Traffic of a Viral Movement Protein Complex to the Highly Curved Tubules of the Cortical Endoplasmic Reticulum

Intracellular trafficking of the nonstructural movement proteins of plant viruses plays a crucial role in sequestering and targeting viral macromolecules in and between cells. Many of the movement proteins traffic in unconventional, yet mechanistically unknown, pathways to localize to the cell perip...

Full description

Saved in:
Bibliographic Details
Published inTraffic (Copenhagen, Denmark) Vol. 11; no. 7; pp. 912 - 930
Main Authors Lee, Shu-Chuan, Wu, Chih-Hang, Wang, Chao-Wen
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.07.2010
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Intracellular trafficking of the nonstructural movement proteins of plant viruses plays a crucial role in sequestering and targeting viral macromolecules in and between cells. Many of the movement proteins traffic in unconventional, yet mechanistically unknown, pathways to localize to the cell periphery. Here we study trafficking strategies associated with two integral membrane movement proteins TGBp2 and TGBp3 of Potexvirus in yeast. We demonstrate that this simple eukaryote recapitulates the targeting of TGBp2 to the peripheral bodies at the cell cortex by TGBp3. We found that these viral movement proteins traffic as an ~1:1 stoichiometric protein complex that further polymerizes to form punctate structures. Many punctate structures depart from the perinuclear endoplasmic reticulum (ER) and move along the tubular ER to the cortical ER, supporting that it involves a lateral sorting event via the ER network. Furthermore, the peripheral bodies are associated with cortical ER tubules that are marked by the ER shaping protein reticulon in both yeast and plants. Thus, our data support a model in which the peripheral bodies partition into and/or stabilize at highly curved membrane environments.
AbstractList Intracellular trafficking of the nonstructural movement proteins of plant viruses plays a crucial role in sequestering and targeting viral macromolecules in and between cells. Many of the movement proteins traffic in unconventional, yet mechanistically unknown, pathways to localize to the cell periphery. Here we study trafficking strategies associated with two integral membrane movement proteins TGBp2 and TGBp3 of Potexvirus in yeast. We demonstrate that this simple eukaryote recapitulates the targeting of TGBp2 to the peripheral bodies at the cell cortex by TGBp3. We found that these viral movement proteins traffic as an 61:1 stoichiometric protein complex that further polymerizes to form punctate structures. Many punctate structures depart from the perinuclear endoplasmic reticulum (ER) and move along the tubular ER to the cortical ER, supporting that it involves a lateral sorting event via the ER network. Furthermore, the peripheral bodies are associated with cortical ER tubules that are marked by the ER shaping protein reticulon in both yeast and plants. Thus, our data support a model in which the peripheral bodies partition into and/or stabilize at highly curved membrane environments.
Intracellular trafficking of the nonstructural movement proteins of plant viruses plays a crucial role in sequestering and targeting viral macromolecules in and between cells. Many of the movement proteins traffic in unconventional, yet mechanistically unknown, pathways to localize to the cell periphery. Here we study trafficking strategies associated with two integral membrane movement proteins TGBp2 and TGBp3 of Potexvirus in yeast. We demonstrate that this simple eukaryote recapitulates the targeting of TGBp2 to the peripheral bodies at the cell cortex by TGBp3. We found that these viral movement proteins traffic as an approximately 1:1 stoichiometric protein complex that further polymerizes to form punctate structures. Many punctate structures depart from the perinuclear endoplasmic reticulum (ER) and move along the tubular ER to the cortical ER, supporting that it involves a lateral sorting event via the ER network. Furthermore, the peripheral bodies are associated with cortical ER tubules that are marked by the ER shaping protein reticulon in both yeast and plants. Thus, our data support a model in which the peripheral bodies partition into and/or stabilize at highly curved membrane environments.Intracellular trafficking of the nonstructural movement proteins of plant viruses plays a crucial role in sequestering and targeting viral macromolecules in and between cells. Many of the movement proteins traffic in unconventional, yet mechanistically unknown, pathways to localize to the cell periphery. Here we study trafficking strategies associated with two integral membrane movement proteins TGBp2 and TGBp3 of Potexvirus in yeast. We demonstrate that this simple eukaryote recapitulates the targeting of TGBp2 to the peripheral bodies at the cell cortex by TGBp3. We found that these viral movement proteins traffic as an approximately 1:1 stoichiometric protein complex that further polymerizes to form punctate structures. Many punctate structures depart from the perinuclear endoplasmic reticulum (ER) and move along the tubular ER to the cortical ER, supporting that it involves a lateral sorting event via the ER network. Furthermore, the peripheral bodies are associated with cortical ER tubules that are marked by the ER shaping protein reticulon in both yeast and plants. Thus, our data support a model in which the peripheral bodies partition into and/or stabilize at highly curved membrane environments.
Intracellular trafficking of the nonstructural movement proteins of plant viruses plays a crucial role in sequestering and targeting viral macromolecules in and between cells. Many of the movement proteins traffic in unconventional, yet mechanistically unknown, pathways to localize to the cell periphery. Here we study trafficking strategies associated with two integral membrane movement proteins TGBp2 and TGBp3 of Potexvirus in yeast. We demonstrate that this simple eukaryote recapitulates the targeting of TGBp2 to the peripheral bodies at the cell cortex by TGBp3. We found that these viral movement proteins traffic as an ~1:1 stoichiometric protein complex that further polymerizes to form punctate structures. Many punctate structures depart from the perinuclear endoplasmic reticulum (ER) and move along the tubular ER to the cortical ER, supporting that it involves a lateral sorting event via the ER network. Furthermore, the peripheral bodies are associated with cortical ER tubules that are marked by the ER shaping protein reticulon in both yeast and plants. Thus, our data support a model in which the peripheral bodies partition into and/or stabilize at highly curved membrane environments.
Intracellular trafficking of the nonstructural movement proteins of plant viruses plays a crucial role in sequestering and targeting viral macromolecules in and between cells. Many of the movement proteins traffic in unconventional, yet mechanistically unknown, pathways to localize to the cell periphery. Here we study trafficking strategies associated with two integral membrane movement proteins TGBp2 and TGBp3 of Potexvirus in yeast. We demonstrate that this simple eukaryote recapitulates the targeting of TGBp2 to the peripheral bodies at the cell cortex by TGBp3. We found that these viral movement proteins traffic as an ∼1:1 stoichiometric protein complex that further polymerizes to form punctate structures. Many punctate structures depart from the perinuclear endoplasmic reticulum (ER) and move along the tubular ER to the cortical ER, supporting that it involves a lateral sorting event via the ER network. Furthermore, the peripheral bodies are associated with cortical ER tubules that are marked by the ER shaping protein reticulon in both yeast and plants. Thus, our data support a model in which the peripheral bodies partition into and/or stabilize at highly curved membrane environments.
Intracellular trafficking of the nonstructural movement proteins of plant viruses plays a crucial role in sequestering and targeting viral macromolecules in and between cells. Many of the movement proteins traffic in unconventional, yet mechanistically unknown, pathways to localize to the cell periphery. Here we study trafficking strategies associated with two integral membrane movement proteins TGBp2 and TGBp3 of Potexvirus in yeast. We demonstrate that this simple eukaryote recapitulates the targeting of TGBp2 to the peripheral bodies at the cell cortex by TGBp3. We found that these viral movement proteins traffic as an approximately 1:1 stoichiometric protein complex that further polymerizes to form punctate structures. Many punctate structures depart from the perinuclear endoplasmic reticulum (ER) and move along the tubular ER to the cortical ER, supporting that it involves a lateral sorting event via the ER network. Furthermore, the peripheral bodies are associated with cortical ER tubules that are marked by the ER shaping protein reticulon in both yeast and plants. Thus, our data support a model in which the peripheral bodies partition into and/or stabilize at highly curved membrane environments.
Author Wu, Chih-Hang
Wang, Chao-Wen
Lee, Shu-Chuan
Author_xml – sequence: 1
  fullname: Lee, Shu-Chuan
– sequence: 2
  fullname: Wu, Chih-Hang
– sequence: 3
  fullname: Wang, Chao-Wen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20374554$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u3CAUhVGVqvlpX6Fl15UnYMCGRStFVtpEStUqnXSLMIaEETZTsNOZty_OpFl0ZSTE1eU75y7OPQVHQxgMABCjFc7nfLPCFUIF4oyuSpS7-VZ0tXsFTl4-jnJNBC9EicUxOE1pgxAqGaVvwHGJSE0ZoydgWEdlrdMwWKjgLxeVh9_Co-nNMMIfMYzGDbAJ_dabHRwDHB8MvHL3D34Pmyk-mg6up3byJs0G82cT4uh0drkcurD1KvXZ_Nbk3uSn_i14bZVP5t3zewbuvlyum6vi5vvX6-biptCMcFpwWwlDOl1ZxAnjlbJKWWZYy5hqRVlTpDUitNOUCtMywSnitRWYdVgRRBg5Ax8PvtsYfk8mjbJ3SRvv1WDClGRNaVVWtcALSVqJBWRZM0boApLkYIh4mv7-mZza3nRyG12v4l7-CygD_ADoGFKKxr4gGMl5F-RGzpHLOXI574J82gW5y9LP_0m1G9XowjBG5fwSg08Hgz_Om_3iwXJ9ezFXWf_hoLcqSHUfXZJ3PzNJEOaMIIbIX7PG1JM
CitedBy_id crossref_primary_10_1074_mcp_M112_017830
crossref_primary_10_1111_mpp_13392
crossref_primary_10_1094_MPMI_04_10_0086
crossref_primary_10_3389_fpls_2014_00060
crossref_primary_10_1128_JVI_01146_12
crossref_primary_10_1186_s12866_020_01758_y
crossref_primary_10_3390_v11040329
crossref_primary_10_1016_j_coviro_2015_04_005
crossref_primary_10_1093_plphys_kiac547
crossref_primary_10_1016_j_bbrc_2012_08_056
crossref_primary_10_1099_jgv_0_000914
crossref_primary_10_1111_mpp_13261
crossref_primary_10_1016_j_pbi_2011_07_006
crossref_primary_10_1100_2012_416076
crossref_primary_10_1128_JVI_01635_18
crossref_primary_10_1083_jcb_201006023
crossref_primary_10_1083_jcb_201304003
crossref_primary_10_1111_nph_16905
crossref_primary_10_1371_journal_ppat_1003405
crossref_primary_10_1042_BST20170442
crossref_primary_10_1007_s00253_021_11331_w
crossref_primary_10_1016_j_biochi_2011_01_002
crossref_primary_10_1007_s00709_010_0217_6
crossref_primary_10_1016_j_virol_2016_11_005
crossref_primary_10_1093_mp_ssr070
crossref_primary_10_3390_v14122742
crossref_primary_10_1242_jcs_149799
crossref_primary_10_1146_annurev_virology_031413_085532
crossref_primary_10_1007_s00705_022_05576_7
crossref_primary_10_3389_fmicb_2022_860695
Cites_doi 10.1111/j.1600-0854.2008.00824.x
10.1099/vir.0.18885-0
10.1038/sj.emboj.7601466
10.1016/j.ceb.2005.06.005
10.1016/j.virol.2008.06.019
10.1046/j.1365-313X.1997.11061151.x
10.1093/embo-reports/kvf202
10.1016/j.cell.2005.11.047
10.1186/1746-4811-4-24
10.1016/S0092-8674(03)01079-1
10.1083/jcb.200503033
10.1083/jcb.200412143
10.1016/j.cell.2006.07.019
10.1074/jbc.M407600200
10.1021/bi048296z
10.1093/emboj/19.5.862
10.1016/j.virol.2008.01.030
10.1101/SQB.1995.060.01.004
10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
10.1083/jcb.150.3.461
10.1016/0092-8674(80)90128-2
10.1083/jcb.137.7.1469
10.1099/vir.0.18922-0
10.1002/cm.970150203
10.1099/vir.0.80865-0
10.1128/JVI.01164-07
10.1126/science.1153634
10.1073/pnas.080072997
10.1091/mbc.01-04-0184
10.1111/j.1600-0854.2007.00670.x
10.1038/nature04472
10.1083/jcb.114.2.207
10.1016/S1369-5266(99)80035-1
10.1006/viro.2000.0200
10.1016/S0042-6822(03)00180-6
10.1091/mbc.4.12.1277
10.1105/tpc.104.026476
10.1083/jcb.143.7.1931
10.1099/0022-1317-83-3-651
10.1016/j.febslet.2007.06.032
10.1042/BJ20091113
10.1091/mbc.e06-01-0080
10.1016/S0092-8674(03)00883-3
10.1093/genetics/132.2.337
10.1104/pp.105.066019
10.1105/tpc.8.10.1669
10.1242/jcs.036012
10.1074/jbc.M800986200
10.1016/S0021-9258(19)49812-8
ContentType Journal Article
Copyright 2010 John Wiley & Sons A/S
Copyright_xml – notice: 2010 John Wiley & Sons A/S
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
7U9
H94
DOI 10.1111/j.1600-0854.2010.01064.x
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
DatabaseTitleList AIDS and Cancer Research Abstracts
MEDLINE - Academic
AGRICOLA
AIDS and Cancer Research Abstracts


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1600-0854
EndPage 930
ExternalDocumentID 20374554
10_1111_j_1600_0854_2010_01064_x
TRA1064
US201301853050
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1OC
24P
29Q
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAVGM
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABHUG
ABPTK
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADBTR
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AIACR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAD
EAP
EBC
EBD
EBO
EBS
EJD
EMB
EMK
EMOBN
ESX
F00
F01
F04
F5P
FBQ
FIJ
FUBAC
G-S
G.N
GODZA
H.X
HF~
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
SV3
TEORI
TH9
TR2
TUS
UB1
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
Y6R
YFH
ZA5
ZZTAW
~IA
~KM
~WT
AAHQN
AAIPD
AAMNL
AAYCA
ACUHS
AFWVQ
AHBTC
AITYG
ALVPJ
HGLYW
OIG
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
7U9
H94
ID FETCH-LOGICAL-c5384-8f69e3dc6f083586afaaf5e5b55ab92740cc034dc449eb5984087f915d1a30353
IEDL.DBID DR2
ISSN 1398-9219
1600-0854
IngestDate Thu Jul 10 19:02:35 EDT 2025
Thu Jul 10 22:00:00 EDT 2025
Fri Jul 11 09:27:09 EDT 2025
Thu Jul 10 23:51:40 EDT 2025
Mon Jul 21 06:01:50 EDT 2025
Tue Jul 01 00:52:42 EDT 2025
Thu Apr 24 23:01:46 EDT 2025
Wed Jan 22 16:44:19 EST 2025
Wed Dec 27 18:46:04 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5384-8f69e3dc6f083586afaaf5e5b55ab92740cc034dc449eb5984087f915d1a30353
Notes http://dx.doi.org/10.1111/j.1600-0854.2010.01064.x
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1600-0854.2010.01064.x
PMID 20374554
PQID 733983991
PQPubID 23462
PageCount 19
ParticipantIDs proquest_miscellaneous_744626791
proquest_miscellaneous_744626469
proquest_miscellaneous_742755349
proquest_miscellaneous_733983991
pubmed_primary_20374554
crossref_primary_10_1111_j_1600_0854_2010_01064_x
crossref_citationtrail_10_1111_j_1600_0854_2010_01064_x
wiley_primary_10_1111_j_1600_0854_2010_01064_x_TRA1064
fao_agris_US201301853050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2010
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: July 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Traffic (Copenhagen, Denmark)
PublicationTitleAlternate Traffic
PublicationYear 2010
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
References 1997; 137
1991; 114
2006; 439
1990; 15
2002; 13
1992; 267
2006; 17
2005; 138
2007; 581
1980; 21
2008; 9
2000; 150
2005; 86
2002; 3
1999; 2
2008; 4
2003; 115
2003; 312
2005; 44
2008; 283
1993; 4
1995; 60
2004; 116
2000; 19
2004; 279
1997; 11
2000; 269
2002; 83
1992; 132
2004; 16
2005; 169
2008; 319
2000; 97
2009; 122
2008; 379
1999; 117
2006; 126
2008; 375
1998; 143
2003; 84
2005; 17
2008; 82
1996; 8
2009; 423
2007; 26
1998; 14
2006; 124
Shibata (10.1111/j.1600-0854.2010.01064.x-BIB14|cit14) 2006; 126
Hsu (10.1111/j.1600-0854.2010.01064.x-BIB28|cit28) 2008; 379
Levine (10.1111/j.1600-0854.2010.01064.x-BIB12|cit12) 2005; 17
Hu (10.1111/j.1600-0854.2010.01064.x-BIB17|cit17) 2008; 319
Prinz (10.1111/j.1600-0854.2010.01064.x-BIB13|cit13) 2000; 150
Kaksonen (10.1111/j.1600-0854.2010.01064.x-BIB35|cit35) 2003; 115
Drubin (10.1111/j.1600-0854.2010.01064.x-BIB38|cit38) 1993; 4
Lucas (10.1111/j.1600-0854.2010.01064.x-BIB2|cit2) 1999; 2
Zamyatnin (10.1111/j.1600-0854.2010.01064.x-BIB9|cit9) 2002; 83
Griff (10.1111/j.1600-0854.2010.01064.x-BIB32|cit32) 1992; 267
Diez (10.1111/j.1600-0854.2010.01064.x-BIB44|cit44) 2000; 97
Lee (10.1111/j.1600-0854.2010.01064.x-BIB50|cit50) 2008; 4
Grossmann (10.1111/j.1600-0854.2010.01064.x-BIB33|cit33) 2007; 26
Walther (10.1111/j.1600-0854.2010.01064.x-BIB34|cit34) 2006; 439
Schepetilnikov (10.1111/j.1600-0854.2010.01064.x-BIB6|cit6) 2005; 86
Baumann (10.1111/j.1600-0854.2010.01064.x-BIB24|cit24) 2005; 44
Voeltz (10.1111/j.1600-0854.2010.01064.x-BIB11|cit11) 2002; 3
McDonald (10.1111/j.1600-0854.2010.01064.x-BIB49|cit49) 1999; 117
Li (10.1111/j.1600-0854.2010.01064.x-BIB23|cit23) 2004; 279
Terasaki (10.1111/j.1600-0854.2010.01064.x-BIB19|cit19) 1990; 15
Luedeke (10.1111/j.1600-0854.2010.01064.x-BIB41|cit41) 2005; 169
Morozov (10.1111/j.1600-0854.2010.01064.x-BIB3|cit3) 2003; 84
Roberg (10.1111/j.1600-0854.2010.01064.x-BIB36|cit36) 1997; 137
Staehelin (10.1111/j.1600-0854.2010.01064.x-BIB20|cit20) 1997; 11
Longtine (10.1111/j.1600-0854.2010.01064.x-BIB48|cit48) 1998; 14
Maass (10.1111/j.1600-0854.2010.01064.x-BIB26|cit26) 2009; 122
Juschke (10.1111/j.1600-0854.2010.01064.x-BIB25|cit25) 2005; 169
Carrington (10.1111/j.1600-0854.2010.01064.x-BIB1|cit1) 1996; 8
Schekman (10.1111/j.1600-0854.2010.01064.x-BIB21|cit21) 1995; 60
Hwang (10.1111/j.1600-0854.2010.01064.x-BIB47|cit47) 2004; 16
Shibata (10.1111/j.1600-0854.2010.01064.x-BIB16|cit16) 2008; 283
Wertman (10.1111/j.1600-0854.2010.01064.x-BIB37|cit37) 1992; 132
Barrowman (10.1111/j.1600-0854.2010.01064.x-BIB30|cit30) 2000; 19
Tolley (10.1111/j.1600-0854.2010.01064.x-BIB43|cit43) 2008; 9
Fehrenbacher (10.1111/j.1600-0854.2010.01064.x-BIB18|cit18) 2002; 13
Bonifacino (10.1111/j.1600-0854.2010.01064.x-BIB22|cit22) 2004; 116
Pruyne (10.1111/j.1600-0854.2010.01064.x-BIB39|cit39) 1998; 143
De Craene (10.1111/j.1600-0854.2010.01064.x-BIB40|cit40) 2006; 17
Voeltz (10.1111/j.1600-0854.2010.01064.x-BIB15|cit15) 2006; 124
Gorshkova (10.1111/j.1600-0854.2010.01064.x-BIB7|cit7) 2003; 84
Mitra (10.1111/j.1600-0854.2010.01064.x-BIB4|cit4) 2003; 312
Ju (10.1111/j.1600-0854.2010.01064.x-BIB5|cit5) 2005; 138
Schepetilnikov (10.1111/j.1600-0854.2010.01064.x-BIB10|cit10) 2008; 82
Graham (10.1111/j.1600-0854.2010.01064.x-BIB31|cit31) 1991; 114
Sambade (10.1111/j.1600-0854.2010.01064.x-BIB45|cit45) 2008; 9
Ju (10.1111/j.1600-0854.2010.01064.x-BIB27|cit27) 2008; 375
Novick (10.1111/j.1600-0854.2010.01064.x-BIB29|cit29) 1980; 21
Solovyev (10.1111/j.1600-0854.2010.01064.x-BIB8|cit8) 2000; 269
Nziengui (10.1111/j.1600-0854.2010.01064.x-BIB42|cit42) 2007; 581
Sparkes (10.1111/j.1600-0854.2010.01064.x-BIB46|cit46) 2009; 423
References_xml – volume: 84
  start-page: 985
  year: 2003
  end-page: 994
  article-title: Immunodetection and fluorescent microscopy of transgenically expressed hordeivirus TGBp3 movement protein reveals its association with endoplasmic reticulum elements in close proximity to plasmodesmata.
  publication-title: J Gen Virol
– volume: 4
  start-page: 1277
  year: 1993
  end-page: 1294
  article-title: Actin structure and function: Roles in mitochondrial organization and morphogenesis in budding yeast and identification of the phalloidin‐binding site
  publication-title: Mol Biol Cell
– volume: 267
  start-page: 12106
  year: 1992
  end-page: 12115
  article-title: The yeast SEC17 gene product is functionally equivalent to mammalian alpha‐SNAP protein.
  publication-title: J Biol Chem
– volume: 9
  start-page: 2073
  year: 2008
  end-page: 2088
  article-title: Transport of TMV movement protein particles associated with the targeting of RNA to plasmodesmata
  publication-title: Traffic
– volume: 116
  start-page: 153
  year: 2004
  end-page: 166
  article-title: The mechanisms of vesicle budding and fusion
  publication-title: Cell
– volume: 83
  start-page: 651
  year: 2002
  end-page: 662
  article-title: Dual‐colour imaging of membrane protein targeting directed by poa semilatent virus movement protein TGBp3 in plant and mammalian cells
  publication-title: J Gen Virol
– volume: 312
  start-page: 35
  year: 2003
  end-page: 48
  article-title: The potato virus X TGBp2 protein association with the endoplasmic reticulum plays a role in but is not sufficient for viral cell‐to‐cell movement
  publication-title: Virology
– volume: 581
  start-page: 3356
  year: 2007
  end-page: 3362
  article-title: Reticulon‐like proteins in Arabidopsis thaliana: Structural organization and ER localization
  publication-title: FEBS Lett
– volume: 4
  start-page: 24
  year: 2008
  article-title: Vectors for multi‐color bimolecular fluorescence complementation to investigate protein‐protein interactions in living plant cells.
  publication-title: Plant Methods
– volume: 14
  start-page: 953
  year: 1998
  end-page: 961
  article-title: Additional modules for versatile and economical PCR‐based gene deletion and modification in
  publication-title: Yeast
– volume: 117
  start-page: 77
  year: 1999
  end-page: 97
  article-title: High‐pressure freezing for preservation of high resolution fine structure and antigenicity for immunolabeling
  publication-title: Methods Mol Biol
– volume: 115
  start-page: 475
  year: 2003
  end-page: 487
  article-title: A pathway for association of receptors, adaptors, and actin during endocytic internalization
  publication-title: Cell
– volume: 124
  start-page: 573
  year: 2006
  end-page: 586
  article-title: A class of membrane proteins shaping the tubular endoplasmic reticulum
  publication-title: Cell
– volume: 86
  start-page: 2379
  year: 2005
  end-page: 2391
  article-title: The hydrophobic segment of Potato virus X TGBp3 is a major determinant of the protein intracellular trafficking
  publication-title: J Gen Virol
– volume: 3
  start-page: 944
  year: 2002
  end-page: 950
  article-title: Structural organization of the endoplasmic reticulum
  publication-title: EMBO Rep
– volume: 143
  start-page: 1931
  year: 1998
  end-page: 1945
  article-title: Tropomyosin‐containing actin cables direct the Myo2p‐dependent polarized delivery of secretory vesicles in budding yeast
  publication-title: J Cell Biol
– volume: 8
  start-page: 1669
  year: 1996
  end-page: 1681
  article-title: Cell‐to‐cell and long‐distance transport of viruses in plants
  publication-title: Plant Cell
– volume: 137
  start-page: 1469
  year: 1997
  end-page: 1482
  article-title: Physiological regulation of membrane protein sorting late in the secretory pathway of
  publication-title: J Cell Biol
– volume: 283
  start-page: 18892
  year: 2008
  end-page: 18904
  article-title: The reticulon and DP1/Yop1p proteins form immobile oligomers in the tubular endoplasmic reticulum
  publication-title: J Biol Chem
– volume: 279
  start-page: 45226
  year: 2004
  end-page: 45234
  article-title: ATP‐binding cassette (ABC) transporters mediate nonvesicular, raft‐modulated sterol movement from the plasma membrane to the endoplasmic reticulum
  publication-title: J Biol Chem
– volume: 169
  start-page: 613
  year: 2005
  end-page: 622
  article-title: SEC18/NSF‐independent, protein‐sorting pathway from the yeast cortical ER to the plasma membrane.
  publication-title: J Cell Biol
– volume: 17
  start-page: 3009
  year: 2006
  end-page: 3020
  article-title: Rtn1p is involved in structuring the cortical endoplasmic reticulum
  publication-title: Mol Biol Cell
– volume: 439
  start-page: 998
  year: 2006
  end-page: 1003
  article-title: Eisosomes mark static sites of endocytosis
  publication-title: Nature
– volume: 19
  start-page: 862
  year: 2000
  end-page: 869
  article-title: TRAPP stably associates with the Golgi and is required for vesicle docking
  publication-title: Embo J
– volume: 126
  start-page: 435
  year: 2006
  end-page: 439
  article-title: Rough sheets and smooth tubules
  publication-title: Cell
– volume: 44
  start-page: 5816
  year: 2005
  end-page: 5826
  article-title: Transport of newly synthesized sterol to the sterol‐enriched plasma membrane occurs via nonvesicular equilibration
  publication-title: Biochemistry
– volume: 379
  start-page: 1
  year: 2008
  end-page: 9
  article-title: Topological properties of the triple gene block protein 2 of Bamboo mosaic virus
  publication-title: Virology
– volume: 423
  start-page: 145
  year: 2009
  end-page: 155
  article-title: The plant endoplasmic reticulum: A cell‐wide web
  publication-title: Biochem J
– volume: 84
  start-page: 1351
  year: 2003
  end-page: 1366
  article-title: Triple gene block: modular design of a multifunctional machine for plant virus movement
  publication-title: J Gen Virol
– volume: 319
  start-page: 1247
  year: 2008
  end-page: 1250
  article-title: Membrane proteins of the endoplasmic reticulum induce high‐curvature tubules
  publication-title: Science
– volume: 269
  start-page: 113
  year: 2000
  end-page: 127
  article-title: Subcellular sorting of small membrane‐associated triple gene block proteins: TGBp3‐assisted targeting of TGBp2
  publication-title: Virology
– volume: 60
  start-page: 11
  year: 1995
  end-page: 21
  article-title: Coat proteins and selective protein packaging into transport vesicles
  publication-title: Cold Spring Harb Symp Quant Biol
– volume: 21
  start-page: 205
  year: 1980
  end-page: 215
  article-title: Identification of 23 complementation groups required for post‐translational events in the yeast secretory pathway
  publication-title: Cell
– volume: 169
  start-page: 897
  year: 2005
  end-page: 908
  article-title: Septin‐dependent compartmentalization of the endoplasmic reticulum during yeast polarized growth
  publication-title: J Cell Biol
– volume: 26
  start-page: 1
  year: 2007
  end-page: 8
  article-title: Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast
  publication-title: Embo J
– volume: 138
  start-page: 1877
  year: 2005
  end-page: 1895
  article-title: The potato virus X TGBp2 movement protein associates with endoplasmic reticulum‐derived vesicles during virus infection
  publication-title: Plant Physiol
– volume: 114
  start-page: 207
  year: 1991
  end-page: 218
  article-title: Compartmental organization of Golgi‐specific protein modification and vacuolar protein sorting events defined in a yeast sec18 (NSF) mutant.
  publication-title: J Cell Biol
– volume: 15
  start-page: 71
  year: 1990
  end-page: 75
  article-title: Recent progress on structural interactions of the endoplasmic reticulum
  publication-title: Cell Motil Cytoskeleton
– volume: 9
  start-page: 94
  year: 2008
  end-page: 102
  article-title: Overexpression of a plant reticulon remodels the lumen of the cortical endoplasmic reticulum but does not perturb protein transport
  publication-title: Traffic
– volume: 122
  start-page: 625
  year: 2009
  end-page: 635
  article-title: A signal comprising a basic cluster and an amphipathic alpha‐helix interacts with lipids and is required for the transport of Ist2 to the yeast cortical ER
  publication-title: J Cell Sci
– volume: 16
  start-page: 3148
  year: 2004
  end-page: 3167
  article-title: Plant proteins that interact with VirB2, the pilin protein, mediate plant transformation
  publication-title: Plant Cell
– volume: 2
  start-page: 192
  year: 1999
  end-page: 197
  article-title: Connections between virus movement, macromolecular signaling and assimilate allocation
  publication-title: Curr Opin Plant Biol
– volume: 375
  start-page: 103
  year: 2008
  end-page: 117
  article-title: Mutational analysis of PVX TGBp3 links subcellular accumulation and protein turnover
  publication-title: Virology
– volume: 17
  start-page: 362
  year: 2005
  end-page: 368
  article-title: Endoplasmic reticulum: one continuous network compartmentalized by extrinsic cues
  publication-title: Curr Opin Cell Biol
– volume: 82
  start-page: 1284
  year: 2008
  end-page: 1293
  article-title: Intracellular targeting of a hordeiviral membrane‐spanning movement protein: Sequence requirements and involvement of an unconventional mechanism
  publication-title: J Virol
– volume: 150
  start-page: 461
  year: 2000
  end-page: 474
  article-title: Mutants affecting the structure of the cortical endoplasmic reticulum in
  publication-title: J Cell Biol
– volume: 13
  start-page: 854
  year: 2002
  end-page: 865
  article-title: Endoplasmic reticulum dynamics, inheritance, and cytoskeletal interactions in budding yeast
  publication-title: Mol Biol Cell
– volume: 11
  start-page: 1151
  year: 1997
  end-page: 1165
  article-title: The plant ER: a dynamic organelle composed of a large number of discrete functional domains
  publication-title: Plant J
– volume: 97
  start-page: 3913
  year: 2000
  end-page: 3918
  article-title: Identification and characterization of a host protein required for efficient template selection in viral RNA replication
  publication-title: Proc Natl Acad Sci U S A
– volume: 132
  start-page: 337
  year: 1992
  end-page: 350
  article-title: Systematic mutational analysis of the yeast ACT1 gene
  publication-title: Genetics
– volume: 9
  start-page: 2073
  year: 2008
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB45|cit45
  article-title: Transport of TMV movement protein particles associated with the targeting of RNA to plasmodesmata
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2008.00824.x
– volume: 84
  start-page: 985
  year: 2003
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB7|cit7
  article-title: Immunodetection and fluorescent microscopy of transgenically expressed hordeivirus TGBp3 movement protein reveals its association with endoplasmic reticulum elements in close proximity to plasmodesmata.
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.18885-0
– volume: 26
  start-page: 1
  year: 2007
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB33|cit33
  article-title: Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast
  publication-title: Embo J
  doi: 10.1038/sj.emboj.7601466
– volume: 17
  start-page: 362
  year: 2005
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB12|cit12
  article-title: Endoplasmic reticulum: one continuous network compartmentalized by extrinsic cues
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2005.06.005
– volume: 379
  start-page: 1
  year: 2008
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB28|cit28
  article-title: Topological properties of the triple gene block protein 2 of Bamboo mosaic virus
  publication-title: Virology
  doi: 10.1016/j.virol.2008.06.019
– volume: 11
  start-page: 1151
  year: 1997
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB20|cit20
  article-title: The plant ER: a dynamic organelle composed of a large number of discrete functional domains
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1997.11061151.x
– volume: 3
  start-page: 944
  year: 2002
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB11|cit11
  article-title: Structural organization of the endoplasmic reticulum
  publication-title: EMBO Rep
  doi: 10.1093/embo-reports/kvf202
– volume: 124
  start-page: 573
  year: 2006
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB15|cit15
  article-title: A class of membrane proteins shaping the tubular endoplasmic reticulum
  publication-title: Cell
  doi: 10.1016/j.cell.2005.11.047
– volume: 4
  start-page: 24
  year: 2008
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB50|cit50
  article-title: Vectors for multi-color bimolecular fluorescence complementation to investigate protein-protein interactions in living plant cells.
  publication-title: Plant Methods
  doi: 10.1186/1746-4811-4-24
– volume: 116
  start-page: 153
  year: 2004
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB22|cit22
  article-title: The mechanisms of vesicle budding and fusion
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)01079-1
– volume: 169
  start-page: 613
  year: 2005
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB25|cit25
  article-title: SEC18/NSF-independent, protein-sorting pathway from the yeast cortical ER to the plasma membrane.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200503033
– volume: 169
  start-page: 897
  year: 2005
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB41|cit41
  article-title: Septin-dependent compartmentalization of the endoplasmic reticulum during yeast polarized growth
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200412143
– volume: 126
  start-page: 435
  year: 2006
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB14|cit14
  article-title: Rough sheets and smooth tubules
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.019
– volume: 279
  start-page: 45226
  year: 2004
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB23|cit23
  article-title: ATP-binding cassette (ABC) transporters mediate nonvesicular, raft-modulated sterol movement from the plasma membrane to the endoplasmic reticulum
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M407600200
– volume: 44
  start-page: 5816
  year: 2005
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB24|cit24
  article-title: Transport of newly synthesized sterol to the sterol-enriched plasma membrane occurs via nonvesicular equilibration
  publication-title: Biochemistry
  doi: 10.1021/bi048296z
– volume: 19
  start-page: 862
  year: 2000
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB30|cit30
  article-title: TRAPP stably associates with the Golgi and is required for vesicle docking
  publication-title: Embo J
  doi: 10.1093/emboj/19.5.862
– volume: 375
  start-page: 103
  year: 2008
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB27|cit27
  article-title: Mutational analysis of PVX TGBp3 links subcellular accumulation and protein turnover
  publication-title: Virology
  doi: 10.1016/j.virol.2008.01.030
– volume: 60
  start-page: 11
  year: 1995
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB21|cit21
  article-title: Coat proteins and selective protein packaging into transport vesicles
  publication-title: Cold Spring Harb Symp Quant Biol
  doi: 10.1101/SQB.1995.060.01.004
– volume: 14
  start-page: 953
  year: 1998
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB48|cit48
  article-title: Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae
  publication-title: Yeast
  doi: 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
– volume: 150
  start-page: 461
  year: 2000
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB13|cit13
  article-title: Mutants affecting the structure of the cortical endoplasmic reticulum in Saccharomyces cerevisiae
  publication-title: J Cell Biol
  doi: 10.1083/jcb.150.3.461
– volume: 21
  start-page: 205
  year: 1980
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB29|cit29
  article-title: Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway
  publication-title: Cell
  doi: 10.1016/0092-8674(80)90128-2
– volume: 137
  start-page: 1469
  year: 1997
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB36|cit36
  article-title: Physiological regulation of membrane protein sorting late in the secretory pathway of Saccharomyces cerevisiae
  publication-title: J Cell Biol
  doi: 10.1083/jcb.137.7.1469
– volume: 84
  start-page: 1351
  year: 2003
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB3|cit3
  article-title: Triple gene block: modular design of a multifunctional machine for plant virus movement
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.18922-0
– volume: 15
  start-page: 71
  year: 1990
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB19|cit19
  article-title: Recent progress on structural interactions of the endoplasmic reticulum
  publication-title: Cell Motil Cytoskeleton
  doi: 10.1002/cm.970150203
– volume: 86
  start-page: 2379
  year: 2005
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB6|cit6
  article-title: The hydrophobic segment of Potato virus X TGBp3 is a major determinant of the protein intracellular trafficking
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.80865-0
– volume: 82
  start-page: 1284
  year: 2008
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB10|cit10
  article-title: Intracellular targeting of a hordeiviral membrane-spanning movement protein: Sequence requirements and involvement of an unconventional mechanism
  publication-title: J Virol
  doi: 10.1128/JVI.01164-07
– volume: 319
  start-page: 1247
  year: 2008
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB17|cit17
  article-title: Membrane proteins of the endoplasmic reticulum induce high-curvature tubules
  publication-title: Science
  doi: 10.1126/science.1153634
– volume: 97
  start-page: 3913
  year: 2000
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB44|cit44
  article-title: Identification and characterization of a host protein required for efficient template selection in viral RNA replication
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.080072997
– volume: 13
  start-page: 854
  year: 2002
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB18|cit18
  article-title: Endoplasmic reticulum dynamics, inheritance, and cytoskeletal interactions in budding yeast
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.01-04-0184
– volume: 9
  start-page: 94
  year: 2008
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB43|cit43
  article-title: Overexpression of a plant reticulon remodels the lumen of the cortical endoplasmic reticulum but does not perturb protein transport
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2007.00670.x
– volume: 439
  start-page: 998
  year: 2006
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB34|cit34
  article-title: Eisosomes mark static sites of endocytosis
  publication-title: Nature
  doi: 10.1038/nature04472
– volume: 114
  start-page: 207
  year: 1991
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB31|cit31
  article-title: Compartmental organization of Golgi-specific protein modification and vacuolar protein sorting events defined in a yeast sec18 (NSF) mutant.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.114.2.207
– volume: 2
  start-page: 192
  year: 1999
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB2|cit2
  article-title: Connections between virus movement, macromolecular signaling and assimilate allocation
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/S1369-5266(99)80035-1
– volume: 269
  start-page: 113
  year: 2000
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB8|cit8
  article-title: Subcellular sorting of small membrane-associated triple gene block proteins: TGBp3-assisted targeting of TGBp2
  publication-title: Virology
  doi: 10.1006/viro.2000.0200
– volume: 312
  start-page: 35
  year: 2003
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB4|cit4
  article-title: The potato virus X TGBp2 protein association with the endoplasmic reticulum plays a role in but is not sufficient for viral cell-to-cell movement
  publication-title: Virology
  doi: 10.1016/S0042-6822(03)00180-6
– volume: 4
  start-page: 1277
  year: 1993
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB38|cit38
  article-title: Actin structure and function: Roles in mitochondrial organization and morphogenesis in budding yeast and identification of the phalloidin-binding site
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.4.12.1277
– volume: 16
  start-page: 3148
  year: 2004
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB47|cit47
  article-title: Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.026476
– volume: 117
  start-page: 77
  year: 1999
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB49|cit49
  article-title: High-pressure freezing for preservation of high resolution fine structure and antigenicity for immunolabeling
  publication-title: Methods Mol Biol
– volume: 143
  start-page: 1931
  year: 1998
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB39|cit39
  article-title: Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast
  publication-title: J Cell Biol
  doi: 10.1083/jcb.143.7.1931
– volume: 83
  start-page: 651
  year: 2002
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB9|cit9
  article-title: Dual-colour imaging of membrane protein targeting directed by poa semilatent virus movement protein TGBp3 in plant and mammalian cells
  publication-title: J Gen Virol
  doi: 10.1099/0022-1317-83-3-651
– volume: 581
  start-page: 3356
  year: 2007
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB42|cit42
  article-title: Reticulon-like proteins in Arabidopsis thaliana: Structural organization and ER localization
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2007.06.032
– volume: 423
  start-page: 145
  year: 2009
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB46|cit46
  article-title: The plant endoplasmic reticulum: A cell-wide web
  publication-title: Biochem J
  doi: 10.1042/BJ20091113
– volume: 17
  start-page: 3009
  year: 2006
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB40|cit40
  article-title: Rtn1p is involved in structuring the cortical endoplasmic reticulum
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e06-01-0080
– volume: 115
  start-page: 475
  year: 2003
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB35|cit35
  article-title: A pathway for association of receptors, adaptors, and actin during endocytic internalization
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00883-3
– volume: 132
  start-page: 337
  year: 1992
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB37|cit37
  article-title: Systematic mutational analysis of the yeast ACT1 gene
  publication-title: Genetics
  doi: 10.1093/genetics/132.2.337
– volume: 138
  start-page: 1877
  year: 2005
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB5|cit5
  article-title: The potato virus X TGBp2 movement protein associates with endoplasmic reticulum-derived vesicles during virus infection
  publication-title: Plant Physiol
  doi: 10.1104/pp.105.066019
– volume: 8
  start-page: 1669
  year: 1996
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB1|cit1
  article-title: Cell-to-cell and long-distance transport of viruses in plants
  publication-title: Plant Cell
  doi: 10.1105/tpc.8.10.1669
– volume: 122
  start-page: 625
  year: 2009
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB26|cit26
  article-title: A signal comprising a basic cluster and an amphipathic alpha-helix interacts with lipids and is required for the transport of Ist2 to the yeast cortical ER
  publication-title: J Cell Sci
  doi: 10.1242/jcs.036012
– volume: 283
  start-page: 18892
  year: 2008
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB16|cit16
  article-title: The reticulon and DP1/Yop1p proteins form immobile oligomers in the tubular endoplasmic reticulum
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M800986200
– volume: 267
  start-page: 12106
  year: 1992
  ident: 10.1111/j.1600-0854.2010.01064.x-BIB32|cit32
  article-title: The yeast SEC17 gene product is functionally equivalent to mammalian alpha-SNAP protein.
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)49812-8
SSID ssj0002544
Score 2.140945
Snippet Intracellular trafficking of the nonstructural movement proteins of plant viruses plays a crucial role in sequestering and targeting viral macromolecules in...
SourceID proquest
pubmed
crossref
wiley
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 912
SubjectTerms Animals
Cortex
Data processing
Endoplasmic reticulum
Endoplasmic Reticulum - metabolism
Endoplasmic Reticulum - virology
genetics
Macromolecules
Membrane Proteins
Membrane Proteins - genetics
Membrane Proteins - metabolism
membrane trafficking
metabolism
Movement
movement protein
Plant Viruses
Plant Viruses - metabolism
Potexvirus
Potexvirus - metabolism
Protein Transport
reticulon
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae - virology
triple gene block
Tubules
Viral Proteins
Viral Proteins - genetics
Viral Proteins - metabolism
virology
Title Traffic of a Viral Movement Protein Complex to the Highly Curved Tubules of the Cortical Endoplasmic Reticulum
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1600-0854.2010.01064.x
https://www.ncbi.nlm.nih.gov/pubmed/20374554
https://www.proquest.com/docview/733983991
https://www.proquest.com/docview/742755349
https://www.proquest.com/docview/744626469
https://www.proquest.com/docview/744626791
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BEaIXCgXa8Kj2wNWRHe_6cUxDowqpCIUE9bbaJ6oa7Cqxq7a_nhnbCQ2qSoW4WfLuWjuexze7s98CfPRpbGys0sCgqwvQ4elAi8gjkON0GMF25ytOviTHM_75VJx29U90Fqblh1gvuJFlNP6aDFzp5aaRJ3QqOmuWRqhCC7Mb3ic8SaVbhI8mv5mkiImryb1ytG-00s2injsH2ohUj70q7wKhm5i2CUrjHThfTaetRTnv15Xum5s_mB7_z3xfwPMOu7Jhq2wv4ZErduFpe5vl9S48G60uj3sFBcZAIqdgpWeKfT9bYL-TsuEmr9hX4oY4Kxj5orm7YlXJEIYyKjmZX7NRvbh0lk1rXc_dkgagl6Ny0ay6s6PClhcI-X_i4BNXtcuXr2E2PpqOjoPuaofAoIflQeaT3MXWJJ4gYJYor5QXTmghlM4xUw6NCWNuDee50yLHNDRLfR4JGykMuiJ-A1tFWbh9YMJF2oQq9RliqRCjq8gyH1njEjPQKrY9SFe_UZqO95yu35jLW_kPSlaSZCVJVjaSlVc9iNY9L1rujwf02UdNkeoHumg5-zagjWGCRKEIe8BW6iPxb9DGjCpcWS9lGqNaIlKM7mnCB6kQMc_va8IxO-XJX5uk9KG9Vn_XExsQERFiyx4kjRY-eMZyOhnS09t_7fgOttuSDKqBfg9b1aJ2HxDpVfoAngwPPx2ODxpb_gXSD0CV
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BEBovA8bHyqcfeE2VNHY-HqdqU4F1QqVFe7Nsx0YTIZm6ZNr467lz0kLRNCbEW6XYruzcx-8u598BvHNpbIpYpYFBUxegwdOBFpFDIMfpMkLR36-YHieTBf9wIk76dkB0F6bjh1gn3EgzvL0mBaeE9KaWJ3QtOvO5ESrRwvCGDxFQ3qMG3z6-mv3ikiIuLh995ajhqKebZT3XrrThq-46VV8HQzdRrXdLhw-hXG2oq0b5NmwbPTQ__uB6_E87fgQ7PXxl-528PYY7ttqF-11Dy6td2B6v-sc9gQrdIPFTsNoxxb6cLnHetPb05A37RPQQpxUjc1TaS9bUDJEoo6qT8oqN2-WFLdi81W1pz2kBejiulz7xzg6qoj5D1P8dF5_ZpstgPoXF4cF8PAn67g6BQSPLg8wluY0LkzhCgVminFJOWKGFUDrHYDk0Jox5YTjPrRY5RqJZ6vJIFJFCvyviZ7BV1ZXdAyZspE2oUpchnArRwYosc1FhbGJGWsXFANLVe5Smpz6nDhyl_C0EwpOVdLKSTlb6k5WXA4jWM886-o9bzNlDUZHqK1ppufg8om_DhIpCEQ6AreRH4tugbzOqsnV7LtMY5RLBYnTDED5KhYh5ftMQjgEqT_46JKU_et4J8HpjI-IiQng5gMSL4a13LOezffr14l8nvoXtyXx6JI_eH398CQ-6Cg0qiX4FW82yta8R-DX6jVfon8ofQz4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgiMsLlwFbufqB11RJYzvJ49StGpdNU2nR3ixfp2klqbpk2vj1nOOkhaJpTIi3SLEd-eRcvmMffybkg89SY1OVRQZcXQQOT0eaJx6AHMPDCLY7X3FwKPan7NMxP-7qn_AsTMsPsVpwQ8sI_hoNfG79upELPBWdh6URrNCC7Ib1AU_eYyLOUcN3x7-opJCKKyRfBRg4mOl6Vc-1I62FqrteVdeh0HVQG6LS6Ak5W86nLUY56ze17psff1A9_p8JPyWPO_BKd1pte0buuHKT3G-vs7zaJA-Hy9vjnpMSgiCyU9DKU0W_nS6g30EVyMlreoTkEKclRWc0c5e0rijgUIo1J7MrOmwWF87SSaObmTvHAfDlsFqEZXe6V9pqDpj_Oww-dnW7fvmCTEd7k-F-1N3tEBlwsSzKvShcao3wiAFzobxSnjuuOVe6gFQ5NiZOmTWMFU7zAvLQPPNFwm2iIOry9CXZKKvSbRPKXaJNrDKfA5iKIbzyPPeJNU6YgVap7ZFs-Rul6YjP8f6NmfwtAQLJSpSsRMnKIFl52SPJque8Jf-4RZ9t0BSpTsBHy-nXAe4MIyaKedwjdKk-Ev4G7syo0lXNucxSUEuAiskNTdgg4zxlxU1NGKSnTPy1SYYf2mr1dzWxATIRAbjsERG08NYzlpPxDj69-teO78mDo92R_PLx8PNr8qgtz8B66Ddko1407i2gvlq_C-b8E8x1QfY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traffic+of+a+viral+movement+protein+complex+to+the+highly+curved+tubules+of+the+cortical+endoplasmic+reticulum&rft.jtitle=Traffic+%28Copenhagen%2C+Denmark%29&rft.au=Lee%2C+Shu-Chuan&rft.au=Wu%2C+Chih-Hang&rft.au=Wang%2C+Chao-Wen&rft.date=2010-07-01&rft.eissn=1600-0854&rft.volume=11&rft.issue=7&rft.spage=912&rft_id=info:doi/10.1111%2Fj.1600-0854.2010.01064.x&rft_id=info%3Apmid%2F20374554&rft.externalDocID=20374554
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1398-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1398-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1398-9219&client=summon