – volume: 587 start-page: 1535 year: 2009 end-page: 1546 article-title: Rapamycin administration in humans blocks the contraction‐induced increase in skeletal muscle protein synthesis publication-title: J Physiol – volume: 89 start-page: 81 year: 2000 end-page: 88 article-title: Skeletal muscle mass and distribution in 468 men and women aged 18‐88 yr publication-title: J Appl Physiol – volume: 119 start-page: 321 year: 2015 end-page: 327 article-title: Blunted hypertrophic response in aged skeletal muscle is associated with decreased ribosome biogenesis publication-title: J Appl Physiol – volume: 29 start-page: 4485 year: 2015 end-page: 4496 article-title: Skeletal muscle hypertrophy adaptations predominate in the early stages of resistance exercise training, matching deuterium oxide‐derived measures of muscle protein synthesis and mechanistic target of rapamycin complex 1 signaling publication-title: FASEB J – volume: 35 start-page: 990 year: 2015 end-page: 1000 article-title: Protein supplementation does not alter intramuscular anabolic signaling or endocrine response after resistance exercise in trained men publication-title: Nutr Res – volume: 309 start-page: E72 year: 2015 end-page: E83 article-title: Ribosome biogenesis adaptation in resistance training‐induced human skeletal muscle hypertrophy publication-title: Am J Physiol Endocrinol Metab – volume: 41 start-page: 249 year: 1977 end-page: 262 article-title: Changes in RNA, DNA and protein content and the rates of protein synthesis and degradation during hypertrophy of the anterior latissimus dorsi muscle of the adult fowl ( ) publication-title: Growth – volume: 36 start-page: 174 year: 1973 end-page: 182 article-title: Physiological changes in ageing muscles publication-title: J Neurol Neurosurg Psychiatry – volume: 67 start-page: 1170 year: 2012 end-page: 1177 article-title: Muscle protein synthetic responses to exercise: effects of age, volume, and intensity publication-title: J Gerontol A Biol Sci Med Sci – volume: 535 start-page: 301 year: 2001 end-page: 311 article-title: Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans publication-title: J Physiol – volume: 68 start-page: 599 year: 2013 end-page: 607 article-title: Skeletal muscle autophagy and protein breakdown following resistance exercise are similar in younger and older adults publication-title: J Gerontol A Biol Sci Med Sci – volume: 587 start-page: 211 year: 2009 end-page: 217 article-title: Age‐related differences in the dose‐response relationship of muscle protein synthesis to resistance exercise in young and old men publication-title: J Physiol – volume: 114 start-page: 934 year: 2013 end-page: 940 article-title: mTOR signaling response to resistance exercise is altered by chronic resistance training and detraining in skeletal muscle publication-title: J Appl Physiol – volume: 62 start-page: 1407 year: 2007 end-page: 1412 article-title: Proteolytic gene expression differs at rest and after resistance exercise between young and old women publication-title: J Gerontol A Biol Sci Med Sci – volume: 53 start-page: 1 year: 2014 end-page: 6 article-title: Muscle quality index improves with resistance exercise training in older adults publication-title: Exp Gerontol – volume: 210 start-page: 642 year: 2014 end-page: 654 article-title: Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle publication-title: Acta Physiol (Oxf) – volume: 281 start-page: E1172 year: 2001 end-page: E1181 article-title: Testosterone dose‐response relationships in healthy young men publication-title: Am J Physiol Endocrinol Metab – volume: 374 start-page: 1196 year: 2009 end-page: 1208 article-title: Ageing populations: the challenges ahead publication-title: Lancet – volume: 43 start-page: 1001 year: 1977 end-page: 1006 article-title: Effect of muscle mass decrease on age‐related BMR changes publication-title: J Appl Physiol – volume: 1 start-page: 11 year: 2011 article-title: Aging impairs contraction‐induced human skeletal muscle mTORC1 signaling and protein synthesis publication-title: Skelet Muscle – volume: 594 start-page: 453 year: 2016 end-page: 468 article-title: Acute resistance exercise activates rapamycin‐sensitive and insensitive mechanisms that control translational activity and capacity in skeletal muscle publication-title: J Physiol – volume: 335 start-page: 1 year: 1996 end-page: 7 article-title: The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men publication-title: N Engl J Med – volume: 106 start-page: 2026 year: 2009 end-page: 2039 article-title: Human muscle protein synthesis and breakdown during and after exercise publication-title: J Appl Physiol – volume: 56 start-page: 13 year: 2001 end-page: 22 article-title: Physical activity in aging: changes in patterns and their relationship to health and function publication-title: J Gerontol A Biol Sci Med Sci – volume: 305 start-page: E183 year: 2013 end-page: E193 article-title: Focal adhesion kinase is required for IGF‐I‐mediated growth of skeletal muscle cells via a TSC2/mTOR/S6K1‐associated pathway publication-title: Am J Physiol Endocrinol Metab – volume: 50 start-page: 1461 year: 1987 end-page: 1467 article-title: Conchotome and needle percutaneous biopsy of skeletal muscle publication-title: J Neurol Neurosurg Psychiatry – volume: 306 start-page: E571 year: 2014 end-page: E579 article-title: A validation of the application of D O stable isotope tracer techniques for monitoring day‐to‐day changes in muscle protein subfraction synthesis in humans publication-title: Am J Physiol Endocrinol Metab – volume: 286 start-page: 1206 year: 2001 end-page: 1212 article-title: Basal muscle amino acid kinetics and protein synthesis in healthy young and older men publication-title: JAMA – volume: 5 start-page: 21 year: 2015 article-title: Myostatin as a mediator of sarcopenia versus homeostatic regulator of muscle mass: insights using a new mass spectrometry‐based assay publication-title: Skelet Muscle – volume: 10 start-page: 1416 year: 2011 end-page: 1419 article-title: Coomassie staining as loading control in Western blot analysis publication-title: J Proteome Res – volume: 53 start-page: B415 year: 1998 end-page: B423 article-title: Changes in muscle morphology, electromyographic activity, and force production characteristics during progressive strength training in young and older men publication-title: J Gerontol A Biol Sci Med Sci – volume: 5 start-page: 30 year: 2014 article-title: Ageing has no effect on the regulation of the ubiquitin proteasome‐related genes and proteins following resistance exercise publication-title: Front Physiol – volume: 70 start-page: 57 year: 2015 end-page: 62 article-title: Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men publication-title: J Gerontol A Biol Sci Med Sci – volume: 4 start-page: e12670 year: 2016 article-title: Impact of resistance exercise on ribosome biogenesis is acutely regulated by post‐exercise recovery strategies publication-title: Physiol Rep – volume: 86 start-page: 195 year: 1999 end-page: 201 article-title: Muscle quality. II. Effects of strength training in 65‐ to 75‐yr‐old men and women publication-title: J Appl Physiol – volume: 567 start-page: 1021 year: 2005 end-page: 1033 article-title: Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise publication-title: J Physiol – volume: 92 start-page: 1080 year: 2010 end-page: 1088 article-title: Muscle full effect after oral protein: Time‐dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling publication-title: Am J Clin Nutr – volume: 61 start-page: 957 year: 2013 end-page: 962 article-title: Mechanical muscle function and lean body mass during supervised strength training and testosterone therapy in aging men with low‐normal testosterone levels publication-title: J Am Geriatr Soc – volume: 24 start-page: 468 year: 1995 end-page: 473 article-title: Muscle strength and mobility as predictors of survival in 75‐84‐year‐old people publication-title: Age Ageing – volume: 7 start-page: 70 year: 2009 article-title: Frailty and health related quality of life in older Mexican Americans publication-title: Health Qual Life Outcomes – volume: 40 start-page: 181 year: 2008 end-page: 188 article-title: Physical activity in the United States measured by accelerometer publication-title: Med Sci Sport Exerc – volume: 556 start-page: 27 year: 2015 end-page: 34 article-title: Regulation of rDNA transcription in response to growth factors, nutrients and energy publication-title: Gene – volume: 94 start-page: 1991 year: 2009 end-page: 2001 article-title: Testosterone and growth hormone improve body composition and muscle performance in older men publication-title: J Clin Endocrinol Metab – volume: 308 start-page: E1056 year: 2015 end-page: E1065 article-title: Intake of low‐dose leucine‐rich essential amino acids stimulates muscle anabolism equivalently to bolus whey protein in older women, at rest and after exercise publication-title: Am J Physiol Endocrinol Metab – volume: 87 start-page: 589 year: 2002 end-page: 598 article-title: Age trends in the level of serum testosterone and other hormones in middle‐aged men: longitudinal results from the Massachusetts male aging study publication-title: J Clin Endocrinol Metab – volume: 108 start-page: 1034 year: 2010 end-page: 1040 article-title: A 2 week reduction of ambulatory activity attenuates peripheral insulin sensitivity publication-title: J Appl Physiol – volume: 3 start-page: 1101 year: 2008 end-page: 1108 article-title: Analyzing real‐time PCR data by the comparative CT method publication-title: Nat Protoc – volume: 73 start-page: 1383 year: 1992 end-page: 1388 article-title: Changes in human muscle protein synthesis after resistance exercise publication-title: J Appl Physiol – volume: 46 start-page: 884 year: 2011 end-page: 890 article-title: Blunting of adaptive responses to resistance exercise training in women over 75y publication-title: Exp Gerontol – volume: 291 start-page: E1325 year: 2006 end-page: E1332 article-title: Suppression of endogenous testosterone production attenuates the response to strength training: a randomized, placebo‐controlled, and blinded intervention study publication-title: Am J Physiol Endocrinol Metab – volume: 89 start-page: 608 year: 2009 end-page: 616 article-title: Protein supplementation before and after exercise does not further augment skeletal muscle hypertrophy after resistance training in elderly men publication-title: Am J Clin Nutr – volume: 590 start-page: 1049 year: 2012 end-page: 1057 article-title: Muscle protein synthesis in response to nutrition and exercise publication-title: J Physiol – volume: 53 start-page: 689 year: 2000 end-page: 695 article-title: Age‐related changes of serum sex hormones, insulin‐like growth factor‐1 and sex‐hormone binding globulin levels in men: cross‐sectional data from a healthy male cohort publication-title: Clin Endocrinol (Oxf) – volume: 116 start-page: 693 year: 2014 end-page: 702 article-title: Resistance exercise training modulates acute gene expression during human skeletal muscle hypertrophy publication-title: J Appl Physiol – volume: 3 start-page: e12433 year: 2015 article-title: Internal comparison between deuterium oxide (D O) and L‐[ring‐ C6] phenylalanine for acute measurement of muscle protein synthesis in humans publication-title: Physiol Rep – volume: 10 start-page: 1 year: 2015 end-page: 13 article-title: Aging is accompanied by a blunted muscle protein synthetic response to protein ingestion publication-title: PLoS One – volume: 95 start-page: 15603 year: 1998 end-page: 15607 article-title: Viral mediated expression of insulin‐like growth factor I blocks the aging‐related loss of skeletal muscle function publication-title: Proc Natl Acad Sci USA – volume: 98 start-page: 1891 year: 2013 end-page: 1900 article-title: Effects of testosterone and progressive resistance exercise in healthy, highly functioning older men with low‐normal testosterone levels publication-title: J Clin Endocrinol Metab – volume: 20 start-page: 190 year: 2006 end-page: 192 article-title: Early signaling responses to divergent exercise stimuli in skeletal muscle from well‐trained humans publication-title: FASEB J – volume: 176 start-page: 419 year: 1978 end-page: 427 article-title: Turnover of muscle protein in the fowl ( ). Rates of protein synthesis in fast and slow skeletal, cardiac and smooth muscle of the adult fowl publication-title: Biochem J – volume: 9 start-page: e89431 year: 2014 article-title: Acute post‐exercise myofibrillar protein synthesis is not correlated with resistance training‐induced muscle hypertrophy in young men publication-title: PLoS One – volume: 87 start-page: 982 year: 1999 end-page: 992 article-title: Effects of heavy‐resistance training on hormonal response patterns in younger vs. older men publication-title: J Appl Physiol – volume: 49 start-page: 584 year: 2014 end-page: 592 article-title: Muscle architecture and strength: adaptations to short‐term resistance training in older adults publication-title: Muscle Nerve – volume: 587 start-page: 3719 year: 2009 end-page: 3727 article-title: Cyclic stretch reduces myofibrillar protein synthesis despite increases in FAK and anabolic signalling in L6 cells publication-title: J Physiol – volume: 69 start-page: 973 year: 2014 end-page: 979 article-title: Assessing the “physical cliff”: detailed quantification of age‐related differences in daily patterns of physical activity publication-title: J Gerontol A Biol Sci Med Sci – volume: 121 start-page: 267 year: 2011 end-page: 278 article-title: Omega‐3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia‐hyperaminoacidaemia in healthy young and middle‐aged men and women publication-title: Clin Sci (Lond) – volume: 3 start-page: 260 year: 2012 article-title: Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review publication-title: Front Physiol – volume: 84 start-page: 1341 year: 1998 end-page: 1349 article-title: Changes in agonist‐antagonist EMG, muscle CSA, and force during strength training in middle‐aged and older people publication-title: J Appl Physiol – volume: 43 start-page: 249 year: 2011 end-page: 258 article-title: Influence of resistance exercise on lean body mass in ageing adults: A meta‐analysis publication-title: Sci Sport Exerc – volume: 37 start-page: 9742 year: 2015 article-title: Effects of testosterone on lean mass gain in elderly men: systematic review with meta‐analysis of controlled and randomized studies publication-title: Age (Dordr) – volume: 118 start-page: 498 year: 2015 end-page: 503 article-title: Commentaries on Viewpoint: What is the relationship between acute measure of muscle protein synthesis and changes in muscle mass publication-title: J Appl Physiol – volume: 29 start-page: i89 year: 2012 end-page: i93 article-title: Undernutrition in older adults publication-title: Fam Pract – volume: 276 start-page: C120 year: 1999 end-page: C127 article-title: Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise publication-title: Am J Physiol Cell Physiol – volume: 52 start-page: 80 year: 2004 end-page: 85 article-title: The healthcare costs of sarcopenia in the United States publication-title: J Am Geriatr Soc – year: 1978 – volume: 299 start-page: 1261 year: 2008 end-page: 1263 article-title: Metabolic responses to reduced daily steps in healthy nonexercising men publication-title: JAMA – volume: 119 start-page: 851 year: 2015 end-page: 857 article-title: The effects of age and resistance loading on skeletal muscle ribosome biogenesis publication-title: J Appl Physiol – volume: 19 start-page: 422 year: 2005 end-page: 424 article-title: Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle publication-title: FASEB J – volume: 587 start-page: 897 year: 2009 end-page: 904 article-title: Differential stimulation of myofibrillar and sarcoplasmic protein synthesis with protein ingestion at rest and after resistance exercise publication-title: J Physiol – volume: 116 start-page: 113 year: 2014 end-page: 125 article-title: Transient transcriptional events in human skeletal muscle at the outset of concentric resistance exercise training publication-title: J Appl Physiol – ident: e_1_2_6_66_1 doi: 10.1152/japplphysiol.01366.2013 – ident: e_1_2_6_87_1 doi: 10.1001/jama.286.10.1206 – volume: 6 start-page: 343 year: 2002 ident: e_1_2_6_96_1 article-title: Serum myostatin‐immunoreactive protein is increased in 60‐92 year old women and men with muscle wasting publication-title: J Nutr Health Aging – ident: e_1_2_6_33_1 doi: 10.1016/j.nutres.2015.09.006 – ident: e_1_2_6_49_1 doi: 10.1111/jgs.12279 – ident: e_1_2_6_64_1 doi: 10.1093/fampra/cmr054 – ident: e_1_2_6_67_1 doi: 10.1007/s11357-014-9742-0 – ident: e_1_2_6_38_1 doi: 10.1152/jappl.2000.89.1.81 – ident: e_1_2_6_52_1 doi: 10.1042/bj1760419 – ident: e_1_2_6_6_1 doi: 10.1152/ajpcell.1999.276.1.C120 – ident: e_1_2_6_41_1 doi: 10.1152/japplphysiol.01474.2005 – ident: e_1_2_6_45_1 doi: 10.1152/japplphysiol.91481.2008 – ident: e_1_2_6_37_1 doi: 10.1210/jc.2012-3695 – ident: e_1_2_6_5_1 doi: 10.1113/jphysiol.2009.169854 – ident: e_1_2_6_56_1 doi: 10.1186/1477-7525-7-70 – ident: e_1_2_6_39_1 doi: 10.1111/j.1532-5415.2004.52014.x – ident: e_1_2_6_92_1 doi: 10.1113/JP271365 – ident: e_1_2_6_94_1 doi: 10.14814/phy2.12433 – ident: e_1_2_6_80_1 doi: 10.1042/CS20100597 – ident: e_1_2_6_83_1 doi: 10.1152/jappl.1999.86.1.195 – ident: e_1_2_6_34_1 doi: 10.1016/j.exger.2011.07.010 – ident: e_1_2_6_53_1 doi: 10.1046/j.1365-2265.2000.01159.x – ident: e_1_2_6_72_1 doi: 10.1152/japplphysiol.01031.2011 – ident: e_1_2_6_21_1 doi: 10.1093/gerona/56.suppl_2.13 – ident: e_1_2_6_47_1 doi: 10.1016/j.gene.2014.11.010 – ident: e_1_2_6_57_1 doi: 10.1152/japplphysiol.91234.2008 – ident: e_1_2_6_90_1 doi: 10.1021/pr1011476 – ident: e_1_2_6_12_1 doi: 10.1096/fj.15-273755 – ident: e_1_2_6_35_1 doi: 10.1152/jappl.1998.84.4.1341 – ident: e_1_2_6_65_1 doi: 10.1152/japplphysiol.00426.2013 – ident: e_1_2_6_75_1 doi: 10.1096/fj.11-186437 – ident: e_1_2_6_26_1 doi: 10.1152/ajpendo.00050.2015 – ident: e_1_2_6_8_1 doi: 10.1186/s13395-015-0047-5 – ident: e_1_2_6_19_1 doi: 10.1096/fj.04-2640fje – ident: e_1_2_6_54_1 doi: 10.1111/j.1532-5415.1997.tb02928.x – ident: e_1_2_6_4_1 doi: 10.1113/jphysiol.2011.225003 – ident: e_1_2_6_70_1 doi: 10.1016/j.arr.2010.03.004 – ident: e_1_2_6_22_1 doi: 10.1113/jphysiol.2008.163816 – ident: e_1_2_6_68_1 doi: 10.1152/japplphysiol.01161.2012 – ident: e_1_2_6_27_1 doi: 10.14814/phy2.12670 – ident: e_1_2_6_28_1 doi: 10.1016/j.exger.2014.01.027 – ident: e_1_2_6_59_1 doi: 10.1113/jphysiol.2005.093690 – ident: e_1_2_6_55_1 doi: 10.1016/j.arr.2011.03.003 – ident: e_1_2_6_50_1 doi: 10.1093/ageing/24.6.468 – ident: e_1_2_6_17_1 doi: 10.1096/fj.05-4809fje – ident: e_1_2_6_79_1 doi: 10.1093/gerona/glt199 – ident: e_1_2_6_7_1 doi: 10.1073/pnas.95.26.15603 – ident: e_1_2_6_60_1 doi: 10.1371/journal.pone.0089431 – ident: e_1_2_6_44_1 doi: 10.1093/gerona/gls141 – ident: e_1_2_6_32_1 doi: 10.1093/gerona/gls209 – ident: e_1_2_6_36_1 doi: 10.1093/gerona/53A.6.B415 – ident: e_1_2_6_43_1 doi: 10.1152/japplphysiol.00977.2009 – ident: e_1_2_6_63_1 doi: 10.1113/jphysiol.2008.164087 – ident: e_1_2_6_13_1 doi: 10.1152/ajpendo.00481.2014 – ident: e_1_2_6_76_1 doi: 10.1210/jc.2008-2338 – ident: e_1_2_6_3_1 doi: 10.1152/japplphysiol.01069.2014 – volume: 41 start-page: 249 year: 1977 ident: e_1_2_6_51_1 article-title: Changes in RNA, DNA and protein content and the rates of protein synthesis and degradation during hypertrophy of the anterior latissimus dorsi muscle of the adult fowl (Gallus domesticus) publication-title: Growth – ident: e_1_2_6_74_1 doi: 10.1093/gerona/62.12.1407 – ident: e_1_2_6_62_1 doi: 10.1093/gerona/glu103 – ident: e_1_2_6_40_1 doi: 10.1152/japplphysiol.00296.2015 – ident: e_1_2_6_14_1 doi: 10.1136/jnnp.36.2.174 – ident: e_1_2_6_23_1 doi: 10.1111/j.1469-7793.2001.00301.x – ident: e_1_2_6_29_1 doi: 10.1007/s40279-015-0305-z – ident: e_1_2_6_2_1 doi: 10.3945/ajcn.2010.29819 – ident: e_1_2_6_25_1 doi: 10.1056/NEJM199406233302501 – ident: e_1_2_6_69_1 doi: 10.1001/jama.299.11.1259 – ident: e_1_2_6_78_1 doi: 10.1038/nprot.2008.73 – ident: e_1_2_6_88_1 doi: 10.1371/journal.pone.0140903 – ident: e_1_2_6_71_1 doi: 10.1249/MSS.0b013e3181eb6265 – ident: e_1_2_6_18_1 doi: 10.1152/ajpendo.00541.2012 – ident: e_1_2_6_31_1 doi: 10.1186/2044-5040-1-11 – ident: e_1_2_6_86_1 doi: 10.3945/ajcn.2008.26626 – ident: e_1_2_6_93_1 doi: 10.1016/S0006-291X(02)02953-4 – ident: e_1_2_6_48_1 doi: 10.1152/ajpendo.00143.2006 – ident: e_1_2_6_42_1 doi: 10.1152/jappl.1999.87.3.982 – ident: e_1_2_6_61_1 doi: 10.3389/fphys.2012.00260 – ident: e_1_2_6_85_1 doi: 10.1152/jappl.1977.43.6.1001 – ident: e_1_2_6_9_1 doi: 10.1056/NEJM199607043350101 – ident: e_1_2_6_95_1 doi: 10.1152/ajpendo.00650.2013 – ident: e_1_2_6_16_1 doi: 10.1016/S0140-6736(09)61460-4 – volume-title: Protein Turnover in Mammalian Tissues and in the Whole Body year: 1978 ident: e_1_2_6_89_1 – ident: e_1_2_6_15_1 doi: 10.1152/jappl.1992.73.4.1383 – ident: e_1_2_6_30_1 doi: 10.1111/apha.12225 – ident: e_1_2_6_46_1 doi: 10.1113/jphysiol.2008.164483 – ident: e_1_2_6_20_1 doi: 10.1136/jnnp.50.11.1461 – ident: e_1_2_6_24_1 doi: 10.1210/jcem.87.2.8201 – ident: e_1_2_6_10_1 doi: 10.1152/ajpendo.2001.281.6.E1172 – ident: e_1_2_6_58_1 doi: 10.1007/s00421-012-2466-x – ident: e_1_2_6_77_1 doi: 10.1002/mus.23969 – ident: e_1_2_6_81_1 doi: 10.1152/japplphysiol.00489.2015 – volume: 40 start-page: 181 year: 2008 ident: e_1_2_6_84_1 article-title: Physical activity in the United States measured by accelerometer publication-title: Med Sci Sport Exerc doi: 10.1249/mss.0b013e31815a51b3 – ident: e_1_2_6_11_1 doi: 10.1210/jc.2013-1502 – ident: e_1_2_6_73_1 doi: 10.1152/ajpendo.1997.273.1.E99 – ident: e_1_2_6_91_1 doi: 10.1093/gerona/51A.6.M270 – ident: e_1_2_6_82_1 doi: 10.3389/fphys.2014.00030 – reference: 28233314 - J Physiol. 2017 May 1;595(9):2781-2782. doi: 10.1113/JP274154. – reference: 28105708 - J Physiol. 2017 Mar 1;595(5):1447-1448. doi: 10.1113/JP273773. |
SSID | ssj0013099 |
Score | 2.5657291 |
Snippet | Key points
Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age.... Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age. Hypertrophic... Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age. Hypertrophic... Key points Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age.... KEY POINTSResistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age.... Key points * Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age.... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7399 |
SubjectTerms | Adult Aged ageing Aging - physiology DNA - metabolism exercise Exercise Physiology Humans hypertrophy Hypertrophy - metabolism Male Muscle Muscle Physiology Muscle Proteins - biosynthesis Protein Biosynthesis protein synthesis Quadriceps Muscle - metabolism Quadriceps Muscle - pathology Research Paper Resistance Training ribosomal biogenesis Ribosomes - metabolism RNA - metabolism signalling stable isotope Young Adult |
Title | Synchronous deficits in cumulative muscle protein synthesis and ribosomal biogenesis underlie age‐related anabolic resistance to exercise in humans |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP272857 https://www.ncbi.nlm.nih.gov/pubmed/27654940 https://www.proquest.com/docview/1848715902 https://www.proquest.com/docview/1851274530 https://www.proquest.com/docview/1855073683 https://pubmed.ncbi.nlm.nih.gov/PMC5157077 |
Volume | 594 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWgKza8ymOgjIyE6ColiZ04XlaIqhoJNIJWqsQicmwHonYcNEmQhhWfwIYf5Eu413nAUECIta8Tx7nXPtePcwh5IlPUsDYi4GWZBtxIGSgZskBmpTAFy7T1KgovX6XHp3xxlpwNpyrxLkzPDzEtuGFk-PEaA1wVgwpJhGQDi2Us4izBi-R4VAvx0Ov4xwZCKOVEFC6SaOCdharPxorbM9EleHn5lOTP6NVPP0c3yNux4f2pk_ODri0O9KdfOB3_78tukusDKqWHvRvdIlesu012Dx1k5KsNfUr9OVG_AL9Lvr7ZOI2UunXXUGORgaJtaOWo7lZeC-yjpauugedQTwIBJc3GAc5sqoYqZ-i6KuqmXsH7iqp-h2MtFOBdtjXgYQrj27fPX_wVG2vAHpz0otJ0jVYtuihtazoKReFrvcpgc4ecHr04eX4cDOIOgYYxNglSmBoNN4DAbGhLVSSQp0dSFCyyOkHlHGmV1DqzPLKQ0sQF9E1oJWRLqWZxadhdsuNqZ-8TivIhyqhSlxy3AblSkc4MS3VYGg3p5ozsjz861wPzOQpwXOR9BsTyscdn5PFk-aFn-_iNzd7oK_kQ700OeTJknkiFA4-YiiFScftFOQt_BGwAXAmesPCvNgDQWZqxGbnXu9_UkFikkMxzqC22HHMyQKbw7RJXvfeM4QBaRSig6fve7_74bfnJYhnFAIMf_LPlQ3INMKTXcoqSPbLTrjv7CHBaW8zJ1Zgv5z4u534Z7Tt7YT52 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVKWcCmPAp0oICREF2lJHESx-qqAqphaKsKplIXSFFiOxDRcdAkQRpWfEI3_GC_pPc6DxgKCLH2deI499rn-nEOIU9FhBrWijtBnkdOoIRwUuEyR8Q5VxmLpbYqCgeH0fg4mJyEJytkp78L0_JDDAtuGBl2vMYAxwXpLsqRbWBy5HM_DvkVchUFvZE4_-Vb_8cWgivEQBXOQ69jnoW6z_uay3PRJYB5-Zzkz_jVTkB7N8j7vuntuZNP202dbcuvv7A6_ue33SRrHTClu60n3SIr2twm67sGkvLZgj6j9qioXYNfJ9_fLYxEVt2yqajSSEJRV7QwVDYzKwf2RdNZU8FzqOWBgJJqYQBqVkVFU6PovMjKqpzB-7Ki_IDDLRTgdbY5QGIKQ9z5tzN7y0YrsAc_PS0knaNVjV5K65L2WlH4Wis0WN0hx3uvpi_GTqfv4EgYZkMngtlRBQpAmHZ1nmYhpOqe4BnztAxRPEfoVEgZ68DTkNX4GfSNqwUkTJFkfq7YXbJqSqM3CEUFkVSlucwD3AkM0tSTsWKRdHMlIeMcka3-TyeyIz9HDY7TpE2CWNL3-Ig8GSw_t4Qfv7HZ7J0l6UK-SiBVhuQT2XDgEUMxBCvuwKRGwx8BG8BXPAiZ-1cbwOgsitmI3Gv9b2iIzyPI5wOozZc8czBAsvDlElN8tKThgFu5y6HpW9bx_vhtyXRy5PmAhO__s-Vjcm08PdhP9l8fvnlArgOktNJOXrhJVut5ox8CbKuzRzY8LwAxwUCr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgSIhLBRTo0gJGQvQUkcROHB8rYFUWqFailXqLHNuBSF2n2mSR9tafwKV_sL-EGecDVgXE2eN8zYz9JrbfI-SVTFHD2oiAl2UacCNloGTIApmVwhQs09arKHw-To9O-ewsOet3VeJZmI4fYvzhhpnhx2tM8AtT9kmOZAOzeSziLBG3yR1c68PtXDGf_1pBCKUcmcJFEvXEs9D3zdBzcyq6gS9vbpP8Hb76-Wd6n2z3wJEedp5-QG5Z95DsHDoomhdr-pr6rZz-H_kOufqydhpZb6Gsp8YiSUTb0MpRvVp4ua7vli5WDVyHep4GaGnWDqBgUzVUOUOXVVE39QLuV1T1VxwOoQGPmy0BslIYgq4vf_hTMNaAPcTReaXpEq1ajCLa1nTQcsLbeiHA5hE5nb4_eXsU9PoLgYZhMAlSmL0MNwCSbGhLVSRQSkdSFCyyOkFxG2mV1DqzPLJQdcQFfNzQSihoUs3i0rDHZMvVzu4SigofyqhSlxxX6rhSkc4MS3VYGg0V4YQcDK7IdU9OjhoZ53lXpLB8cNqEvBwtLzpCjj_Y7A_ezPuUbHIoZaE4RLYauMTYDMmEKyTKWfAI2AD-ETxh4T9tAEOzNGMT8qQLkPFBYpFCvc2ht9gIndEAybw3W1z1zZN6A64UoYBHP_BB9td3y09m8ygGpPr0vy1fkLvzd9P804fjj3vkHiA-r7wUJftkq12u7DNAVW3x3KfPT46hH7w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synchronous+deficits+in+cumulative+muscle+protein+synthesis+and+ribosomal+biogenesis+underlie+age-related+anabolic+resistance+to+exercise+in+humans&rft.jtitle=The+Journal+of+physiology&rft.au=Brook%2C+Matthew+S&rft.au=Wilkinson%2C+Daniel+J&rft.au=Mitchell%2C+William+K&rft.au=Lund%2C+Jonathan+N&rft.date=2016-12-15&rft.eissn=1469-7793&rft.volume=594&rft.issue=24&rft.spage=7399&rft.epage=7417&rft_id=info:doi/10.1113%2FJP272857&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |