Modularity of methylotrophy, revisited

Summary Methylotrophy is a metabolic capability possessed by microorganisms that allows them to build biomass and to obtain energy from organic substrates containing no carbon–carbon bonds (C1 compounds, such as methane, methanol, etc.). This phenomenon in microbial physiology has been a subject of...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental microbiology Vol. 13; no. 10; pp. 2603 - 2622
Main Author Chistoserdova, Ludmila
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.10.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Methylotrophy is a metabolic capability possessed by microorganisms that allows them to build biomass and to obtain energy from organic substrates containing no carbon–carbon bonds (C1 compounds, such as methane, methanol, etc.). This phenomenon in microbial physiology has been a subject of study for over 100 years, elucidating a set of well‐defined enzymatic systems and pathways enabling this capability. The knowledge gained from the early genetic and genomic approaches to understanding methylotrophy pointed towards the existence of alternative enzymes/pathways for the specific metabolic goals. Different combinations of these systems in different organisms suggested that methylotrophy must be modular in its nature. More recent insights from genomic analyses, including the genomes representing novel types of methylotrophs, seem to reinforce this notion. This review integrates the new findings with the previously developed concept of modularity of methylotrophy.
AbstractList Methylotrophy is a metabolic capability possessed by microorganisms that allows them to build biomass and to obtain energy from organic substrates containing no carbon-carbon bonds (C1 compounds, such as methane, methanol, etc.). This phenomenon in microbial physiology has been a subject of study for over 100 years, elucidating a set of well-defined enzymatic systems and pathways enabling this capability. The knowledge gained from the early genetic and genomic approaches to understanding methylotrophy pointed towards the existence of alternative enzymes/pathways for the specific metabolic goals. Different combinations of these systems in different organisms suggested that methylotrophy must be modular in its nature. More recent insights from genomic analyses, including the genomes representing novel types of methylotrophs, seem to reinforce this notion. This review integrates the new findings with the previously developed concept of modularity of methylotrophy.
Methylotrophy is a metabolic capability possessed by microorganisms that allows them to build biomass and to obtain energy from organic substrates containing no carbon-carbon bonds (C1 compounds, such as methane, methanol, etc.). This phenomenon in microbial physiology has been a subject of study for over 100 years, elucidating a set of well-defined enzymatic systems and pathways enabling this capability. The knowledge gained from the early genetic and genomic approaches to understanding methylotrophy pointed towards the existence of alternative enzymes/pathways for the specific metabolic goals. Different combinations of these systems in different organisms suggested that methylotrophy must be modular in its nature. More recent insights from genomic analyses, including the genomes representing novel types of methylotrophs, seem to reinforce this notion. This review integrates the new findings with the previously developed concept of modularity of methylotrophy.Methylotrophy is a metabolic capability possessed by microorganisms that allows them to build biomass and to obtain energy from organic substrates containing no carbon-carbon bonds (C1 compounds, such as methane, methanol, etc.). This phenomenon in microbial physiology has been a subject of study for over 100 years, elucidating a set of well-defined enzymatic systems and pathways enabling this capability. The knowledge gained from the early genetic and genomic approaches to understanding methylotrophy pointed towards the existence of alternative enzymes/pathways for the specific metabolic goals. Different combinations of these systems in different organisms suggested that methylotrophy must be modular in its nature. More recent insights from genomic analyses, including the genomes representing novel types of methylotrophs, seem to reinforce this notion. This review integrates the new findings with the previously developed concept of modularity of methylotrophy.
Summary Methylotrophy is a metabolic capability possessed by microorganisms that allows them to build biomass and to obtain energy from organic substrates containing no carbon–carbon bonds (C1 compounds, such as methane, methanol, etc.). This phenomenon in microbial physiology has been a subject of study for over 100 years, elucidating a set of well‐defined enzymatic systems and pathways enabling this capability. The knowledge gained from the early genetic and genomic approaches to understanding methylotrophy pointed towards the existence of alternative enzymes/pathways for the specific metabolic goals. Different combinations of these systems in different organisms suggested that methylotrophy must be modular in its nature. More recent insights from genomic analyses, including the genomes representing novel types of methylotrophs, seem to reinforce this notion. This review integrates the new findings with the previously developed concept of modularity of methylotrophy.
Author Chistoserdova, Ludmila
Author_xml – sequence: 1
  givenname: Ludmila
  surname: Chistoserdova
  fullname: Chistoserdova, Ludmila
  email: milachis@u.washington.edu
  organization: Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21443740$$D View this record in MEDLINE/PubMed
BookMark eNqNkstO3DAYha0KVG59BTSrwoKkviW2FyChKbdqoJtWldhYTvJHeJoZD7anTN4eh4FZdNHijS35-46l_3gPbc3dHBAaEZyTtL5Mc8JLmlFFcU4xITmmvOT56gPa3Vxsbc6E7qC9EKYYE8EE_oh2KOGcCY530edb1yw7423sR64dzSA-9J2L3i0e-pORhz822AjNAdpuTRfg0-u-j35eXvwYX2eT71c34_NJVhdM8sxIySktVNlKWksFjAAGiYGqSlWyVFXNqGFtxSVAJRqmsCpKCVQUjcStwGwfHa1zF949LiFEPbOhhq4zc3DLoBVmZSGUKhJ5_E-SiILxUlIh_o-mTMyTQBJ6-Iouqxk0euHtzPhevw0sAXIN1N6F4KHdIATroRs91cPY9VCBHrrRL93oVVLP_lJrG020bh69sd17Ak7XAU-2g_7dD-uL25vhlPxs7dsQYbXxjf-ty_QxCv3r7kp_pdffJveXRFP2DDG6s48
CitedBy_id crossref_primary_10_1016_j_watres_2021_117150
crossref_primary_10_7717_peerj_23
crossref_primary_10_1007_s10482_021_01525_7
crossref_primary_10_1128_genomeA_01588_14
crossref_primary_10_1016_j_copbio_2023_102953
crossref_primary_10_7717_peerj_115
crossref_primary_10_1128_mBio_02430_17
crossref_primary_10_1016_j_watres_2022_119172
crossref_primary_10_1128_JB_00672_13
crossref_primary_10_1093_femsec_fiz125
crossref_primary_10_3390_microorganisms3020175
crossref_primary_10_1016_j_copbio_2022_102685
crossref_primary_10_3389_fmicb_2019_00376
crossref_primary_10_3389_fbioe_2022_1050740
crossref_primary_10_1111_1462_2920_14406
crossref_primary_10_3389_fmicb_2016_01074
crossref_primary_10_1007_s11274_020_02899_y
crossref_primary_10_1128_msystems_00314_24
crossref_primary_10_1128_spectrum_00834_24
crossref_primary_10_1016_j_wen_2018_05_002
crossref_primary_10_1038_s41396_019_0414_z
crossref_primary_10_1371_journal_pone_0239248
crossref_primary_10_1093_femsre_fuab007
crossref_primary_10_1007_s11274_016_2088_2
crossref_primary_10_3389_fmicb_2021_740610
crossref_primary_10_1134_S0003683815020088
crossref_primary_10_1016_j_tim_2018_01_011
crossref_primary_10_1111_j_1462_2920_2012_02765_x
crossref_primary_10_1186_s40168_019_0741_3
crossref_primary_10_3389_fmicb_2021_666929
crossref_primary_10_3389_fmicb_2018_01366
crossref_primary_10_1111_1462_2920_15501
crossref_primary_10_1016_j_bej_2024_109340
crossref_primary_10_1111_1462_2920_14062
crossref_primary_10_1093_femsec_fiw199
crossref_primary_10_1016_j_atmosenv_2017_12_016
crossref_primary_10_1007_s10532_022_09996_9
crossref_primary_10_1007_s10529_018_2615_3
crossref_primary_10_1016_j_colsurfb_2025_114596
crossref_primary_10_1099_ijsem_0_005581
crossref_primary_10_1021_acs_inorgchem_6b00919
crossref_primary_10_1128_AEM_00947_21
crossref_primary_10_3389_fmicb_2021_648868
crossref_primary_10_1128_JB_05375_11
crossref_primary_10_1093_femsle_fnaa207
crossref_primary_10_3354_meps11705
crossref_primary_10_1099_ijsem_0_002856
crossref_primary_10_1016_j_jbiotec_2015_07_023
crossref_primary_10_3389_fmicb_2017_01361
crossref_primary_10_1128_AEM_03292_14
crossref_primary_10_5194_bg_15_5155_2018
crossref_primary_10_1038_s41564_019_0534_2
crossref_primary_10_1021_acscatal_0c04862
crossref_primary_10_1186_s12934_024_02404_2
crossref_primary_10_1007_s00253_015_6713_z
crossref_primary_10_1128_JB_00029_13
crossref_primary_10_1093_gbe_evab082
crossref_primary_10_1021_acssynbio_8b00167
crossref_primary_10_1088_1478_3975_10_1_011001
crossref_primary_10_1111_1462_2920_12454
crossref_primary_10_1128_mSystems_00342_19
crossref_primary_10_1111_1462_2920_12144
crossref_primary_10_3389_fmicb_2015_01291
crossref_primary_10_1007_s10482_019_01331_2
crossref_primary_10_1038_ncomms11728
crossref_primary_10_1007_s00253_014_5766_8
crossref_primary_10_3389_fmicb_2025_1528883
crossref_primary_10_1007_s10482_024_01995_5
crossref_primary_10_1128_spectrum_04241_22
crossref_primary_10_1038_ismej_2017_49
crossref_primary_10_1111_1462_2920_12943
crossref_primary_10_1186_s40168_020_00966_y
crossref_primary_10_1007_s00792_019_01145_0
crossref_primary_10_1021_acssynbio_1c00017
crossref_primary_10_1038_ismej_2014_149
crossref_primary_10_1128_JB_00069_13
crossref_primary_10_1016_j_scitotenv_2017_03_271
crossref_primary_10_1093_femsec_fiaa259
crossref_primary_10_1111_1462_2920_13485
crossref_primary_10_1128_genomeA_01266_15
crossref_primary_10_1155_2011_101298
crossref_primary_10_1128_JB_00478_16
crossref_primary_10_1016_j_copbio_2019_10_002
crossref_primary_10_1016_j_resconrec_2024_107827
crossref_primary_10_3390_microorganisms3010060
crossref_primary_10_3389_fmicb_2017_02392
crossref_primary_10_1016_j_bbamcr_2020_118864
crossref_primary_10_1371_journal_pone_0102458
crossref_primary_10_1002_cbic_202300811
crossref_primary_10_1038_nature20159
crossref_primary_10_3389_fmicb_2016_00616
crossref_primary_10_1111_1758_2229_12927
crossref_primary_10_1007_s00253_018_9358_x
crossref_primary_10_1007_s00775_018_1604_2
crossref_primary_10_1128_MRA_00824_18
crossref_primary_10_1038_s41598_019_41043_1
crossref_primary_10_1016_j_ympev_2018_08_010
crossref_primary_10_1016_j_bbrc_2020_05_198
crossref_primary_10_1038_ismej_2017_31
crossref_primary_10_1038_s41396_021_01057_y
crossref_primary_10_1128_JB_00328_17
crossref_primary_10_3390_microorganisms9061332
crossref_primary_10_1038_s41396_022_01305_9
crossref_primary_10_1371_journal_pcbi_1002455
crossref_primary_10_3390_life7020016
crossref_primary_10_1038_s41467_018_03937_y
crossref_primary_10_1111_j_1462_2920_2011_02605_x
crossref_primary_10_1016_j_ygeno_2020_02_010
crossref_primary_10_1128_msystems_01105_24
crossref_primary_10_1111_j_1462_2920_2012_02857_x
crossref_primary_10_1007_s00203_021_02559_1
crossref_primary_10_1111_1462_2920_12249
crossref_primary_10_1016_j_biteb_2020_100473
crossref_primary_10_1128_AEM_02705_13
crossref_primary_10_31857_S002636562260047X
crossref_primary_10_15406_jmen_2022_10_00375
crossref_primary_10_5194_bg_8_2707_2011
crossref_primary_10_5194_bg_9_2961_2012
crossref_primary_10_3389_fmicb_2015_01185
crossref_primary_10_1186_s40793_018_0314_2
crossref_primary_10_1007_s00284_022_03141_8
crossref_primary_10_1016_j_biortech_2021_125369
crossref_primary_10_1016_j_ymben_2014_12_008
crossref_primary_10_1128_AEM_03110_14
crossref_primary_10_1111_1462_2920_12935
crossref_primary_10_1128_AEM_04160_13
crossref_primary_10_1111_1462_2920_13901
crossref_primary_10_1080_10962247_2022_2056262
crossref_primary_10_1371_journal_pone_0056993
crossref_primary_10_1016_j_cub_2016_04_029
crossref_primary_10_3389_fmicb_2022_857442
crossref_primary_10_7763_IJBBB_2013_V3_165
crossref_primary_10_1111_1462_2920_12182
crossref_primary_10_3389_fmicb_2018_02735
crossref_primary_10_3390_microorganisms3010094
crossref_primary_10_1128_mBio_01279_16
crossref_primary_10_3389_fmicb_2019_02706
crossref_primary_10_1007_s11356_023_30858_1
crossref_primary_10_1016_j_scitotenv_2021_146915
crossref_primary_10_1007_s12275_019_9007_9
crossref_primary_10_3390_bioengineering7030074
crossref_primary_10_1007_s12257_016_0301_7
crossref_primary_10_1038_ismej_2015_68
crossref_primary_10_1186_s40168_018_0500_x
crossref_primary_10_1007_s00284_023_03431_9
crossref_primary_10_7554_eLife_04279
crossref_primary_10_1016_j_jbiosc_2018_05_023
crossref_primary_10_1038_s41467_021_22736_6
crossref_primary_10_3389_fmicb_2023_1253773
crossref_primary_10_1038_ismej_2014_102
crossref_primary_10_1111_1462_2920_14010
crossref_primary_10_1007_s00253_014_6224_3
crossref_primary_10_1016_j_ibiod_2024_105862
crossref_primary_10_1186_s40168_023_01467_4
crossref_primary_10_1128_AEM_00314_11
crossref_primary_10_1007_s00253_015_6906_5
crossref_primary_10_1016_j_jbc_2021_100682
crossref_primary_10_1128_genomeA_01597_14
crossref_primary_10_1111_mmi_13200
crossref_primary_10_3390_microorganisms8060822
crossref_primary_10_1186_1752_0509_5_189
crossref_primary_10_1128_mBio_00985_21
crossref_primary_10_1038_ismej_2015_55
crossref_primary_10_1016_j_bbabio_2022_148932
crossref_primary_10_1073_pnas_2011299117
crossref_primary_10_1016_j_bbabio_2019_07_011
crossref_primary_10_1111_1462_2920_12165
crossref_primary_10_1016_j_soilbio_2020_107908
crossref_primary_10_1038_s41396_019_0471_3
crossref_primary_10_1111_1462_2920_14461
crossref_primary_10_2138_am_2020_7166CCBYNCND
crossref_primary_10_1128_mBio_01306_21
crossref_primary_10_1128_JB_01346_12
crossref_primary_10_1128_JB_00937_15
crossref_primary_10_1016_j_ymben_2020_07_005
crossref_primary_10_1128_aem_01188_22
crossref_primary_10_1128_JB_01009_12
crossref_primary_10_1186_s40643_022_00544_0
crossref_primary_10_1002_pmic_201300515
crossref_primary_10_3389_fmicb_2016_00946
crossref_primary_10_1073_pnas_1619871114
crossref_primary_10_1099_ijsem_0_004098
crossref_primary_10_1264_jsme2_ME17070
crossref_primary_10_3390_microorganisms9030477
crossref_primary_10_1038_s42003_024_07353_5
crossref_primary_10_1038_ismej_2016_198
crossref_primary_10_1007_s00253_014_6240_3
crossref_primary_10_3389_fmicb_2018_00766
crossref_primary_10_3390_microorganisms10071327
crossref_primary_10_1128_AEM_02289_17
crossref_primary_10_1002_qub2_31
crossref_primary_10_1128_mBio_01708_21
crossref_primary_10_1016_j_bbabio_2012_10_013
crossref_primary_10_1007_s00253_020_10514_1
crossref_primary_10_1128_AEM_00480_12
crossref_primary_10_1128_mSystems_00517_20
crossref_primary_10_3389_fmicb_2015_00852
crossref_primary_10_3390_ijms23073947
crossref_primary_10_1186_s40168_020_00801_4
crossref_primary_10_1111_1462_2920_12736
crossref_primary_10_1186_s40168_017_0383_2
crossref_primary_10_1016_j_chemosphere_2019_06_138
crossref_primary_10_1038_ismej_2015_37
crossref_primary_10_1016_j_enzmictec_2020_109518
crossref_primary_10_1016_j_biotechadv_2019_107467
crossref_primary_10_1371_journal_pone_0048271
crossref_primary_10_1007_s10482_016_0787_1
crossref_primary_10_3389_fmicb_2016_01425
crossref_primary_10_3389_fmicb_2024_1483110
crossref_primary_10_1016_j_ecoenv_2021_112749
crossref_primary_10_1128_AEM_01830_19
crossref_primary_10_1128_JB_00959_15
crossref_primary_10_1128_AEM_02852_15
crossref_primary_10_3389_fmicb_2021_756830
crossref_primary_10_1128_genomeA_00515_15
crossref_primary_10_1128_genomeA_01587_14
crossref_primary_10_1134_S0026261722601932
crossref_primary_10_1038_s41598_018_20574_z
crossref_primary_10_1128_mSphere_00462_17
crossref_primary_10_1002_cbic_201900184
crossref_primary_10_3390_life13030627
crossref_primary_10_1007_s10482_023_01811_6
crossref_primary_10_1007_s00203_023_03729_z
crossref_primary_10_1111_mmi_14210
crossref_primary_10_1128_AEM_05834_11
crossref_primary_10_1128_msystems_00004_23
crossref_primary_10_3389_fmicb_2022_849573
crossref_primary_10_1016_j_bbapap_2019_04_001
crossref_primary_10_3390_methane2030019
crossref_primary_10_7717_peerj_2687
crossref_primary_10_1007_s00775_021_01852_0
crossref_primary_10_1016_j_febslet_2014_06_008
crossref_primary_10_1134_S0026261720030121
crossref_primary_10_1007_s00203_018_1509_z
crossref_primary_10_1002_edn3_446
crossref_primary_10_1016_j_jbiotec_2019_12_021
crossref_primary_10_1038_s41564_024_01742_6
crossref_primary_10_1111_1751_7915_14503
crossref_primary_10_1093_femsec_fiv105
crossref_primary_10_1007_s00248_018_1299_5
crossref_primary_10_1080_09168451_2020_1715202
crossref_primary_10_1128_JB_02595_14
crossref_primary_10_1007_s00253_013_4734_z
crossref_primary_10_3389_fmicb_2018_01672
crossref_primary_10_1038_ismej_2012_167
crossref_primary_10_1093_femsec_fiac153
crossref_primary_10_1007_s12257_022_0154_1
crossref_primary_10_7717_peerj_2435
crossref_primary_10_1038_ismej_2014_203
crossref_primary_10_1016_j_biotechadv_2014_03_011
crossref_primary_10_1016_j_cosust_2014_07_004
crossref_primary_10_1016_j_biortech_2024_130759
crossref_primary_10_1186_s40168_020_00936_4
crossref_primary_10_1128_AEM_00703_12
crossref_primary_10_3389_fmars_2017_00023
crossref_primary_10_3389_fmars_2020_00186
crossref_primary_10_1002_lno_12383
crossref_primary_10_1038_s41396_018_0065_5
crossref_primary_10_3389_fmicb_2021_669220
crossref_primary_10_1093_ismejo_wrae241
crossref_primary_10_1007_s10482_024_01981_x
crossref_primary_10_1111_1462_2920_16695
crossref_primary_10_1111_1462_2920_12533
crossref_primary_10_1111_1462_2920_12896
crossref_primary_10_1371_journal_pone_0059188
crossref_primary_10_1371_journal_pone_0056598
crossref_primary_10_1016_j_jiec_2016_01_017
Cites_doi 10.1128/JB.00761-10
10.1093/molbev/msh113
10.1111/j.1558-5646.2009.00757.x
10.1111/j.1462-2920.2010.02348.x
10.1128/jb.177.1.247-251.1995
10.1002/pmic.200800152
10.1016/S0009-2797(02)00168-0
10.1038/417244a
10.1128/JB.186.7.2173-2178.2004
10.1016/S0065-2164(07)00005-6
10.1099/ijs.0.028118-0
10.1128/JB.00512-10
10.1007/s002030050770
10.1046/j.1432-1033.2003.03391.x
10.1038/nature06776
10.1128/JB.00977-10
10.1038/nature08992
10.1128/AEM.00739-10
10.1038/nrmicro2439
10.1074/jbc.M805527200
10.1128/AEM.68.1.289-296.2002
10.1128/jb.177.15.4575-4578.1995
10.1046/j.1432-1327.2000.01413.x
10.1128/jb.176.13.4052-4065.1994
10.1038/nature03170
10.1099/ijs.0.64422-0
10.1128/JB.180.20.5351-5356.1998
10.1073/pnas.0610126104
10.1128/JB.187.21.7511-7517.2005
10.1021/bi971463t
10.1016/j.abb.2004.03.022
10.1128/JB.01259-06
10.1111/j.1365-2958.2009.06989.x
10.1007/0-387-30742-7_20
10.1016/j.pocean.2005.03.005
10.1021/ja105498m
10.1128/JB.187.23.7996-8005.2005
10.1073/pnas.96.8.4615
10.1128/JB.182.23.6645-6650.2000
10.1099/mic.0.26587-0
10.1099/00221287-146-1-233
10.1128/jb.175.6.1814-1822.1993
10.1128/jb.176.7.1957-1968.1994
10.1128/JB.185.10.2980-2987.2003
10.1186/1745-6150-3-26
10.1371/journal.pone.0005584
10.1038/nature09015
10.1128/JB.187.13.4607-4614.2005
10.1046/j.1432-1327.1999.00291.x
10.1128/JB.186.5.1229-1238.2004
10.1099/00221287-143-5-1729
10.1128/JB.01229-07
10.1128/JB.00228-08
10.1128/JB.00045-07
10.1099/mic.0.2007/011346-0
10.1099/mic.0.024968-0
10.1128/JB.01144-10
10.1073/pnas.0905240106
10.1073/pnas.0702791104
10.1128/AEM.68.12.5804-5815.2002
10.1128/JB.00506-10
10.1128/JB.00793-07
10.1126/science.281.5373.99
10.1111/j.1462-2920.2008.01568.x
10.1074/jbc.C100579200
10.1128/JB.187.17.6069-6074.2005
10.1074/jbc.M408013200
10.1099/ijs.0.64191-0
10.1128/JB.187.7.2508-2512.2005
10.1128/JB.01267-09
10.1128/JB.01166-09
10.1016/j.cbpa.2009.06.026
10.1016/S0065-2164(06)61009-5
10.1271/bbb.70.10
10.1111/j.1758-2229.2009.00046.x
10.1042/bj3010289
10.1099/00207713-50-3-955
10.1371/journal.pbio.0030016
10.1128/AEM.00469-10
10.1128/AEM.01457-10
10.1016/S0076-6879(97)80106-1
10.1016/S0022-5193(03)00164-4
10.1128/JB.185.23.7160-7168.2003
10.1107/S0907444904026964
10.1128/AEM.71.12.8846-8854.2005
10.1007/s00239-004-2643-6
10.1186/gb-2005-6-2-208
10.1128/MMBR.62.4.1046-1078.1998
10.1111/j.1758-2229.2009.00022.x
10.1128/JB.186.1.22-28.2004
10.1007/978-94-009-0213-8_18
10.1146/annurev.micro.61.080706.093130
10.1038/nature08883
10.1038/nbt.1488
10.1196/annals.1419.000
10.1007/s00203-010-0577-5
10.1126/science.1100025
10.1111/j.1574-6968.1994.tb06749.x
10.1128/JB.185.24.7169-7175.2003
10.1007/s00253-010-2873-z
10.1007/BF00696462
10.1016/j.abb.2004.03.038
10.1128/JB.185.4.1229-1235.2003
10.1073/pnas.1010732107
10.1126/science.1086997
10.1073/pnas.0702643105
10.1111/j.1758-2229.2010.00192.x
10.1007/s00203-002-0450-2
10.1021/bi971797i
10.1126/science.1182492
10.1128/JB.00180-08
10.1146/annurev.biochem.76.061505.175355
10.1007/BF00418934
10.1099/mic.0.038570-0
10.1111/j.1462-2920.2008.01598.x
10.1128/jb.177.5.1292-1298.1995
10.1128/JB.184.13.3476-3484.2002
10.1128/JB.181.23.7154-7160.1999
10.1128/JB.00076-09
10.1146/annurev.micro.091208.073600
10.1073/pnas.0810932106
10.1371/journal.pbio.0050077
ContentType Journal Article
Copyright 2011 Society for Applied Microbiology and Blackwell Publishing Ltd
2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Copyright_xml – notice: 2011 Society for Applied Microbiology and Blackwell Publishing Ltd
– notice: 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7QL
C1K
7X8
DOI 10.1111/j.1462-2920.2011.02464.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef

Bacteriology Abstracts (Microbiology B)
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-2920
EndPage 2622
ExternalDocumentID 21443740
10_1111_j_1462_2920_2011_02464_x
EMI2464
ark_67375_WNG_D2HJLZF1_2
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7QL
C1K
7X8
ID FETCH-LOGICAL-c5384-a88422596f82c89e31e0e80e29b9b869bc32a3fb48eeb7d3909568e275d80f703
IEDL.DBID DR2
ISSN 1462-2912
1462-2920
IngestDate Fri Jul 11 02:51:13 EDT 2025
Fri Jul 11 07:09:25 EDT 2025
Fri Jul 11 18:39:19 EDT 2025
Mon Jul 21 06:01:03 EDT 2025
Tue Jul 01 00:42:43 EDT 2025
Thu Apr 24 22:54:13 EDT 2025
Wed Jan 22 16:45:25 EST 2025
Wed Oct 30 09:56:17 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5384-a88422596f82c89e31e0e80e29b9b869bc32a3fb48eeb7d3909568e275d80f703
Notes istex:5DA0BB15191CDA701F165C94DCB47A926409BD07
ArticleID:EMI2464
ark:/67375/WNG-D2HJLZF1-2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Review-3
PMID 21443740
PQID 1365041751
PQPubID 24069
PageCount 20
ParticipantIDs proquest_miscellaneous_903657995
proquest_miscellaneous_1753468277
proquest_miscellaneous_1365041751
pubmed_primary_21443740
crossref_primary_10_1111_j_1462_2920_2011_02464_x
crossref_citationtrail_10_1111_j_1462_2920_2011_02464_x
wiley_primary_10_1111_j_1462_2920_2011_02464_x_EMI2464
istex_primary_ark_67375_WNG_D2HJLZF1_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2011
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: October 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Marx, C.J., Laukel, M., Vorholt, J.A., and Lidstrom, M.E. (2003b) Purification of the formate-tetrahydrofolate ligase from Methylobacterium extorquens AM1 and demonstration of its requirement for methylotrophic growth. J Bacteriol 185: 7169-7175.
Liffourrena, A.S., Salvano, M.A., and Lucchesi, G.I. (2010) Pseudomonas putida A ATCC 12633 oxidizes trimethylamine aerobically via two different pathways. Arch Microbiol 192: 471-476.
Bauer, M., Lombardot, T., Teeling, H., Ward, N.L., Amann, R.I., and Glöckner, F.O. (2004) Archaea-like genes for C1-transfer enzymes in Planctomycetes: phylogenetic implications of their unexpected presence in this phylum. J Mol Evol 59: 571-586.
Chistoserdova, L., Laukel, M., Portais, J.C., Vorholt, J.A., and Lidstrom, M.E. (2004b) Multiple formate dehydrogenase enzymes in the facultative methylotroph Methylobacterium extorquens AM1 are dispensable for growth on methanol. J Bacteriol 186: 22-28.
Boden, R., Borodina, E., Wood, A.P., Kelly, D.P., Murrell, J.C., and Schäfer, H. (2011) Purification and characterization of dimethylsulfide monooxygenase from Hyphomicrobium sulfonivorans. J Bacteriol 193: 1250-1258.
Brautaset, T., Jakobsen, M.Ø.M., Flickinger, M.C., Valla, S., and Ellingsen, T.E. (2004) Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus. J Bacteriol 186: 1229-1238.
Erb, T.J., Berg, I.A., Brecht, V., Müller, M., Fuchs, G., and Alber, B.E. (2007) Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalyl-CoA pathway. Proc Natl Acad Sci USA 104: 10631-10636.
Chen, Y., Crombie, A., Rahman, M.T., Dedysh, S.N., Liesack, W., Stott, M.B., et al. (2010a) Complete genome sequence of the aerobic facultative methanotroph Methylocella silvestris BL2. J Bacteriol 192: 3840-3841.
Vuilleumier, S., Chistoserdova, L., Lee, M.-C., Bringel, F., Lajus, A., Zhou, Y., et al. (2009) Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS ONE 4: e5584.
Marx, C.J., Chistoserdova, L., and Lidstrom, M.E. (2003a) Formaldehyde-detoxifying role of the tetrahydromethanopterin-linked pathway in Methylobacterium extorquens AM1. J Bacteriol 185: 7160-7168.
Kang, I., Oh, H.M., Lim, S.I., Ferriera, S., Giovannoni, S.J., and Cho, J.C. (2010) Genome sequence of Fulvimarina pelagi HTCC2506T, a Mn(II)-oxidizing alphaproteobacterium possessing an aerobic anoxygenic photosynthetic gene cluster and xanthorhodopsin. J Bacteriol 192: 4798-4799.
Sowell, S.M., Abraham, P.E., Shah, M., Verberkmoes, N.C., Smith, D.P., Barofsky, D.F., and Giovannoni, S.J. (2010) Environmental proteomics of microbial plankton in a highly productive coastal upwelling system. ISME J (in press): doi:10.1038/ismej.2010.168.
Kalyuzhnaya, M.G., Bowerman, S., Lara, J.C., Lidstrom, M.E., and Chistoserdova, L. (2006b) Methylotenera mobilis gen. nov., sp. nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae. Int J Syst Evol Microbiol 56: 2819-2823.
Kalyuzhnaya, M.G., Lapidus, A., Ivanova, N., Copeland, A.C., McHardy, A.C., Szeto, E., et al. (2008a) High-resolution metagenomics targets specific functional types in complex microbial communities. Nat Biotechnol 26: 1029-1034.
Naqvi, S.W.A., Bange, H.W., Gibb, S.W., Goyet, C., Hatton, A.D., and Upstill-Goddard, R.C. (2005) Biogeochemical ocean-atmosphere transfers in the Arabian Sea. Prog Oceanogr 65: 116-144.
Vorholt, J.A., Chistoserdova, L., Lidstrom, M.E., and Thauer, R.K. (1998) The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1. J Bacteriol 180: 5351-5356.
Leisinger, T., Bader, R., Hermann, R., Schmid-Appert, M., and Vuilleumier, S. (1994) Microbes, enzymes and genes involved in dichloromethane utilization. Biodegradation 5: 237-248.
Vorobev, A.V., Baani, M., Doronina, N.V., Brady, A.L., Liesack, W., Dunfield, P.F., and Dedysh, S.N. (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium possessing only a soluble methane monooxygenase. Int J Syst Evol Microbiol (in press): doi:10.1099/ijs.0.028118-0.
Williams, P.A., Coates, L., Mohammed, F., Gill, R., Erskine, P.T., Coker, A., et al. (2005) The atomic resolution structure of methanol dehydrogenase from Methylobacterium extorquens. Acta Crystallogr D Biol Crystallogr 61: 75-79.
Singh, B.K., Bardgett, R.D., Smith, P., and Reay, D.S. (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8: 779-790.
Brochier, C., and Philippe, H. (2002) Phylogeny: a non-hyperthermophilic ancestor for bacteria. Nature 417: 244.
Laukel, M., Chistoserdova, L., Lidstrom, M.E., and Vorholt, J.A. (2003) The tungsten-containing formate dehydrogenase from Methylobacterium extorquens AM1: purification and properties. Eur J Biochem 270: 325-333.
Chistoserdova, L., Vorholt, J.A., and Lidstrom, M.E. (2005b) A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol 6: 208.
Chistoserdova, L., Crowther, G.J., Vorholt, J.A., Skovran, E., Portais, J.C., and Lidstrom, M.E. (2007a) Identification of a fourth formate dehydrogenase in Methylobacterium extorquens AM1 and confirmation of the essential role of formate oxidation in methylotrophy. J Bacteriol 189: 9076-9081.
Bosch, G., Skovran, E., Xia, Q., Wang, T., Taub, F., Miller, J.A., et al. (2008) Comprehensive proteomics of Methylobacterium extorquens AM1 metabolism under single carbon and nonmethylotrophic conditions. Proteomics 8: 3494-3505.
Schmidt, S., Christen, P., Kiefer, P., and Vorholt, J.A. (2010) Functional investigation of methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1. Microbiology 156: 2575-2586.
Kane, S.R., Chakicherla, A.Y., Chain, P.S., Schmidt, R., Shin, M.W., Legler, T.C., et al. (2007) Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1. J Bacteriol 189: 1931-1945. Erratum (2007) J Bacteriol189: 4973.
Op den Camp, H.G.M., Islam, T., Stott, M.B., Harhangi, H.R., Hynes, A., Schouten, S., et al. (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1: 293-306.
Yoch, D.C. (2002) Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl Environ Microbiol 68: 5804-5815.
Vorholt, J.A., Marx, C.J., Lidstrom, M.E., and Thauer, R.K. (2000) Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol. J Bacteriol 182: 6645-6650.
Kato, N., Yurimoto, H., and Thauer, R.K. (2006) The physiological role of the ribulose monophosphate pathway in bacteria and archaea. Biosci Biotechnol Biochem 70: 10-21.
Chistoserdova, L.V., and Lidstrom, M.E. (1994) Genetics of the serine cycle in Methylobacterium extorquens AM1: identification of sgaA and mtdA and sequences of sgaA, hprA, and mtdA. J Bacteriol 176: 1957-1968.
Baani, M., and Liesack, W. (2008) Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci USA 105: 10203-10208.
Ettwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M., et al. (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464: 543-548.
Lee, M.C., Chou, H.H., and Marx, C.J. (2009) Asymmetric, bimodal trade-offs during adaptation of Methylobacterium to distinct growth substrates. Evolution 63: 2816-2830.
Pomper, B.K., Vorholt, J.A., Chistoserdova, L., Lidstrom, M.E., and Thauer, R.K. (1999) A methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in Methylobacterium extorquens AM1. Eur J Biochem 261: 475-480.
Howard, E.C., Sun, S., Reisch, C.R., Del Valle, D.A., Bürgmann, H., Kiene, R.P., and Moran, M.A. (2011) Changes in dimethylsulfoniopropionate demethylase gene assemblages in response to an induced phytoplankton bloom. Appl Environ Microbiol 77: 524-531.
Nagy, P.L., Marolewski, A., Benkovic, S.J., and Zalkin, H. (1995) Formyltetrahydrofolate hydrolase, a regulatory enzyme that functions to balance pools of tetrahydrofolate and one-carbon tetrahydrofolate adducts in Escherichia coli. J Bacteriol 177: 1292-1298.
Yasueda, H., Kawahara, Y., and Sugimoto, S. (1999) Bacillus subitlis yckG and yckF encode two key enzymes of the ribulose monophosphate pathway used by methylotrophs, and yckH is required for their expression. J Bacteriol 181: 7154-7160.
Anthony, C. (2004) The quinoprotein dehydrogenases for methanol and glucose. Arch Biochem Biophys 428: 2-9.
Chistoserdova, L., Jenkins, C., Kalyuzhnaya, M.G., Marx, C.J., Lapidus, A., Vorholt, J.A., et al. (2004a) The enigmatic planctomycetes may hold a key to the origins of methanogenesis and methylotrophy. Mol Biol Evol 21: 1234-1241.
Kelly, D.P., and Murrell, J.C. (1999) Microbial metabolism of methanesulfonic acid. Arch Microbiol 172: 341-834.
Goenrich, M., Bartoschek, S., Hagemeier, C.H., Griesinger, C., and Vorholt, J.A. (2002) A glutathione-dependent formaldehyde-activating enzyme (Gfa) from Paracoccus denitrificans detected and purified via two-dimensional proton exchange NMR spectroscopy. J Biol Chem 277: 3069-3072.
Peyraud, R., Kiefer, P., Christen, P., Massou, S., Portais, J.C., and Vorholt, J.A. (2009) Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics. Proc Natl Acad Sci USA 106: 4846-4851.
Kalyuzhnaya, M.G., Martens-Habbena, W., Wang, T., Hackett, M., Stolyar, S.M., Stahl, D.A., et al. (2009) Methylophilaceae link methanol oxidation to denitrification in freshwater lake sediment as suggested by stable isotope probing and pure culture analysis. Environ Microbiol Rep 1: 385-392.
Chistoserdova, L., Kalyuzhnaya, M.G., and Lidstrom, M.E. (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63: 477-499.
Bosch, G., Wang, T., Latypova, E., Kalyuzhnaya, M.G.,
2007; 104
1998; 281
2008; 190
2007; 189
2010; 107
1999; 172
2010; 464
1906; 15
2002; 277
2010; 465
2003; 270
2005; 65
2008; 105
2010c; 76
2005b; 6
2007b; 189
2004; 2
1997; 280
2005; 61
2004b; 186
2007; 76
2006a; 56
2011; 193
2009; 13
2008; 1125
1994; 301
2005; 187
1997; 143
1999; 181
1982
2007; 5
2007; 61
2010; 192
2010; 3
2010; 8
2010; 32
2009; 63
2010a; 192
2010; 327
2004a; 21
1996
2011; 77
2002; 417
2004; 428
1998; 62
2004; 305
2007a; 189
1989; 56
2004; 279
2010; 46
2004; 432
2009; 191
2004; 59
2002; 68
1997; 36
2004; 150
2000; 182
2005; 3
2005a; 71
2003; 224
2003; 185
2009; 106
2006; 70
1994; 176
2008b; 190
2000; 50
2009; 155
2008; 8
2011; 13
1995; 177
2008; 3
2010b; 76
2006b; 56
2003b; 185
2005a; 187
2002; 184
2010; 156
1999; 96
2008; 63
2008; 154
1993; 175
1998; 180
2004; 186
2010; 75
2005c; 187
1994; 117
2011
2010
2002; 178
1999; 261
2006
2008; 10
2008; 283
2003a; 185
2010; 89
1998; 37
2008a; 26
2000; 146
2000; 267
2005b; 71
2003; 143–144
2009; 4
2003; 302
2008; 452
2009; 1
1994; 5
e_1_2_7_108_1
e_1_2_7_127_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
Chistoserdova L. (e_1_2_7_29_1) 2005; 71
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_109_1
Yasueda H. (e_1_2_7_126_1) 1999; 181
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_117_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
Nagy P.L. (e_1_2_7_91_1) 1995; 177
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
Sowell S.M. (e_1_2_7_105_1) 2010
Kaserer H. (e_1_2_7_71_1) 1906; 15
e_1_2_7_118_1
e_1_2_7_114_1
Söhngen N.L. (e_1_2_7_104_1) 1906; 15
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_103_1
Bystrykh L.V. (e_1_2_7_17_1) 1993; 175
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_122_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
Anthony C. (e_1_2_7_3_1) 1982
e_1_2_7_119_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
References_xml – reference: Vorholt, J.A., Kalyuzhnaya, M.G., Hagemeier, C.H., Lidstrom, M.E., and Chistoserdova, L. (2005) MtdC, a novel class of methylene tetrahydromethanopterin dehydrogenases. J Bacteriol 187: 6069-6074.
– reference: Hendrickson, E.L., Beck, D.A.C., Wang, T., Lidstrom, M.E., Hackett, M., and Chistoserdova, L. (2010) The expressed genome of Methylobacillus flagellatus defined through comprehensive proteomics and new insights into methylotrophy. J Bacteriol 192: 4859-4867.
– reference: Okubo, Y., Yang, S., Chistoserdova, L., and Lidstrom, M.E. (2010) Alternative route for glyoxylate consumption during growth on two-carbon compounds by Methylobacterium extorquens AM1. J Bacteriol 192: 1813-1823.
– reference: Chistoserdova, L., Laukel, M., Portais, J.C., Vorholt, J.A., and Lidstrom, M.E. (2004b) Multiple formate dehydrogenase enzymes in the facultative methylotroph Methylobacterium extorquens AM1 are dispensable for growth on methanol. J Bacteriol 186: 22-28.
– reference: Erb, T.J., Rétey, J., Fuchs, G., and Alber, B.E. (2008) Ethylmalonyl-CoA mutase from Rhodobacter sphaeroides defines a new subclade of coenzyme B12-dependent acyl-CoA mutases. J Biol Chem 283: 32283-32293.
– reference: Nagy, P.L., Marolewski, A., Benkovic, S.J., and Zalkin, H. (1995) Formyltetrahydrofolate hydrolase, a regulatory enzyme that functions to balance pools of tetrahydrofolate and one-carbon tetrahydrofolate adducts in Escherichia coli. J Bacteriol 177: 1292-1298.
– reference: Balasubramanian, R., Smith, S.M., Rawat, S., Yatsunyk, L.A., Stemmler, T.L., and Rosenzweig, A.C. (2010) Oxidation of methane by a biological dicopper centre. Nature 46: 115-119.
– reference: Gak, E.R., Chistoserdov, A.Y., and Lidstrom, M.E. (1995) Cloning, sequencing, and mutation of a gene for azurin in Methylobacillus flagellatum KT. J Bacteriol 177: 4575-4578.
– reference: Tavormina, P.L., Orphan, V.J., Kalyuzhnaya, M.G., Jetten, M.S.M., and Klotz, M.G. (2010) A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ Microbiol Rep 3: 91-100.
– reference: Chistoserdova, L., Lapidus, A., Han, C., Goodwin, L., Saunders, L., Brettin, T., et al. (2007b) Genome of Methylobacillus flagellatus, molecular basis for obligate methylotrophy, and polyphyletic origin of methylotrophy. J Bacteriol 189: 4020-4027.
– reference: Jensen, L.M., Sanishvili, R., Davidson, V.L., and Wilmot, C.M. (2010) In crystallo posttranslational modification within a MauG/pre-methylamine dehydrogenase complex. Science 327: 1392-1394.
– reference: Naqvi, S.W.A., Bange, H.W., Gibb, S.W., Goyet, C., Hatton, A.D., and Upstill-Goddard, R.C. (2005) Biogeochemical ocean-atmosphere transfers in the Arabian Sea. Prog Oceanogr 65: 116-144.
– reference: Klein, C.R., Kesseler, F.P., Perrei, C., Frank, J., Duine, J.A., and Schwartz, A.C. (1994) A novel dye-linked formaldehyde dehydrogenase with some properties indicating the presence of a protein-bound redox-active quinone cofactor. Biochem J 301: 289-295.
– reference: Dedysh, S.N., Liesack, W., Khmelenina, V.N., Suzina, N.E., Trotsenko, Y.A., Semrau, J.D., et al. (2000) Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50: 955-969.
– reference: Kalyuzhnaya, M.G., and Lidstrom, M.E. (2003) QscR, a LysR-type transcriptional regulator and CbbR homolog, is involved in regulation of the serine cycle genes in Methylobacterium extorquens AM1. J Bacteriol 185: 1229-1235.
– reference: Alber, B.E. (2010) Biotechnological potential of the ethylmalonyl-CoA pathway. Appl Microbiol Biotechnol 89: 17-25.
– reference: Anthony, C. (2004) The quinoprotein dehydrogenases for methanol and glucose. Arch Biochem Biophys 428: 2-9.
– reference: Ashida, H., Saito, Y., Kojima, C., Kobayashi, K., Ogasawara, N., and Yokota, A. (2003) A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO. Science 302: 286-290.
– reference: Studer, A., McAnulla, C., Büchele, R., Leisinger, T., and Vuilleumier, S. (2002) Chloromethane-induced genes define a third C1 utilization pathway in Methylobacterium chloromethanicum CM4. J Bacteriol 184: 3476-3484.
– reference: Tripp, H.J., Kitner, J.B., Schwalbach, M.S., Dacey, J.W., Wilhelm, L.J., and Giovannoni, S.J. (2008) SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452: 741-744.
– reference: Yoch, D.C. (2002) Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl Environ Microbiol 68: 5804-5815.
– reference: Kaserer, H. (1906) The oxidation of hydrogen and methane by microorganisms. Zbl Bact Parasitenk 15: 573-576. (In German).
– reference: Hou, S., Makarova, K.S., Saw, J.H., Senin, P., Ly, B.V., Zhou, Z., et al. (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3: 26.
– reference: Hagemeier, C.H., Chistoserdova, L., Lidstrom, M.E., Thauer, R.K., and Vorholt, J.A. (2000) Characterization of a second methylene tetrahydromethanopterin dehydrogenase from Methylobacterium extorquens AM1. Eur J Biochem 267: 3762-3769.
– reference: Chistoserdova, L., Vorholt, J.A., and Lidstrom, M.E. (2005b) A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol 6: 208.
– reference: Todd, J.D., Curson, A.R., Kirkwood, M., Sullivan, M.J., Green, R.T., and Johnston, A.W. (2011) DddQ, a novel, cupin-containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine bacteria. Environ Microbiol 13: 427-438.
– reference: Chistoserdova, L.V., and Lidstrom, M.E. (1994) Genetics of the serine cycle in Methylobacterium extorquens AM1: identification of sgaA and mtdA and sequences of sgaA, hprA, and mtdA. J Bacteriol 176: 1957-1968.
– reference: Ras, J., Van Ophem, P.W., Reijnders, W.N., Van Spanning, R.J., Duine, J.A., Stouthamer, A.H., and Harms, N. (1995) Isolation, sequencing, and mutagenesis of the gene encoding NAD- and glutathione-dependent formaldehyde dehydrogenase (GD-FALDH) from Paracoccus denitrificans, in which GD-FALDH is essential for methylotrophic growth. J Bacteriol 177: 247-251.
– reference: Wilson, S.M., Gleisten, M.P., and Donohue, T.J. (2008) Identification of proteins involved in formaldehyde metabolism by Rhodobacter sphaeroides. Microbiology 154: 296-305.
– reference: Sowell, S.M., Abraham, P.E., Shah, M., Verberkmoes, N.C., Smith, D.P., Barofsky, D.F., and Giovannoni, S.J. (2010) Environmental proteomics of microbial plankton in a highly productive coastal upwelling system. ISME J (in press): doi:10.1038/ismej.2010.168.
– reference: Vorholt, J.A., Chistoserdova, L., Lidstrom, M.E., and Thauer, R.K. (1998) The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1. J Bacteriol 180: 5351-5356.
– reference: Erb, T.J., Frerichs-Revermann, L., Fuchs, G., and Alber, B.E. (2010) The apparent malate synthase activity of Rhodobacter sphaeroides is due to two paralogous enzymes, (3S)-Malyl-coenzyme A (CoA)/{beta}-methylmalyl-CoA lyase and (3S)-Malyl-CoA thioesterase. J Bacteriol 192: 1249-1258.
– reference: Goenrich, M., Bartoschek, S., Hagemeier, C.H., Griesinger, C., and Vorholt, J.A. (2002) A glutathione-dependent formaldehyde-activating enzyme (Gfa) from Paracoccus denitrificans detected and purified via two-dimensional proton exchange NMR spectroscopy. J Biol Chem 277: 3069-3072.
– reference: Kalyuzhnaya, M.G., and Lidstrom, M.E. (2005) QscR-mediated transcriptional activation of serine cycle genes in Methylobacterium extorquens AM1. J Bacteriol 187: 7511-7517.
– reference: Crowther, G.J., Kosály, G., and Lidstrom, M.E. (2008) Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1. J Bacteriol 190: 5057-5062.
– reference: Bauer, M., Lombardot, T., Teeling, H., Ward, N.L., Amann, R.I., and Glöckner, F.O. (2004) Archaea-like genes for C1-transfer enzymes in Planctomycetes: phylogenetic implications of their unexpected presence in this phylum. J Mol Evol 59: 571-586.
– reference: Chistoserdov, A.Y., Chistoserdova, L.V., McIntire, W.S., and Lidstrom, M.E. (1994) Genetic organization of the mau cluster in Methylobacterium extorquens AM1: complete nucleotide sequence and generation and characteristics of mau mutants. J Bacteriol 176: 4052-4065.
– reference: Leisinger, T., Bader, R., Hermann, R., Schmid-Appert, M., and Vuilleumier, S. (1994) Microbes, enzymes and genes involved in dichloromethane utilization. Biodegradation 5: 237-248.
– reference: Tanaka, N., Kusakabe, Y., Ito, K., Yoshimoto, T., and Nakamura, K.T. (2003) Crystal structure of glutathione-independent formaldehyde dehydrogenase. Chem Biol Interact 143-144: 211-218.
– reference: Liffourrena, A.S., Salvano, M.A., and Lucchesi, G.I. (2010) Pseudomonas putida A ATCC 12633 oxidizes trimethylamine aerobically via two different pathways. Arch Microbiol 192: 471-476.
– reference: Williams, P.A., Coates, L., Mohammed, F., Gill, R., Erskine, P.T., Coker, A., et al. (2005) The atomic resolution structure of methanol dehydrogenase from Methylobacterium extorquens. Acta Crystallogr D Biol Crystallogr 61: 75-79.
– reference: Lidstrom, M.E., Anthony, C., Biville, F., Gasser, F., Goodwin, P., Hanson, R.S., and Harms, N. (1994) New unified nomenclature for genes involved in the oxidation of methanol in gram-negative bacteria. FEMS Microbiol Lett 117: 103-106.
– reference: Chen, Y., Crombie, A., Rahman, M.T., Dedysh, S.N., Liesack, W., Stott, M.B., et al. (2010a) Complete genome sequence of the aerobic facultative methanotroph Methylocella silvestris BL2. J Bacteriol 192: 3840-3841.
– reference: Meschi, F., Wiertz, F., Klauss, L., Cavalieri, C., Blok, A., Ludwig, B., et al. (2010) Amicyanin transfers electrons from methylamine dehydrogenase to cytochrome c-551i via a ping-pong mechanism, not a ternary complex. J Am Chem Soc 32: 14537-14545.
– reference: Chen, Y., Scanlan, J., Song, L., Crombie, A., Rahman, M.T., Schäfer, H., and Murrell, J.C. (2010b) {gamma}-Glutamylmethylamide is an essential intermediate in the metabolism of methylamine by Methylocella silvestris. Appl Environ Microbiol 76: 4530-4537.
– reference: Op den Camp, H.G.M., Islam, T., Stott, M.B., Harhangi, H.R., Hynes, A., Schouten, S., et al. (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1: 293-306.
– reference: Denef, V.J., Patrauchan, M.A., Florizone, C., Park, J., Tsoi, T.V., Verstraete, W., et al. (2005) Growth substrate- and phase-specific expression of biphenyl, benzoate, and C1 metabolic pathways in Burkholderia xenovorans LB400. J Bacteriol 187: 7996-8005.
– reference: Lee, M.C., Chou, H.H., and Marx, C.J. (2009) Asymmetric, bimodal trade-offs during adaptation of Methylobacterium to distinct growth substrates. Evolution 63: 2816-2830.
– reference: Ettwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M., et al. (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464: 543-548.
– reference: Chistoserdova, L., Kalyuzhnaya, M.G., and Lidstrom, M.E. (2005a) C1 transfer modules: from genomics to ecology. ASM News 71: 521-528.
– reference: Kalyuzhnaya, M.G., Martens-Habbena, W., Wang, T., Hackett, M., Stolyar, S.M., Stahl, D.A., et al. (2009) Methylophilaceae link methanol oxidation to denitrification in freshwater lake sediment as suggested by stable isotope probing and pure culture analysis. Environ Microbiol Rep 1: 385-392.
– reference: Kelly, D.P., and Murrell, J.C. (1999) Microbial metabolism of methanesulfonic acid. Arch Microbiol 172: 341-834.
– reference: Kalyuzhnaya, M.G., Hristova, K.R., Lidstrom, M.E., and Chistoserdova, L. (2008b) Characterization of a novel methanol dehydrogenase in representatives of Burkholderiales: implications for environmental detection of methylotrophy and evidence for convergent evolution. J Bacteriol 190: 3817-3823.
– reference: Pomper, B.K., Vorholt, J.A., Chistoserdova, L., Lidstrom, M.E., and Thauer, R.K. (1999) A methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in Methylobacterium extorquens AM1. Eur J Biochem 261: 475-480.
– reference: Vorholt, J.A., Marx, C.J., Lidstrom, M.E., and Thauer, R.K. (2000) Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol. J Bacteriol 182: 6645-6650.
– reference: Davidson, V.L. (2004) Electron transfer in quinoproteins. Arch Biochem Biophys 428: 32-40.
– reference: Vuilleumier, S., Chistoserdova, L., Lee, M.-C., Bringel, F., Lajus, A., Zhou, Y., et al. (2009) Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS ONE 4: e5584.
– reference: Kao, W.C., Chen, Y.R., Yi, E.C., Lee, H., Tian, Q., Wu, K.M., et al. (2004) Quantitative proteomic analysis of metabolic regulation by copper ions in Methylococcus capsulatus (Bath). J Biol Chem 279: 51554-51560.
– reference: Peyraud, R., Kiefer, P., Christen, P., Massou, S., Portais, J.C., and Vorholt, J.A. (2009) Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics. Proc Natl Acad Sci USA 106: 4846-4851.
– reference: Rusch, D.B., Halpern, A.L., Sutton, G., Heidelberg, K.B., Williamson, S., Yooseph, D., et al. (2007) The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5: e77.
– reference: Bosch, G., Wang, T., Latypova, E., Kalyuzhnaya, M.G., Hackett, M., and Chistoserdova, L. (2009) Insights into the physiology of Methylotenera mobilis as revealed by metagenome-based shotgun proteomic analysis. Microbiol 155: 1103-1110.
– reference: Baker, S.C., Ferguson, S.J., Ludwig, B., Page, M.D., Richter, O.M., and van Spanning, R.J. (1998) Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility. Microbiol Mol Biol Rev 62: 1046-1078.
– reference: Boden, R., Borodina, E., Wood, A.P., Kelly, D.P., Murrell, J.C., and Schäfer, H. (2011) Purification and characterization of dimethylsulfide monooxygenase from Hyphomicrobium sulfonivorans. J Bacteriol 193: 1250-1258.
– reference: Vannelli, T., Messmer, M., Studer, A., Vuilleumier, S., and Leisinger, T. (1999) A corrinoid-dependent catabolic pathway for growth of a Methylobacterium strain with chloromethane. Proc Natl Acad Sci USA 96: 4615-4620.
– reference: Hartmann, C., and McIntire, W.S. (1997) Amine-oxidizing quinoproteins. Methods Enzymol 280: 98-150.
– reference: Söhngen, N.L. (1906) Uber bakterien welche methan ab kohlenstoffnahrung und energiequelle gerbrauchen. Zbl Bact Parasitenk 15: 513-517. (In German).
– reference: Chistoserdova, L., Jenkins, C., Kalyuzhnaya, M.G., Marx, C.J., Lapidus, A., Vorholt, J.A., et al. (2004a) The enigmatic planctomycetes may hold a key to the origins of methanogenesis and methylotrophy. Mol Biol Evol 21: 1234-1241.
– reference: Marx, C.J., Chistoserdova, L., and Lidstrom, M.E. (2003a) Formaldehyde-detoxifying role of the tetrahydromethanopterin-linked pathway in Methylobacterium extorquens AM1. J Bacteriol 185: 7160-7168.
– reference: Schäfer, H., Miller, L.G., Oremland, R.S., and Murrell, J.C. (2007) Bacterial cycling of methyl halides. Adv Appl Microbiol 61: 307-346.
– reference: Wilce, M.C., Dooley, D.M., Freeman, H.C., Guss, J.M., Matsunami, H., McIntire, W.S., et al. (1997) Crystal structures of the copper-containing amine oxidase from Arthrobacter globiformis in the holo and apo forms: implications for the biogenesis of topaquinone. Biochemistry 36: 16116-16133.
– reference: Yasueda, H., Kawahara, Y., and Sugimoto, S. (1999) Bacillus subitlis yckG and yckF encode two key enzymes of the ribulose monophosphate pathway used by methylotrophs, and yckH is required for their expression. J Bacteriol 181: 7154-7160.
– reference: Knittel, K., and Boetius, A. (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63: 311-334.
– reference: Hallam, S.J., Putnam, N., Preston, C.M., Detter, J.C., Rokhsar, D., Richardson, P.M., and DeLong, E.F. (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305: 1457-1462.
– reference: Chistoserdova, L., Kalyuzhnaya, M.G., and Lidstrom, M.E. (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63: 477-499.
– reference: Baani, M., and Liesack, W. (2008) Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci USA 105: 10203-10208.
– reference: Kane, S.R., Chakicherla, A.Y., Chain, P.S., Schmidt, R., Shin, M.W., Legler, T.C., et al. (2007) Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1. J Bacteriol 189: 1931-1945. Erratum (2007) J Bacteriol189: 4973.
– reference: Howard, E.C., Sun, S., Reisch, C.R., Del Valle, D.A., Bürgmann, H., Kiene, R.P., and Moran, M.A. (2011) Changes in dimethylsulfoniopropionate demethylase gene assemblages in response to an induced phytoplankton bloom. Appl Environ Microbiol 77: 524-531.
– reference: Di Giulio, M. (2003) The ancestor of the Bacteria domain was a hyperthermophile. J Theor Biol 224: 277-283.
– reference: Kato, N., Yurimoto, H., and Thauer, R.K. (2006) The physiological role of the ribulose monophosphate pathway in bacteria and archaea. Biosci Biotechnol Biochem 70: 10-21.
– reference: Laukel, M., Chistoserdova, L., Lidstrom, M.E., and Vorholt, J.A. (2003) The tungsten-containing formate dehydrogenase from Methylobacterium extorquens AM1: purification and properties. Eur J Biochem 270: 325-333.
– reference: Marx, C.J., Miller, J.A., Chistoserdova, L., and Lidstrom, M.E. (2004) Multiple formaldehyde oxidation/detoxification pathways in Burkholderia fungorum LB400. J Bacteriol 186: 2173-2178.
– reference: Moran, M.A., Buchan, A., González, J.M., Heidelberg, J.F., Whitman, W.B., Kiene, R.P., et al. (2004) Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432: 910-913.
– reference: Bosch, G., Skovran, E., Xia, Q., Wang, T., Taub, F., Miller, J.A., et al. (2008) Comprehensive proteomics of Methylobacterium extorquens AM1 metabolism under single carbon and nonmethylotrophic conditions. Proteomics 8: 3494-3505.
– reference: Vorobev, A.V., Baani, M., Doronina, N.V., Brady, A.L., Liesack, W., Dunfield, P.F., and Dedysh, S.N. (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium possessing only a soluble methane monooxygenase. Int J Syst Evol Microbiol (in press): doi:10.1099/ijs.0.028118-0.
– reference: Zhang, X., Reddy, S.Y., and Bruice, T.C. (2007) Mechanism of methanol oxidation by quinoprotein methanol dehydrogenase. Proc Natl Acad Sci USA 104: 745-749.
– reference: Greenberg, D.E., Porcella, S.F., Zelazny, A.M., Virtaneva, K., Sturdevant, D.E., Kupko, J.J., 3rd, et al. (2007) Genome sequence analysis of the emerging human pathogenic acetic acid bacterium Granulibacter bethesdensis. J Bacteriol 189: 8727-8736.
– reference: Kalyuzhnaya, M.G., De Marco, P., Bowerman, S., Pacheco, C.C., Lara, J.C., Lidstrom, M.E., and Chistoserdova, L. (2006a) Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates. Int J Syst Evol Microbiol 56: 2517-2522.
– reference: Brautaset, T., Jakobsen, M.Ø.M., Flickinger, M.C., Valla, S., and Ellingsen, T.E. (2004) Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus. J Bacteriol 186: 1229-1238.
– reference: Chistoserdova, L., Chen, S.W., Lapidus, A., and Lidstrom, M.E. (2003) Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol 185: 2980-2987.
– reference: Chistoserdova, L., Crowther, G.J., Vorholt, J.A., Skovran, E., Portais, J.C., and Lidstrom, M.E. (2007a) Identification of a fourth formate dehydrogenase in Methylobacterium extorquens AM1 and confirmation of the essential role of formate oxidation in methylotrophy. J Bacteriol 189: 9076-9081.
– reference: Delmotte, N., Knief, C., Chaffron, S., Innerebner, G., Roschitzki, B., Schlapbach, R., et al. (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci USA 106: 16428-16433.
– reference: Baxter, N.J., Scanlan, J., De Marco, P., Wood, A.P., and Murrell, J.C. (2002) Duplicate copies of genes encoding methanesulfonate monooxygenase in Marinosulfonomonas methylotropha strain TR3 and detection of methanesulfonate utilizers in the environment. Appl Environ Microbiol 68: 289-296.
– reference: Hakemian, A.S., and Rosenzweig, A.C. (2007) The biochemistry of methane oxidation. Annu Rev Biochem 76: 223-241.
– reference: Kang, I., Oh, H.M., Lim, S.I., Ferriera, S., Giovannoni, S.J., and Cho, J.C. (2010) Genome sequence of Fulvimarina pelagi HTCC2506T, a Mn(II)-oxidizing alphaproteobacterium possessing an aerobic anoxygenic photosynthetic gene cluster and xanthorhodopsin. J Bacteriol 192: 4798-4799.
– reference: Stein, L.Y., Yoon, S., Semrau, J.D., Dispirito, A.A., Murrell, J.C., Vuilleumier, S., et al. (2010) Genome sequence of the obligate methanotroph, Methylosinus trichosporium strain OB3b. J Bacteriol 192: 6497-6498.
– reference: Kalyuzhnaya, M.G., Korotkova, N., Crowther, G., Marx, C.J., Lidstrom, M.E., and Chistoserdova, L. (2005a) Analysis of gene islands involved in methanopterin-linked C1 transfer reactions reveals new functions and provides evolutionary insights. J Bacteriol 187: 4607-4614.
– reference: Chistoserdova, L., and Lidstrom, M.E. (1997) Molecular and mutational analysis of a DNA region separating two methylotrophy gene clusters in Methylobacterium extorquens AM1. Microbiol 143: 1729-1736.
– reference: Wilmot, C.M., and Davidson, V.L. (2009) Uncovering novel biochemistry in the mechanism of tryptophan tryptophylquinone cofactor biosynthesis. Curr Opin Chem Biol 13: 469-474.
– reference: Marx, C.J., Laukel, M., Vorholt, J.A., and Lidstrom, M.E. (2003b) Purification of the formate-tetrahydrofolate ligase from Methylobacterium extorquens AM1 and demonstration of its requirement for methylotrophic growth. J Bacteriol 185: 7169-7175.
– reference: McCarren, J., Becker, J.W., Repeta, D.J., Shi, Y., Young, C.R., Malmstrom, R.R., et al. (2010) Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Natl Acad Sci USA 107: 16420-16427.
– reference: Ward, N., Larsen, Ø., Sakwa, J., Bruseth, L., Khouri, H., Durkin, A.S., et al. (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol 2: e303.
– reference: Schmidt, S., Christen, P., Kiefer, P., and Vorholt, J.A. (2010) Functional investigation of methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1. Microbiology 156: 2575-2586.
– reference: Chistoserdova, L., Gomelsky, L., Vorholt, J.A., Gomelsky, M., Tsygankov, Y.D., Thauer, R.K., and Lidstrom, M.E. (2000) Analysis of two formaldehyde oxidation pathways in Methylobacillus flagellatus KT, a ribulose monophosphate cycle methylotroph. Microbiol 146: 233-238.
– reference: Chistoserdova, L., Rasche, M.E., and Lidstrom, M.E. (2005c) Novel dephospho-tetrahydromethanopterin biosynthesis genes discovered via mutagenesis in Methylobacterium extorquens AM1. J Bacteriol 187: 2508-2512.
– reference: Marx, C.J., Van Dien, S.J., and Lidstrom, M.E. (2005) Flux analysis uncovers key role of functional redundancy in formaldehyde metabolism. PLoS Biol 3: e16.
– reference: Roca, A., Rodríguez-Herva, J.J., and Ramos, J.L. (2009) Redundancy of enzymes for formaldehyde detoxification in Pseudomonas putida. J Bacteriol 191: 3367-3374.
– reference: Vorholt, J.A. (2002) Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria. Arch Microbiol 178: 239-249.
– reference: Trotsenko, Y.A., and Murrell, J.C. (2008) Metabolic aspects of aerobic obligate methanotrophy. Adv Appl Microbiol 63: 183-229.
– reference: Singh, B.K., Bardgett, R.D., Smith, P., and Reay, D.S. (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8: 779-790.
– reference: Thauer, R.K., and Shima, S. (2008) Methane as fuel for anaerobic microorganisms. Ann NY Acad Sci 1125: 158-170.
– reference: Scheller, S., Goenrich, M., Boecher, R., Thauer, R.K., and Jaun, B. (2010) The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465: 606-608.
– reference: Kalyuzhnaya, M.G., Bowerman, S., Nercessian, O., Lidstrom, M.E., and Chistoserdova, L. (2005b) Highly divergent genes for methanopterin-linked C1 transfer reactions in Lake Washington, assessed via metagenomic analysis and mRNA detection. Appl Environ Microbiol 71: 8846-8854.
– reference: De Boer, L., Brouwer, J.W., Van Hassel, C.W., Levering, P.R., and Dijkhuizen, L. (1989) Nitrogen metabolism in the facultative methylotroph Arthrobacter P1 grown with various amines or ammonia as nitrogen sources. Antonie Van Leeuwenhoek 56: 221-232.
– reference: Chistoserdova, L., Vorholt, J.A., Thauer, R.K., and Lidstrom, M.E. (1998) C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaea. Science 281: 99-102.
– reference: Brochier, C., and Philippe, H. (2002) Phylogeny: a non-hyperthermophilic ancestor for bacteria. Nature 417: 244.
– reference: Chen, Y., McAleer, K.L., and Murrell, J.C. (2010c) Monomethylamine as a nitrogen source for a nonmethylotrophic bacterium, Agrobacterium tumefaciens. Appl Environ Microbiol 76: 4102-4104.
– reference: Giovannoni, S.J., Hayakawa, D.H., Tripp, H.J., Stingl, U., Givan, S.A., Cho, J.C., et al. (2008) The small genome of an abundant coastal ocean methylotroph. Environ Microbiol 10: 1771-1782.
– reference: Kalyuzhnaya, M.G., Lapidus, A., Ivanova, N., Copeland, A.C., McHardy, A.C., Szeto, E., et al. (2008a) High-resolution metagenomics targets specific functional types in complex microbial communities. Nat Biotechnol 26: 1029-1034.
– reference: Marx, C.J., and Lidstrom, M.E. (2004) Development of an insertional expression vector system for Methylobacterium extorquens AM1 and generation of null mutants lacking mtdA and/or fch. Microbiology 150: 9-19.
– reference: Bystrykh, L.V., Vonck, J., van Bruggen, E.F., van Beeumen, J., Samyn, B., Govorukhina, N.I., et al. (1993) Electron microscopic analysis and structural characterization of novel NADP(H)-containing methanol: N,N′-dimethyl-4-nitrosoaniline oxidoreductases from the gram-positive methylotrophic bacteria Amycolatopsis methanolica and Mycobacterium gastri MB19. J Bacteriol 175: 1814-1822.
– reference: Latypova, E., Yang, S., Wang, Y.S., Wang, T., Chavkin, T.A., Hackett, M., et al. (2010) Genetics of the glutamate-mediated methylamine utilization pathway in the facultative methylotrophic beta-proteobacterium Methyloversatilis universalis FAM5. Mol Microbiol 75: 426-439.
– reference: Erb, T.J., Berg, I.A., Brecht, V., Müller, M., Fuchs, G., and Alber, B.E. (2007) Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalyl-CoA pathway. Proc Natl Acad Sci USA 104: 10631-10636.
– reference: Barber, R.D., and Donohue, T.J. (1998) Function of a glutathione-dependent formaldehyde dehydrogenase in Rhodobacter sphaeroides formaldehyde oxidation and assimilation. Biochemistry 37: 530-537.
– reference: Kalyuzhnaya, M.G., Bowerman, S., Lara, J.C., Lidstrom, M.E., and Chistoserdova, L. (2006b) Methylotenera mobilis gen. nov., sp. nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae. Int J Syst Evol Microbiol 56: 2819-2823.
– reference: Anthony, C. (1982) The Biochemistry of Methylotrophs. London, UK: Academic Press.
– volume: 283
  start-page: 32283
  year: 2008
  end-page: 32293
  article-title: Ethylmalonyl‐CoA mutase from defines a new subclade of coenzyme B12‐dependent acyl‐CoA mutases
  publication-title: J Biol Chem
– volume: 154
  start-page: 296
  year: 2008
  end-page: 305
  article-title: Identification of proteins involved in formaldehyde metabolism by
  publication-title: Microbiology
– volume: 6
  start-page: 208
  year: 2005b
  article-title: A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea
  publication-title: Genome Biol
– volume: 184
  start-page: 3476
  year: 2002
  end-page: 3484
  article-title: Chloromethane‐induced genes define a third C1 utilization pathway in CM4
  publication-title: J Bacteriol
– volume: 176
  start-page: 1957
  year: 1994
  end-page: 1968
  article-title: Genetics of the serine cycle in AM1: identification of and and sequences of and
  publication-title: J Bacteriol
– volume: 1
  start-page: 385
  year: 2009
  end-page: 392
  article-title: link methanol oxidation to denitrification in freshwater lake sediment as suggested by stable isotope probing and pure culture analysis
  publication-title: Environ Microbiol Rep
– volume: 62
  start-page: 1046
  year: 1998
  end-page: 1078
  article-title: Molecular genetics of the genus : metabolically versatile bacteria with bioenergetic flexibility
  publication-title: Microbiol Mol Biol Rev
– volume: 190
  start-page: 5057
  year: 2008
  end-page: 5062
  article-title: Formate as the main branch point for methylotrophic metabolism in AM1
  publication-title: J Bacteriol
– volume: 13
  start-page: 469
  year: 2009
  end-page: 474
  article-title: Uncovering novel biochemistry in the mechanism of tryptophan tryptophylquinone cofactor biosynthesis
  publication-title: Curr Opin Chem Biol
– volume: 428
  start-page: 32
  year: 2004
  end-page: 40
  article-title: Electron transfer in quinoproteins
  publication-title: Arch Biochem Biophys
– volume: 8
  start-page: 779
  year: 2010
  end-page: 790
  article-title: Microorganisms and climate change: terrestrial feedbacks and mitigation options
  publication-title: Nat Rev Microbiol
– volume: 452
  start-page: 741
  year: 2008
  end-page: 744
  article-title: SAR11 marine bacteria require exogenous reduced sulphur for growth
  publication-title: Nature
– volume: 432
  start-page: 910
  year: 2004
  end-page: 913
  article-title: Genome sequence of reveals adaptations to the marine environment
  publication-title: Nature
– volume: 279
  start-page: 51554
  year: 2004
  end-page: 51560
  article-title: Quantitative proteomic analysis of metabolic regulation by copper ions in (Bath)
  publication-title: J Biol Chem
– volume: 61
  start-page: 75
  year: 2005
  end-page: 79
  article-title: The atomic resolution structure of methanol dehydrogenase from
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 5
  start-page: e77
  year: 2007
  article-title: The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific
  publication-title: PLoS Biol
– volume: 75
  start-page: 426
  year: 2010
  end-page: 439
  article-title: Genetics of the glutamate‐mediated methylamine utilization pathway in the facultative methylotrophic beta‐proteobacterium FAM5
  publication-title: Mol Microbiol
– volume: 46
  start-page: 115
  year: 2010
  end-page: 119
  article-title: Oxidation of methane by a biological dicopper centre
  publication-title: Nature
– volume: 186
  start-page: 1229
  year: 2004
  end-page: 1238
  article-title: Plasmid‐dependent methylotrophy in thermotolerant
  publication-title: J Bacteriol
– volume: 187
  start-page: 2508
  year: 2005c
  end-page: 2512
  article-title: Novel dephospho‐tetrahydromethanopterin biosynthesis genes discovered via mutagenesis in AM1
  publication-title: J Bacteriol
– volume: 104
  start-page: 745
  year: 2007
  end-page: 749
  article-title: Mechanism of methanol oxidation by quinoprotein methanol dehydrogenase
  publication-title: Proc Natl Acad Sci USA
– volume: 71
  start-page: 8846
  year: 2005b
  end-page: 8854
  article-title: Highly divergent genes for methanopterin‐linked C1 transfer reactions in Lake Washington, assessed via metagenomic analysis and mRNA detection
  publication-title: Appl Environ Microbiol
– volume: 302
  start-page: 286
  year: 2003
  end-page: 290
  article-title: A functional link between RuBisCO‐like protein of and photosynthetic RuBisCO
  publication-title: Science
– volume: 181
  start-page: 7154
  year: 1999
  end-page: 7160
  article-title: and encode two key enzymes of the ribulose monophosphate pathway used by methylotrophs, and is required for their expression
  publication-title: J Bacteriol
– volume: 192
  start-page: 4798
  year: 2010
  end-page: 4799
  article-title: Genome sequence of HTCC2506T, a Mn(II)‐oxidizing alphaproteobacterium possessing an aerobic anoxygenic photosynthetic gene cluster and xanthorhodopsin
  publication-title: J Bacteriol
– volume: 192
  start-page: 1249
  year: 2010
  end-page: 1258
  article-title: The apparent malate synthase activity of is due to two paralogous enzymes, (3S)‐Malyl‐coenzyme A (CoA)/{beta}‐methylmalyl‐CoA lyase and (3S)‐Malyl‐CoA thioesterase
  publication-title: J Bacteriol
– volume: 177
  start-page: 4575
  year: 1995
  end-page: 4578
  article-title: Cloning, sequencing, and mutation of a gene for azurin in KT
  publication-title: J Bacteriol
– volume: 3
  start-page: 26
  year: 2008
  article-title: Complete genome sequence of the extremely acidophilic methanotroph isolate V4, , a representative of the bacterial phylum Verrucomicrobia
  publication-title: Biol Direct
– volume: 56
  start-page: 221
  year: 1989
  end-page: 232
  article-title: Nitrogen metabolism in the facultative methylotroph P1 grown with various amines or ammonia as nitrogen sources
  publication-title: Antonie Van Leeuwenhoek
– volume: 192
  start-page: 1813
  year: 2010
  end-page: 1823
  article-title: Alternative route for glyoxylate consumption during growth on two‐carbon compounds by AM1
  publication-title: J Bacteriol
– volume: 224
  start-page: 277
  year: 2003
  end-page: 283
  article-title: The ancestor of the Bacteria domain was a hyperthermophile
  publication-title: J Theor Biol
– volume: 32
  start-page: 14537
  year: 2010
  end-page: 14545
  article-title: Amicyanin transfers electrons from methylamine dehydrogenase to cytochrome c‐551i via a ping‐pong mechanism, not a ternary complex
  publication-title: J Am Chem Soc
– volume: 193
  start-page: 1250
  year: 2011
  end-page: 1258
  article-title: Purification and characterization of dimethylsulfide monooxygenase from
  publication-title: J Bacteriol
– volume: 267
  start-page: 3762
  year: 2000
  end-page: 3769
  article-title: Characterization of a second methylene tetrahydromethanopterin dehydrogenase from AM1
  publication-title: Eur J Biochem
– volume: 185
  start-page: 1229
  year: 2003
  end-page: 1235
  article-title: QscR, a LysR‐type transcriptional regulator and CbbR homolog, is involved in regulation of the serine cycle genes in AM1
  publication-title: J Bacteriol
– volume: 192
  start-page: 3840
  year: 2010a
  end-page: 3841
  article-title: Complete genome sequence of the aerobic facultative methanotroph BL2
  publication-title: J Bacteriol
– volume: 280
  start-page: 98
  year: 1997
  end-page: 150
  article-title: Amine‐oxidizing quinoproteins
  publication-title: Methods Enzymol
– volume: 156
  start-page: 2575
  year: 2010
  end-page: 2586
  article-title: Functional investigation of methanol dehydrogenase‐like protein XoxF in AM1
  publication-title: Microbiology
– volume: 76
  start-page: 223
  year: 2007
  end-page: 241
  article-title: The biochemistry of methane oxidation
  publication-title: Annu Rev Biochem
– volume: 117
  start-page: 103
  year: 1994
  end-page: 106
  article-title: New unified nomenclature for genes involved in the oxidation of methanol in gram‐negative bacteria
  publication-title: FEMS Microbiol Lett
– volume: 186
  start-page: 2173
  year: 2004
  end-page: 2178
  article-title: Multiple formaldehyde oxidation/detoxification pathways in LB400
  publication-title: J Bacteriol
– volume: 189
  start-page: 9076
  year: 2007a
  end-page: 9081
  article-title: Identification of a fourth formate dehydrogenase in AM1 and confirmation of the essential role of formate oxidation in methylotrophy
  publication-title: J Bacteriol
– volume: 155
  start-page: 1103
  year: 2009
  end-page: 1110
  article-title: Insights into the physiology of as revealed by metagenome‐based shotgun proteomic analysis
  publication-title: Microbiol
– volume: 187
  start-page: 7511
  year: 2005
  end-page: 7517
  article-title: QscR‐mediated transcriptional activation of serine cycle genes in AM1
  publication-title: J Bacteriol
– volume: 70
  start-page: 10
  year: 2006
  end-page: 21
  article-title: The physiological role of the ribulose monophosphate pathway in bacteria and archaea
  publication-title: Biosci Biotechnol Biochem
– volume: 65
  start-page: 116
  year: 2005
  end-page: 144
  article-title: Biogeochemical ocean‐atmosphere transfers in the Arabian Sea
  publication-title: Prog Oceanogr
– volume: 50
  start-page: 955
  year: 2000
  end-page: 969
  article-title: gen. nov., sp. nov., a new methane‐oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine‐pathway methanotrophs
  publication-title: Int J Syst Evol Microbiol
– volume: 63
  start-page: 311
  year: 2009
  end-page: 334
  article-title: Anaerobic oxidation of methane: progress with an unknown process
  publication-title: Annu Rev Microbiol
– volume: 185
  start-page: 2980
  year: 2003
  end-page: 2987
  article-title: Methylotrophy in AM1 from a genomic point of view
  publication-title: J Bacteriol
– volume: 189
  start-page: 1931
  year: 2007
  end-page: 1945
  article-title: Whole‐genome analysis of the methyl tert‐butyl ether‐degrading beta‐proteobacterium PM1
  publication-title: J Bacteriol
– volume: 8
  start-page: 3494
  year: 2008
  end-page: 3505
  article-title: Comprehensive proteomics of AM1 metabolism under single carbon and nonmethylotrophic conditions
  publication-title: Proteomics
– volume: 189
  start-page: 8727
  year: 2007
  end-page: 8736
  article-title: Genome sequence analysis of the emerging human pathogenic acetic acid bacterium
  publication-title: J Bacteriol
– volume: 192
  start-page: 471
  year: 2010
  end-page: 476
  article-title: Pseudomonas putida A ATCC 12633 oxidizes trimethylamine aerobically via two different pathways
  publication-title: Arch Microbiol
– volume: 175
  start-page: 1814
  year: 1993
  end-page: 1822
  article-title: Electron microscopic analysis and structural characterization of novel NADP(H)‐containing methanol: ′‐dimethyl‐4‐nitrosoaniline oxidoreductases from the gram‐positive methylotrophic bacteria and MB19
  publication-title: J Bacteriol
– volume: 3
  start-page: 91
  year: 2010
  end-page: 100
  article-title: A novel family of functional operons encoding methane/ammonia monooxygenase‐related proteins in gammaproteobacterial methanotrophs
  publication-title: Environ Microbiol Rep
– volume: 5
  start-page: 237
  year: 1994
  end-page: 248
  article-title: Microbes, enzymes and genes involved in dichloromethane utilization
  publication-title: Biodegradation
– volume: 177
  start-page: 247
  year: 1995
  end-page: 251
  article-title: Isolation, sequencing, and mutagenesis of the gene encoding NAD‐ and glutathione‐dependent formaldehyde dehydrogenase (GD‐FALDH) from , in which GD‐FALDH is essential for methylotrophic growth
  publication-title: J Bacteriol
– volume: 464
  start-page: 543
  year: 2010
  end-page: 548
  article-title: Nitrite‐driven anaerobic methane oxidation by oxygenic bacteria
  publication-title: Nature
– volume: 105
  start-page: 10203
  year: 2008
  end-page: 10208
  article-title: Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in sp. strain SC2
  publication-title: Proc Natl Acad Sci USA
– volume: 4
  start-page: e5584
  year: 2009
  article-title: genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources
  publication-title: PLoS ONE
– volume: 21
  start-page: 1234
  year: 2004a
  end-page: 1241
  article-title: The enigmatic planctomycetes may hold a key to the origins of methanogenesis and methylotrophy
  publication-title: Mol Biol Evol
– volume: 15
  start-page: 573
  year: 1906
  end-page: 576
  article-title: The oxidation of hydrogen and methane by microorganisms
  publication-title: Zbl Bact Parasitenk
– volume: 1125
  start-page: 158
  year: 2008
  end-page: 170
  article-title: Methane as fuel for anaerobic microorganisms
  publication-title: Ann NY Acad Sci
– volume: 176
  start-page: 4052
  year: 1994
  end-page: 4065
  article-title: Genetic organization of the cluster in AM1: complete nucleotide sequence and generation and characteristics of mutants
  publication-title: J Bacteriol
– volume: 104
  start-page: 10631
  year: 2007
  end-page: 10636
  article-title: Synthesis of C5‐dicarboxylic acids from C2‐units involving crotonyl‐CoA carboxylase/reductase: the ethylmalyl‐CoA pathway
  publication-title: Proc Natl Acad Sci USA
– volume: 77
  start-page: 524
  year: 2011
  end-page: 531
  article-title: Changes in dimethylsulfoniopropionate demethylase gene assemblages in response to an induced phytoplankton bloom
  publication-title: Appl Environ Microbiol
– volume: 187
  start-page: 6069
  year: 2005
  end-page: 6074
  article-title: MtdC, a novel class of methylene tetrahydromethanopterin dehydrogenases
  publication-title: J Bacteriol
– volume: 68
  start-page: 5804
  year: 2002
  end-page: 5815
  article-title: Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide
  publication-title: Appl Environ Microbiol
– volume: 56
  start-page: 2819
  year: 2006b
  end-page: 2823
  article-title: gen. nov., sp. nov., an obligately methylamine‐utilizing bacterium within the family
  publication-title: Int J Syst Evol Microbiol
– volume: 187
  start-page: 7996
  year: 2005
  end-page: 8005
  article-title: Growth substrate‐ and phase‐specific expression of biphenyl, benzoate, and C1 metabolic pathways in LB400
  publication-title: J Bacteriol
– volume: 182
  start-page: 6645
  year: 2000
  end-page: 6650
  article-title: Novel formaldehyde‐activating enzyme in AM1 required for growth on methanol
  publication-title: J Bacteriol
– volume: 143–144
  start-page: 211
  year: 2003
  end-page: 218
  article-title: Crystal structure of glutathione‐independent formaldehyde dehydrogenase
  publication-title: Chem Biol Interact
– volume: 150
  start-page: 9
  year: 2004
  end-page: 19
  article-title: Development of an insertional expression vector system for AM1 and generation of null mutants lacking and/or
  publication-title: Microbiology
– volume: 3
  start-page: e16
  year: 2005
  article-title: Flux analysis uncovers key role of functional redundancy in formaldehyde metabolism
  publication-title: PLoS Biol
– volume: 96
  start-page: 4615
  year: 1999
  end-page: 4620
  article-title: A corrinoid‐dependent catabolic pathway for growth of a strain with chloromethane
  publication-title: Proc Natl Acad Sci USA
– volume: 327
  start-page: 1392
  year: 2010
  end-page: 1394
  article-title: In crystallo posttranslational modification within a MauG/pre‐methylamine dehydrogenase complex
  publication-title: Science
– volume: 305
  start-page: 1457
  year: 2004
  end-page: 1462
  article-title: Reverse methanogenesis: testing the hypothesis with environmental genomics
  publication-title: Science
– volume: 26
  start-page: 1029
  year: 2008a
  end-page: 1034
  article-title: High‐resolution metagenomics targets specific functional types in complex microbial communities
  publication-title: Nat Biotechnol
– volume: 177
  start-page: 1292
  year: 1995
  end-page: 1298
  article-title: Formyltetrahydrofolate hydrolase, a regulatory enzyme that functions to balance pools of tetrahydrofolate and one‐carbon tetrahydrofolate adducts in
  publication-title: J Bacteriol
– volume: 146
  start-page: 233
  year: 2000
  end-page: 238
  article-title: Analysis of two formaldehyde oxidation pathways in KT, a ribulose monophosphate cycle methylotroph
  publication-title: Microbiol
– volume: 185
  start-page: 7160
  year: 2003a
  end-page: 7168
  article-title: Formaldehyde‐detoxifying role of the tetrahydromethanopterin‐linked pathway in AM1
  publication-title: J Bacteriol
– year: 1982
– volume: 178
  start-page: 239
  year: 2002
  end-page: 249
  article-title: Cofactor‐dependent pathways of formaldehyde oxidation in methylotrophic bacteria
  publication-title: Arch Microbiol
– volume: 36
  start-page: 16116
  year: 1997
  end-page: 16133
  article-title: Crystal structures of the copper‐containing amine oxidase from in the holo and apo forms: implications for the biogenesis of topaquinone
  publication-title: Biochemistry
– volume: 68
  start-page: 289
  year: 2002
  end-page: 296
  article-title: Duplicate copies of genes encoding methanesulfonate monooxygenase in strain TR3 and detection of methanesulfonate utilizers in the environment
  publication-title: Appl Environ Microbiol
– volume: 59
  start-page: 571
  year: 2004
  end-page: 586
  article-title: Archaea‐like genes for C1‐transfer enzymes in Planctomycetes: phylogenetic implications of their unexpected presence in this phylum
  publication-title: J Mol Evol
– volume: 76
  start-page: 4102
  year: 2010c
  end-page: 4104
  article-title: Monomethylamine as a nitrogen source for a nonmethylotrophic bacterium,
  publication-title: Appl Environ Microbiol
– volume: 106
  start-page: 4846
  year: 2009
  end-page: 4851
  article-title: Demonstration of the ethylmalonyl‐CoA pathway by using C metabolomics
  publication-title: Proc Natl Acad Sci USA
– volume: 56
  start-page: 2517
  year: 2006a
  end-page: 2522
  article-title: gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates
  publication-title: Int J Syst Evol Microbiol
– volume: 185
  start-page: 7169
  year: 2003b
  end-page: 7175
  article-title: Purification of the formate‐tetrahydrofolate ligase from Methylobacterium extorquens AM1 and demonstration of its requirement for methylotrophic growth
  publication-title: J Bacteriol
– volume: 37
  start-page: 530
  year: 1998
  end-page: 537
  article-title: Function of a glutathione‐dependent formaldehyde dehydrogenase in formaldehyde oxidation and assimilation
  publication-title: Biochemistry
– volume: 63
  start-page: 2816
  year: 2009
  end-page: 2830
  article-title: Asymmetric, bimodal trade‐offs during adaptation of to distinct growth substrates
  publication-title: Evolution
– volume: 143
  start-page: 1729
  year: 1997
  end-page: 1736
  article-title: Molecular and mutational analysis of a DNA region separating two methylotrophy gene clusters in AM1
  publication-title: Microbiol
– volume: 106
  start-page: 16428
  year: 2009
  end-page: 16433
  article-title: Community proteogenomics reveals insights into the physiology of phyllosphere bacteria
  publication-title: Proc Natl Acad Sci USA
– volume: 261
  start-page: 475
  year: 1999
  end-page: 480
  article-title: A methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in AM1
  publication-title: Eur J Biochem
– volume: 270
  start-page: 325
  year: 2003
  end-page: 333
  article-title: The tungsten‐containing formate dehydrogenase from AM1: purification and properties
  publication-title: Eur J Biochem
– volume: 190
  start-page: 3817
  year: 2008b
  end-page: 3823
  article-title: Characterization of a novel methanol dehydrogenase in representatives of : implications for environmental detection of methylotrophy and evidence for convergent evolution
  publication-title: J Bacteriol
– year: 2010
  article-title: Environmental proteomics of microbial plankton in a highly productive coastal upwelling system
  publication-title: ISME J
– volume: 63
  start-page: 183
  year: 2008
  end-page: 229
  article-title: Metabolic aspects of aerobic obligate methanotrophy
  publication-title: Adv Appl Microbiol
– year: 2011
  article-title: gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium possessing only a soluble methane monooxygenase
  publication-title: Int J Syst Evol Microbiol
– volume: 2
  start-page: e303
  year: 2004
  article-title: Genomic insights into methanotrophy: the complete genome sequence of (Bath)
  publication-title: PLoS Biol
– volume: 107
  start-page: 16420
  year: 2010
  end-page: 16427
  article-title: Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea
  publication-title: Proc Natl Acad Sci USA
– volume: 76
  start-page: 4530
  year: 2010b
  end-page: 4537
  article-title: {gamma}‐Glutamylmethylamide is an essential intermediate in the metabolism of methylamine by
  publication-title: Appl Environ Microbiol
– volume: 189
  start-page: 4020
  year: 2007b
  end-page: 4027
  article-title: Genome of molecular basis for obligate methylotrophy, and polyphyletic origin of methylotrophy
  publication-title: J Bacteriol
– volume: 192
  start-page: 6497
  year: 2010
  end-page: 6498
  article-title: Genome sequence of the obligate methanotroph, strain OB3b
  publication-title: J Bacteriol
– volume: 1
  start-page: 293
  year: 2009
  end-page: 306
  article-title: Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia
  publication-title: Environ Microbiol Rep
– volume: 71
  start-page: 521
  year: 2005a
  end-page: 528
  article-title: C1 transfer modules: from genomics to ecology
  publication-title: ASM News
– volume: 301
  start-page: 289
  year: 1994
  end-page: 295
  article-title: A novel dye‐linked formaldehyde dehydrogenase with some properties indicating the presence of a protein‐bound redox‐active quinone cofactor
  publication-title: Biochem J
– volume: 428
  start-page: 2
  year: 2004
  end-page: 9
  article-title: The quinoprotein dehydrogenases for methanol and glucose
  publication-title: Arch Biochem Biophys
– volume: 187
  start-page: 4607
  year: 2005a
  end-page: 4614
  article-title: Analysis of gene islands involved in methanopterin‐linked C1 transfer reactions reveals new functions and provides evolutionary insights
  publication-title: J Bacteriol
– volume: 191
  start-page: 3367
  year: 2009
  end-page: 3374
  article-title: Redundancy of enzymes for formaldehyde detoxification in
  publication-title: J Bacteriol
– volume: 192
  start-page: 4859
  year: 2010
  end-page: 4867
  article-title: The expressed genome of defined through comprehensive proteomics and new insights into methylotrophy
  publication-title: J Bacteriol
– volume: 172
  start-page: 341
  year: 1999
  end-page: 834
  article-title: Microbial metabolism of methanesulfonic acid
  publication-title: Arch Microbiol
– volume: 277
  start-page: 3069
  year: 2002
  end-page: 3072
  article-title: A glutathione‐dependent formaldehyde‐activating enzyme (Gfa) from detected and purified via two‐dimensional proton exchange NMR spectroscopy
  publication-title: J Biol Chem
– volume: 281
  start-page: 99
  year: 1998
  end-page: 102
  article-title: C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaea
  publication-title: Science
– volume: 61
  start-page: 307
  year: 2007
  end-page: 346
  article-title: Bacterial cycling of methyl halides
  publication-title: Adv Appl Microbiol
– volume: 180
  start-page: 5351
  year: 1998
  end-page: 5356
  article-title: The NADP‐dependent methylene tetrahydromethanopterin dehydrogenase in AM1
  publication-title: J Bacteriol
– volume: 15
  start-page: 513
  year: 1906
  end-page: 517
  article-title: Uber bakterien welche methan ab kohlenstoffnahrung und energiequelle gerbrauchen
  publication-title: Zbl Bact Parasitenk
– volume: 13
  start-page: 427
  year: 2011
  end-page: 438
  article-title: DddQ, a novel, cupin‐containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine bacteria
  publication-title: Environ Microbiol
– start-page: 126
  year: 1996
  end-page: 132
– volume: 89
  start-page: 17
  year: 2010
  end-page: 25
  article-title: Biotechnological potential of the ethylmalonyl‐CoA pathway
  publication-title: Appl Microbiol Biotechnol
– volume: 63
  start-page: 477
  year: 2009
  end-page: 499
  article-title: The expanding world of methylotrophic metabolism
  publication-title: Annu Rev Microbiol
– start-page: 618
  year: 2006
  end-page: 634
– volume: 417
  start-page: 244
  year: 2002
  article-title: Phylogeny: a non‐hyperthermophilic ancestor for bacteria
  publication-title: Nature
– volume: 465
  start-page: 606
  year: 2010
  end-page: 608
  article-title: The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane
  publication-title: Nature
– volume: 10
  start-page: 1771
  year: 2008
  end-page: 1782
  article-title: The small genome of an abundant coastal ocean methylotroph
  publication-title: Environ Microbiol
– volume: 186
  start-page: 22
  year: 2004b
  end-page: 28
  article-title: Multiple formate dehydrogenase enzymes in the facultative methylotroph AM1 are dispensable for growth on methanol
  publication-title: J Bacteriol
– ident: e_1_2_7_69_1
  doi: 10.1128/JB.00761-10
– ident: e_1_2_7_27_1
  doi: 10.1093/molbev/msh113
– ident: e_1_2_7_78_1
  doi: 10.1111/j.1558-5646.2009.00757.x
– ident: e_1_2_7_111_1
  doi: 10.1111/j.1462-2920.2010.02348.x
– ident: e_1_2_7_97_1
  doi: 10.1128/jb.177.1.247-251.1995
– ident: e_1_2_7_13_1
  doi: 10.1002/pmic.200800152
– ident: e_1_2_7_108_1
  doi: 10.1016/S0009-2797(02)00168-0
– ident: e_1_2_7_16_1
  doi: 10.1038/417244a
– ident: e_1_2_7_87_1
  doi: 10.1128/JB.186.7.2173-2178.2004
– ident: e_1_2_7_113_1
  doi: 10.1016/S0065-2164(07)00005-6
– ident: e_1_2_7_119_1
  doi: 10.1099/ijs.0.028118-0
– ident: e_1_2_7_55_1
  doi: 10.1128/JB.00512-10
– ident: e_1_2_7_73_1
  doi: 10.1007/s002030050770
– ident: e_1_2_7_77_1
  doi: 10.1046/j.1432-1033.2003.03391.x
– ident: e_1_2_7_112_1
  doi: 10.1038/nature06776
– ident: e_1_2_7_12_1
  doi: 10.1128/JB.00977-10
– ident: e_1_2_7_8_1
  doi: 10.1038/nature08992
– ident: e_1_2_7_19_1
  doi: 10.1128/AEM.00739-10
– ident: e_1_2_7_103_1
  doi: 10.1038/nrmicro2439
– ident: e_1_2_7_43_1
  doi: 10.1074/jbc.M805527200
– ident: e_1_2_7_11_1
  doi: 10.1128/AEM.68.1.289-296.2002
– ident: e_1_2_7_46_1
  doi: 10.1128/jb.177.15.4575-4578.1995
– ident: e_1_2_7_50_1
  doi: 10.1046/j.1432-1327.2000.01413.x
– ident: e_1_2_7_21_1
  doi: 10.1128/jb.176.13.4052-4065.1994
– ident: e_1_2_7_90_1
  doi: 10.1038/nature03170
– ident: e_1_2_7_64_1
  doi: 10.1099/ijs.0.64422-0
– ident: e_1_2_7_116_1
  doi: 10.1128/JB.180.20.5351-5356.1998
– ident: e_1_2_7_128_1
  doi: 10.1073/pnas.0610126104
– ident: e_1_2_7_61_1
  doi: 10.1128/JB.187.21.7511-7517.2005
– ident: e_1_2_7_9_1
  doi: 10.1021/bi971463t
– ident: e_1_2_7_36_1
  doi: 10.1016/j.abb.2004.03.022
– ident: e_1_2_7_68_1
  doi: 10.1128/JB.01259-06
– ident: e_1_2_7_76_1
  doi: 10.1111/j.1365-2958.2009.06989.x
– ident: e_1_2_7_80_1
  doi: 10.1007/0-387-30742-7_20
– ident: e_1_2_7_92_1
  doi: 10.1016/j.pocean.2005.03.005
– ident: e_1_2_7_89_1
  doi: 10.1021/ja105498m
– ident: e_1_2_7_40_1
  doi: 10.1128/JB.187.23.7996-8005.2005
– ident: e_1_2_7_114_1
  doi: 10.1073/pnas.96.8.4615
– ident: e_1_2_7_117_1
  doi: 10.1128/JB.182.23.6645-6650.2000
– ident: e_1_2_7_84_1
  doi: 10.1099/mic.0.26587-0
– ident: e_1_2_7_25_1
  doi: 10.1099/00221287-146-1-233
– volume: 175
  start-page: 1814
  year: 1993
  ident: e_1_2_7_17_1
  article-title: Electron microscopic analysis and structural characterization of novel NADP(H)‐containing methanol: N,N′‐dimethyl‐4‐nitrosoaniline oxidoreductases from the gram‐positive methylotrophic bacteria Amycolatopsis methanolica and Mycobacterium gastri MB19
  publication-title: J Bacteriol
  doi: 10.1128/jb.175.6.1814-1822.1993
– ident: e_1_2_7_22_1
  doi: 10.1128/jb.176.7.1957-1968.1994
– year: 2010
  ident: e_1_2_7_105_1
  article-title: Environmental proteomics of microbial plankton in a highly productive coastal upwelling system
  publication-title: ISME J
– ident: e_1_2_7_26_1
  doi: 10.1128/JB.185.10.2980-2987.2003
– ident: e_1_2_7_56_1
  doi: 10.1186/1745-6150-3-26
– ident: e_1_2_7_120_1
  doi: 10.1371/journal.pone.0005584
– volume: 71
  start-page: 521
  year: 2005
  ident: e_1_2_7_29_1
  article-title: C1 transfer modules: from genomics to ecology
  publication-title: ASM News
– ident: e_1_2_7_101_1
  doi: 10.1038/nature09015
– ident: e_1_2_7_62_1
  doi: 10.1128/JB.187.13.4607-4614.2005
– ident: e_1_2_7_96_1
  doi: 10.1046/j.1432-1327.1999.00291.x
– ident: e_1_2_7_15_1
  doi: 10.1128/JB.186.5.1229-1238.2004
– ident: e_1_2_7_23_1
  doi: 10.1099/00221287-143-5-1729
– ident: e_1_2_7_32_1
  doi: 10.1128/JB.01229-07
– ident: e_1_2_7_35_1
  doi: 10.1128/JB.00228-08
– ident: e_1_2_7_33_1
  doi: 10.1128/JB.00045-07
– ident: e_1_2_7_125_1
  doi: 10.1099/mic.0.2007/011346-0
– ident: e_1_2_7_14_1
  doi: 10.1099/mic.0.024968-0
– ident: e_1_2_7_106_1
  doi: 10.1128/JB.01144-10
– ident: e_1_2_7_39_1
  doi: 10.1073/pnas.0905240106
– ident: e_1_2_7_42_1
  doi: 10.1073/pnas.0702791104
– ident: e_1_2_7_127_1
  doi: 10.1128/AEM.68.12.5804-5815.2002
– ident: e_1_2_7_18_1
  doi: 10.1128/JB.00506-10
– ident: e_1_2_7_49_1
  doi: 10.1128/JB.00793-07
– ident: e_1_2_7_24_1
  doi: 10.1126/science.281.5373.99
– ident: e_1_2_7_121_1
  doi: 10.1111/j.1462-2920.2008.01568.x
– ident: e_1_2_7_48_1
  doi: 10.1074/jbc.C100579200
– volume: 15
  start-page: 513
  year: 1906
  ident: e_1_2_7_104_1
  article-title: Uber bakterien welche methan ab kohlenstoffnahrung und energiequelle gerbrauchen
  publication-title: Zbl Bact Parasitenk
– ident: e_1_2_7_118_1
  doi: 10.1128/JB.187.17.6069-6074.2005
– ident: e_1_2_7_70_1
  doi: 10.1074/jbc.M408013200
– ident: e_1_2_7_65_1
  doi: 10.1099/ijs.0.64191-0
– ident: e_1_2_7_31_1
  doi: 10.1128/JB.187.7.2508-2512.2005
– ident: e_1_2_7_44_1
  doi: 10.1128/JB.01267-09
– ident: e_1_2_7_93_1
  doi: 10.1128/JB.01166-09
– ident: e_1_2_7_124_1
  doi: 10.1016/j.cbpa.2009.06.026
– ident: e_1_2_7_100_1
  doi: 10.1016/S0065-2164(06)61009-5
– ident: e_1_2_7_72_1
  doi: 10.1271/bbb.70.10
– ident: e_1_2_7_59_1
  doi: 10.1111/j.1758-2229.2009.00046.x
– ident: e_1_2_7_74_1
  doi: 10.1042/bj3010289
– ident: e_1_2_7_38_1
  doi: 10.1099/00207713-50-3-955
– ident: e_1_2_7_88_1
  doi: 10.1371/journal.pbio.0030016
– ident: e_1_2_7_20_1
  doi: 10.1128/AEM.00469-10
– ident: e_1_2_7_57_1
  doi: 10.1128/AEM.01457-10
– ident: e_1_2_7_54_1
  doi: 10.1016/S0076-6879(97)80106-1
– ident: e_1_2_7_41_1
  doi: 10.1016/S0022-5193(03)00164-4
– ident: e_1_2_7_85_1
  doi: 10.1128/JB.185.23.7160-7168.2003
– ident: e_1_2_7_123_1
  doi: 10.1107/S0907444904026964
– ident: e_1_2_7_63_1
  doi: 10.1128/AEM.71.12.8846-8854.2005
– ident: e_1_2_7_10_1
  doi: 10.1007/s00239-004-2643-6
– ident: e_1_2_7_30_1
  doi: 10.1186/gb-2005-6-2-208
– ident: e_1_2_7_7_1
  doi: 10.1128/MMBR.62.4.1046-1078.1998
– ident: e_1_2_7_94_1
  doi: 10.1111/j.1758-2229.2009.00022.x
– ident: e_1_2_7_28_1
  doi: 10.1128/JB.186.1.22-28.2004
– ident: e_1_2_7_53_1
  doi: 10.1007/978-94-009-0213-8_18
– ident: e_1_2_7_75_1
  doi: 10.1146/annurev.micro.61.080706.093130
– volume-title: The Biochemistry of Methylotrophs
  year: 1982
  ident: e_1_2_7_3_1
– ident: e_1_2_7_45_1
  doi: 10.1038/nature08883
– ident: e_1_2_7_66_1
  doi: 10.1038/nbt.1488
– ident: e_1_2_7_110_1
  doi: 10.1196/annals.1419.000
– ident: e_1_2_7_82_1
  doi: 10.1007/s00203-010-0577-5
– ident: e_1_2_7_52_1
  doi: 10.1126/science.1100025
– ident: e_1_2_7_81_1
  doi: 10.1111/j.1574-6968.1994.tb06749.x
– ident: e_1_2_7_86_1
  doi: 10.1128/JB.185.24.7169-7175.2003
– ident: e_1_2_7_2_1
  doi: 10.1007/s00253-010-2873-z
– ident: e_1_2_7_79_1
  doi: 10.1007/BF00696462
– volume: 15
  start-page: 573
  year: 1906
  ident: e_1_2_7_71_1
  article-title: The oxidation of hydrogen and methane by microorganisms
  publication-title: Zbl Bact Parasitenk
– ident: e_1_2_7_4_1
  doi: 10.1016/j.abb.2004.03.038
– ident: e_1_2_7_60_1
  doi: 10.1128/JB.185.4.1229-1235.2003
– ident: e_1_2_7_83_1
  doi: 10.1073/pnas.1010732107
– ident: e_1_2_7_5_1
  doi: 10.1126/science.1086997
– ident: e_1_2_7_6_1
  doi: 10.1073/pnas.0702643105
– ident: e_1_2_7_109_1
  doi: 10.1111/j.1758-2229.2010.00192.x
– ident: e_1_2_7_115_1
  doi: 10.1007/s00203-002-0450-2
– ident: e_1_2_7_122_1
  doi: 10.1021/bi971797i
– ident: e_1_2_7_58_1
  doi: 10.1126/science.1182492
– ident: e_1_2_7_67_1
  doi: 10.1128/JB.00180-08
– ident: e_1_2_7_51_1
  doi: 10.1146/annurev.biochem.76.061505.175355
– ident: e_1_2_7_37_1
  doi: 10.1007/BF00418934
– ident: e_1_2_7_102_1
  doi: 10.1099/mic.0.038570-0
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1462-2920.2008.01598.x
– volume: 177
  start-page: 1292
  year: 1995
  ident: e_1_2_7_91_1
  article-title: Formyltetrahydrofolate hydrolase, a regulatory enzyme that functions to balance pools of tetrahydrofolate and one‐carbon tetrahydrofolate adducts in Escherichia coli
  publication-title: J Bacteriol
  doi: 10.1128/jb.177.5.1292-1298.1995
– ident: e_1_2_7_107_1
  doi: 10.1128/JB.184.13.3476-3484.2002
– volume: 181
  start-page: 7154
  year: 1999
  ident: e_1_2_7_126_1
  article-title: Bacillus subitlis yckG and yckF encode two key enzymes of the ribulose monophosphate pathway used by methylotrophs, and yckH is required for their expression
  publication-title: J Bacteriol
  doi: 10.1128/JB.181.23.7154-7160.1999
– ident: e_1_2_7_98_1
  doi: 10.1128/JB.00076-09
– ident: e_1_2_7_34_1
  doi: 10.1146/annurev.micro.091208.073600
– ident: e_1_2_7_95_1
  doi: 10.1073/pnas.0810932106
– ident: e_1_2_7_99_1
  doi: 10.1371/journal.pbio.0050077
SSID ssj0017370
Score 2.502981
SecondaryResourceType review_article
Snippet Summary Methylotrophy is a metabolic capability possessed by microorganisms that allows them to build biomass and to obtain energy from organic substrates...
Methylotrophy is a metabolic capability possessed by microorganisms that allows them to build biomass and to obtain energy from organic substrates containing...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2603
SubjectTerms Aerobiosis
Bacteria
Bacteria - metabolism
biochemical pathways
bioenergy
Genomics
Metabolic Networks and Pathways
metabolism
methane
Methane - metabolism
methanol
Methanol - metabolism
microbial physiology
microorganisms
Oxidation-Reduction
Title Modularity of methylotrophy, revisited
URI https://api.istex.fr/ark:/67375/WNG-D2HJLZF1-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-2920.2011.02464.x
https://www.ncbi.nlm.nih.gov/pubmed/21443740
https://www.proquest.com/docview/1365041751
https://www.proquest.com/docview/1753468277
https://www.proquest.com/docview/903657995
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9swEB7KlkIvbbevdbe7uFByqoMsy5Z0XLabDUs3h9LQ0IuwbPmSYJc8IOmv3xnbMSSkSyi9-aAx0mgen-zRNwCfbcJsgXkgyDE5BiKSLrCYtYO4UEIjmGM5o4vC96NkOBZ3k3jS1j_RXZiGH6L74EaeUcdrcvDULvadnAfUball4uQiEX3Ck1S6Rfjoe8ckFcqo7hvXioR7RT0HX7STqZ6S0teHYOguqq3T0uAlTLcLaqpRpv3V0vazP3tcj_9nxa_gRYte_avG3E7hiStfw7Omn-XmDfTuq5zKWhHZ-1XhU3fqzaxazivcyy_-vL7Ijgj3LYwHNz-uh0HbiCHIMB6KIFVKoN_rpFA8U9pFoWNOMce11VYl2mYRT6PCCuWclXmkid1QOS7jXLECY8o7OCmr0p2Bb2O0mlA7UeDUI2ERX2ZMY0h2uS7w6OeB3CrdZC1LOTXLmJmd0wo3pAVDWjC1Fszag7CT_N0wdRwh06v3tRNI51OqdJOx-Tm6NV_58O7br0FouAefthtv0P_op0paumq1MGRrTCAICx8Zg2dCkSgupQf-X8ZohBIxsfN58L4xrG5SxGoXScE8SGrzOHp5Bl2Znj78q-A5POfbmsfwI5ws5yt3gSBsaS9r93oAA8oc2Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT9swFH9CILRdNtgHC-MjSBOnpXIcJ7aPE1AKa3tAoKFdrDpxLlTN1LUS8NfvPSeN1IohNO2Wg19kP7-Pn5Pn3wP4YjNmS8wDUYHJMRKJdJHFrB2lpRIawRwrGF0UHgyz3o24vE1vm3ZAdBem5odoP7iRZ_h4TQ5OH6RXvZxH1G6poeLkIhMdBJQb1ODbn6-uWi6pWCa-c1wjE6-U9Tz5pqVctUFqv38KiC7jWp-Yum9hvFhSXY9y15nPbCd_XGF7_E9r3oI3DYANv9UWtw1rbvIONuuWlg_v4XhQFVTZiuA-rMqQGlQ_jKvZtMLt_BpO_V12BLkf4KZ7dn3Si5peDFGOIVFEI6UEur7OSsVzpV0SO-YUc1xbbVWmbZ7wUVJaoZyzskg0ERwqx2VaKFZiWPkI65Nq4j5BaFM0nFg7UeLUE2ERYuZMY1R2hS7x9BeAXGjd5A1ROfXLGJulAws3pAVDWjBeC-Y-gLiV_FWTdbxA5thvbCswmt5RsZtMzY_huTnlvcv-z25seABHi5036IL0X2U0cdX8t6FKQSYQh8XPjMFjocgUlzKA8C9jNKKJlAj6AtipLaudFBHbJVKwADJvHy9enkFvpqfdfxU8hFe960Hf9C-G3z_Da74ogYz3YH02nbt9xGQze-B97Q_nxSD0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED9NoCFexoDBsg8IEuJpqRzHie1HRNd1fFRoGhrixaoT-6WoQV0rAX_97pI0Uis2IbS3PPgi-3wfPyfn3wEc2oxZj3kgKjA5RiKRLrKYtaPUK6ERzLGC0UXhi0HWvxKn1-l1U_9Ed2Fqfoj2gxt5RhWvycHvCr_s5DyibksNEycXmeggnlwVGVNk4d0fLZVULJOqcVwjEy9V9Tz5poVUtUpav38Khy7C2iov9TZgNF9RXY4y6symtpM_LpE9_p8lv4U3DXwNj2t724RXbrwFr-uGlg_bcHRRFlTXitA-LH1I7akfbsvppMTN_BJOqpvsCHHfwVXv68-TftR0YohyDIgiGiol0PF15hXPlXZJ7JhTzHFttVWZtnnCh4m3QjlnZZFoojdUjsu0UMxjUNmBlXE5du8htCmaTayd8Dj1RFgEmDnTGJNdoT2e_QKQc6WbvKEpp24Zt2bhuMINacGQFkylBXMfQNxK3tVUHc-QOar2tRUYTkZU6iZT82vwzXR5__T8phcbHsDBfOMNOiD9VRmOXTn7bahOkAlEYfE_xuChUGSKSxlA-JcxGrFESvR8AezWhtVOimjtEilYAFllHs9enkFfpqcPLxXch7XLbs-cfx-cfYR1Pq9_jD_BynQyc58RkE3tXuVpfwBpdB-s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modularity+of+methylotrophy%2C+revisited&rft.jtitle=Environmental+microbiology&rft.au=Chistoserdova%2C+Ludmila&rft.date=2011-10-01&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=13&rft.issue=10&rft.spage=2603&rft.epage=2622&rft_id=info:doi/10.1111%2Fj.1462-2920.2011.02464.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1462_2920_2011_02464_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon