Modularity of methylotrophy, revisited
Summary Methylotrophy is a metabolic capability possessed by microorganisms that allows them to build biomass and to obtain energy from organic substrates containing no carbon–carbon bonds (C1 compounds, such as methane, methanol, etc.). This phenomenon in microbial physiology has been a subject of...
Saved in:
Published in | Environmental microbiology Vol. 13; no. 10; pp. 2603 - 2622 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.10.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Methylotrophy is a metabolic capability possessed by microorganisms that allows them to build biomass and to obtain energy from organic substrates containing no carbon–carbon bonds (C1 compounds, such as methane, methanol, etc.). This phenomenon in microbial physiology has been a subject of study for over 100 years, elucidating a set of well‐defined enzymatic systems and pathways enabling this capability. The knowledge gained from the early genetic and genomic approaches to understanding methylotrophy pointed towards the existence of alternative enzymes/pathways for the specific metabolic goals. Different combinations of these systems in different organisms suggested that methylotrophy must be modular in its nature. More recent insights from genomic analyses, including the genomes representing novel types of methylotrophs, seem to reinforce this notion. This review integrates the new findings with the previously developed concept of modularity of methylotrophy. |
---|---|
AbstractList | Methylotrophy is a metabolic capability possessed by microorganisms that allows them to build biomass and to obtain energy from organic substrates containing no carbon-carbon bonds (C1 compounds, such as methane, methanol, etc.). This phenomenon in microbial physiology has been a subject of study for over 100 years, elucidating a set of well-defined enzymatic systems and pathways enabling this capability. The knowledge gained from the early genetic and genomic approaches to understanding methylotrophy pointed towards the existence of alternative enzymes/pathways for the specific metabolic goals. Different combinations of these systems in different organisms suggested that methylotrophy must be modular in its nature. More recent insights from genomic analyses, including the genomes representing novel types of methylotrophs, seem to reinforce this notion. This review integrates the new findings with the previously developed concept of modularity of methylotrophy. Methylotrophy is a metabolic capability possessed by microorganisms that allows them to build biomass and to obtain energy from organic substrates containing no carbon-carbon bonds (C1 compounds, such as methane, methanol, etc.). This phenomenon in microbial physiology has been a subject of study for over 100 years, elucidating a set of well-defined enzymatic systems and pathways enabling this capability. The knowledge gained from the early genetic and genomic approaches to understanding methylotrophy pointed towards the existence of alternative enzymes/pathways for the specific metabolic goals. Different combinations of these systems in different organisms suggested that methylotrophy must be modular in its nature. More recent insights from genomic analyses, including the genomes representing novel types of methylotrophs, seem to reinforce this notion. This review integrates the new findings with the previously developed concept of modularity of methylotrophy.Methylotrophy is a metabolic capability possessed by microorganisms that allows them to build biomass and to obtain energy from organic substrates containing no carbon-carbon bonds (C1 compounds, such as methane, methanol, etc.). This phenomenon in microbial physiology has been a subject of study for over 100 years, elucidating a set of well-defined enzymatic systems and pathways enabling this capability. The knowledge gained from the early genetic and genomic approaches to understanding methylotrophy pointed towards the existence of alternative enzymes/pathways for the specific metabolic goals. Different combinations of these systems in different organisms suggested that methylotrophy must be modular in its nature. More recent insights from genomic analyses, including the genomes representing novel types of methylotrophs, seem to reinforce this notion. This review integrates the new findings with the previously developed concept of modularity of methylotrophy. Summary Methylotrophy is a metabolic capability possessed by microorganisms that allows them to build biomass and to obtain energy from organic substrates containing no carbon–carbon bonds (C1 compounds, such as methane, methanol, etc.). This phenomenon in microbial physiology has been a subject of study for over 100 years, elucidating a set of well‐defined enzymatic systems and pathways enabling this capability. The knowledge gained from the early genetic and genomic approaches to understanding methylotrophy pointed towards the existence of alternative enzymes/pathways for the specific metabolic goals. Different combinations of these systems in different organisms suggested that methylotrophy must be modular in its nature. More recent insights from genomic analyses, including the genomes representing novel types of methylotrophs, seem to reinforce this notion. This review integrates the new findings with the previously developed concept of modularity of methylotrophy. |
Author | Chistoserdova, Ludmila |
Author_xml | – sequence: 1 givenname: Ludmila surname: Chistoserdova fullname: Chistoserdova, Ludmila email: milachis@u.washington.edu organization: Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21443740$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstO3DAYha0KVG59BTSrwoKkviW2FyChKbdqoJtWldhYTvJHeJoZD7anTN4eh4FZdNHijS35-46l_3gPbc3dHBAaEZyTtL5Mc8JLmlFFcU4xITmmvOT56gPa3Vxsbc6E7qC9EKYYE8EE_oh2KOGcCY530edb1yw7423sR64dzSA-9J2L3i0e-pORhz822AjNAdpuTRfg0-u-j35eXvwYX2eT71c34_NJVhdM8sxIySktVNlKWksFjAAGiYGqSlWyVFXNqGFtxSVAJRqmsCpKCVQUjcStwGwfHa1zF949LiFEPbOhhq4zc3DLoBVmZSGUKhJ5_E-SiILxUlIh_o-mTMyTQBJ6-Iouqxk0euHtzPhevw0sAXIN1N6F4KHdIATroRs91cPY9VCBHrrRL93oVVLP_lJrG020bh69sd17Ak7XAU-2g_7dD-uL25vhlPxs7dsQYbXxjf-ty_QxCv3r7kp_pdffJveXRFP2DDG6s48 |
CitedBy_id | crossref_primary_10_1016_j_watres_2021_117150 crossref_primary_10_7717_peerj_23 crossref_primary_10_1007_s10482_021_01525_7 crossref_primary_10_1128_genomeA_01588_14 crossref_primary_10_1016_j_copbio_2023_102953 crossref_primary_10_7717_peerj_115 crossref_primary_10_1128_mBio_02430_17 crossref_primary_10_1016_j_watres_2022_119172 crossref_primary_10_1128_JB_00672_13 crossref_primary_10_1093_femsec_fiz125 crossref_primary_10_3390_microorganisms3020175 crossref_primary_10_1016_j_copbio_2022_102685 crossref_primary_10_3389_fmicb_2019_00376 crossref_primary_10_3389_fbioe_2022_1050740 crossref_primary_10_1111_1462_2920_14406 crossref_primary_10_3389_fmicb_2016_01074 crossref_primary_10_1007_s11274_020_02899_y crossref_primary_10_1128_msystems_00314_24 crossref_primary_10_1128_spectrum_00834_24 crossref_primary_10_1016_j_wen_2018_05_002 crossref_primary_10_1038_s41396_019_0414_z crossref_primary_10_1371_journal_pone_0239248 crossref_primary_10_1093_femsre_fuab007 crossref_primary_10_1007_s11274_016_2088_2 crossref_primary_10_3389_fmicb_2021_740610 crossref_primary_10_1134_S0003683815020088 crossref_primary_10_1016_j_tim_2018_01_011 crossref_primary_10_1111_j_1462_2920_2012_02765_x crossref_primary_10_1186_s40168_019_0741_3 crossref_primary_10_3389_fmicb_2021_666929 crossref_primary_10_3389_fmicb_2018_01366 crossref_primary_10_1111_1462_2920_15501 crossref_primary_10_1016_j_bej_2024_109340 crossref_primary_10_1111_1462_2920_14062 crossref_primary_10_1093_femsec_fiw199 crossref_primary_10_1016_j_atmosenv_2017_12_016 crossref_primary_10_1007_s10532_022_09996_9 crossref_primary_10_1007_s10529_018_2615_3 crossref_primary_10_1016_j_colsurfb_2025_114596 crossref_primary_10_1099_ijsem_0_005581 crossref_primary_10_1021_acs_inorgchem_6b00919 crossref_primary_10_1128_AEM_00947_21 crossref_primary_10_3389_fmicb_2021_648868 crossref_primary_10_1128_JB_05375_11 crossref_primary_10_1093_femsle_fnaa207 crossref_primary_10_3354_meps11705 crossref_primary_10_1099_ijsem_0_002856 crossref_primary_10_1016_j_jbiotec_2015_07_023 crossref_primary_10_3389_fmicb_2017_01361 crossref_primary_10_1128_AEM_03292_14 crossref_primary_10_5194_bg_15_5155_2018 crossref_primary_10_1038_s41564_019_0534_2 crossref_primary_10_1021_acscatal_0c04862 crossref_primary_10_1186_s12934_024_02404_2 crossref_primary_10_1007_s00253_015_6713_z crossref_primary_10_1128_JB_00029_13 crossref_primary_10_1093_gbe_evab082 crossref_primary_10_1021_acssynbio_8b00167 crossref_primary_10_1088_1478_3975_10_1_011001 crossref_primary_10_1111_1462_2920_12454 crossref_primary_10_1128_mSystems_00342_19 crossref_primary_10_1111_1462_2920_12144 crossref_primary_10_3389_fmicb_2015_01291 crossref_primary_10_1007_s10482_019_01331_2 crossref_primary_10_1038_ncomms11728 crossref_primary_10_1007_s00253_014_5766_8 crossref_primary_10_3389_fmicb_2025_1528883 crossref_primary_10_1007_s10482_024_01995_5 crossref_primary_10_1128_spectrum_04241_22 crossref_primary_10_1038_ismej_2017_49 crossref_primary_10_1111_1462_2920_12943 crossref_primary_10_1186_s40168_020_00966_y crossref_primary_10_1007_s00792_019_01145_0 crossref_primary_10_1021_acssynbio_1c00017 crossref_primary_10_1038_ismej_2014_149 crossref_primary_10_1128_JB_00069_13 crossref_primary_10_1016_j_scitotenv_2017_03_271 crossref_primary_10_1093_femsec_fiaa259 crossref_primary_10_1111_1462_2920_13485 crossref_primary_10_1128_genomeA_01266_15 crossref_primary_10_1155_2011_101298 crossref_primary_10_1128_JB_00478_16 crossref_primary_10_1016_j_copbio_2019_10_002 crossref_primary_10_1016_j_resconrec_2024_107827 crossref_primary_10_3390_microorganisms3010060 crossref_primary_10_3389_fmicb_2017_02392 crossref_primary_10_1016_j_bbamcr_2020_118864 crossref_primary_10_1371_journal_pone_0102458 crossref_primary_10_1002_cbic_202300811 crossref_primary_10_1038_nature20159 crossref_primary_10_3389_fmicb_2016_00616 crossref_primary_10_1111_1758_2229_12927 crossref_primary_10_1007_s00253_018_9358_x crossref_primary_10_1007_s00775_018_1604_2 crossref_primary_10_1128_MRA_00824_18 crossref_primary_10_1038_s41598_019_41043_1 crossref_primary_10_1016_j_ympev_2018_08_010 crossref_primary_10_1016_j_bbrc_2020_05_198 crossref_primary_10_1038_ismej_2017_31 crossref_primary_10_1038_s41396_021_01057_y crossref_primary_10_1128_JB_00328_17 crossref_primary_10_3390_microorganisms9061332 crossref_primary_10_1038_s41396_022_01305_9 crossref_primary_10_1371_journal_pcbi_1002455 crossref_primary_10_3390_life7020016 crossref_primary_10_1038_s41467_018_03937_y crossref_primary_10_1111_j_1462_2920_2011_02605_x crossref_primary_10_1016_j_ygeno_2020_02_010 crossref_primary_10_1128_msystems_01105_24 crossref_primary_10_1111_j_1462_2920_2012_02857_x crossref_primary_10_1007_s00203_021_02559_1 crossref_primary_10_1111_1462_2920_12249 crossref_primary_10_1016_j_biteb_2020_100473 crossref_primary_10_1128_AEM_02705_13 crossref_primary_10_31857_S002636562260047X crossref_primary_10_15406_jmen_2022_10_00375 crossref_primary_10_5194_bg_8_2707_2011 crossref_primary_10_5194_bg_9_2961_2012 crossref_primary_10_3389_fmicb_2015_01185 crossref_primary_10_1186_s40793_018_0314_2 crossref_primary_10_1007_s00284_022_03141_8 crossref_primary_10_1016_j_biortech_2021_125369 crossref_primary_10_1016_j_ymben_2014_12_008 crossref_primary_10_1128_AEM_03110_14 crossref_primary_10_1111_1462_2920_12935 crossref_primary_10_1128_AEM_04160_13 crossref_primary_10_1111_1462_2920_13901 crossref_primary_10_1080_10962247_2022_2056262 crossref_primary_10_1371_journal_pone_0056993 crossref_primary_10_1016_j_cub_2016_04_029 crossref_primary_10_3389_fmicb_2022_857442 crossref_primary_10_7763_IJBBB_2013_V3_165 crossref_primary_10_1111_1462_2920_12182 crossref_primary_10_3389_fmicb_2018_02735 crossref_primary_10_3390_microorganisms3010094 crossref_primary_10_1128_mBio_01279_16 crossref_primary_10_3389_fmicb_2019_02706 crossref_primary_10_1007_s11356_023_30858_1 crossref_primary_10_1016_j_scitotenv_2021_146915 crossref_primary_10_1007_s12275_019_9007_9 crossref_primary_10_3390_bioengineering7030074 crossref_primary_10_1007_s12257_016_0301_7 crossref_primary_10_1038_ismej_2015_68 crossref_primary_10_1186_s40168_018_0500_x crossref_primary_10_1007_s00284_023_03431_9 crossref_primary_10_7554_eLife_04279 crossref_primary_10_1016_j_jbiosc_2018_05_023 crossref_primary_10_1038_s41467_021_22736_6 crossref_primary_10_3389_fmicb_2023_1253773 crossref_primary_10_1038_ismej_2014_102 crossref_primary_10_1111_1462_2920_14010 crossref_primary_10_1007_s00253_014_6224_3 crossref_primary_10_1016_j_ibiod_2024_105862 crossref_primary_10_1186_s40168_023_01467_4 crossref_primary_10_1128_AEM_00314_11 crossref_primary_10_1007_s00253_015_6906_5 crossref_primary_10_1016_j_jbc_2021_100682 crossref_primary_10_1128_genomeA_01597_14 crossref_primary_10_1111_mmi_13200 crossref_primary_10_3390_microorganisms8060822 crossref_primary_10_1186_1752_0509_5_189 crossref_primary_10_1128_mBio_00985_21 crossref_primary_10_1038_ismej_2015_55 crossref_primary_10_1016_j_bbabio_2022_148932 crossref_primary_10_1073_pnas_2011299117 crossref_primary_10_1016_j_bbabio_2019_07_011 crossref_primary_10_1111_1462_2920_12165 crossref_primary_10_1016_j_soilbio_2020_107908 crossref_primary_10_1038_s41396_019_0471_3 crossref_primary_10_1111_1462_2920_14461 crossref_primary_10_2138_am_2020_7166CCBYNCND crossref_primary_10_1128_mBio_01306_21 crossref_primary_10_1128_JB_01346_12 crossref_primary_10_1128_JB_00937_15 crossref_primary_10_1016_j_ymben_2020_07_005 crossref_primary_10_1128_aem_01188_22 crossref_primary_10_1128_JB_01009_12 crossref_primary_10_1186_s40643_022_00544_0 crossref_primary_10_1002_pmic_201300515 crossref_primary_10_3389_fmicb_2016_00946 crossref_primary_10_1073_pnas_1619871114 crossref_primary_10_1099_ijsem_0_004098 crossref_primary_10_1264_jsme2_ME17070 crossref_primary_10_3390_microorganisms9030477 crossref_primary_10_1038_s42003_024_07353_5 crossref_primary_10_1038_ismej_2016_198 crossref_primary_10_1007_s00253_014_6240_3 crossref_primary_10_3389_fmicb_2018_00766 crossref_primary_10_3390_microorganisms10071327 crossref_primary_10_1128_AEM_02289_17 crossref_primary_10_1002_qub2_31 crossref_primary_10_1128_mBio_01708_21 crossref_primary_10_1016_j_bbabio_2012_10_013 crossref_primary_10_1007_s00253_020_10514_1 crossref_primary_10_1128_AEM_00480_12 crossref_primary_10_1128_mSystems_00517_20 crossref_primary_10_3389_fmicb_2015_00852 crossref_primary_10_3390_ijms23073947 crossref_primary_10_1186_s40168_020_00801_4 crossref_primary_10_1111_1462_2920_12736 crossref_primary_10_1186_s40168_017_0383_2 crossref_primary_10_1016_j_chemosphere_2019_06_138 crossref_primary_10_1038_ismej_2015_37 crossref_primary_10_1016_j_enzmictec_2020_109518 crossref_primary_10_1016_j_biotechadv_2019_107467 crossref_primary_10_1371_journal_pone_0048271 crossref_primary_10_1007_s10482_016_0787_1 crossref_primary_10_3389_fmicb_2016_01425 crossref_primary_10_3389_fmicb_2024_1483110 crossref_primary_10_1016_j_ecoenv_2021_112749 crossref_primary_10_1128_AEM_01830_19 crossref_primary_10_1128_JB_00959_15 crossref_primary_10_1128_AEM_02852_15 crossref_primary_10_3389_fmicb_2021_756830 crossref_primary_10_1128_genomeA_00515_15 crossref_primary_10_1128_genomeA_01587_14 crossref_primary_10_1134_S0026261722601932 crossref_primary_10_1038_s41598_018_20574_z crossref_primary_10_1128_mSphere_00462_17 crossref_primary_10_1002_cbic_201900184 crossref_primary_10_3390_life13030627 crossref_primary_10_1007_s10482_023_01811_6 crossref_primary_10_1007_s00203_023_03729_z crossref_primary_10_1111_mmi_14210 crossref_primary_10_1128_AEM_05834_11 crossref_primary_10_1128_msystems_00004_23 crossref_primary_10_3389_fmicb_2022_849573 crossref_primary_10_1016_j_bbapap_2019_04_001 crossref_primary_10_3390_methane2030019 crossref_primary_10_7717_peerj_2687 crossref_primary_10_1007_s00775_021_01852_0 crossref_primary_10_1016_j_febslet_2014_06_008 crossref_primary_10_1134_S0026261720030121 crossref_primary_10_1007_s00203_018_1509_z crossref_primary_10_1002_edn3_446 crossref_primary_10_1016_j_jbiotec_2019_12_021 crossref_primary_10_1038_s41564_024_01742_6 crossref_primary_10_1111_1751_7915_14503 crossref_primary_10_1093_femsec_fiv105 crossref_primary_10_1007_s00248_018_1299_5 crossref_primary_10_1080_09168451_2020_1715202 crossref_primary_10_1128_JB_02595_14 crossref_primary_10_1007_s00253_013_4734_z crossref_primary_10_3389_fmicb_2018_01672 crossref_primary_10_1038_ismej_2012_167 crossref_primary_10_1093_femsec_fiac153 crossref_primary_10_1007_s12257_022_0154_1 crossref_primary_10_7717_peerj_2435 crossref_primary_10_1038_ismej_2014_203 crossref_primary_10_1016_j_biotechadv_2014_03_011 crossref_primary_10_1016_j_cosust_2014_07_004 crossref_primary_10_1016_j_biortech_2024_130759 crossref_primary_10_1186_s40168_020_00936_4 crossref_primary_10_1128_AEM_00703_12 crossref_primary_10_3389_fmars_2017_00023 crossref_primary_10_3389_fmars_2020_00186 crossref_primary_10_1002_lno_12383 crossref_primary_10_1038_s41396_018_0065_5 crossref_primary_10_3389_fmicb_2021_669220 crossref_primary_10_1093_ismejo_wrae241 crossref_primary_10_1007_s10482_024_01981_x crossref_primary_10_1111_1462_2920_16695 crossref_primary_10_1111_1462_2920_12533 crossref_primary_10_1111_1462_2920_12896 crossref_primary_10_1371_journal_pone_0059188 crossref_primary_10_1371_journal_pone_0056598 crossref_primary_10_1016_j_jiec_2016_01_017 |
Cites_doi | 10.1128/JB.00761-10 10.1093/molbev/msh113 10.1111/j.1558-5646.2009.00757.x 10.1111/j.1462-2920.2010.02348.x 10.1128/jb.177.1.247-251.1995 10.1002/pmic.200800152 10.1016/S0009-2797(02)00168-0 10.1038/417244a 10.1128/JB.186.7.2173-2178.2004 10.1016/S0065-2164(07)00005-6 10.1099/ijs.0.028118-0 10.1128/JB.00512-10 10.1007/s002030050770 10.1046/j.1432-1033.2003.03391.x 10.1038/nature06776 10.1128/JB.00977-10 10.1038/nature08992 10.1128/AEM.00739-10 10.1038/nrmicro2439 10.1074/jbc.M805527200 10.1128/AEM.68.1.289-296.2002 10.1128/jb.177.15.4575-4578.1995 10.1046/j.1432-1327.2000.01413.x 10.1128/jb.176.13.4052-4065.1994 10.1038/nature03170 10.1099/ijs.0.64422-0 10.1128/JB.180.20.5351-5356.1998 10.1073/pnas.0610126104 10.1128/JB.187.21.7511-7517.2005 10.1021/bi971463t 10.1016/j.abb.2004.03.022 10.1128/JB.01259-06 10.1111/j.1365-2958.2009.06989.x 10.1007/0-387-30742-7_20 10.1016/j.pocean.2005.03.005 10.1021/ja105498m 10.1128/JB.187.23.7996-8005.2005 10.1073/pnas.96.8.4615 10.1128/JB.182.23.6645-6650.2000 10.1099/mic.0.26587-0 10.1099/00221287-146-1-233 10.1128/jb.175.6.1814-1822.1993 10.1128/jb.176.7.1957-1968.1994 10.1128/JB.185.10.2980-2987.2003 10.1186/1745-6150-3-26 10.1371/journal.pone.0005584 10.1038/nature09015 10.1128/JB.187.13.4607-4614.2005 10.1046/j.1432-1327.1999.00291.x 10.1128/JB.186.5.1229-1238.2004 10.1099/00221287-143-5-1729 10.1128/JB.01229-07 10.1128/JB.00228-08 10.1128/JB.00045-07 10.1099/mic.0.2007/011346-0 10.1099/mic.0.024968-0 10.1128/JB.01144-10 10.1073/pnas.0905240106 10.1073/pnas.0702791104 10.1128/AEM.68.12.5804-5815.2002 10.1128/JB.00506-10 10.1128/JB.00793-07 10.1126/science.281.5373.99 10.1111/j.1462-2920.2008.01568.x 10.1074/jbc.C100579200 10.1128/JB.187.17.6069-6074.2005 10.1074/jbc.M408013200 10.1099/ijs.0.64191-0 10.1128/JB.187.7.2508-2512.2005 10.1128/JB.01267-09 10.1128/JB.01166-09 10.1016/j.cbpa.2009.06.026 10.1016/S0065-2164(06)61009-5 10.1271/bbb.70.10 10.1111/j.1758-2229.2009.00046.x 10.1042/bj3010289 10.1099/00207713-50-3-955 10.1371/journal.pbio.0030016 10.1128/AEM.00469-10 10.1128/AEM.01457-10 10.1016/S0076-6879(97)80106-1 10.1016/S0022-5193(03)00164-4 10.1128/JB.185.23.7160-7168.2003 10.1107/S0907444904026964 10.1128/AEM.71.12.8846-8854.2005 10.1007/s00239-004-2643-6 10.1186/gb-2005-6-2-208 10.1128/MMBR.62.4.1046-1078.1998 10.1111/j.1758-2229.2009.00022.x 10.1128/JB.186.1.22-28.2004 10.1007/978-94-009-0213-8_18 10.1146/annurev.micro.61.080706.093130 10.1038/nature08883 10.1038/nbt.1488 10.1196/annals.1419.000 10.1007/s00203-010-0577-5 10.1126/science.1100025 10.1111/j.1574-6968.1994.tb06749.x 10.1128/JB.185.24.7169-7175.2003 10.1007/s00253-010-2873-z 10.1007/BF00696462 10.1016/j.abb.2004.03.038 10.1128/JB.185.4.1229-1235.2003 10.1073/pnas.1010732107 10.1126/science.1086997 10.1073/pnas.0702643105 10.1111/j.1758-2229.2010.00192.x 10.1007/s00203-002-0450-2 10.1021/bi971797i 10.1126/science.1182492 10.1128/JB.00180-08 10.1146/annurev.biochem.76.061505.175355 10.1007/BF00418934 10.1099/mic.0.038570-0 10.1111/j.1462-2920.2008.01598.x 10.1128/jb.177.5.1292-1298.1995 10.1128/JB.184.13.3476-3484.2002 10.1128/JB.181.23.7154-7160.1999 10.1128/JB.00076-09 10.1146/annurev.micro.091208.073600 10.1073/pnas.0810932106 10.1371/journal.pbio.0050077 |
ContentType | Journal Article |
Copyright | 2011 Society for Applied Microbiology and Blackwell Publishing Ltd 2011 Society for Applied Microbiology and Blackwell Publishing Ltd. |
Copyright_xml | – notice: 2011 Society for Applied Microbiology and Blackwell Publishing Ltd – notice: 2011 Society for Applied Microbiology and Blackwell Publishing Ltd. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7QL C1K 7X8 |
DOI | 10.1111/j.1462-2920.2011.02464.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Bacteriology Abstracts (Microbiology B) AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1462-2920 |
EndPage | 2622 |
ExternalDocumentID | 21443740 10_1111_j_1462_2920_2011_02464_x EMI2464 ark_67375_WNG_D2HJLZF1_2 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7S9 L.6 7QL C1K 7X8 |
ID | FETCH-LOGICAL-c5384-a88422596f82c89e31e0e80e29b9b869bc32a3fb48eeb7d3909568e275d80f703 |
IEDL.DBID | DR2 |
ISSN | 1462-2912 1462-2920 |
IngestDate | Fri Jul 11 02:51:13 EDT 2025 Fri Jul 11 07:09:25 EDT 2025 Fri Jul 11 18:39:19 EDT 2025 Mon Jul 21 06:01:03 EDT 2025 Tue Jul 01 00:42:43 EDT 2025 Thu Apr 24 22:54:13 EDT 2025 Wed Jan 22 16:45:25 EST 2025 Wed Oct 30 09:56:17 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | 2011 Society for Applied Microbiology and Blackwell Publishing Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5384-a88422596f82c89e31e0e80e29b9b869bc32a3fb48eeb7d3909568e275d80f703 |
Notes | istex:5DA0BB15191CDA701F165C94DCB47A926409BD07 ArticleID:EMI2464 ark:/67375/WNG-D2HJLZF1-2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Review-3 |
PMID | 21443740 |
PQID | 1365041751 |
PQPubID | 24069 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_903657995 proquest_miscellaneous_1753468277 proquest_miscellaneous_1365041751 pubmed_primary_21443740 crossref_primary_10_1111_j_1462_2920_2011_02464_x crossref_citationtrail_10_1111_j_1462_2920_2011_02464_x wiley_primary_10_1111_j_1462_2920_2011_02464_x_EMI2464 istex_primary_ark_67375_WNG_D2HJLZF1_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2011 |
PublicationDateYYYYMMDD | 2011-10-01 |
PublicationDate_xml | – month: 10 year: 2011 text: October 2011 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | Environmental microbiology |
PublicationTitleAlternate | Environ Microbiol |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Marx, C.J., Laukel, M., Vorholt, J.A., and Lidstrom, M.E. (2003b) Purification of the formate-tetrahydrofolate ligase from Methylobacterium extorquens AM1 and demonstration of its requirement for methylotrophic growth. J Bacteriol 185: 7169-7175. Liffourrena, A.S., Salvano, M.A., and Lucchesi, G.I. (2010) Pseudomonas putida A ATCC 12633 oxidizes trimethylamine aerobically via two different pathways. Arch Microbiol 192: 471-476. Bauer, M., Lombardot, T., Teeling, H., Ward, N.L., Amann, R.I., and Glöckner, F.O. (2004) Archaea-like genes for C1-transfer enzymes in Planctomycetes: phylogenetic implications of their unexpected presence in this phylum. J Mol Evol 59: 571-586. Chistoserdova, L., Laukel, M., Portais, J.C., Vorholt, J.A., and Lidstrom, M.E. (2004b) Multiple formate dehydrogenase enzymes in the facultative methylotroph Methylobacterium extorquens AM1 are dispensable for growth on methanol. J Bacteriol 186: 22-28. Boden, R., Borodina, E., Wood, A.P., Kelly, D.P., Murrell, J.C., and Schäfer, H. (2011) Purification and characterization of dimethylsulfide monooxygenase from Hyphomicrobium sulfonivorans. J Bacteriol 193: 1250-1258. Brautaset, T., Jakobsen, M.Ø.M., Flickinger, M.C., Valla, S., and Ellingsen, T.E. (2004) Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus. J Bacteriol 186: 1229-1238. Erb, T.J., Berg, I.A., Brecht, V., Müller, M., Fuchs, G., and Alber, B.E. (2007) Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalyl-CoA pathway. Proc Natl Acad Sci USA 104: 10631-10636. Chen, Y., Crombie, A., Rahman, M.T., Dedysh, S.N., Liesack, W., Stott, M.B., et al. (2010a) Complete genome sequence of the aerobic facultative methanotroph Methylocella silvestris BL2. J Bacteriol 192: 3840-3841. Vuilleumier, S., Chistoserdova, L., Lee, M.-C., Bringel, F., Lajus, A., Zhou, Y., et al. (2009) Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS ONE 4: e5584. Marx, C.J., Chistoserdova, L., and Lidstrom, M.E. (2003a) Formaldehyde-detoxifying role of the tetrahydromethanopterin-linked pathway in Methylobacterium extorquens AM1. J Bacteriol 185: 7160-7168. Kang, I., Oh, H.M., Lim, S.I., Ferriera, S., Giovannoni, S.J., and Cho, J.C. (2010) Genome sequence of Fulvimarina pelagi HTCC2506T, a Mn(II)-oxidizing alphaproteobacterium possessing an aerobic anoxygenic photosynthetic gene cluster and xanthorhodopsin. J Bacteriol 192: 4798-4799. Sowell, S.M., Abraham, P.E., Shah, M., Verberkmoes, N.C., Smith, D.P., Barofsky, D.F., and Giovannoni, S.J. (2010) Environmental proteomics of microbial plankton in a highly productive coastal upwelling system. ISME J (in press): doi:10.1038/ismej.2010.168. Kalyuzhnaya, M.G., Bowerman, S., Lara, J.C., Lidstrom, M.E., and Chistoserdova, L. (2006b) Methylotenera mobilis gen. nov., sp. nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae. Int J Syst Evol Microbiol 56: 2819-2823. Kalyuzhnaya, M.G., Lapidus, A., Ivanova, N., Copeland, A.C., McHardy, A.C., Szeto, E., et al. (2008a) High-resolution metagenomics targets specific functional types in complex microbial communities. Nat Biotechnol 26: 1029-1034. Naqvi, S.W.A., Bange, H.W., Gibb, S.W., Goyet, C., Hatton, A.D., and Upstill-Goddard, R.C. (2005) Biogeochemical ocean-atmosphere transfers in the Arabian Sea. Prog Oceanogr 65: 116-144. Vorholt, J.A., Chistoserdova, L., Lidstrom, M.E., and Thauer, R.K. (1998) The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1. J Bacteriol 180: 5351-5356. Leisinger, T., Bader, R., Hermann, R., Schmid-Appert, M., and Vuilleumier, S. (1994) Microbes, enzymes and genes involved in dichloromethane utilization. Biodegradation 5: 237-248. Vorobev, A.V., Baani, M., Doronina, N.V., Brady, A.L., Liesack, W., Dunfield, P.F., and Dedysh, S.N. (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium possessing only a soluble methane monooxygenase. Int J Syst Evol Microbiol (in press): doi:10.1099/ijs.0.028118-0. Williams, P.A., Coates, L., Mohammed, F., Gill, R., Erskine, P.T., Coker, A., et al. (2005) The atomic resolution structure of methanol dehydrogenase from Methylobacterium extorquens. Acta Crystallogr D Biol Crystallogr 61: 75-79. Singh, B.K., Bardgett, R.D., Smith, P., and Reay, D.S. (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8: 779-790. Brochier, C., and Philippe, H. (2002) Phylogeny: a non-hyperthermophilic ancestor for bacteria. Nature 417: 244. Laukel, M., Chistoserdova, L., Lidstrom, M.E., and Vorholt, J.A. (2003) The tungsten-containing formate dehydrogenase from Methylobacterium extorquens AM1: purification and properties. Eur J Biochem 270: 325-333. Chistoserdova, L., Vorholt, J.A., and Lidstrom, M.E. (2005b) A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol 6: 208. Chistoserdova, L., Crowther, G.J., Vorholt, J.A., Skovran, E., Portais, J.C., and Lidstrom, M.E. (2007a) Identification of a fourth formate dehydrogenase in Methylobacterium extorquens AM1 and confirmation of the essential role of formate oxidation in methylotrophy. J Bacteriol 189: 9076-9081. Bosch, G., Skovran, E., Xia, Q., Wang, T., Taub, F., Miller, J.A., et al. (2008) Comprehensive proteomics of Methylobacterium extorquens AM1 metabolism under single carbon and nonmethylotrophic conditions. Proteomics 8: 3494-3505. Schmidt, S., Christen, P., Kiefer, P., and Vorholt, J.A. (2010) Functional investigation of methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1. Microbiology 156: 2575-2586. Kane, S.R., Chakicherla, A.Y., Chain, P.S., Schmidt, R., Shin, M.W., Legler, T.C., et al. (2007) Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1. J Bacteriol 189: 1931-1945. Erratum (2007) J Bacteriol189: 4973. Op den Camp, H.G.M., Islam, T., Stott, M.B., Harhangi, H.R., Hynes, A., Schouten, S., et al. (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1: 293-306. Yoch, D.C. (2002) Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl Environ Microbiol 68: 5804-5815. Vorholt, J.A., Marx, C.J., Lidstrom, M.E., and Thauer, R.K. (2000) Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol. J Bacteriol 182: 6645-6650. Kato, N., Yurimoto, H., and Thauer, R.K. (2006) The physiological role of the ribulose monophosphate pathway in bacteria and archaea. Biosci Biotechnol Biochem 70: 10-21. Chistoserdova, L.V., and Lidstrom, M.E. (1994) Genetics of the serine cycle in Methylobacterium extorquens AM1: identification of sgaA and mtdA and sequences of sgaA, hprA, and mtdA. J Bacteriol 176: 1957-1968. Baani, M., and Liesack, W. (2008) Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci USA 105: 10203-10208. Ettwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M., et al. (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464: 543-548. Lee, M.C., Chou, H.H., and Marx, C.J. (2009) Asymmetric, bimodal trade-offs during adaptation of Methylobacterium to distinct growth substrates. Evolution 63: 2816-2830. Pomper, B.K., Vorholt, J.A., Chistoserdova, L., Lidstrom, M.E., and Thauer, R.K. (1999) A methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in Methylobacterium extorquens AM1. Eur J Biochem 261: 475-480. Howard, E.C., Sun, S., Reisch, C.R., Del Valle, D.A., Bürgmann, H., Kiene, R.P., and Moran, M.A. (2011) Changes in dimethylsulfoniopropionate demethylase gene assemblages in response to an induced phytoplankton bloom. Appl Environ Microbiol 77: 524-531. Nagy, P.L., Marolewski, A., Benkovic, S.J., and Zalkin, H. (1995) Formyltetrahydrofolate hydrolase, a regulatory enzyme that functions to balance pools of tetrahydrofolate and one-carbon tetrahydrofolate adducts in Escherichia coli. J Bacteriol 177: 1292-1298. Yasueda, H., Kawahara, Y., and Sugimoto, S. (1999) Bacillus subitlis yckG and yckF encode two key enzymes of the ribulose monophosphate pathway used by methylotrophs, and yckH is required for their expression. J Bacteriol 181: 7154-7160. Anthony, C. (2004) The quinoprotein dehydrogenases for methanol and glucose. Arch Biochem Biophys 428: 2-9. Chistoserdova, L., Jenkins, C., Kalyuzhnaya, M.G., Marx, C.J., Lapidus, A., Vorholt, J.A., et al. (2004a) The enigmatic planctomycetes may hold a key to the origins of methanogenesis and methylotrophy. Mol Biol Evol 21: 1234-1241. Kelly, D.P., and Murrell, J.C. (1999) Microbial metabolism of methanesulfonic acid. Arch Microbiol 172: 341-834. Goenrich, M., Bartoschek, S., Hagemeier, C.H., Griesinger, C., and Vorholt, J.A. (2002) A glutathione-dependent formaldehyde-activating enzyme (Gfa) from Paracoccus denitrificans detected and purified via two-dimensional proton exchange NMR spectroscopy. J Biol Chem 277: 3069-3072. Peyraud, R., Kiefer, P., Christen, P., Massou, S., Portais, J.C., and Vorholt, J.A. (2009) Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics. Proc Natl Acad Sci USA 106: 4846-4851. Kalyuzhnaya, M.G., Martens-Habbena, W., Wang, T., Hackett, M., Stolyar, S.M., Stahl, D.A., et al. (2009) Methylophilaceae link methanol oxidation to denitrification in freshwater lake sediment as suggested by stable isotope probing and pure culture analysis. Environ Microbiol Rep 1: 385-392. Chistoserdova, L., Kalyuzhnaya, M.G., and Lidstrom, M.E. (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63: 477-499. Bosch, G., Wang, T., Latypova, E., Kalyuzhnaya, M.G., 2007; 104 1998; 281 2008; 190 2007; 189 2010; 107 1999; 172 2010; 464 1906; 15 2002; 277 2010; 465 2003; 270 2005; 65 2008; 105 2010c; 76 2005b; 6 2007b; 189 2004; 2 1997; 280 2005; 61 2004b; 186 2007; 76 2006a; 56 2011; 193 2009; 13 2008; 1125 1994; 301 2005; 187 1997; 143 1999; 181 1982 2007; 5 2007; 61 2010; 192 2010; 3 2010; 8 2010; 32 2009; 63 2010a; 192 2010; 327 2004a; 21 1996 2011; 77 2002; 417 2004; 428 1998; 62 2004; 305 2007a; 189 1989; 56 2004; 279 2010; 46 2004; 432 2009; 191 2004; 59 2002; 68 1997; 36 2004; 150 2000; 182 2005; 3 2005a; 71 2003; 224 2003; 185 2009; 106 2006; 70 1994; 176 2008b; 190 2000; 50 2009; 155 2008; 8 2011; 13 1995; 177 2008; 3 2010b; 76 2006b; 56 2003b; 185 2005a; 187 2002; 184 2010; 156 1999; 96 2008; 63 2008; 154 1993; 175 1998; 180 2004; 186 2010; 75 2005c; 187 1994; 117 2011 2010 2002; 178 1999; 261 2006 2008; 10 2008; 283 2003a; 185 2010; 89 1998; 37 2008a; 26 2000; 146 2000; 267 2005b; 71 2003; 143–144 2009; 4 2003; 302 2008; 452 2009; 1 1994; 5 e_1_2_7_108_1 e_1_2_7_127_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 Chistoserdova L. (e_1_2_7_29_1) 2005; 71 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_109_1 Yasueda H. (e_1_2_7_126_1) 1999; 181 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_117_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 Nagy P.L. (e_1_2_7_91_1) 1995; 177 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 Sowell S.M. (e_1_2_7_105_1) 2010 Kaserer H. (e_1_2_7_71_1) 1906; 15 e_1_2_7_118_1 e_1_2_7_114_1 Söhngen N.L. (e_1_2_7_104_1) 1906; 15 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_103_1 Bystrykh L.V. (e_1_2_7_17_1) 1993; 175 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 Anthony C. (e_1_2_7_3_1) 1982 e_1_2_7_119_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 |
References_xml | – reference: Vorholt, J.A., Kalyuzhnaya, M.G., Hagemeier, C.H., Lidstrom, M.E., and Chistoserdova, L. (2005) MtdC, a novel class of methylene tetrahydromethanopterin dehydrogenases. J Bacteriol 187: 6069-6074. – reference: Hendrickson, E.L., Beck, D.A.C., Wang, T., Lidstrom, M.E., Hackett, M., and Chistoserdova, L. (2010) The expressed genome of Methylobacillus flagellatus defined through comprehensive proteomics and new insights into methylotrophy. J Bacteriol 192: 4859-4867. – reference: Okubo, Y., Yang, S., Chistoserdova, L., and Lidstrom, M.E. (2010) Alternative route for glyoxylate consumption during growth on two-carbon compounds by Methylobacterium extorquens AM1. J Bacteriol 192: 1813-1823. – reference: Chistoserdova, L., Laukel, M., Portais, J.C., Vorholt, J.A., and Lidstrom, M.E. (2004b) Multiple formate dehydrogenase enzymes in the facultative methylotroph Methylobacterium extorquens AM1 are dispensable for growth on methanol. J Bacteriol 186: 22-28. – reference: Erb, T.J., Rétey, J., Fuchs, G., and Alber, B.E. (2008) Ethylmalonyl-CoA mutase from Rhodobacter sphaeroides defines a new subclade of coenzyme B12-dependent acyl-CoA mutases. J Biol Chem 283: 32283-32293. – reference: Nagy, P.L., Marolewski, A., Benkovic, S.J., and Zalkin, H. (1995) Formyltetrahydrofolate hydrolase, a regulatory enzyme that functions to balance pools of tetrahydrofolate and one-carbon tetrahydrofolate adducts in Escherichia coli. J Bacteriol 177: 1292-1298. – reference: Balasubramanian, R., Smith, S.M., Rawat, S., Yatsunyk, L.A., Stemmler, T.L., and Rosenzweig, A.C. (2010) Oxidation of methane by a biological dicopper centre. Nature 46: 115-119. – reference: Gak, E.R., Chistoserdov, A.Y., and Lidstrom, M.E. (1995) Cloning, sequencing, and mutation of a gene for azurin in Methylobacillus flagellatum KT. J Bacteriol 177: 4575-4578. – reference: Tavormina, P.L., Orphan, V.J., Kalyuzhnaya, M.G., Jetten, M.S.M., and Klotz, M.G. (2010) A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ Microbiol Rep 3: 91-100. – reference: Chistoserdova, L., Lapidus, A., Han, C., Goodwin, L., Saunders, L., Brettin, T., et al. (2007b) Genome of Methylobacillus flagellatus, molecular basis for obligate methylotrophy, and polyphyletic origin of methylotrophy. J Bacteriol 189: 4020-4027. – reference: Jensen, L.M., Sanishvili, R., Davidson, V.L., and Wilmot, C.M. (2010) In crystallo posttranslational modification within a MauG/pre-methylamine dehydrogenase complex. Science 327: 1392-1394. – reference: Naqvi, S.W.A., Bange, H.W., Gibb, S.W., Goyet, C., Hatton, A.D., and Upstill-Goddard, R.C. (2005) Biogeochemical ocean-atmosphere transfers in the Arabian Sea. Prog Oceanogr 65: 116-144. – reference: Klein, C.R., Kesseler, F.P., Perrei, C., Frank, J., Duine, J.A., and Schwartz, A.C. (1994) A novel dye-linked formaldehyde dehydrogenase with some properties indicating the presence of a protein-bound redox-active quinone cofactor. Biochem J 301: 289-295. – reference: Dedysh, S.N., Liesack, W., Khmelenina, V.N., Suzina, N.E., Trotsenko, Y.A., Semrau, J.D., et al. (2000) Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50: 955-969. – reference: Kalyuzhnaya, M.G., and Lidstrom, M.E. (2003) QscR, a LysR-type transcriptional regulator and CbbR homolog, is involved in regulation of the serine cycle genes in Methylobacterium extorquens AM1. J Bacteriol 185: 1229-1235. – reference: Alber, B.E. (2010) Biotechnological potential of the ethylmalonyl-CoA pathway. Appl Microbiol Biotechnol 89: 17-25. – reference: Anthony, C. (2004) The quinoprotein dehydrogenases for methanol and glucose. Arch Biochem Biophys 428: 2-9. – reference: Ashida, H., Saito, Y., Kojima, C., Kobayashi, K., Ogasawara, N., and Yokota, A. (2003) A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO. Science 302: 286-290. – reference: Studer, A., McAnulla, C., Büchele, R., Leisinger, T., and Vuilleumier, S. (2002) Chloromethane-induced genes define a third C1 utilization pathway in Methylobacterium chloromethanicum CM4. J Bacteriol 184: 3476-3484. – reference: Tripp, H.J., Kitner, J.B., Schwalbach, M.S., Dacey, J.W., Wilhelm, L.J., and Giovannoni, S.J. (2008) SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452: 741-744. – reference: Yoch, D.C. (2002) Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl Environ Microbiol 68: 5804-5815. – reference: Kaserer, H. (1906) The oxidation of hydrogen and methane by microorganisms. Zbl Bact Parasitenk 15: 573-576. (In German). – reference: Hou, S., Makarova, K.S., Saw, J.H., Senin, P., Ly, B.V., Zhou, Z., et al. (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3: 26. – reference: Hagemeier, C.H., Chistoserdova, L., Lidstrom, M.E., Thauer, R.K., and Vorholt, J.A. (2000) Characterization of a second methylene tetrahydromethanopterin dehydrogenase from Methylobacterium extorquens AM1. Eur J Biochem 267: 3762-3769. – reference: Chistoserdova, L., Vorholt, J.A., and Lidstrom, M.E. (2005b) A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol 6: 208. – reference: Todd, J.D., Curson, A.R., Kirkwood, M., Sullivan, M.J., Green, R.T., and Johnston, A.W. (2011) DddQ, a novel, cupin-containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine bacteria. Environ Microbiol 13: 427-438. – reference: Chistoserdova, L.V., and Lidstrom, M.E. (1994) Genetics of the serine cycle in Methylobacterium extorquens AM1: identification of sgaA and mtdA and sequences of sgaA, hprA, and mtdA. J Bacteriol 176: 1957-1968. – reference: Ras, J., Van Ophem, P.W., Reijnders, W.N., Van Spanning, R.J., Duine, J.A., Stouthamer, A.H., and Harms, N. (1995) Isolation, sequencing, and mutagenesis of the gene encoding NAD- and glutathione-dependent formaldehyde dehydrogenase (GD-FALDH) from Paracoccus denitrificans, in which GD-FALDH is essential for methylotrophic growth. J Bacteriol 177: 247-251. – reference: Wilson, S.M., Gleisten, M.P., and Donohue, T.J. (2008) Identification of proteins involved in formaldehyde metabolism by Rhodobacter sphaeroides. Microbiology 154: 296-305. – reference: Sowell, S.M., Abraham, P.E., Shah, M., Verberkmoes, N.C., Smith, D.P., Barofsky, D.F., and Giovannoni, S.J. (2010) Environmental proteomics of microbial plankton in a highly productive coastal upwelling system. ISME J (in press): doi:10.1038/ismej.2010.168. – reference: Vorholt, J.A., Chistoserdova, L., Lidstrom, M.E., and Thauer, R.K. (1998) The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1. J Bacteriol 180: 5351-5356. – reference: Erb, T.J., Frerichs-Revermann, L., Fuchs, G., and Alber, B.E. (2010) The apparent malate synthase activity of Rhodobacter sphaeroides is due to two paralogous enzymes, (3S)-Malyl-coenzyme A (CoA)/{beta}-methylmalyl-CoA lyase and (3S)-Malyl-CoA thioesterase. J Bacteriol 192: 1249-1258. – reference: Goenrich, M., Bartoschek, S., Hagemeier, C.H., Griesinger, C., and Vorholt, J.A. (2002) A glutathione-dependent formaldehyde-activating enzyme (Gfa) from Paracoccus denitrificans detected and purified via two-dimensional proton exchange NMR spectroscopy. J Biol Chem 277: 3069-3072. – reference: Kalyuzhnaya, M.G., and Lidstrom, M.E. (2005) QscR-mediated transcriptional activation of serine cycle genes in Methylobacterium extorquens AM1. J Bacteriol 187: 7511-7517. – reference: Crowther, G.J., Kosály, G., and Lidstrom, M.E. (2008) Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1. J Bacteriol 190: 5057-5062. – reference: Bauer, M., Lombardot, T., Teeling, H., Ward, N.L., Amann, R.I., and Glöckner, F.O. (2004) Archaea-like genes for C1-transfer enzymes in Planctomycetes: phylogenetic implications of their unexpected presence in this phylum. J Mol Evol 59: 571-586. – reference: Chistoserdov, A.Y., Chistoserdova, L.V., McIntire, W.S., and Lidstrom, M.E. (1994) Genetic organization of the mau cluster in Methylobacterium extorquens AM1: complete nucleotide sequence and generation and characteristics of mau mutants. J Bacteriol 176: 4052-4065. – reference: Leisinger, T., Bader, R., Hermann, R., Schmid-Appert, M., and Vuilleumier, S. (1994) Microbes, enzymes and genes involved in dichloromethane utilization. Biodegradation 5: 237-248. – reference: Tanaka, N., Kusakabe, Y., Ito, K., Yoshimoto, T., and Nakamura, K.T. (2003) Crystal structure of glutathione-independent formaldehyde dehydrogenase. Chem Biol Interact 143-144: 211-218. – reference: Liffourrena, A.S., Salvano, M.A., and Lucchesi, G.I. (2010) Pseudomonas putida A ATCC 12633 oxidizes trimethylamine aerobically via two different pathways. Arch Microbiol 192: 471-476. – reference: Williams, P.A., Coates, L., Mohammed, F., Gill, R., Erskine, P.T., Coker, A., et al. (2005) The atomic resolution structure of methanol dehydrogenase from Methylobacterium extorquens. Acta Crystallogr D Biol Crystallogr 61: 75-79. – reference: Lidstrom, M.E., Anthony, C., Biville, F., Gasser, F., Goodwin, P., Hanson, R.S., and Harms, N. (1994) New unified nomenclature for genes involved in the oxidation of methanol in gram-negative bacteria. FEMS Microbiol Lett 117: 103-106. – reference: Chen, Y., Crombie, A., Rahman, M.T., Dedysh, S.N., Liesack, W., Stott, M.B., et al. (2010a) Complete genome sequence of the aerobic facultative methanotroph Methylocella silvestris BL2. J Bacteriol 192: 3840-3841. – reference: Meschi, F., Wiertz, F., Klauss, L., Cavalieri, C., Blok, A., Ludwig, B., et al. (2010) Amicyanin transfers electrons from methylamine dehydrogenase to cytochrome c-551i via a ping-pong mechanism, not a ternary complex. J Am Chem Soc 32: 14537-14545. – reference: Chen, Y., Scanlan, J., Song, L., Crombie, A., Rahman, M.T., Schäfer, H., and Murrell, J.C. (2010b) {gamma}-Glutamylmethylamide is an essential intermediate in the metabolism of methylamine by Methylocella silvestris. Appl Environ Microbiol 76: 4530-4537. – reference: Op den Camp, H.G.M., Islam, T., Stott, M.B., Harhangi, H.R., Hynes, A., Schouten, S., et al. (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1: 293-306. – reference: Denef, V.J., Patrauchan, M.A., Florizone, C., Park, J., Tsoi, T.V., Verstraete, W., et al. (2005) Growth substrate- and phase-specific expression of biphenyl, benzoate, and C1 metabolic pathways in Burkholderia xenovorans LB400. J Bacteriol 187: 7996-8005. – reference: Lee, M.C., Chou, H.H., and Marx, C.J. (2009) Asymmetric, bimodal trade-offs during adaptation of Methylobacterium to distinct growth substrates. Evolution 63: 2816-2830. – reference: Ettwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M., et al. (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464: 543-548. – reference: Chistoserdova, L., Kalyuzhnaya, M.G., and Lidstrom, M.E. (2005a) C1 transfer modules: from genomics to ecology. ASM News 71: 521-528. – reference: Kalyuzhnaya, M.G., Martens-Habbena, W., Wang, T., Hackett, M., Stolyar, S.M., Stahl, D.A., et al. (2009) Methylophilaceae link methanol oxidation to denitrification in freshwater lake sediment as suggested by stable isotope probing and pure culture analysis. Environ Microbiol Rep 1: 385-392. – reference: Kelly, D.P., and Murrell, J.C. (1999) Microbial metabolism of methanesulfonic acid. Arch Microbiol 172: 341-834. – reference: Kalyuzhnaya, M.G., Hristova, K.R., Lidstrom, M.E., and Chistoserdova, L. (2008b) Characterization of a novel methanol dehydrogenase in representatives of Burkholderiales: implications for environmental detection of methylotrophy and evidence for convergent evolution. J Bacteriol 190: 3817-3823. – reference: Pomper, B.K., Vorholt, J.A., Chistoserdova, L., Lidstrom, M.E., and Thauer, R.K. (1999) A methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in Methylobacterium extorquens AM1. Eur J Biochem 261: 475-480. – reference: Vorholt, J.A., Marx, C.J., Lidstrom, M.E., and Thauer, R.K. (2000) Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol. J Bacteriol 182: 6645-6650. – reference: Davidson, V.L. (2004) Electron transfer in quinoproteins. Arch Biochem Biophys 428: 32-40. – reference: Vuilleumier, S., Chistoserdova, L., Lee, M.-C., Bringel, F., Lajus, A., Zhou, Y., et al. (2009) Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS ONE 4: e5584. – reference: Kao, W.C., Chen, Y.R., Yi, E.C., Lee, H., Tian, Q., Wu, K.M., et al. (2004) Quantitative proteomic analysis of metabolic regulation by copper ions in Methylococcus capsulatus (Bath). J Biol Chem 279: 51554-51560. – reference: Peyraud, R., Kiefer, P., Christen, P., Massou, S., Portais, J.C., and Vorholt, J.A. (2009) Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics. Proc Natl Acad Sci USA 106: 4846-4851. – reference: Rusch, D.B., Halpern, A.L., Sutton, G., Heidelberg, K.B., Williamson, S., Yooseph, D., et al. (2007) The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5: e77. – reference: Bosch, G., Wang, T., Latypova, E., Kalyuzhnaya, M.G., Hackett, M., and Chistoserdova, L. (2009) Insights into the physiology of Methylotenera mobilis as revealed by metagenome-based shotgun proteomic analysis. Microbiol 155: 1103-1110. – reference: Baker, S.C., Ferguson, S.J., Ludwig, B., Page, M.D., Richter, O.M., and van Spanning, R.J. (1998) Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility. Microbiol Mol Biol Rev 62: 1046-1078. – reference: Boden, R., Borodina, E., Wood, A.P., Kelly, D.P., Murrell, J.C., and Schäfer, H. (2011) Purification and characterization of dimethylsulfide monooxygenase from Hyphomicrobium sulfonivorans. J Bacteriol 193: 1250-1258. – reference: Vannelli, T., Messmer, M., Studer, A., Vuilleumier, S., and Leisinger, T. (1999) A corrinoid-dependent catabolic pathway for growth of a Methylobacterium strain with chloromethane. Proc Natl Acad Sci USA 96: 4615-4620. – reference: Hartmann, C., and McIntire, W.S. (1997) Amine-oxidizing quinoproteins. Methods Enzymol 280: 98-150. – reference: Söhngen, N.L. (1906) Uber bakterien welche methan ab kohlenstoffnahrung und energiequelle gerbrauchen. Zbl Bact Parasitenk 15: 513-517. (In German). – reference: Chistoserdova, L., Jenkins, C., Kalyuzhnaya, M.G., Marx, C.J., Lapidus, A., Vorholt, J.A., et al. (2004a) The enigmatic planctomycetes may hold a key to the origins of methanogenesis and methylotrophy. Mol Biol Evol 21: 1234-1241. – reference: Marx, C.J., Chistoserdova, L., and Lidstrom, M.E. (2003a) Formaldehyde-detoxifying role of the tetrahydromethanopterin-linked pathway in Methylobacterium extorquens AM1. J Bacteriol 185: 7160-7168. – reference: Schäfer, H., Miller, L.G., Oremland, R.S., and Murrell, J.C. (2007) Bacterial cycling of methyl halides. Adv Appl Microbiol 61: 307-346. – reference: Wilce, M.C., Dooley, D.M., Freeman, H.C., Guss, J.M., Matsunami, H., McIntire, W.S., et al. (1997) Crystal structures of the copper-containing amine oxidase from Arthrobacter globiformis in the holo and apo forms: implications for the biogenesis of topaquinone. Biochemistry 36: 16116-16133. – reference: Yasueda, H., Kawahara, Y., and Sugimoto, S. (1999) Bacillus subitlis yckG and yckF encode two key enzymes of the ribulose monophosphate pathway used by methylotrophs, and yckH is required for their expression. J Bacteriol 181: 7154-7160. – reference: Knittel, K., and Boetius, A. (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63: 311-334. – reference: Hallam, S.J., Putnam, N., Preston, C.M., Detter, J.C., Rokhsar, D., Richardson, P.M., and DeLong, E.F. (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305: 1457-1462. – reference: Chistoserdova, L., Kalyuzhnaya, M.G., and Lidstrom, M.E. (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63: 477-499. – reference: Baani, M., and Liesack, W. (2008) Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci USA 105: 10203-10208. – reference: Kane, S.R., Chakicherla, A.Y., Chain, P.S., Schmidt, R., Shin, M.W., Legler, T.C., et al. (2007) Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1. J Bacteriol 189: 1931-1945. Erratum (2007) J Bacteriol189: 4973. – reference: Howard, E.C., Sun, S., Reisch, C.R., Del Valle, D.A., Bürgmann, H., Kiene, R.P., and Moran, M.A. (2011) Changes in dimethylsulfoniopropionate demethylase gene assemblages in response to an induced phytoplankton bloom. Appl Environ Microbiol 77: 524-531. – reference: Di Giulio, M. (2003) The ancestor of the Bacteria domain was a hyperthermophile. J Theor Biol 224: 277-283. – reference: Kato, N., Yurimoto, H., and Thauer, R.K. (2006) The physiological role of the ribulose monophosphate pathway in bacteria and archaea. Biosci Biotechnol Biochem 70: 10-21. – reference: Laukel, M., Chistoserdova, L., Lidstrom, M.E., and Vorholt, J.A. (2003) The tungsten-containing formate dehydrogenase from Methylobacterium extorquens AM1: purification and properties. Eur J Biochem 270: 325-333. – reference: Marx, C.J., Miller, J.A., Chistoserdova, L., and Lidstrom, M.E. (2004) Multiple formaldehyde oxidation/detoxification pathways in Burkholderia fungorum LB400. J Bacteriol 186: 2173-2178. – reference: Moran, M.A., Buchan, A., González, J.M., Heidelberg, J.F., Whitman, W.B., Kiene, R.P., et al. (2004) Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432: 910-913. – reference: Bosch, G., Skovran, E., Xia, Q., Wang, T., Taub, F., Miller, J.A., et al. (2008) Comprehensive proteomics of Methylobacterium extorquens AM1 metabolism under single carbon and nonmethylotrophic conditions. Proteomics 8: 3494-3505. – reference: Vorobev, A.V., Baani, M., Doronina, N.V., Brady, A.L., Liesack, W., Dunfield, P.F., and Dedysh, S.N. (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium possessing only a soluble methane monooxygenase. Int J Syst Evol Microbiol (in press): doi:10.1099/ijs.0.028118-0. – reference: Zhang, X., Reddy, S.Y., and Bruice, T.C. (2007) Mechanism of methanol oxidation by quinoprotein methanol dehydrogenase. Proc Natl Acad Sci USA 104: 745-749. – reference: Greenberg, D.E., Porcella, S.F., Zelazny, A.M., Virtaneva, K., Sturdevant, D.E., Kupko, J.J., 3rd, et al. (2007) Genome sequence analysis of the emerging human pathogenic acetic acid bacterium Granulibacter bethesdensis. J Bacteriol 189: 8727-8736. – reference: Kalyuzhnaya, M.G., De Marco, P., Bowerman, S., Pacheco, C.C., Lara, J.C., Lidstrom, M.E., and Chistoserdova, L. (2006a) Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates. Int J Syst Evol Microbiol 56: 2517-2522. – reference: Brautaset, T., Jakobsen, M.Ø.M., Flickinger, M.C., Valla, S., and Ellingsen, T.E. (2004) Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus. J Bacteriol 186: 1229-1238. – reference: Chistoserdova, L., Chen, S.W., Lapidus, A., and Lidstrom, M.E. (2003) Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol 185: 2980-2987. – reference: Chistoserdova, L., Crowther, G.J., Vorholt, J.A., Skovran, E., Portais, J.C., and Lidstrom, M.E. (2007a) Identification of a fourth formate dehydrogenase in Methylobacterium extorquens AM1 and confirmation of the essential role of formate oxidation in methylotrophy. J Bacteriol 189: 9076-9081. – reference: Delmotte, N., Knief, C., Chaffron, S., Innerebner, G., Roschitzki, B., Schlapbach, R., et al. (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci USA 106: 16428-16433. – reference: Baxter, N.J., Scanlan, J., De Marco, P., Wood, A.P., and Murrell, J.C. (2002) Duplicate copies of genes encoding methanesulfonate monooxygenase in Marinosulfonomonas methylotropha strain TR3 and detection of methanesulfonate utilizers in the environment. Appl Environ Microbiol 68: 289-296. – reference: Hakemian, A.S., and Rosenzweig, A.C. (2007) The biochemistry of methane oxidation. Annu Rev Biochem 76: 223-241. – reference: Kang, I., Oh, H.M., Lim, S.I., Ferriera, S., Giovannoni, S.J., and Cho, J.C. (2010) Genome sequence of Fulvimarina pelagi HTCC2506T, a Mn(II)-oxidizing alphaproteobacterium possessing an aerobic anoxygenic photosynthetic gene cluster and xanthorhodopsin. J Bacteriol 192: 4798-4799. – reference: Stein, L.Y., Yoon, S., Semrau, J.D., Dispirito, A.A., Murrell, J.C., Vuilleumier, S., et al. (2010) Genome sequence of the obligate methanotroph, Methylosinus trichosporium strain OB3b. J Bacteriol 192: 6497-6498. – reference: Kalyuzhnaya, M.G., Korotkova, N., Crowther, G., Marx, C.J., Lidstrom, M.E., and Chistoserdova, L. (2005a) Analysis of gene islands involved in methanopterin-linked C1 transfer reactions reveals new functions and provides evolutionary insights. J Bacteriol 187: 4607-4614. – reference: Chistoserdova, L., and Lidstrom, M.E. (1997) Molecular and mutational analysis of a DNA region separating two methylotrophy gene clusters in Methylobacterium extorquens AM1. Microbiol 143: 1729-1736. – reference: Wilmot, C.M., and Davidson, V.L. (2009) Uncovering novel biochemistry in the mechanism of tryptophan tryptophylquinone cofactor biosynthesis. Curr Opin Chem Biol 13: 469-474. – reference: Marx, C.J., Laukel, M., Vorholt, J.A., and Lidstrom, M.E. (2003b) Purification of the formate-tetrahydrofolate ligase from Methylobacterium extorquens AM1 and demonstration of its requirement for methylotrophic growth. J Bacteriol 185: 7169-7175. – reference: McCarren, J., Becker, J.W., Repeta, D.J., Shi, Y., Young, C.R., Malmstrom, R.R., et al. (2010) Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Natl Acad Sci USA 107: 16420-16427. – reference: Ward, N., Larsen, Ø., Sakwa, J., Bruseth, L., Khouri, H., Durkin, A.S., et al. (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol 2: e303. – reference: Schmidt, S., Christen, P., Kiefer, P., and Vorholt, J.A. (2010) Functional investigation of methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1. Microbiology 156: 2575-2586. – reference: Chistoserdova, L., Gomelsky, L., Vorholt, J.A., Gomelsky, M., Tsygankov, Y.D., Thauer, R.K., and Lidstrom, M.E. (2000) Analysis of two formaldehyde oxidation pathways in Methylobacillus flagellatus KT, a ribulose monophosphate cycle methylotroph. Microbiol 146: 233-238. – reference: Chistoserdova, L., Rasche, M.E., and Lidstrom, M.E. (2005c) Novel dephospho-tetrahydromethanopterin biosynthesis genes discovered via mutagenesis in Methylobacterium extorquens AM1. J Bacteriol 187: 2508-2512. – reference: Marx, C.J., Van Dien, S.J., and Lidstrom, M.E. (2005) Flux analysis uncovers key role of functional redundancy in formaldehyde metabolism. PLoS Biol 3: e16. – reference: Roca, A., Rodríguez-Herva, J.J., and Ramos, J.L. (2009) Redundancy of enzymes for formaldehyde detoxification in Pseudomonas putida. J Bacteriol 191: 3367-3374. – reference: Vorholt, J.A. (2002) Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria. Arch Microbiol 178: 239-249. – reference: Trotsenko, Y.A., and Murrell, J.C. (2008) Metabolic aspects of aerobic obligate methanotrophy. Adv Appl Microbiol 63: 183-229. – reference: Singh, B.K., Bardgett, R.D., Smith, P., and Reay, D.S. (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8: 779-790. – reference: Thauer, R.K., and Shima, S. (2008) Methane as fuel for anaerobic microorganisms. Ann NY Acad Sci 1125: 158-170. – reference: Scheller, S., Goenrich, M., Boecher, R., Thauer, R.K., and Jaun, B. (2010) The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465: 606-608. – reference: Kalyuzhnaya, M.G., Bowerman, S., Nercessian, O., Lidstrom, M.E., and Chistoserdova, L. (2005b) Highly divergent genes for methanopterin-linked C1 transfer reactions in Lake Washington, assessed via metagenomic analysis and mRNA detection. Appl Environ Microbiol 71: 8846-8854. – reference: De Boer, L., Brouwer, J.W., Van Hassel, C.W., Levering, P.R., and Dijkhuizen, L. (1989) Nitrogen metabolism in the facultative methylotroph Arthrobacter P1 grown with various amines or ammonia as nitrogen sources. Antonie Van Leeuwenhoek 56: 221-232. – reference: Chistoserdova, L., Vorholt, J.A., Thauer, R.K., and Lidstrom, M.E. (1998) C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaea. Science 281: 99-102. – reference: Brochier, C., and Philippe, H. (2002) Phylogeny: a non-hyperthermophilic ancestor for bacteria. Nature 417: 244. – reference: Chen, Y., McAleer, K.L., and Murrell, J.C. (2010c) Monomethylamine as a nitrogen source for a nonmethylotrophic bacterium, Agrobacterium tumefaciens. Appl Environ Microbiol 76: 4102-4104. – reference: Giovannoni, S.J., Hayakawa, D.H., Tripp, H.J., Stingl, U., Givan, S.A., Cho, J.C., et al. (2008) The small genome of an abundant coastal ocean methylotroph. Environ Microbiol 10: 1771-1782. – reference: Kalyuzhnaya, M.G., Lapidus, A., Ivanova, N., Copeland, A.C., McHardy, A.C., Szeto, E., et al. (2008a) High-resolution metagenomics targets specific functional types in complex microbial communities. Nat Biotechnol 26: 1029-1034. – reference: Marx, C.J., and Lidstrom, M.E. (2004) Development of an insertional expression vector system for Methylobacterium extorquens AM1 and generation of null mutants lacking mtdA and/or fch. Microbiology 150: 9-19. – reference: Bystrykh, L.V., Vonck, J., van Bruggen, E.F., van Beeumen, J., Samyn, B., Govorukhina, N.I., et al. (1993) Electron microscopic analysis and structural characterization of novel NADP(H)-containing methanol: N,N′-dimethyl-4-nitrosoaniline oxidoreductases from the gram-positive methylotrophic bacteria Amycolatopsis methanolica and Mycobacterium gastri MB19. J Bacteriol 175: 1814-1822. – reference: Latypova, E., Yang, S., Wang, Y.S., Wang, T., Chavkin, T.A., Hackett, M., et al. (2010) Genetics of the glutamate-mediated methylamine utilization pathway in the facultative methylotrophic beta-proteobacterium Methyloversatilis universalis FAM5. Mol Microbiol 75: 426-439. – reference: Erb, T.J., Berg, I.A., Brecht, V., Müller, M., Fuchs, G., and Alber, B.E. (2007) Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalyl-CoA pathway. Proc Natl Acad Sci USA 104: 10631-10636. – reference: Barber, R.D., and Donohue, T.J. (1998) Function of a glutathione-dependent formaldehyde dehydrogenase in Rhodobacter sphaeroides formaldehyde oxidation and assimilation. Biochemistry 37: 530-537. – reference: Kalyuzhnaya, M.G., Bowerman, S., Lara, J.C., Lidstrom, M.E., and Chistoserdova, L. (2006b) Methylotenera mobilis gen. nov., sp. nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae. Int J Syst Evol Microbiol 56: 2819-2823. – reference: Anthony, C. (1982) The Biochemistry of Methylotrophs. London, UK: Academic Press. – volume: 283 start-page: 32283 year: 2008 end-page: 32293 article-title: Ethylmalonyl‐CoA mutase from defines a new subclade of coenzyme B12‐dependent acyl‐CoA mutases publication-title: J Biol Chem – volume: 154 start-page: 296 year: 2008 end-page: 305 article-title: Identification of proteins involved in formaldehyde metabolism by publication-title: Microbiology – volume: 6 start-page: 208 year: 2005b article-title: A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea publication-title: Genome Biol – volume: 184 start-page: 3476 year: 2002 end-page: 3484 article-title: Chloromethane‐induced genes define a third C1 utilization pathway in CM4 publication-title: J Bacteriol – volume: 176 start-page: 1957 year: 1994 end-page: 1968 article-title: Genetics of the serine cycle in AM1: identification of and and sequences of and publication-title: J Bacteriol – volume: 1 start-page: 385 year: 2009 end-page: 392 article-title: link methanol oxidation to denitrification in freshwater lake sediment as suggested by stable isotope probing and pure culture analysis publication-title: Environ Microbiol Rep – volume: 62 start-page: 1046 year: 1998 end-page: 1078 article-title: Molecular genetics of the genus : metabolically versatile bacteria with bioenergetic flexibility publication-title: Microbiol Mol Biol Rev – volume: 190 start-page: 5057 year: 2008 end-page: 5062 article-title: Formate as the main branch point for methylotrophic metabolism in AM1 publication-title: J Bacteriol – volume: 13 start-page: 469 year: 2009 end-page: 474 article-title: Uncovering novel biochemistry in the mechanism of tryptophan tryptophylquinone cofactor biosynthesis publication-title: Curr Opin Chem Biol – volume: 428 start-page: 32 year: 2004 end-page: 40 article-title: Electron transfer in quinoproteins publication-title: Arch Biochem Biophys – volume: 8 start-page: 779 year: 2010 end-page: 790 article-title: Microorganisms and climate change: terrestrial feedbacks and mitigation options publication-title: Nat Rev Microbiol – volume: 452 start-page: 741 year: 2008 end-page: 744 article-title: SAR11 marine bacteria require exogenous reduced sulphur for growth publication-title: Nature – volume: 432 start-page: 910 year: 2004 end-page: 913 article-title: Genome sequence of reveals adaptations to the marine environment publication-title: Nature – volume: 279 start-page: 51554 year: 2004 end-page: 51560 article-title: Quantitative proteomic analysis of metabolic regulation by copper ions in (Bath) publication-title: J Biol Chem – volume: 61 start-page: 75 year: 2005 end-page: 79 article-title: The atomic resolution structure of methanol dehydrogenase from publication-title: Acta Crystallogr D Biol Crystallogr – volume: 5 start-page: e77 year: 2007 article-title: The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific publication-title: PLoS Biol – volume: 75 start-page: 426 year: 2010 end-page: 439 article-title: Genetics of the glutamate‐mediated methylamine utilization pathway in the facultative methylotrophic beta‐proteobacterium FAM5 publication-title: Mol Microbiol – volume: 46 start-page: 115 year: 2010 end-page: 119 article-title: Oxidation of methane by a biological dicopper centre publication-title: Nature – volume: 186 start-page: 1229 year: 2004 end-page: 1238 article-title: Plasmid‐dependent methylotrophy in thermotolerant publication-title: J Bacteriol – volume: 187 start-page: 2508 year: 2005c end-page: 2512 article-title: Novel dephospho‐tetrahydromethanopterin biosynthesis genes discovered via mutagenesis in AM1 publication-title: J Bacteriol – volume: 104 start-page: 745 year: 2007 end-page: 749 article-title: Mechanism of methanol oxidation by quinoprotein methanol dehydrogenase publication-title: Proc Natl Acad Sci USA – volume: 71 start-page: 8846 year: 2005b end-page: 8854 article-title: Highly divergent genes for methanopterin‐linked C1 transfer reactions in Lake Washington, assessed via metagenomic analysis and mRNA detection publication-title: Appl Environ Microbiol – volume: 302 start-page: 286 year: 2003 end-page: 290 article-title: A functional link between RuBisCO‐like protein of and photosynthetic RuBisCO publication-title: Science – volume: 181 start-page: 7154 year: 1999 end-page: 7160 article-title: and encode two key enzymes of the ribulose monophosphate pathway used by methylotrophs, and is required for their expression publication-title: J Bacteriol – volume: 192 start-page: 4798 year: 2010 end-page: 4799 article-title: Genome sequence of HTCC2506T, a Mn(II)‐oxidizing alphaproteobacterium possessing an aerobic anoxygenic photosynthetic gene cluster and xanthorhodopsin publication-title: J Bacteriol – volume: 192 start-page: 1249 year: 2010 end-page: 1258 article-title: The apparent malate synthase activity of is due to two paralogous enzymes, (3S)‐Malyl‐coenzyme A (CoA)/{beta}‐methylmalyl‐CoA lyase and (3S)‐Malyl‐CoA thioesterase publication-title: J Bacteriol – volume: 177 start-page: 4575 year: 1995 end-page: 4578 article-title: Cloning, sequencing, and mutation of a gene for azurin in KT publication-title: J Bacteriol – volume: 3 start-page: 26 year: 2008 article-title: Complete genome sequence of the extremely acidophilic methanotroph isolate V4, , a representative of the bacterial phylum Verrucomicrobia publication-title: Biol Direct – volume: 56 start-page: 221 year: 1989 end-page: 232 article-title: Nitrogen metabolism in the facultative methylotroph P1 grown with various amines or ammonia as nitrogen sources publication-title: Antonie Van Leeuwenhoek – volume: 192 start-page: 1813 year: 2010 end-page: 1823 article-title: Alternative route for glyoxylate consumption during growth on two‐carbon compounds by AM1 publication-title: J Bacteriol – volume: 224 start-page: 277 year: 2003 end-page: 283 article-title: The ancestor of the Bacteria domain was a hyperthermophile publication-title: J Theor Biol – volume: 32 start-page: 14537 year: 2010 end-page: 14545 article-title: Amicyanin transfers electrons from methylamine dehydrogenase to cytochrome c‐551i via a ping‐pong mechanism, not a ternary complex publication-title: J Am Chem Soc – volume: 193 start-page: 1250 year: 2011 end-page: 1258 article-title: Purification and characterization of dimethylsulfide monooxygenase from publication-title: J Bacteriol – volume: 267 start-page: 3762 year: 2000 end-page: 3769 article-title: Characterization of a second methylene tetrahydromethanopterin dehydrogenase from AM1 publication-title: Eur J Biochem – volume: 185 start-page: 1229 year: 2003 end-page: 1235 article-title: QscR, a LysR‐type transcriptional regulator and CbbR homolog, is involved in regulation of the serine cycle genes in AM1 publication-title: J Bacteriol – volume: 192 start-page: 3840 year: 2010a end-page: 3841 article-title: Complete genome sequence of the aerobic facultative methanotroph BL2 publication-title: J Bacteriol – volume: 280 start-page: 98 year: 1997 end-page: 150 article-title: Amine‐oxidizing quinoproteins publication-title: Methods Enzymol – volume: 156 start-page: 2575 year: 2010 end-page: 2586 article-title: Functional investigation of methanol dehydrogenase‐like protein XoxF in AM1 publication-title: Microbiology – volume: 76 start-page: 223 year: 2007 end-page: 241 article-title: The biochemistry of methane oxidation publication-title: Annu Rev Biochem – volume: 117 start-page: 103 year: 1994 end-page: 106 article-title: New unified nomenclature for genes involved in the oxidation of methanol in gram‐negative bacteria publication-title: FEMS Microbiol Lett – volume: 186 start-page: 2173 year: 2004 end-page: 2178 article-title: Multiple formaldehyde oxidation/detoxification pathways in LB400 publication-title: J Bacteriol – volume: 189 start-page: 9076 year: 2007a end-page: 9081 article-title: Identification of a fourth formate dehydrogenase in AM1 and confirmation of the essential role of formate oxidation in methylotrophy publication-title: J Bacteriol – volume: 155 start-page: 1103 year: 2009 end-page: 1110 article-title: Insights into the physiology of as revealed by metagenome‐based shotgun proteomic analysis publication-title: Microbiol – volume: 187 start-page: 7511 year: 2005 end-page: 7517 article-title: QscR‐mediated transcriptional activation of serine cycle genes in AM1 publication-title: J Bacteriol – volume: 70 start-page: 10 year: 2006 end-page: 21 article-title: The physiological role of the ribulose monophosphate pathway in bacteria and archaea publication-title: Biosci Biotechnol Biochem – volume: 65 start-page: 116 year: 2005 end-page: 144 article-title: Biogeochemical ocean‐atmosphere transfers in the Arabian Sea publication-title: Prog Oceanogr – volume: 50 start-page: 955 year: 2000 end-page: 969 article-title: gen. nov., sp. nov., a new methane‐oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine‐pathway methanotrophs publication-title: Int J Syst Evol Microbiol – volume: 63 start-page: 311 year: 2009 end-page: 334 article-title: Anaerobic oxidation of methane: progress with an unknown process publication-title: Annu Rev Microbiol – volume: 185 start-page: 2980 year: 2003 end-page: 2987 article-title: Methylotrophy in AM1 from a genomic point of view publication-title: J Bacteriol – volume: 189 start-page: 1931 year: 2007 end-page: 1945 article-title: Whole‐genome analysis of the methyl tert‐butyl ether‐degrading beta‐proteobacterium PM1 publication-title: J Bacteriol – volume: 8 start-page: 3494 year: 2008 end-page: 3505 article-title: Comprehensive proteomics of AM1 metabolism under single carbon and nonmethylotrophic conditions publication-title: Proteomics – volume: 189 start-page: 8727 year: 2007 end-page: 8736 article-title: Genome sequence analysis of the emerging human pathogenic acetic acid bacterium publication-title: J Bacteriol – volume: 192 start-page: 471 year: 2010 end-page: 476 article-title: Pseudomonas putida A ATCC 12633 oxidizes trimethylamine aerobically via two different pathways publication-title: Arch Microbiol – volume: 175 start-page: 1814 year: 1993 end-page: 1822 article-title: Electron microscopic analysis and structural characterization of novel NADP(H)‐containing methanol: ′‐dimethyl‐4‐nitrosoaniline oxidoreductases from the gram‐positive methylotrophic bacteria and MB19 publication-title: J Bacteriol – volume: 3 start-page: 91 year: 2010 end-page: 100 article-title: A novel family of functional operons encoding methane/ammonia monooxygenase‐related proteins in gammaproteobacterial methanotrophs publication-title: Environ Microbiol Rep – volume: 5 start-page: 237 year: 1994 end-page: 248 article-title: Microbes, enzymes and genes involved in dichloromethane utilization publication-title: Biodegradation – volume: 177 start-page: 247 year: 1995 end-page: 251 article-title: Isolation, sequencing, and mutagenesis of the gene encoding NAD‐ and glutathione‐dependent formaldehyde dehydrogenase (GD‐FALDH) from , in which GD‐FALDH is essential for methylotrophic growth publication-title: J Bacteriol – volume: 464 start-page: 543 year: 2010 end-page: 548 article-title: Nitrite‐driven anaerobic methane oxidation by oxygenic bacteria publication-title: Nature – volume: 105 start-page: 10203 year: 2008 end-page: 10208 article-title: Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in sp. strain SC2 publication-title: Proc Natl Acad Sci USA – volume: 4 start-page: e5584 year: 2009 article-title: genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources publication-title: PLoS ONE – volume: 21 start-page: 1234 year: 2004a end-page: 1241 article-title: The enigmatic planctomycetes may hold a key to the origins of methanogenesis and methylotrophy publication-title: Mol Biol Evol – volume: 15 start-page: 573 year: 1906 end-page: 576 article-title: The oxidation of hydrogen and methane by microorganisms publication-title: Zbl Bact Parasitenk – volume: 1125 start-page: 158 year: 2008 end-page: 170 article-title: Methane as fuel for anaerobic microorganisms publication-title: Ann NY Acad Sci – volume: 176 start-page: 4052 year: 1994 end-page: 4065 article-title: Genetic organization of the cluster in AM1: complete nucleotide sequence and generation and characteristics of mutants publication-title: J Bacteriol – volume: 104 start-page: 10631 year: 2007 end-page: 10636 article-title: Synthesis of C5‐dicarboxylic acids from C2‐units involving crotonyl‐CoA carboxylase/reductase: the ethylmalyl‐CoA pathway publication-title: Proc Natl Acad Sci USA – volume: 77 start-page: 524 year: 2011 end-page: 531 article-title: Changes in dimethylsulfoniopropionate demethylase gene assemblages in response to an induced phytoplankton bloom publication-title: Appl Environ Microbiol – volume: 187 start-page: 6069 year: 2005 end-page: 6074 article-title: MtdC, a novel class of methylene tetrahydromethanopterin dehydrogenases publication-title: J Bacteriol – volume: 68 start-page: 5804 year: 2002 end-page: 5815 article-title: Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide publication-title: Appl Environ Microbiol – volume: 56 start-page: 2819 year: 2006b end-page: 2823 article-title: gen. nov., sp. nov., an obligately methylamine‐utilizing bacterium within the family publication-title: Int J Syst Evol Microbiol – volume: 187 start-page: 7996 year: 2005 end-page: 8005 article-title: Growth substrate‐ and phase‐specific expression of biphenyl, benzoate, and C1 metabolic pathways in LB400 publication-title: J Bacteriol – volume: 182 start-page: 6645 year: 2000 end-page: 6650 article-title: Novel formaldehyde‐activating enzyme in AM1 required for growth on methanol publication-title: J Bacteriol – volume: 143–144 start-page: 211 year: 2003 end-page: 218 article-title: Crystal structure of glutathione‐independent formaldehyde dehydrogenase publication-title: Chem Biol Interact – volume: 150 start-page: 9 year: 2004 end-page: 19 article-title: Development of an insertional expression vector system for AM1 and generation of null mutants lacking and/or publication-title: Microbiology – volume: 3 start-page: e16 year: 2005 article-title: Flux analysis uncovers key role of functional redundancy in formaldehyde metabolism publication-title: PLoS Biol – volume: 96 start-page: 4615 year: 1999 end-page: 4620 article-title: A corrinoid‐dependent catabolic pathway for growth of a strain with chloromethane publication-title: Proc Natl Acad Sci USA – volume: 327 start-page: 1392 year: 2010 end-page: 1394 article-title: In crystallo posttranslational modification within a MauG/pre‐methylamine dehydrogenase complex publication-title: Science – volume: 305 start-page: 1457 year: 2004 end-page: 1462 article-title: Reverse methanogenesis: testing the hypothesis with environmental genomics publication-title: Science – volume: 26 start-page: 1029 year: 2008a end-page: 1034 article-title: High‐resolution metagenomics targets specific functional types in complex microbial communities publication-title: Nat Biotechnol – volume: 177 start-page: 1292 year: 1995 end-page: 1298 article-title: Formyltetrahydrofolate hydrolase, a regulatory enzyme that functions to balance pools of tetrahydrofolate and one‐carbon tetrahydrofolate adducts in publication-title: J Bacteriol – volume: 146 start-page: 233 year: 2000 end-page: 238 article-title: Analysis of two formaldehyde oxidation pathways in KT, a ribulose monophosphate cycle methylotroph publication-title: Microbiol – volume: 185 start-page: 7160 year: 2003a end-page: 7168 article-title: Formaldehyde‐detoxifying role of the tetrahydromethanopterin‐linked pathway in AM1 publication-title: J Bacteriol – year: 1982 – volume: 178 start-page: 239 year: 2002 end-page: 249 article-title: Cofactor‐dependent pathways of formaldehyde oxidation in methylotrophic bacteria publication-title: Arch Microbiol – volume: 36 start-page: 16116 year: 1997 end-page: 16133 article-title: Crystal structures of the copper‐containing amine oxidase from in the holo and apo forms: implications for the biogenesis of topaquinone publication-title: Biochemistry – volume: 68 start-page: 289 year: 2002 end-page: 296 article-title: Duplicate copies of genes encoding methanesulfonate monooxygenase in strain TR3 and detection of methanesulfonate utilizers in the environment publication-title: Appl Environ Microbiol – volume: 59 start-page: 571 year: 2004 end-page: 586 article-title: Archaea‐like genes for C1‐transfer enzymes in Planctomycetes: phylogenetic implications of their unexpected presence in this phylum publication-title: J Mol Evol – volume: 76 start-page: 4102 year: 2010c end-page: 4104 article-title: Monomethylamine as a nitrogen source for a nonmethylotrophic bacterium, publication-title: Appl Environ Microbiol – volume: 106 start-page: 4846 year: 2009 end-page: 4851 article-title: Demonstration of the ethylmalonyl‐CoA pathway by using C metabolomics publication-title: Proc Natl Acad Sci USA – volume: 56 start-page: 2517 year: 2006a end-page: 2522 article-title: gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates publication-title: Int J Syst Evol Microbiol – volume: 185 start-page: 7169 year: 2003b end-page: 7175 article-title: Purification of the formate‐tetrahydrofolate ligase from Methylobacterium extorquens AM1 and demonstration of its requirement for methylotrophic growth publication-title: J Bacteriol – volume: 37 start-page: 530 year: 1998 end-page: 537 article-title: Function of a glutathione‐dependent formaldehyde dehydrogenase in formaldehyde oxidation and assimilation publication-title: Biochemistry – volume: 63 start-page: 2816 year: 2009 end-page: 2830 article-title: Asymmetric, bimodal trade‐offs during adaptation of to distinct growth substrates publication-title: Evolution – volume: 143 start-page: 1729 year: 1997 end-page: 1736 article-title: Molecular and mutational analysis of a DNA region separating two methylotrophy gene clusters in AM1 publication-title: Microbiol – volume: 106 start-page: 16428 year: 2009 end-page: 16433 article-title: Community proteogenomics reveals insights into the physiology of phyllosphere bacteria publication-title: Proc Natl Acad Sci USA – volume: 261 start-page: 475 year: 1999 end-page: 480 article-title: A methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in AM1 publication-title: Eur J Biochem – volume: 270 start-page: 325 year: 2003 end-page: 333 article-title: The tungsten‐containing formate dehydrogenase from AM1: purification and properties publication-title: Eur J Biochem – volume: 190 start-page: 3817 year: 2008b end-page: 3823 article-title: Characterization of a novel methanol dehydrogenase in representatives of : implications for environmental detection of methylotrophy and evidence for convergent evolution publication-title: J Bacteriol – year: 2010 article-title: Environmental proteomics of microbial plankton in a highly productive coastal upwelling system publication-title: ISME J – volume: 63 start-page: 183 year: 2008 end-page: 229 article-title: Metabolic aspects of aerobic obligate methanotrophy publication-title: Adv Appl Microbiol – year: 2011 article-title: gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium possessing only a soluble methane monooxygenase publication-title: Int J Syst Evol Microbiol – volume: 2 start-page: e303 year: 2004 article-title: Genomic insights into methanotrophy: the complete genome sequence of (Bath) publication-title: PLoS Biol – volume: 107 start-page: 16420 year: 2010 end-page: 16427 article-title: Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea publication-title: Proc Natl Acad Sci USA – volume: 76 start-page: 4530 year: 2010b end-page: 4537 article-title: {gamma}‐Glutamylmethylamide is an essential intermediate in the metabolism of methylamine by publication-title: Appl Environ Microbiol – volume: 189 start-page: 4020 year: 2007b end-page: 4027 article-title: Genome of molecular basis for obligate methylotrophy, and polyphyletic origin of methylotrophy publication-title: J Bacteriol – volume: 192 start-page: 6497 year: 2010 end-page: 6498 article-title: Genome sequence of the obligate methanotroph, strain OB3b publication-title: J Bacteriol – volume: 1 start-page: 293 year: 2009 end-page: 306 article-title: Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia publication-title: Environ Microbiol Rep – volume: 71 start-page: 521 year: 2005a end-page: 528 article-title: C1 transfer modules: from genomics to ecology publication-title: ASM News – volume: 301 start-page: 289 year: 1994 end-page: 295 article-title: A novel dye‐linked formaldehyde dehydrogenase with some properties indicating the presence of a protein‐bound redox‐active quinone cofactor publication-title: Biochem J – volume: 428 start-page: 2 year: 2004 end-page: 9 article-title: The quinoprotein dehydrogenases for methanol and glucose publication-title: Arch Biochem Biophys – volume: 187 start-page: 4607 year: 2005a end-page: 4614 article-title: Analysis of gene islands involved in methanopterin‐linked C1 transfer reactions reveals new functions and provides evolutionary insights publication-title: J Bacteriol – volume: 191 start-page: 3367 year: 2009 end-page: 3374 article-title: Redundancy of enzymes for formaldehyde detoxification in publication-title: J Bacteriol – volume: 192 start-page: 4859 year: 2010 end-page: 4867 article-title: The expressed genome of defined through comprehensive proteomics and new insights into methylotrophy publication-title: J Bacteriol – volume: 172 start-page: 341 year: 1999 end-page: 834 article-title: Microbial metabolism of methanesulfonic acid publication-title: Arch Microbiol – volume: 277 start-page: 3069 year: 2002 end-page: 3072 article-title: A glutathione‐dependent formaldehyde‐activating enzyme (Gfa) from detected and purified via two‐dimensional proton exchange NMR spectroscopy publication-title: J Biol Chem – volume: 281 start-page: 99 year: 1998 end-page: 102 article-title: C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaea publication-title: Science – volume: 61 start-page: 307 year: 2007 end-page: 346 article-title: Bacterial cycling of methyl halides publication-title: Adv Appl Microbiol – volume: 180 start-page: 5351 year: 1998 end-page: 5356 article-title: The NADP‐dependent methylene tetrahydromethanopterin dehydrogenase in AM1 publication-title: J Bacteriol – volume: 15 start-page: 513 year: 1906 end-page: 517 article-title: Uber bakterien welche methan ab kohlenstoffnahrung und energiequelle gerbrauchen publication-title: Zbl Bact Parasitenk – volume: 13 start-page: 427 year: 2011 end-page: 438 article-title: DddQ, a novel, cupin‐containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine bacteria publication-title: Environ Microbiol – start-page: 126 year: 1996 end-page: 132 – volume: 89 start-page: 17 year: 2010 end-page: 25 article-title: Biotechnological potential of the ethylmalonyl‐CoA pathway publication-title: Appl Microbiol Biotechnol – volume: 63 start-page: 477 year: 2009 end-page: 499 article-title: The expanding world of methylotrophic metabolism publication-title: Annu Rev Microbiol – start-page: 618 year: 2006 end-page: 634 – volume: 417 start-page: 244 year: 2002 article-title: Phylogeny: a non‐hyperthermophilic ancestor for bacteria publication-title: Nature – volume: 465 start-page: 606 year: 2010 end-page: 608 article-title: The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane publication-title: Nature – volume: 10 start-page: 1771 year: 2008 end-page: 1782 article-title: The small genome of an abundant coastal ocean methylotroph publication-title: Environ Microbiol – volume: 186 start-page: 22 year: 2004b end-page: 28 article-title: Multiple formate dehydrogenase enzymes in the facultative methylotroph AM1 are dispensable for growth on methanol publication-title: J Bacteriol – ident: e_1_2_7_69_1 doi: 10.1128/JB.00761-10 – ident: e_1_2_7_27_1 doi: 10.1093/molbev/msh113 – ident: e_1_2_7_78_1 doi: 10.1111/j.1558-5646.2009.00757.x – ident: e_1_2_7_111_1 doi: 10.1111/j.1462-2920.2010.02348.x – ident: e_1_2_7_97_1 doi: 10.1128/jb.177.1.247-251.1995 – ident: e_1_2_7_13_1 doi: 10.1002/pmic.200800152 – ident: e_1_2_7_108_1 doi: 10.1016/S0009-2797(02)00168-0 – ident: e_1_2_7_16_1 doi: 10.1038/417244a – ident: e_1_2_7_87_1 doi: 10.1128/JB.186.7.2173-2178.2004 – ident: e_1_2_7_113_1 doi: 10.1016/S0065-2164(07)00005-6 – ident: e_1_2_7_119_1 doi: 10.1099/ijs.0.028118-0 – ident: e_1_2_7_55_1 doi: 10.1128/JB.00512-10 – ident: e_1_2_7_73_1 doi: 10.1007/s002030050770 – ident: e_1_2_7_77_1 doi: 10.1046/j.1432-1033.2003.03391.x – ident: e_1_2_7_112_1 doi: 10.1038/nature06776 – ident: e_1_2_7_12_1 doi: 10.1128/JB.00977-10 – ident: e_1_2_7_8_1 doi: 10.1038/nature08992 – ident: e_1_2_7_19_1 doi: 10.1128/AEM.00739-10 – ident: e_1_2_7_103_1 doi: 10.1038/nrmicro2439 – ident: e_1_2_7_43_1 doi: 10.1074/jbc.M805527200 – ident: e_1_2_7_11_1 doi: 10.1128/AEM.68.1.289-296.2002 – ident: e_1_2_7_46_1 doi: 10.1128/jb.177.15.4575-4578.1995 – ident: e_1_2_7_50_1 doi: 10.1046/j.1432-1327.2000.01413.x – ident: e_1_2_7_21_1 doi: 10.1128/jb.176.13.4052-4065.1994 – ident: e_1_2_7_90_1 doi: 10.1038/nature03170 – ident: e_1_2_7_64_1 doi: 10.1099/ijs.0.64422-0 – ident: e_1_2_7_116_1 doi: 10.1128/JB.180.20.5351-5356.1998 – ident: e_1_2_7_128_1 doi: 10.1073/pnas.0610126104 – ident: e_1_2_7_61_1 doi: 10.1128/JB.187.21.7511-7517.2005 – ident: e_1_2_7_9_1 doi: 10.1021/bi971463t – ident: e_1_2_7_36_1 doi: 10.1016/j.abb.2004.03.022 – ident: e_1_2_7_68_1 doi: 10.1128/JB.01259-06 – ident: e_1_2_7_76_1 doi: 10.1111/j.1365-2958.2009.06989.x – ident: e_1_2_7_80_1 doi: 10.1007/0-387-30742-7_20 – ident: e_1_2_7_92_1 doi: 10.1016/j.pocean.2005.03.005 – ident: e_1_2_7_89_1 doi: 10.1021/ja105498m – ident: e_1_2_7_40_1 doi: 10.1128/JB.187.23.7996-8005.2005 – ident: e_1_2_7_114_1 doi: 10.1073/pnas.96.8.4615 – ident: e_1_2_7_117_1 doi: 10.1128/JB.182.23.6645-6650.2000 – ident: e_1_2_7_84_1 doi: 10.1099/mic.0.26587-0 – ident: e_1_2_7_25_1 doi: 10.1099/00221287-146-1-233 – volume: 175 start-page: 1814 year: 1993 ident: e_1_2_7_17_1 article-title: Electron microscopic analysis and structural characterization of novel NADP(H)‐containing methanol: N,N′‐dimethyl‐4‐nitrosoaniline oxidoreductases from the gram‐positive methylotrophic bacteria Amycolatopsis methanolica and Mycobacterium gastri MB19 publication-title: J Bacteriol doi: 10.1128/jb.175.6.1814-1822.1993 – ident: e_1_2_7_22_1 doi: 10.1128/jb.176.7.1957-1968.1994 – year: 2010 ident: e_1_2_7_105_1 article-title: Environmental proteomics of microbial plankton in a highly productive coastal upwelling system publication-title: ISME J – ident: e_1_2_7_26_1 doi: 10.1128/JB.185.10.2980-2987.2003 – ident: e_1_2_7_56_1 doi: 10.1186/1745-6150-3-26 – ident: e_1_2_7_120_1 doi: 10.1371/journal.pone.0005584 – volume: 71 start-page: 521 year: 2005 ident: e_1_2_7_29_1 article-title: C1 transfer modules: from genomics to ecology publication-title: ASM News – ident: e_1_2_7_101_1 doi: 10.1038/nature09015 – ident: e_1_2_7_62_1 doi: 10.1128/JB.187.13.4607-4614.2005 – ident: e_1_2_7_96_1 doi: 10.1046/j.1432-1327.1999.00291.x – ident: e_1_2_7_15_1 doi: 10.1128/JB.186.5.1229-1238.2004 – ident: e_1_2_7_23_1 doi: 10.1099/00221287-143-5-1729 – ident: e_1_2_7_32_1 doi: 10.1128/JB.01229-07 – ident: e_1_2_7_35_1 doi: 10.1128/JB.00228-08 – ident: e_1_2_7_33_1 doi: 10.1128/JB.00045-07 – ident: e_1_2_7_125_1 doi: 10.1099/mic.0.2007/011346-0 – ident: e_1_2_7_14_1 doi: 10.1099/mic.0.024968-0 – ident: e_1_2_7_106_1 doi: 10.1128/JB.01144-10 – ident: e_1_2_7_39_1 doi: 10.1073/pnas.0905240106 – ident: e_1_2_7_42_1 doi: 10.1073/pnas.0702791104 – ident: e_1_2_7_127_1 doi: 10.1128/AEM.68.12.5804-5815.2002 – ident: e_1_2_7_18_1 doi: 10.1128/JB.00506-10 – ident: e_1_2_7_49_1 doi: 10.1128/JB.00793-07 – ident: e_1_2_7_24_1 doi: 10.1126/science.281.5373.99 – ident: e_1_2_7_121_1 doi: 10.1111/j.1462-2920.2008.01568.x – ident: e_1_2_7_48_1 doi: 10.1074/jbc.C100579200 – volume: 15 start-page: 513 year: 1906 ident: e_1_2_7_104_1 article-title: Uber bakterien welche methan ab kohlenstoffnahrung und energiequelle gerbrauchen publication-title: Zbl Bact Parasitenk – ident: e_1_2_7_118_1 doi: 10.1128/JB.187.17.6069-6074.2005 – ident: e_1_2_7_70_1 doi: 10.1074/jbc.M408013200 – ident: e_1_2_7_65_1 doi: 10.1099/ijs.0.64191-0 – ident: e_1_2_7_31_1 doi: 10.1128/JB.187.7.2508-2512.2005 – ident: e_1_2_7_44_1 doi: 10.1128/JB.01267-09 – ident: e_1_2_7_93_1 doi: 10.1128/JB.01166-09 – ident: e_1_2_7_124_1 doi: 10.1016/j.cbpa.2009.06.026 – ident: e_1_2_7_100_1 doi: 10.1016/S0065-2164(06)61009-5 – ident: e_1_2_7_72_1 doi: 10.1271/bbb.70.10 – ident: e_1_2_7_59_1 doi: 10.1111/j.1758-2229.2009.00046.x – ident: e_1_2_7_74_1 doi: 10.1042/bj3010289 – ident: e_1_2_7_38_1 doi: 10.1099/00207713-50-3-955 – ident: e_1_2_7_88_1 doi: 10.1371/journal.pbio.0030016 – ident: e_1_2_7_20_1 doi: 10.1128/AEM.00469-10 – ident: e_1_2_7_57_1 doi: 10.1128/AEM.01457-10 – ident: e_1_2_7_54_1 doi: 10.1016/S0076-6879(97)80106-1 – ident: e_1_2_7_41_1 doi: 10.1016/S0022-5193(03)00164-4 – ident: e_1_2_7_85_1 doi: 10.1128/JB.185.23.7160-7168.2003 – ident: e_1_2_7_123_1 doi: 10.1107/S0907444904026964 – ident: e_1_2_7_63_1 doi: 10.1128/AEM.71.12.8846-8854.2005 – ident: e_1_2_7_10_1 doi: 10.1007/s00239-004-2643-6 – ident: e_1_2_7_30_1 doi: 10.1186/gb-2005-6-2-208 – ident: e_1_2_7_7_1 doi: 10.1128/MMBR.62.4.1046-1078.1998 – ident: e_1_2_7_94_1 doi: 10.1111/j.1758-2229.2009.00022.x – ident: e_1_2_7_28_1 doi: 10.1128/JB.186.1.22-28.2004 – ident: e_1_2_7_53_1 doi: 10.1007/978-94-009-0213-8_18 – ident: e_1_2_7_75_1 doi: 10.1146/annurev.micro.61.080706.093130 – volume-title: The Biochemistry of Methylotrophs year: 1982 ident: e_1_2_7_3_1 – ident: e_1_2_7_45_1 doi: 10.1038/nature08883 – ident: e_1_2_7_66_1 doi: 10.1038/nbt.1488 – ident: e_1_2_7_110_1 doi: 10.1196/annals.1419.000 – ident: e_1_2_7_82_1 doi: 10.1007/s00203-010-0577-5 – ident: e_1_2_7_52_1 doi: 10.1126/science.1100025 – ident: e_1_2_7_81_1 doi: 10.1111/j.1574-6968.1994.tb06749.x – ident: e_1_2_7_86_1 doi: 10.1128/JB.185.24.7169-7175.2003 – ident: e_1_2_7_2_1 doi: 10.1007/s00253-010-2873-z – ident: e_1_2_7_79_1 doi: 10.1007/BF00696462 – volume: 15 start-page: 573 year: 1906 ident: e_1_2_7_71_1 article-title: The oxidation of hydrogen and methane by microorganisms publication-title: Zbl Bact Parasitenk – ident: e_1_2_7_4_1 doi: 10.1016/j.abb.2004.03.038 – ident: e_1_2_7_60_1 doi: 10.1128/JB.185.4.1229-1235.2003 – ident: e_1_2_7_83_1 doi: 10.1073/pnas.1010732107 – ident: e_1_2_7_5_1 doi: 10.1126/science.1086997 – ident: e_1_2_7_6_1 doi: 10.1073/pnas.0702643105 – ident: e_1_2_7_109_1 doi: 10.1111/j.1758-2229.2010.00192.x – ident: e_1_2_7_115_1 doi: 10.1007/s00203-002-0450-2 – ident: e_1_2_7_122_1 doi: 10.1021/bi971797i – ident: e_1_2_7_58_1 doi: 10.1126/science.1182492 – ident: e_1_2_7_67_1 doi: 10.1128/JB.00180-08 – ident: e_1_2_7_51_1 doi: 10.1146/annurev.biochem.76.061505.175355 – ident: e_1_2_7_37_1 doi: 10.1007/BF00418934 – ident: e_1_2_7_102_1 doi: 10.1099/mic.0.038570-0 – ident: e_1_2_7_47_1 doi: 10.1111/j.1462-2920.2008.01598.x – volume: 177 start-page: 1292 year: 1995 ident: e_1_2_7_91_1 article-title: Formyltetrahydrofolate hydrolase, a regulatory enzyme that functions to balance pools of tetrahydrofolate and one‐carbon tetrahydrofolate adducts in Escherichia coli publication-title: J Bacteriol doi: 10.1128/jb.177.5.1292-1298.1995 – ident: e_1_2_7_107_1 doi: 10.1128/JB.184.13.3476-3484.2002 – volume: 181 start-page: 7154 year: 1999 ident: e_1_2_7_126_1 article-title: Bacillus subitlis yckG and yckF encode two key enzymes of the ribulose monophosphate pathway used by methylotrophs, and yckH is required for their expression publication-title: J Bacteriol doi: 10.1128/JB.181.23.7154-7160.1999 – ident: e_1_2_7_98_1 doi: 10.1128/JB.00076-09 – ident: e_1_2_7_34_1 doi: 10.1146/annurev.micro.091208.073600 – ident: e_1_2_7_95_1 doi: 10.1073/pnas.0810932106 – ident: e_1_2_7_99_1 doi: 10.1371/journal.pbio.0050077 |
SSID | ssj0017370 |
Score | 2.502981 |
SecondaryResourceType | review_article |
Snippet | Summary
Methylotrophy is a metabolic capability possessed by microorganisms that allows them to build biomass and to obtain energy from organic substrates... Methylotrophy is a metabolic capability possessed by microorganisms that allows them to build biomass and to obtain energy from organic substrates containing... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2603 |
SubjectTerms | Aerobiosis Bacteria Bacteria - metabolism biochemical pathways bioenergy Genomics Metabolic Networks and Pathways metabolism methane Methane - metabolism methanol Methanol - metabolism microbial physiology microorganisms Oxidation-Reduction |
Title | Modularity of methylotrophy, revisited |
URI | https://api.istex.fr/ark:/67375/WNG-D2HJLZF1-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-2920.2011.02464.x https://www.ncbi.nlm.nih.gov/pubmed/21443740 https://www.proquest.com/docview/1365041751 https://www.proquest.com/docview/1753468277 https://www.proquest.com/docview/903657995 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9swEB7KlkIvbbevdbe7uFByqoMsy5Z0XLabDUs3h9LQ0IuwbPmSYJc8IOmv3xnbMSSkSyi9-aAx0mgen-zRNwCfbcJsgXkgyDE5BiKSLrCYtYO4UEIjmGM5o4vC96NkOBZ3k3jS1j_RXZiGH6L74EaeUcdrcvDULvadnAfUball4uQiEX3Ck1S6Rfjoe8ckFcqo7hvXioR7RT0HX7STqZ6S0teHYOguqq3T0uAlTLcLaqpRpv3V0vazP3tcj_9nxa_gRYte_avG3E7hiStfw7Omn-XmDfTuq5zKWhHZ-1XhU3fqzaxazivcyy_-vL7Ijgj3LYwHNz-uh0HbiCHIMB6KIFVKoN_rpFA8U9pFoWNOMce11VYl2mYRT6PCCuWclXmkid1QOS7jXLECY8o7OCmr0p2Bb2O0mlA7UeDUI2ERX2ZMY0h2uS7w6OeB3CrdZC1LOTXLmJmd0wo3pAVDWjC1Fszag7CT_N0wdRwh06v3tRNI51OqdJOx-Tm6NV_58O7br0FouAefthtv0P_op0paumq1MGRrTCAICx8Zg2dCkSgupQf-X8ZohBIxsfN58L4xrG5SxGoXScE8SGrzOHp5Bl2Znj78q-A5POfbmsfwI5ws5yt3gSBsaS9r93oAA8oc2Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT9swFH9CILRdNtgHC-MjSBOnpXIcJ7aPE1AKa3tAoKFdrDpxLlTN1LUS8NfvPSeN1IohNO2Wg19kP7-Pn5Pn3wP4YjNmS8wDUYHJMRKJdJHFrB2lpRIawRwrGF0UHgyz3o24vE1vm3ZAdBem5odoP7iRZ_h4TQ5OH6RXvZxH1G6poeLkIhMdBJQb1ODbn6-uWi6pWCa-c1wjE6-U9Tz5pqVctUFqv38KiC7jWp-Yum9hvFhSXY9y15nPbCd_XGF7_E9r3oI3DYANv9UWtw1rbvIONuuWlg_v4XhQFVTZiuA-rMqQGlQ_jKvZtMLt_BpO_V12BLkf4KZ7dn3Si5peDFGOIVFEI6UEur7OSsVzpV0SO-YUc1xbbVWmbZ7wUVJaoZyzskg0ERwqx2VaKFZiWPkI65Nq4j5BaFM0nFg7UeLUE2ERYuZMY1R2hS7x9BeAXGjd5A1ROfXLGJulAws3pAVDWjBeC-Y-gLiV_FWTdbxA5thvbCswmt5RsZtMzY_huTnlvcv-z25seABHi5036IL0X2U0cdX8t6FKQSYQh8XPjMFjocgUlzKA8C9jNKKJlAj6AtipLaudFBHbJVKwADJvHy9enkFvpqfdfxU8hFe960Hf9C-G3z_Da74ogYz3YH02nbt9xGQze-B97Q_nxSD0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED9NoCFexoDBsg8IEuJpqRzHie1HRNd1fFRoGhrixaoT-6WoQV0rAX_97pI0Uis2IbS3PPgi-3wfPyfn3wEc2oxZj3kgKjA5RiKRLrKYtaPUK6ERzLGC0UXhi0HWvxKn1-l1U_9Ed2Fqfoj2gxt5RhWvycHvCr_s5DyibksNEycXmeggnlwVGVNk4d0fLZVULJOqcVwjEy9V9Tz5poVUtUpav38Khy7C2iov9TZgNF9RXY4y6symtpM_LpE9_p8lv4U3DXwNj2t724RXbrwFr-uGlg_bcHRRFlTXitA-LH1I7akfbsvppMTN_BJOqpvsCHHfwVXv68-TftR0YohyDIgiGiol0PF15hXPlXZJ7JhTzHFttVWZtnnCh4m3QjlnZZFoojdUjsu0UMxjUNmBlXE5du8htCmaTayd8Dj1RFgEmDnTGJNdoT2e_QKQc6WbvKEpp24Zt2bhuMINacGQFkylBXMfQNxK3tVUHc-QOar2tRUYTkZU6iZT82vwzXR5__T8phcbHsDBfOMNOiD9VRmOXTn7bahOkAlEYfE_xuChUGSKSxlA-JcxGrFESvR8AezWhtVOimjtEilYAFllHs9enkFfpqcPLxXch7XLbs-cfx-cfYR1Pq9_jD_BynQyc58RkE3tXuVpfwBpdB-s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modularity+of+methylotrophy%2C+revisited&rft.jtitle=Environmental+microbiology&rft.au=Chistoserdova%2C+Ludmila&rft.date=2011-10-01&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=13&rft.issue=10&rft.spage=2603&rft.epage=2622&rft_id=info:doi/10.1111%2Fj.1462-2920.2011.02464.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1462_2920_2011_02464_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |