A Review of Carbon Nanotube- and Graphene-Based Flexible Thin-Film Transistors
Carbon nanotubes (CNTs) and graphene have attracted great attention for numerous applications for future flexible electronics, owing to their supreme properties including exceptionally high electronic conductivity and mechanical strength. Here, the progress of CNT‐ and graphene‐based flexible thin‐f...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 9; no. 8; pp. 1188 - 1205 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
22.04.2013
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1613-6810 1613-6829 1613-6829 |
DOI | 10.1002/smll.201203154 |
Cover
Loading…
Abstract | Carbon nanotubes (CNTs) and graphene have attracted great attention for numerous applications for future flexible electronics, owing to their supreme properties including exceptionally high electronic conductivity and mechanical strength. Here, the progress of CNT‐ and graphene‐based flexible thin‐film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State‐of‐the‐art fabrication techniques of thin‐film transistors are divided into three categories: solid‐phase, liquid‐phase, and gas‐phase techniques, and possible scale‐up approaches to achieve realistic production of flexible nanocarbon‐based transistors are discussed. In particular, the recent progress in flexible all‐carbon nanomaterial transistor research is highlighted, and this all‐carbon strategy opens up a perspective to realize extremely flexible, stretchable, and transparent electronics with a relatively low‐cost and fast fabrication technique, compared to traditional rigid silicon, metal and metal oxide electronics.
The progress of carbon nanotube‐ and graphene‐based flexible thin‐film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State‐of‐the‐art fabrication techniques of thin‐film transistors are divided into three categories and possible scale‐up approaches to achieve realistic production of flexible nanocarbon‐based transistors are discussed. The recent progress in flexible all‐carbon nanomaterial transistor research is highlighted. |
---|---|
AbstractList | Carbon nanotubes (CNTs) and graphene have attracted great attention for numerous applications for future flexible electronics, owing to their supreme properties including exceptionally high electronic conductivity and mechanical strength. Here, the progress of CNT‐ and graphene‐based flexible thin‐film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State‐of‐the‐art fabrication techniques of thin‐film transistors are divided into three categories: solid‐phase, liquid‐phase, and gas‐phase techniques, and possible scale‐up approaches to achieve realistic production of flexible nanocarbon‐based transistors are discussed. In particular, the recent progress in flexible all‐carbon nanomaterial transistor research is highlighted, and this all‐carbon strategy opens up a perspective to realize extremely flexible, stretchable, and transparent electronics with a relatively low‐cost and fast fabrication technique, compared to traditional rigid silicon, metal and metal oxide electronics.
The progress of carbon nanotube‐ and graphene‐based flexible thin‐film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State‐of‐the‐art fabrication techniques of thin‐film transistors are divided into three categories and possible scale‐up approaches to achieve realistic production of flexible nanocarbon‐based transistors are discussed. The recent progress in flexible all‐carbon nanomaterial transistor research is highlighted. Carbon nanotubes (CNTs) and graphene have attracted great attention for numerous applications for future flexible electronics, owing to their supreme properties including exceptionally high electronic conductivity and mechanical strength. Here, the progress of CNT- and graphene-based flexible thin-film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State-of-the-art fabrication techniques of thin-film transistors are divided into three categories: solid-phase, liquid-phase, and gas-phase techniques, and possible scale-up approaches to achieve realistic production of flexible nanocarbon-based transistors are discussed. In particular, the recent progress in flexible all-carbon nanomaterial transistor research is highlighted, and this all-carbon strategy opens up a perspective to realize extremely flexible, stretchable, and transparent electronics with a relatively low-cost and fast fabrication technique, compared to traditional rigid silicon, metal and metal oxide electronics. Carbon nanotubes (CNTs) and graphene have attracted great attention for numerous applications for future flexible electronics, owing to their supreme properties including exceptionally high electronic conductivity and mechanical strength. Here, the progress of CNT- and graphene-based flexible thin-film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State-of-the-art fabrication techniques of thin-film transistors are divided into three categories: solid-phase, liquid-phase, and gas-phase techniques, and possible scale-up approaches to achieve realistic production of flexible nanocarbon-based transistors are discussed. In particular, the recent progress in flexible all-carbon nanomaterial transistor research is highlighted, and this all-carbon strategy opens up a perspective to realize extremely flexible, stretchable, and transparent electronics with a relatively low-cost and fast fabrication technique, compared to traditional rigid silicon, metal and metal oxide electronics.Carbon nanotubes (CNTs) and graphene have attracted great attention for numerous applications for future flexible electronics, owing to their supreme properties including exceptionally high electronic conductivity and mechanical strength. Here, the progress of CNT- and graphene-based flexible thin-film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State-of-the-art fabrication techniques of thin-film transistors are divided into three categories: solid-phase, liquid-phase, and gas-phase techniques, and possible scale-up approaches to achieve realistic production of flexible nanocarbon-based transistors are discussed. In particular, the recent progress in flexible all-carbon nanomaterial transistor research is highlighted, and this all-carbon strategy opens up a perspective to realize extremely flexible, stretchable, and transparent electronics with a relatively low-cost and fast fabrication technique, compared to traditional rigid silicon, metal and metal oxide electronics. Carbon nanotubes (CNTs) and graphene have attracted great attention for numerous applications for future flexible electronics, owing to their supreme properties including exceptionally high electronic conductivity and mechanical strength. Here, the progress of CNT- and graphene-based flexible thin-film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State-of-the-art fabrication techniques of thin-film transistors are divided into three categories: solid-phase, liquid-phase, and gas-phase techniques, and possible scale-up approaches to achieve realistic production of flexible nanocarbon-based transistors are discussed. In particular, the recent progress in flexible all-carbon nanomaterial transistor research is highlighted, and this all-carbon strategy opens up a perspective to realize extremely flexible, stretchable, and transparent electronics with a relatively low-cost and fast fabrication technique, compared to traditional rigid silicon, metal and metal oxide electronics. The progress of carbon nanotube- and graphene-based flexible thin-film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State-of-the-art fabrication techniques of thin-film transistors are divided into three categories and possible scale-up approaches to achieve realistic production of flexible nanocarbon-based transistors are discussed. The recent progress in flexible all-carbon nanomaterial transistor research is highlighted. Carbon nanotubes (CNTs) and graphene have attracted great attention for numerous applications for future flexible electronics, owing to their supreme properties including exceptionally high electronic conductivity and mechanical strength. Here, the progress of CNT- and graphene-based flexible thin-film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State-of-the-art fabrication techniques of thin-film transistors are divided into three categories: solid-phase, liquid-phase, and gas-phase techniques, and possible scale-up approaches to achieve realistic production of flexible nanocarbon-based transistors are discussed. In particular, the recent progress in flexible all-carbon nanomaterial transistor research is highlighted, and this all-carbon strategy opens up a perspective to realize extremely flexible, stretchable, and transparent electronics with a relatively low-cost and fast fabrication technique, compared to traditional rigid silicon, metal and metal oxide electronics. [PUBLICATION ABSTRACT] |
Author | Cheng, Hui-Ming Ren, Wen-Cai Sun, Dong-Ming Liu, Chang |
Author_xml | – sequence: 1 givenname: Dong-Ming surname: Sun fullname: Sun, Dong-Ming organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China, Fax: +86-24-2390-3126, Website: http://carbon.imr.ac.cn – sequence: 2 givenname: Chang surname: Liu fullname: Liu, Chang organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China, Fax: +86-24-2390-3126, Website: http://carbon.imr.ac.cn – sequence: 3 givenname: Wen-Cai surname: Ren fullname: Ren, Wen-Cai organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China, Fax: +86-24-2390-3126, Website: http://carbon.imr.ac.cn – sequence: 4 givenname: Hui-Ming surname: Cheng fullname: Cheng, Hui-Ming email: cheng@imr.ac.cn organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China, Fax: +86-24-2390-3126, Website: http://carbon.imr.ac.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23519953$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtvEzEURi1URB-wZYlGYsNmgh_jsWdZIhIqQkBtEEvL49xRXTx2as_Q9t_XUdoIVYKufCWf8-na3zE68MEDQm8JnhCM6cfUOzehmFDMCK9eoCNSE1bWkjYH-5ngQ3Sc0hXODK3EK3RIGSdNw9kRWp4W5_DHwk0RumKqYxt8sdQ-DGMLZaH9uphHvbkED-UnnWBdzBzc2tZBsbq0vpxZ1xerqH2yaQgxvUYvO-0SvHk4T9DP2efV9Eu5-D4_m54uSsOZrEpSa6a7ismaQV2B0FJLaqgxLC9ecdpxYYTRHdN8e8EbYVraaA1SEsmhYyfowy53E8P1CGlQvU0GnNMewpgUqVgjqKhr-TzKaC1oIwTN6Psn6FUYo88PyYFEcF4J3vyXylmYUSZxpt49UGPbw1ptou11vFOPX5-BageYGFKK0CljBz3Y4IeorVMEq23Datuw2jectckT7TH5n0KzE26sg7tnaHXxbbH42y13bm4Xbveujr9VLZjg6tdyrjj9-oNfnM_Vkt0D7VDEQQ |
CitedBy_id | crossref_primary_10_1016_j_carbon_2020_06_056 crossref_primary_10_1002_adem_201700868 crossref_primary_10_1007_s40820_022_00929_y crossref_primary_10_1016_j_chroma_2015_08_039 crossref_primary_10_1002_admi_201700508 crossref_primary_10_1016_j_spmi_2018_01_010 crossref_primary_10_1209_0295_5075_112_37008 crossref_primary_10_1002_pol_20200132 crossref_primary_10_1021_acsnano_0c01606 crossref_primary_10_1016_j_inoche_2025_114117 crossref_primary_10_1109_ACCESS_2020_3048173 crossref_primary_10_1016_j_mtcomm_2020_101317 crossref_primary_10_1002_smll_201402422 crossref_primary_10_1002_adfm_201403293 crossref_primary_10_1016_j_cej_2019_03_246 crossref_primary_10_1002_elan_202400084 crossref_primary_10_1016_j_cej_2019_04_173 crossref_primary_10_1021_acs_chemrev_8b00045 crossref_primary_10_1080_15440478_2024_2418347 crossref_primary_10_1002_admi_201600215 crossref_primary_10_1007_s12274_020_2628_9 crossref_primary_10_1016_j_matchemphys_2014_06_032 crossref_primary_10_1088_2053_1583_aab921 crossref_primary_10_1088_2053_1591_aa5687 crossref_primary_10_1063_1_4958850 crossref_primary_10_3390_mi13040509 crossref_primary_10_1016_j_physe_2020_113960 crossref_primary_10_1021_acs_jpcc_9b07724 crossref_primary_10_1016_j_cplett_2019_04_080 crossref_primary_10_1021_acsaelm_4c00305 crossref_primary_10_1021_acs_jpclett_7b02229 crossref_primary_10_1016_j_commatsci_2024_113347 crossref_primary_10_1021_acs_langmuir_0c00844 crossref_primary_10_1088_1361_6528_aaabd1 crossref_primary_10_1021_acsomega_8b02735 crossref_primary_10_1002_aelm_201700427 crossref_primary_10_1016_j_optcom_2014_12_076 crossref_primary_10_1021_acsami_0c04439 crossref_primary_10_1021_acsnano_4c01087 crossref_primary_10_1016_j_jenvman_2019_109814 crossref_primary_10_3390_ma17133293 crossref_primary_10_1007_s40820_024_01534_x crossref_primary_10_1115_1_4067053 crossref_primary_10_1016_j_mssp_2024_108929 crossref_primary_10_1002_smll_201501298 crossref_primary_10_1002_ppap_202000009 crossref_primary_10_1016_j_nantod_2015_11_008 crossref_primary_10_1021_acsphotonics_3c00737 crossref_primary_10_1002_adfm_201902273 crossref_primary_10_1007_s11664_020_08724_4 crossref_primary_10_1115_1_4040552 crossref_primary_10_1039_C5CP02938D crossref_primary_10_1016_j_carbon_2013_12_078 crossref_primary_10_1016_j_carbon_2021_05_065 crossref_primary_10_1139_cjc_2016_0205 crossref_primary_10_1007_s12274_014_0652_3 crossref_primary_10_1016_j_physe_2020_114110 crossref_primary_10_1002_bio_4334 crossref_primary_10_1007_s41061_016_0083_6 crossref_primary_10_1002_aelm_201600229 crossref_primary_10_1038_s41928_020_00513_5 crossref_primary_10_1088_1741_2552_ac1e45 crossref_primary_10_3390_catal5031574 crossref_primary_10_1016_j_electacta_2017_07_082 crossref_primary_10_3390_ma15238511 crossref_primary_10_1039_C4CS00181H crossref_primary_10_1039_C5CP05336F crossref_primary_10_1103_PhysRevApplied_3_044003 crossref_primary_10_1021_acsami_7b03151 crossref_primary_10_1002_smll_201700918 crossref_primary_10_1016_j_coco_2018_12_009 crossref_primary_10_3390_ma11101857 crossref_primary_10_1021_acs_jpcc_0c05000 crossref_primary_10_1039_c4cc01560f crossref_primary_10_1039_C6RA23621A crossref_primary_10_1002_adfm_201801545 crossref_primary_10_1039_D3NR04396G crossref_primary_10_1002_pssa_201532699 crossref_primary_10_1142_S0218625X22300052 crossref_primary_10_1002_pi_5836 crossref_primary_10_1063_1_4864629 crossref_primary_10_1002_adfm_202205111 crossref_primary_10_3390_ma15144820 crossref_primary_10_1021_am4053656 crossref_primary_10_1088_2053_1583_aac8a9 crossref_primary_10_1088_1742_6596_2478_4_042010 crossref_primary_10_1109_TED_2020_3008891 crossref_primary_10_3390_molecules28031471 crossref_primary_10_1039_C5RA21790C crossref_primary_10_1088_2058_8585_abe459 crossref_primary_10_1186_s11671_015_1013_1 crossref_primary_10_1016_j_carbon_2014_09_063 crossref_primary_10_1002_elps_201800342 crossref_primary_10_1080_09276440_2023_2229586 crossref_primary_10_1016_j_enmf_2020_11_005 crossref_primary_10_1002_aelm_202300238 crossref_primary_10_3390_s21051907 crossref_primary_10_1039_C4TC00622D crossref_primary_10_1002_adma_201905028 crossref_primary_10_1002_aenm_201601883 crossref_primary_10_1021_acssensors_8b00056 crossref_primary_10_1021_jp506945f crossref_primary_10_1016_j_mseb_2021_115181 crossref_primary_10_1088_1361_6528_ab703f crossref_primary_10_1016_j_biomaterials_2023_122271 crossref_primary_10_1016_j_jmst_2016_09_024 crossref_primary_10_1039_C6TA05286J crossref_primary_10_1021_acsanm_0c03040 crossref_primary_10_1039_C4NR01600A crossref_primary_10_1088_2058_8585_aa6a82 crossref_primary_10_1039_D4TA02396J crossref_primary_10_1039_C8CS00738A crossref_primary_10_1016_j_mejo_2015_11_006 crossref_primary_10_1007_s10854_021_06852_z crossref_primary_10_1002_chem_201504444 crossref_primary_10_1002_advs_202001778 crossref_primary_10_1093_annhyg_meu110 crossref_primary_10_1002_admt_202101506 crossref_primary_10_1007_s11224_014_0476_5 crossref_primary_10_1088_1402_4896_ad9a0e crossref_primary_10_1039_C5RA02704G crossref_primary_10_1016_j_synthmet_2015_05_004 crossref_primary_10_1109_TCPMT_2016_2586023 crossref_primary_10_1016_j_orgel_2014_08_003 crossref_primary_10_1039_C6RA02524B crossref_primary_10_1016_j_snb_2014_03_096 crossref_primary_10_1002_aelm_201800737 crossref_primary_10_1007_s40097_020_00378_2 crossref_primary_10_1007_s11467_019_0937_9 crossref_primary_10_1021_nn505979j crossref_primary_10_1063_1_4972867 crossref_primary_10_1002_smll_201400892 crossref_primary_10_1021_acsami_6b06932 crossref_primary_10_1007_s12613_021_2358_3 crossref_primary_10_1002_adfm_201604447 crossref_primary_10_1021_nn502946f crossref_primary_10_1039_D0NA01021A crossref_primary_10_1021_acsnano_7b02695 crossref_primary_10_1039_D0NA00881H crossref_primary_10_1186_s40486_022_00151_w crossref_primary_10_1016_j_jechem_2020_05_050 crossref_primary_10_1002_pssa_201701003 crossref_primary_10_1016_j_flatc_2022_100378 crossref_primary_10_1007_s12274_017_1945_0 crossref_primary_10_1016_j_carbon_2016_02_029 crossref_primary_10_1039_C3CP54812K crossref_primary_10_1002_adem_202301730 crossref_primary_10_1039_C4CP02155J crossref_primary_10_1063_1_4897528 crossref_primary_10_1002_pssa_201532774 crossref_primary_10_1088_1402_4896_ad8f79 crossref_primary_10_1557_mrs_2017_238 crossref_primary_10_1038_srep28049 crossref_primary_10_1021_am506971b crossref_primary_10_1088_2631_7990_ad492e crossref_primary_10_1021_acs_jpcc_5b02633 crossref_primary_10_1049_cje_2021_00_032 crossref_primary_10_1002_adom_202002046 crossref_primary_10_1002_smll_202310257 crossref_primary_10_1515_polyeng_2015_0332 crossref_primary_10_1002_pola_27715 crossref_primary_10_1007_s13369_014_1387_x crossref_primary_10_1088_0960_1317_24_4_045001 crossref_primary_10_1039_D2NR06771D crossref_primary_10_1186_s11671_015_0784_8 crossref_primary_10_1080_19475411_2023_2261775 crossref_primary_10_1007_s11434_016_1075_1 crossref_primary_10_1039_C7NR00685C crossref_primary_10_1016_j_cej_2024_155508 crossref_primary_10_1002_aenm_201801312 crossref_primary_10_1002_pol_20220362 crossref_primary_10_1088_0960_1317_24_9_095021 crossref_primary_10_1021_acsami_7b02684 crossref_primary_10_1021_acsnano_5b05325 crossref_primary_10_1002_adma_201602852 crossref_primary_10_1039_C6NR02540D crossref_primary_10_1016_j_cej_2019_01_005 crossref_primary_10_1021_acs_chemmater_5b00672 crossref_primary_10_1016_j_jmmm_2025_172966 crossref_primary_10_1007_s00348_021_03247_y crossref_primary_10_1016_j_elspec_2022_147281 crossref_primary_10_1038_srep39627 crossref_primary_10_1002_mame_201900244 crossref_primary_10_1021_acsami_4c08528 crossref_primary_10_1109_MNANO_2019_2927774 crossref_primary_10_1002_adma_202300034 crossref_primary_10_1016_j_mser_2016_08_002 crossref_primary_10_1016_j_mattod_2022_11_023 crossref_primary_10_1016_j_apsusc_2015_08_023 crossref_primary_10_1016_j_mseb_2014_02_019 crossref_primary_10_1002_smll_201403131 crossref_primary_10_1021_acs_macromol_5b00631 crossref_primary_10_1002_aelm_201800539 crossref_primary_10_1063_5_0077099 crossref_primary_10_1002_adma_201502549 crossref_primary_10_1007_s10853_015_9643_3 crossref_primary_10_1039_D3CP06341K crossref_primary_10_1002_aelm_201500151 crossref_primary_10_1021_am405040z crossref_primary_10_1039_C6NR00876C crossref_primary_10_1039_D3PY00984J crossref_primary_10_1080_1536383X_2020_1792445 crossref_primary_10_1002_smll_201401549 crossref_primary_10_1021_acs_energyfuels_0c00953 crossref_primary_10_1021_acsami_7b16634 crossref_primary_10_1039_D0TC05321J crossref_primary_10_1080_00018732_2016_1226804 crossref_primary_10_1039_D3CP01436C crossref_primary_10_1088_0268_1242_30_7_074001 crossref_primary_10_1016_j_apsusc_2020_146432 crossref_primary_10_1002_pssr_201700435 crossref_primary_10_1063_1_5006877 crossref_primary_10_1007_s11664_019_07049_1 crossref_primary_10_1002_adma_201901408 crossref_primary_10_3389_fchem_2018_00250 crossref_primary_10_1038_s41928_017_0008_6 crossref_primary_10_1063_1_5050998 crossref_primary_10_1002_pi_5555 crossref_primary_10_3390_jcs8110463 crossref_primary_10_1080_03602559_2015_1036441 crossref_primary_10_1002_adma_201306041 crossref_primary_10_1021_acsnano_8b03792 crossref_primary_10_1063_1_4973360 crossref_primary_10_1007_s12274_015_0725_y crossref_primary_10_1186_s40580_017_0130_1 crossref_primary_10_1039_C7CP06267B crossref_primary_10_1039_D0NJ01906B crossref_primary_10_1002_chem_202000228 crossref_primary_10_1002_smll_201403155 crossref_primary_10_1002_smll_201401890 crossref_primary_10_1021_acs_jpclett_9b02874 crossref_primary_10_1103_PhysRevMaterials_1_046003 crossref_primary_10_1021_nn5048734 crossref_primary_10_1002_admt_202401054 crossref_primary_10_1002_adom_202202860 crossref_primary_10_1063_1_4884064 crossref_primary_10_1021_jp406536e crossref_primary_10_1016_j_smmf_2024_100052 crossref_primary_10_1186_s40580_014_0015_5 crossref_primary_10_1002_smll_201401207 crossref_primary_10_1021_acsami_6b14580 crossref_primary_10_1016_j_cej_2019_123073 crossref_primary_10_1246_bcsj_20190368 crossref_primary_10_1021_acsami_7b15762 crossref_primary_10_1186_s11671_024_04027_3 crossref_primary_10_1016_j_carbon_2021_04_077 crossref_primary_10_1016_j_compositesb_2014_03_009 crossref_primary_10_1021_acsami_5b10439 crossref_primary_10_1007_s40684_021_00356_1 crossref_primary_10_1021_ma5014572 crossref_primary_10_1002_adma_201606586 crossref_primary_10_1021_acsanm_9b00451 crossref_primary_10_1039_C7SC02942J crossref_primary_10_1016_j_physe_2016_09_009 crossref_primary_10_1021_acsaelm_1c00121 crossref_primary_10_1021_acsami_8b01116 crossref_primary_10_1002_admt_202001016 crossref_primary_10_1002_app_47805 crossref_primary_10_1021_acsnano_0c04259 crossref_primary_10_1039_C6PY00730A crossref_primary_10_1186_s11671_015_0817_3 crossref_primary_10_1177_09673911241248419 crossref_primary_10_1016_j_flatc_2017_06_002 crossref_primary_10_1007_s40843_017_9077_x crossref_primary_10_1039_C4NR06057A crossref_primary_10_1002_adfm_201705568 crossref_primary_10_1002_adma_201802057 |
Cites_doi | 10.1109/JSEN.2011.2167608 10.1109/JPROC.2012.2190168 10.1021/nl035097c 10.1038/354056a0 10.1063/1.3702570 10.1038/nnano.2010.89 10.1021/nl204088b 10.1016/j.carbon.2010.04.032 10.1021/nn1006094 10.1063/1.3467454 10.5772/1742 10.1021/nl202695v 10.1016/j.mee.2011.06.017 10.1021/nn101950n 10.1021/nn3005262 10.1038/nnano.2007.77 10.1002/adma.200501740 10.1021/nl2043375 10.1007/s12274-010-1022-4 10.1021/nl200758b 10.1007/s12274-009-9013-z 10.1126/science.273.5274.483 10.1021/nn201828y 10.1021/nl300948c 10.1038/nature11458 10.1103/PhysRevB.76.064120 10.1039/c2nr30994g 10.1103/PhysRevB.81.155433 10.1166/jnn.2010.2939 10.1021/nl062907m 10.1039/c39770000578 10.1021/jp710691j 10.1109/LED.2011.2163489 10.1007/s12274-011-0152-7 10.1088/0957-4484/21/42/425201 10.1063/1.2958285 10.1021/nn303070p 10.1021/nl104488z 10.1021/nl203968j 10.1039/c0jm00264j 10.1021/nl3012648 10.1103/PhysRevB.54.17954 10.1002/adma.200903689 10.1126/science.1182383 10.1021/nl034841q 10.1103/PhysRevLett.101.026803 10.1088/0957-4484/20/8/085201 10.1038/nmat2003 10.1021/nn2044609 10.1063/1.3242029 10.1021/ja2008278 10.1021/nn3020486 10.1038/am.2012.32 10.1126/science.1150878 10.1063/1.3077021 10.1021/nl0731872 10.1126/science.1157996 10.1016/j.carbon.2009.01.042 10.1021/nl101559n 10.1021/cr900070d 10.1143/APEX.5.055102 10.1002/adma.201103620 10.1073/pnas.0404450101 10.1063/1.1564291 10.1039/c2jm00102k 10.1021/nl9032318 10.1002/adfm.200900166 10.1021/nl035185x 10.1021/ja9068529 10.1038/nmat2082 10.3390/ijms10125257 10.1038/nnano.2011.6 10.1021/nl101832y 10.1002/adfm.201001530 10.1002/adma.201100304 10.1063/1.3683517 10.1038/ncomms2021 10.1038/nnano.2008.215 10.1142/p080 10.1063/1.3622767 10.1088/0953-8984/15/42/003 10.1143/JJAP.50.070108 10.1021/nn2004298 10.1021/nn203771u 10.1016/j.ssc.2008.02.024 10.1021/nl9039636 10.1021/nl0259232 10.1002/adma.201202699 10.1063/1.1940727 10.1021/nl204545q 10.1021/nn800031m 10.1063/1.3676277 10.1126/science.1086534 10.1021/nl202725w 10.1126/science.1130681 10.1103/PhysRevB.80.045401 10.1021/nl072838r 10.1038/nature10680 10.1021/nl103993z 10.1371/journal.pone.0042315 10.1021/nn800434d 10.1038/nmat769 10.1038/am.2012.10 10.1021/nl203691d 10.1143/APEX.4.105101 10.1039/c0jm00331j 10.1038/nnano.2010.8 10.1126/science.1174290 10.1038/nnano.2006.52 10.1021/nl061534m 10.1021/nn800354m 10.1007/s11426-012-4503-3 10.1021/nl049806d 10.1016/S0009-2614(99)01379-2 10.1021/jp9051402 10.1039/C2CS35325C 10.1063/1.4772541 10.1038/nmat2968 10.1021/nn302185d 10.1016/j.physe.2009.11.080 10.1002/adma.200602223 10.1039/c2jm34598f 10.1103/PhysRevB.76.073103 10.1002/smll.201002009 10.1002/adma.200800617 10.1038/ncomms1313 10.1126/science.1158877 10.1038/nnano.2007.300 10.1021/ja074927b 10.1021/cm049598q 10.1116/1.1380721 10.1021/nn301199j 10.1021/nl101680s 10.1021/nl901802m 10.1016/j.surfcoat.2011.02.017 10.1038/nmat1849 10.1021/nn3026172 10.1021/nn204848r 10.1021/nl202765b 10.1126/science.1218461 10.1126/science.1058782 10.1126/science.1156965 10.1038/nature08105 10.1002/adma.200500517 10.1038/nmat3169 10.1038/nnano.2011.196 10.1021/ja046482m 10.1088/0957-4484/23/34/344017 10.1126/science.1102896 10.1021/nl902788u 10.1126/science.1177599 10.1016/j.pmatsci.2011.03.003 10.1126/science.1156588 10.1021/nl203316r 10.1021/ar200229q 10.1038/nmat2710 10.1016/j.ces.2006.02.020 10.1126/science.1133781 10.1021/nn800708w 10.1021/nl052145f 10.1088/0022-3727/44/31/313001 10.1021/nl903272n 10.1038/39827 10.1021/nl900913c 10.1038/nature07110 10.1063/1.121624 10.1143/JJAP.51.06FD18 10.1126/science.1171245 10.1142/S1793292009001538 10.1063/1.2186100 10.1038/nnano.2010.172 10.1039/C1JM14071J 10.1002/adfm.200801065 10.1126/science.1087691 10.1021/nl803279t 10.1002/adma.201003188 10.1088/0957-4484/21/16/165201 10.1021/nn200338r 10.1002/adma.201201386 10.1038/nnano.2011.1 10.1021/nl0509935 10.1039/B913168J 10.1016/j.ssc.2012.04.056 10.1038/ncomms1702 10.1038/nature07919 10.1021/nn100966s 10.1063/1.2431465 10.1103/PhysRevB.84.195453 10.1002/adma.201201794 10.1038/nnano.2010.132 10.1039/c2nr31317k 10.1021/nn302768h 10.1002/pssr.201105289 10.1021/ja8023059 10.1021/ja036622c 10.1088/0957-4484/17/14/011 10.1002/pssa.200925088 10.1038/am.2012.27 10.1038/nnano.2011.251 10.1016/j.eurpolymj.2006.12.012 10.1021/ja058725w 10.1103/PhysRevLett.97.216803 10.1038/nnano.2012.189 10.1021/nl202134z 10.1002/adma.201001068 10.1016/j.tca.2012.03.004 10.1038/nphoton.2010.186 10.1021/ja061324b 10.1021/nn201414d 10.1021/nn200919v 10.1021/nl902522f |
ContentType | Journal Article |
Copyright | Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 7SP F28 FR3 |
DOI | 10.1002/smll.201203154 |
DatabaseName | Istex CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic Electronics & Communications Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database CrossRef Materials Research Database Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | 1205 |
ExternalDocumentID | 3036330591 2942354341 23519953 10_1002_smll_201203154 SMLL201203154 ark_67375_WNG_52KP5SRG_N |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI BSCLL CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP GODZA HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AGQPQ AGYGG CITATION NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 7SP F28 FR3 |
ID | FETCH-LOGICAL-c5384-16a3af43863e64e7a8a82c2cc3829452f57c7caf3a5a82c597cb29aae88185ef3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 02:03:20 EDT 2025 Fri Jul 11 06:49:26 EDT 2025 Fri Jul 25 12:14:38 EDT 2025 Fri Jul 25 12:07:19 EDT 2025 Wed Feb 19 02:15:51 EST 2025 Tue Jul 01 04:57:24 EDT 2025 Thu Apr 24 23:10:55 EDT 2025 Wed Jan 22 16:47:55 EST 2025 Wed Oct 30 09:52:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5384-16a3af43863e64e7a8a82c2cc3829452f57c7caf3a5a82c597cb29aae88185ef3 |
Notes | ArticleID:SMLL201203154 istex:158B3130DB05AE529AEB0C7C274A56D8F70BFC0A ark:/67375/WNG-52KP5SRG-N ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
PMID | 23519953 |
PQID | 1326032380 |
PQPubID | 1046358 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_1439727668 proquest_miscellaneous_1326729772 proquest_journals_1417554759 proquest_journals_1326032380 pubmed_primary_23519953 crossref_citationtrail_10_1002_smll_201203154 crossref_primary_10_1002_smll_201203154 wiley_primary_10_1002_smll_201203154_SMLL201203154 istex_primary_ark_67375_WNG_52KP5SRG_N |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 22, 2013 |
PublicationDateYYYYMMDD | 2013-04-22 |
PublicationDate_xml | – month: 04 year: 2013 text: April 22, 2013 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2013 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | T. W. Kim, Y. Yang, F. Li, W. L. Kwan, Asia Mater. 2012, 4, e18. Y. Sun, J. A. Rogers, Adv. Mater. 2007, 19, 1897. J. Zhang, C. Wang, Y. Fu, Y. Che, C. Zhou, ACS Nano 2011, 4, 3284. S. Z. Bisri, J. Gao, V. Derenskyi, W. Gomulya, I. Iezhokin, P. Gordiichuk, A. Herrmann, M. A. Loi, Adv. Mater. 2012, 24, 6147. F. Gunes, G. H. Han, K. K. Kim, E. S. Kim, S. J. Chae, M. H. Park, H. K. Jeong, S. C. Lim, Y. H. Lee, Nano 2009, 2, 83. J. Sun, B. Zhang, H. E. Katz, Adv. Funct. Mater. 2011, 21, 29. J. Y. Hong, J. Jang, J. Mater. Chem. 2012, 22, 8179. P. Chen, Y. Fu, R. Aminirad, C. Wang, J. Zhang, K. Wang, K. Galatsis, C. Zhou, Nano Lett. 2011, 11, 5301. J. Zhang, Y. Fu, C. Wang, P. C. Chen, Z. Liu, W. Wei, C. Wu, M. E. Thompson, C. Zhou, Nano Lett. 2011, 11, 4852. M. Y. Zavodchikova, T. Kulmala, A. G. Nasibulin, V. Ermolov, S. Franssila, K. Grigoras, E. I. Kauppinen, Nanotechnol. 2009, 20, 085201. X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 2008, 319, 1229. S. B. Kumar, J. Guo, Nano Lett. 2012, 12, 1362. A. K. Geim, Science 2009, 324, 1530. D. M. Sun, M. Y. Timmermans, Y. Tian, A. G. Nasibulin, E. I. Kauppinen, S. Kishimoto, T. Mizutani, Y. Ohno, Nat. Nanotechnol. 2011, 6, 156. K. Kim, J. Y. Choi, T. Kim, S. H. Cho, H. J. Chung, Nature 2011, 479, 338. G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, M. Chhowalla, J. Phys. Chem. C. 2009, 113, 15768. A. Javey, J. Guo, D. B. Farmer, Q. Wang, D. W. Wang, R. G. Gordon, M. Lundstrom, H. J. Dai, Nano Lett. 2004, 4, 447. S. K. Lee, B. J. Kim, H. Jang, S. C. Yoon, C. Lee, B. H. Hong, J. A. Rogers, J. H. Cho, J. H. Ahn, Nano. Lett. 2011, 11, 4642. C. Brosseau, Surf. Coat. Technol. 2011, 206, 753. Y. Miyata, K. Shiozawa, Y. Asada, Y. Ohno, R. Kitaura, T. Mizutani, H. Shinohara, Nano Res. 2011, 4, 963. J. Lee, L. Tao, K. N. Parrish, Y. Hao, R. S. Ruoff, D. Akinwande, Appl. Phys. Lett. 2012, 101, 252109. M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerences and Carbon Nanotubes, Academic Press, San Diego, US 1996. G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, P. J. Kelly, Phys. Rev. Lett. 2008, 101, 026803. H. Liu, D. Nishide, T. Tanaka, H. Kataura, Nat. Commun. 2011, 2, 309. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Adv. Funct. Mater. 2009, 19, 2577. X. S. Wang, H. P. Tang, X. D. Li, X. Hua, Int. J. Mol. Sci. 2009, 10, 5257. A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, Nano Lett. 2011, 11, 2396. F. Leonard, A. A. Talin, Nat. Nanotechnol. 2011, 6, 773. A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183. F. Schwierz, Nat. Nanotechnol. 2010, 5, 487. X. Liu, C. Wang, B. Cai, X. Xiao, S. Guo, Z. Fan, J. Li, X. Duan, L. Liao, Nano Lett. 2012, 12, 3596. C. C. Lu, Y. C. Lin, C. H. Yeh, J. C. Huang, P. W. Chiu, ACS Nano 2012, 5, 4469. S. Lee, K. Lee, C. H. Liu, G. S. Kulkarni, Z. Zhong, Nat. Commun. 2012, 3, 1018. Q. Cao, M. G. Xia, M. Shim, J. A. Rogers, Adv. Mater. 2006, 16, 2355. Y. Nosho, Y. Ohno, S. Kishimoto, T. Mizutani, Nanotechnol. 2006, 17, 3412. J. M. P. Alaboson, Q. H. Wang, J. D. Emery, A. L. Lipson, M. J. Bedzyk, J. W. Elam, M. J. Pellin, M. C. Hersam, ACS Nano 2011, 5, 5223. M. J. Panzer, C. D. Frisbie, Adv. Mater. 2008, 20, 3177. D. McClain, N. Thomas, S. Youkey, R. Schaller, J. Jiao, K. P. O'Brien, Carbon 2009, 47, 1493. S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, 3rd Ed., John Wiley & Sons, Inc., USA 2007. A. Kaskela, A. G. Nasibulin, M. Y. Timmermans, B. Aitchison, A. Papadimitratos, Y. Tian, Z. Zhu, H. Jiang, D. P. Brown, A. Zakhidov, E. I. Kauppinen, Nano Lett. 2010, 10, 4349. K. Balasubramanian, R. Sordan, M. Burghard, K. Kern, Nano Lett. 2004, 4, 827. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Science 2008, 320, 1038. X. Liu, Y. Z. Long, L. Liao, X. Duan, Z. Fan, ACS Nano 2012, 3, 1888. A. Vijayaraghavan, K. Kanzaki, S. Suzuki, Y. Kobayashi, H. Inokawa, Y. Ono, S. Kar, P. M. Ajayan, Nano Lett. 2005, 5, 1575. H. Numata, K. Ihara, T. Saito, H. Endoh, F. Nihey, Appl. Phys. Express 2012, 5, 055102. M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, J. M. Tour, R. E. Smalley, Science 2003, 301, 1519. R. Quhe, J. Zheng, G. Luo, Q. Liu, R. Qin, J. Zhou, D. Yu, S. Nagase, W. N. Mei, Z. Gao, J. Lu, NPG Asia Mater. 2012, 4, e6. Q. Cao, S. J. Han, G. S Tulevski, A. D. Franklin, W. Haensch, ACS Nano 2012, 6, 6471. A. Facchetti, M. H. Yoon, T. J. Marks, Adv. Mater. 2005, 17, 1705. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666. W. J. Yu, S. Y. Lee, S. H. Chae, D. Perello, G. H. Han, M. Yun, Y. H. Lee, Nano Lett. 2010, 11, 1344. L. Xie, C. Liu, J. Zhang, Y. Zhang, L. Jiao, L. Jiang, L. Dai, Z. Liu, J. Am. Chem. Soc. 2007, 129, 12382. B. Yu, C. Liu, P. X. Hou, Y. Tian, S. Li, B. Liu, F. Li, E. I. Kauppinen, H. M. Cheng, J. Am. Chem. Soc. 2011, 133, 5232. J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, B. J. LeRoy, Nat. Mater. 2011, 10, 282. G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, J. van den Brink, Phys. Rev. B 2007, 76, 073103. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Science 1996, 273, 483. O. M. Nayfeh, IEEE Electron Dev. Lett. 2011, 32, 1349. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Solid State Commun. 2008, 146, 351. F. Xia, V. Perebeinos, Y. M. Lin, Y. Wu, Ph. Avouris, Nat. Nanotechnol. 2011, 6, 179. A. Moisala, A. G. Nasibulin, D. P. Brown, H. Jiang, L. Khriachtchev, E. I. Kauppinen, Chem. Eng. Sci. 2006, 61, 4393. F. N. Ishikawa, H. K. Chang, K. Ryu, P. C. Chen, A. Badmaev, L. G. De Arco, G. Shen, C. Zhou, ACS Nano 2009, 1, 73. J. R. Gong, Graphene-Synthesis Characterization, Properties and Applications Chart 6, InTech, Croatia 2011, http://www.intechopen.com/books/graphene-synthesis-characterization-properties-and-applications. T. Kurkop, S. A. Getty, E. Cobas, M. S. Fuhrer, Nano Lett. 2004, 4, 35. J. Kang, D. Shin, S. Bae, B. H. Hong, Nanoscale 2012, 4, 5527. M. J. Bronikowski, P. A. Willis, D. T. Colbert, K. A. Smith, R. E. Smalley, J. Vac. Sci. Technol. A 2001, 19, 1800. E. S. Snow, J. P. Novak, P. M. Campbell, D. Park, Appl. Phys. Lett. 2003, 82, 2145. R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Laegsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann, L. Hornekaer, Nat. Mater. 2010, 9, 315. F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrai, Nat. Photon. 2010, 4, 611. C. Yan, J. H. Cho, J. H. Ahn, Nanoscale 2012, 4, 4870. E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Nano Lett. 2006, 6, 96. B. Yu, P. X. Hou, F. Li, B. L. Liu, C. Liu, H. M. Cheng, Carbon 2010, 48, 2941. C. Sire, F. Ardiaca, S. Lepilliet, J. W. T. Seo, M. C. Hersam, G. Dambrine, H. Happy, V. Derycke, Nano Lett. 2012, 12, 1184. Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, F. Wang, Nature 2009, 459, 820. Z. H. Ni, H. M. Wang, Y. Ma, J. Kasim, Y. H. Wu, Z. X. Shen, ACS Nano 2008, 2, 1033. L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Nature 2009, 458, 877. R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, UK 1998. Q. Cao, S. H. Hur, Z. T. Zhu, Y. Sun, C. Wang, M. A. Meitl, M. Shim, J. A. Rogers, Adv. Mater. 2006, 18, 304. X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Small 2011, 14, 1876. C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 2008, 321, 385. H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, A. J. Heeger, J. Chem. Soc., Chem. Commun. 1977, 16, 578. Y. Lu, J. Guo, Nano Res. 2010, 3, 189. A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivisto, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, M. Kauppinen, D. P. Brown, O. G. Okhotnikov, E. I. Kauppinen, ACS Nano 2011, 5, 3214. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman, Nat. Nanotechnol. 2008, 3, 563. L. Sun, Q. Li, H. Ren, H. Su, Q. W. Shi, J. Yang, J. Chem. Phys. 2008, 129, 074704. S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M. A. Alam, S. V. Rotkin, J. A. Rogers, Nat. Nanotechnol. 2007, 2, 230. B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, J. H. Cho, Nano Lett. 2010, 10, 3464. Y. L. Wu, Y. N. Li, B. S. Ong, J. Am. Chem. Soc. 2006, 128, 4202. S. Aikawa, E. Einarsson, T. Thurakitseree, S. Chiashi, E. Nishikawa, S. Maruyama, Appl. Phys. Lett. 2012, 100, 063502. L. S. Liyanage, H. Lee, N. Patil, S. Park, S. Mitra, Z. Bao, H. P. Wong, ACS Nano 2012, 6, 451. D. H. Kim, N. Lu, R. Ghaffari, J. A. Rogers, Asia Mater. 2012, 4, e15. A. Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, J. A. Rogers, Adv. Mater. 2012, 24, 5284. D. S. Hecht, L. Hu, G. Irvin, Adv. Mater. 2011, 23, 1482. C. Wang, J. Zhang, K. Ryu, A. Badmaev, L. G. De Arco, C. Zhou, Nano Lett. 2009, 9, 4285. A. Moisala, A. G. Nasibulin, E. I. Kauppinen, J. Phys. Condens. Matter 2003, 15, S3011. R. L. Puurunen, J. Appl. Phys. 2005, 97, 121301. F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G. W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, A. C. Ferrari, ACS Nano 2012, 6, 2992. J. U. Park, S. W. Nam, M. S. Lee, C. M. Lieber, Nat. Mater. 2012, 11, 120. B. J. Kim, S. K. Lee, M. S. Kang, J. H. Ahn, J. H. Cho, ACS Nano 2012, 6, 8646. W. Zhu, D. Neumayer, V. Perebeinos, Ph. Avouris, Nano Lett. 2010, 10, 3572. R. Krupke, F. Hennrich, H. V. Lohneysen, M. M. Kappes, Science 2003, 301, 344. M. S. Arnold, A. A. 2011; 479 2010; 11 2010; 10 2010; 97 1991; 354 2009; 80 2004; 4 2009; 113 2011; 56 2008; 101 2007; 76 2012; 12 2012; 11 2010; 22 1997; 389 2010; 21 2010; 20 2009; 95 2009; 10 2009; 94 2012; 490 2010; 110 2007; 6 2007; 7 2007; 2 2008; 20 2008; 112 2010; 3 2012; 24 2009; 19 2010; 5 2012; 23 2010; 4 2012; 22 2010; 9 2007; 19 2012; 100 2011; 2 2012; 101 2010; 327 2011; 84 1998 2002; 1 2007; 90 1996 2008; 129 2011; 4 2009; 459 2004; 306 2011; 6 2011; 5 2011; 133 2011; 9 2009; 458 2010; 42 2010; 48 1977; 16 2005; 5 2005; 97 2011; 88 1998; 72 2012; 45 2005; 17 2008; 130 2009; 47 2004; 126 2011; 11 2003; 15 2011; 99 2008; 7 2008; 8 2011; 10 2008; 3 2008; 146 2011; 14 2012; 324 2008; 2 2012; 55 2012; 51 2011; 206 2006; 61 2001; 292 2008; 319 2001; 19 2003; 3 2011; 21 2008; 313 2011; 23 2009; 206 2003; 82 2003; 125 2012; 335 2006; 128 2009; 324 2009; 325 2009; 326 2004; 101 2007; 129 2006; 97 2012; 542 2009; 20 2011 2006; 16 2006; 17 2000; 317 2013; 42 2007 2006; 18 2006; 6 2011; 32 2006; 1 2009; 131 2008; 321 2006; 314 2010; 81 2008; 320 1996; 54 2012; 152 2012; 3 2004; 16 2006; 88 2011; 50 2011; 44 2009; 9 1996; 273 2008; 454 2012; 6 2003; 301 2012; 7 2007; 43 2009; 2 2012; 4 2009; 1 2012; 5 2012; 8 e_1_2_8_49_2 e_1_2_8_26_2 e_1_2_8_9_2 Cao Q. (e_1_2_8_115_2) 2006; 16 e_1_2_8_203_2 e_1_2_8_1_2 e_1_2_8_132_2 e_1_2_8_178_2 e_1_2_8_41_2 e_1_2_8_87_2 e_1_2_8_170_2 e_1_2_8_64_2 e_1_2_8_117_2 e_1_2_8_193_2 e_1_2_8_155_2 e_1_2_8_38_2 Dresselhaus M. S. (e_1_2_8_40_2) 1996 e_1_2_8_15_2 e_1_2_8_215_2 e_1_2_8_91_2 e_1_2_8_143_2 e_1_2_8_189_2 e_1_2_8_120_2 e_1_2_8_99_2 e_1_2_8_30_2 e_1_2_8_76_2 e_1_2_8_105_2 e_1_2_8_181_2 e_1_2_8_53_2 e_1_2_8_128_2 e_1_2_8_166_2 e_1_2_8_25_2 e_1_2_8_48_2 Sze S. M. (e_1_2_8_96_2) 2007 e_1_2_8_204_2 e_1_2_8_2_2 e_1_2_8_110_2 e_1_2_8_179_2 e_1_2_8_63_2 e_1_2_8_86_2 e_1_2_8_118_2 e_1_2_8_171_2 e_1_2_8_194_2 e_1_2_8_133_2 e_1_2_8_156_2 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_216_2 e_1_2_8_90_2 e_1_2_8_121_2 e_1_2_8_98_2 e_1_2_8_75_2 e_1_2_8_106_2 e_1_2_8_129_2 e_1_2_8_182_2 e_1_2_8_144_2 e_1_2_8_167_2 e_1_2_8_28_2 e_1_2_8_119_2 e_1_2_8_89_2 e_1_2_8_205_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_66_2 e_1_2_8_43_2 e_1_2_8_172_2 e_1_2_8_111_2 e_1_2_8_157_2 e_1_2_8_195_2 e_1_2_8_81_2 e_1_2_8_134_2 e_1_2_8_17_2 Biswas C. (e_1_2_8_198_2) 2011; 21 e_1_2_8_78_2 e_1_2_8_217_2 e_1_2_8_160_2 e_1_2_8_55_2 e_1_2_8_32_2 e_1_2_8_107_2 e_1_2_8_183_2 e_1_2_8_122_2 e_1_2_8_168_2 e_1_2_8_93_2 e_1_2_8_70_2 e_1_2_8_145_2 e_1_2_8_27_2 e_1_2_8_206_2 e_1_2_8_80_2 e_1_2_8_150_2 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_65_2 e_1_2_8_88_2 e_1_2_8_112_2 e_1_2_8_135_2 e_1_2_8_158_2 e_1_2_8_173_2 e_1_2_8_196_2 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_108_2 e_1_2_8_210_2 e_1_2_8_161_2 e_1_2_8_31_2 e_1_2_8_54_2 e_1_2_8_77_2 e_1_2_8_100_2 e_1_2_8_123_2 e_1_2_8_146_2 e_1_2_8_169_2 e_1_2_8_184_2 e_1_2_8_92_2 e_1_2_8_45_2 e_1_2_8_68_2 e_1_2_8_151_2 e_1_2_8_207_2 e_1_2_8_5_2 e_1_2_8_22_2 e_1_2_8_159_2 e_1_2_8_83_2 e_1_2_8_136_2 e_1_2_8_174_2 e_1_2_8_60_2 e_1_2_8_113_2 e_1_2_8_197_2 e_1_2_8_19_2 e_1_2_8_109_2 e_1_2_8_34_2 e_1_2_8_57_2 e_1_2_8_211_2 e_1_2_8_95_2 e_1_2_8_162_2 e_1_2_8_11_2 e_1_2_8_72_2 e_1_2_8_101_2 e_1_2_8_147_2 e_1_2_8_185_2 e_1_2_8_124_2 e_1_2_8_29_2 e_1_2_8_67_2 e_1_2_8_200_2 Tanaka T. (e_1_2_8_52_2) 2011; 9 e_1_2_8_152_2 e_1_2_8_208_2 e_1_2_8_6_2 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_137_2 e_1_2_8_82_2 e_1_2_8_114_2 e_1_2_8_175_2 e_1_2_8_18_2 e_1_2_8_56_2 e_1_2_8_79_2 e_1_2_8_212_2 e_1_2_8_94_2 e_1_2_8_140_2 e_1_2_8_163_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_148_2 e_1_2_8_71_2 e_1_2_8_102_2 e_1_2_8_125_2 e_1_2_8_186_2 e_1_2_8_24_2 e_1_2_8_47_2 e_1_2_8_201_2 e_1_2_8_153_2 e_1_2_8_199_2 e_1_2_8_209_2 e_1_2_8_3_2 e_1_2_8_130_2 e_1_2_8_191_2 e_1_2_8_85_2 e_1_2_8_138_2 e_1_2_8_62_2 e_1_2_8_176_2 e_1_2_8_13_2 e_1_2_8_59_2 e_1_2_8_36_2 e_1_2_8_190_2 e_1_2_8_213_2 e_1_2_8_164_2 e_1_2_8_141_2 e_1_2_8_97_2 e_1_2_8_126_2 e_1_2_8_74_2 e_1_2_8_149_2 e_1_2_8_51_2 e_1_2_8_103_2 e_1_2_8_187_2 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_69_2 e_1_2_8_202_2 e_1_2_8_131_2 e_1_2_8_154_2 e_1_2_8_177_2 e_1_2_8_4_2 e_1_2_8_116_2 e_1_2_8_139_2 e_1_2_8_192_2 e_1_2_8_61_2 e_1_2_8_84_2 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_58_2 e_1_2_8_214_2 e_1_2_8_142_2 e_1_2_8_165_2 e_1_2_8_188_2 e_1_2_8_104_2 e_1_2_8_127_2 e_1_2_8_180_2 e_1_2_8_50_2 e_1_2_8_73_2 |
References_xml | – reference: H. E. Romero, N. Shen, P. Joshi, H. R. Gutierrez, S. A. Tadigadapa, J. O. Sofo, P. C. Eklund, ACS Nano 2008, 2, 2037. – reference: J. Y. Hong, J. Jang, J. Mater. Chem. 2012, 22, 8179. – reference: E. W. Hill, A. Vijayaragahvan, K. Novoselov, IEEE Sens. J. 2011, 11, 3161. – reference: N. Kharche, S. K. Nayak, Nano Lett. 2011, 11, 5274. – reference: F. Schwierz, Nat. Nanotechnol. 2010, 5, 487. – reference: Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, J. H. Ahn, Nano Lett. 2010, 10, 490. – reference: L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, L. A. Ponomarenko, Science 2012, 335, 947. – reference: F. Liu, P. Ming, J. Li, Phys. Rev. B 2007, 76, 064120. – reference: D. S. Hecht, L. Hu, G. Irvin, Adv. Mater. 2011, 23, 1482. – reference: J. Veres, S. Ogier, G. Lloyd, Chem. Mater. 2004, 16, 4543. – reference: K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Solid State Commun. 2008, 146, 351. – reference: A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, H. J. Dai, Nat. Mater. 2002, 1, 241. – reference: O. M. Nayfeh, IEEE Electron Dev. Lett. 2011, 32, 1349. – reference: E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Nano Lett. 2006, 6, 96. – reference: F. Xia, D. B. Farmer, Y. Lin, Ph. Avouris, Nano Lett. 2010, 10, 715. – reference: V. M. Pereira, A. H. C. Neto, Phys. Rev. B 2009, 80, 045401. – reference: S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, S. Iijima, Nat. Nanotechnol. 2010, 5, 574. – reference: C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Adv. Funct. Mater. 2009, 19, 2577. – reference: X. Liu, C. Wang, B. Cai, X. Xiao, S. Guo, Z. Fan, J. Li, X. Duan, L. Liao, Nano Lett. 2012, 12, 3596. – reference: B. Lassagne, Y. Tarakanov, J. Kinaret, D. Garcia-Sanchez, A. Bachtold, Science 2009, 325, 1107. – reference: O. Hod, Nano Lett. 2009, 9, 2619. – reference: A. Javey, J. Guo, D. B. Farmer, Q. Wang, D. W. Wang, R. G. Gordon, M. Lundstrom, H. J. Dai, Nano Lett. 2004, 4, 447. – reference: M. C. LeMieux, M. Roberts, S. Barman, Y. W. Jin, J. M. Kim, Z. Bao, Science 2008, 321, 101. – reference: G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, J. van den Brink, Phys. Rev. B 2007, 76, 073103. – reference: T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science 2008, 313, 951. – reference: A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, Nano Lett. 2011, 11, 2396. – reference: L. S. Liyanage, H. Lee, N. Patil, S. Park, S. Mitra, Z. Bao, H. S. P. Wong, ACS Nano 2012, 6, 451. – reference: K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666. – reference: S. Pang, Y. Hernandez, X. Feng, K. Mullen, Adv. Mater. 2011, 23, 2779. – reference: J. M. P. Alaboson, Q. H. Wang, J. D. Emery, A. L. Lipson, M. J. Bedzyk, J. W. Elam, M. J. Pellin, M. C. Hersam, ACS Nano 2011, 5, 5223. – reference: A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Nano Lett. 2008, 8, 902. – reference: J. Kang, D. Shin, S. Bae, B. H. Hong, Nanoscale 2012, 4, 5527. – reference: M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, M. C. Hersam, Nat. Nanotechnol. 2006, 1, 60. – reference: T. Tanaka, H. Liu, S. Fujii, H. Kataura, Phys. Status Solidi 2011, 9, 301. – reference: L. Zhang, C. Di, G. Yu, Y. Liu, J. Mater. Chem. 2010, 20, 7059. – reference: N. Pimparkar, Q. Cao, J. A. Rogers, M. A. Alam, Nano Res. 2009, 2, 167. – reference: F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrai, Nat. Photon. 2010, 4, 611. – reference: A. Moisala, A. G. Nasibulin, D. P. Brown, H. Jiang, L. Khriachtchev, E. I. Kauppinen, Chem. Eng. Sci. 2006, 61, 4393. – reference: R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, UK 1998. – reference: X. Liu, Y. Z. Long, L. Liao, X. Duan, Z. Fan, ACS Nano 2012, 3, 1888. – reference: B. Yu, P. X. Hou, F. Li, B. L. Liu, C. Liu, H. M. Cheng, Carbon 2010, 48, 2941. – reference: S. B. Kumar, J. Guo, Nano Lett. 2012, 12, 1362. – reference: Q. Cao, M. G. Xia, M. Shim, J. A. Rogers, Adv. Mater. 2006, 16, 2355. – reference: G. Liu, S. Rumyantsev, M. Shur, A. A. Balandin, Appl. Phys. Lett. 2012, 100, 033103. – reference: R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, Nature 1997, 389, 827. – reference: K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, Nature 2012, 490, 192. – reference: B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, J. H. Cho, Nano Lett. 2010, 10, 3464. – reference: Y. Zhang, Y. Zhang, X. Xian, J. Zhang, Z. Liu, J. Phys. Chem. C 2008, 112, 3849. – reference: T. Kurkop, S. A. Getty, E. Cobas, M. S. Fuhrer, Nano Lett. 2004, 4, 35. – reference: C. Wang, J. C. Chien, K. Takei, T. Takahashi, J. Nah, A. M. Niknejad, A. Javey, Nano Lett. 2012, 12, 1527. – reference: C. Mattevi, F. Colléaux, H. Kim, Y. H. Lin, K. T. Park, M. Chhowalla, T. D. Anthopoulos, Nanotechnol. 2012, 23, 344017. – reference: L. Xie, C. Liu, J. Zhang, Y. Zhang, L. Jiao, L. Jiang, L. Dai, Z. Liu, J. Am. Chem. Soc. 2007, 129, 12382. – reference: S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, 3rd Ed., John Wiley & Sons, Inc., USA 2007. – reference: S. Aikawa, E. Einarsson, T. Thurakitseree, S. Chiashi, E. Nishikawa, S. Maruyama, Appl. Phys. Lett. 2012, 100, 063502. – reference: D. Y. Khang, J. A. Rogers, H. H. Lee, Adv. Func. Mater. 2009, 19, 1526. – reference: J. R. Gong, Graphene-Synthesis Characterization, Properties and Applications Chart 6, InTech, Croatia 2011, http://www.intechopen.com/books/graphene-synthesis-characterization-properties-and-applications. – reference: V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, S. Seal, Prog. Mater. Sci. 2011, 56, 1178. – reference: H. Wang, Y. Wu, C. Cong, J. Shang, T. Yu, ACS Nano 2010, 4, 7221. – reference: X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 2008, 319, 1229. – reference: S. Gross, D. Camozzo, V. D. Noto, L. Armelao, E. Tondello, Eur. Polym. J. 2007, 43, 673. – reference: A. Javey, P. Qi, Q. Wang, H. Dai, Proc. Natl. Acad. Sci. USA 2004, 101, 13408. – reference: M. Kim, N. S. Safron, E. Han, M. S. Arnold, P. Gopalan, Nano Lett. 2010, 10, 1125. – reference: K. Nakada, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. B 1996, 54, 17954. – reference: L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L. P. Ma, Z. Zhang, Q. Fu, L. M. Peng, X. Bao, H. M. Cheng, Nat. Commun. 2012, 3, 699. – reference: J. Slawinska, I. Zasado, Z. Klusek, Phys. Rev. B 2010, 81, 155433. – reference: Q. Cao, S. J. Han, G. S Tulevski, A. D. Franklin, W. Haensch, ACS Nano 2012, 6, 6471. – reference: S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, R. B. Weisman, J. Am. Chem. Soc. 2003, 125, 11186. – reference: M. Helgesen, R. Søndergaard, F. C. Krebs, J. Mater. Chem. 2010, 20, 36. – reference: H. Park, A. Afzali, S. J. Han, G. S. Tulevski, A. D. Franklin, J. Tersoff, J. B. Hannon, W. Haensch, Nat. Nanotechnol. 2012, 7, 787. – reference: Q. Cao, H. Kim, N. Pimparkar, J. P. Kulkarni, C. Wang, M. Shim, K. Roy, M. A. Alam, J. A. Rogers, Nature 2008, 454, 495. – reference: J. Velasco Jr., L. Jing, W. Bao, Y. Lee, P. Kratz, V. Aji, M. Bockrath, C. N. Lau, C. Varma, Nat. Nanotechnol. 2012, 7, 156. – reference: H. Meier, U. Löffelmann, D. Mager, P. J. Smith, J. G. Korvink, Phys. Status Solidi A 2009, 206, 1626. – reference: Y. Miyata, K. Shiozawa, Y. Asada, Y. Ohno, R. Kitaura, T. Mizutani, H. Shinohara, Nano Res. 2011, 4, 963. – reference: G. Hong, B. Zhang, B. Peng, J. Zhang, W. M. Choi, J. Y. Choi, J. M. Kim, Z. Liu, J. Am. Chem. Soc. 2009, 131, 14642. – reference: D. B. Farmer, H. Y. Chiu, Y. M. Lin, K. A. Jenkins, F. Xia, Ph. Avouris, Nano Lett. 2009, 9, 4474. – reference: J. Zhang, Y. Fu, C. Wang, P. C. Chen, Z. Liu, W. Wei, C. Wu, M. E. Thompson, C. Zhou, Nano Lett. 2011, 11, 4852. – reference: S. Matsuzaki, Y. Nobusa, R. Shimizu, K. Yanagi, H. Kataura, T. Takenobu, Jpn. J. Appl. Phys. 2012, 51, 06FD18. – reference: S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M. A. Alam, S. V. Rotkin, J. A. Rogers, Nat. Nanotechnol. 2007, 2, 230. – reference: J. Lee, L. Tao, K. N. Parrish, Y. Hao, R. S. Ruoff, D. Akinwande, Appl. Phys. Lett. 2012, 101, 252109. – reference: B. Chandra, H. Park, A. Maarouf, G. J. Martyna, G. S. Tulevski, Appl. Phys. Lett. 2011, 99, 072110. – reference: S. K. Lee, B. J. Kim, H. Jang, S. C. Yoon, C. Lee, B. H. Hong, J. A. Rogers, J. H. Cho, J. H. Ahn, Nano. Lett. 2011, 11, 4642. – reference: D. Reddy, L. F. Register, G. D. Carpenter, S. K. Banerjee, J. Phys. D-Appl. Phys. 2011, 44, 313001. – reference: S. Lee, K. Lee, C. H. Liu, G. S. Kulkarni, Z. Zhong, Nat. Commun. 2012, 3, 1018. – reference: P. Chen, Y. Fu, R. Aminirad, C. Wang, J. Zhang, K. Wang, K. Galatsis, C. Zhou, Nano Lett. 2011, 11, 5301. – reference: Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, F. Wang, Nature 2009, 459, 820. – reference: R. L. Puurunen, J. Appl. Phys. 2005, 97, 121301. – reference: J. Zhao, Y. Gao, W. Gu, C. Wang, J. Lin, Z. Chen, Z. Cui, J. Mater. Chem. 2012, 22, 20747. – reference: F. Xia, V. Perebeinos, Y. M. Lin, Y. Wu, Ph. Avouris, Nat. Nanotechnol. 2011, 6, 179. – reference: G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, M. Chhowalla, J. Phys. Chem. C. 2009, 113, 15768. – reference: X. Wan, Y. Huang, Y. Chen, Acc. Chem. Res. 2012, 45, 598. – reference: M. J. Bronikowski, P. A. Willis, D. T. Colbert, K. A. Smith, R. E. Smalley, J. Vac. Sci. Technol. A 2001, 19, 1800. – reference: C. Sire, F. Ardiaca, S. Lepilliet, J. W. T. Seo, M. C. Hersam, G. Dambrine, H. Happy, V. Derycke, Nano Lett. 2012, 12, 1184. – reference: N. Rouhi, D. Jain, P. J. Burke, ACS Nano 2011, 5, 8471. – reference: K. Nagashio, A. Toriumi, Jpn. J. Appl. Phys. 2011, 50, 070108. – reference: C. Yan, J. H. Cho, J. H. Ahn, Nanoscale 2012, 4, 4870. – reference: H. Liu, D. Nishide, T. Tanaka, H. Kataura, Nat. Commun. 2011, 2, 309. – reference: Y. Lu, J. Guo, Nano Res. 2010, 3, 189. – reference: B. Yu, C. Liu, P. X. Hou, Y. Tian, S. Li, B. Liu, F. Li, E. I. Kauppinen, H. M. Cheng, J. Am. Chem. Soc. 2011, 133, 5232. – reference: H. Numata, K. Ihara, T. Saito, H. Endoh, F. Nihey, Appl. Phys. Express 2012, 5, 055102. – reference: J. A. Rogers, T. Someya, Y. Huang, Science 2010, 327, 1603. – reference: L. Zhang, H. Liu, Y. Zhao, X. Sun, Y. Wen, Y. Guo, X. Gao, C. Di, G. Yu, Y. Liu, Adv. Mater. 2012, 24, 436. – reference: M. H. Yang, K. B. K. Teo, L. Gangloff, W. I. Milne, D. G. Hasko, Y. Robert, P. Legagneux, Appl. Phys. Lett. 2006, 88, 113507. – reference: B. Kitiyanan, W. E. Alvarez, J. H. Harwell, D. E. Resasco, Chem. Phys. Lett. 2000, 317, 497. – reference: Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, Adv. Mater. 2010, 22, 3906. – reference: S. Matsuzaki, Y. Nobusa, K. Yanagi, H. Kataura, T. Takenobu, Appl. Phys. Express 2011, 4, 105101. – reference: J. U. Park, S. W. Nam, M. S. Lee, C. M. Lieber, Nat. Mater. 2012, 11, 120. – reference: X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Small 2011, 14, 1876. – reference: A. Moisala, A. G. Nasibulin, E. I. Kauppinen, J. Phys. Condens. Matter 2003, 15, S3011. – reference: S. Jang, H. Jang, Y. Lee, D. Suh, S. Baik, B. H. Hong, J. H. Ahn, Nanotechnol. 2010, 21, 425201. – reference: G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, P. J. Kelly, Phys. Rev. Lett. 2008, 101, 026803. – reference: A. Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, J. A. Rogers, Adv. Mater. 2012, 24, 5284. – reference: C. C. Lu, Y. C. Lin, C. H. Yeh, J. C. Huang, P. W. Chiu, ACS Nano 2012, 5, 4469. – reference: F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G. W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, A. C. Ferrari, ACS Nano 2012, 6, 2992. – reference: H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, A. J. Heeger, J. Chem. Soc., Chem. Commun. 1977, 16, 578. – reference: L. M. Gomez, A. Kumar, Y. Zhang, K. Ryu, A. Badmaev, C. Zhou, Nano Lett. 2009, 9, 3592. – reference: M. Kumar, Y. Ando, J. Nanosci. Nanotechnol. 2010, 10, 3739. – reference: S. Z. Bisri, J. Gao, V. Derenskyi, W. Gomulya, I. Iezhokin, P. Gordiichuk, A. Herrmann, M. A. Loi, Adv. Mater. 2012, 24, 6147. – reference: Q. Cao, M. Xia, C. Kocabas, M. Shim, J. A. Rogers, S. V. Rotkin, Appl. Phys. Lett. 2007, 90, 023516. – reference: S. B. Jo, J. Park, W. H. Lee, K. Cho, B. H. Hong, Solid State Commun. 2012, 152, 1350. – reference: C. Kocabas, N. Pimparkar, O. Yesilyurt, S. J. Kang, M. A. Alam, J. A. Rogers, Nano Lett. 2007, 7, 1195. – reference: T. W. Kim, Y. Yang, F. Li, W. L. Kwan, Asia Mater. 2012, 4, e18. – reference: V. K. Sangwan, R. P. Ortiz, J. M. P. Alaboson, J. D. Emery, M. J. Bedzyk, L. J. Lauhon, T. J. Marks, M. C. Hersam, ACS Nano 2012, 6, 7480. – reference: B. Lee, G. Mordi, M. J. Kim, Y. J. Chabal, E. M. Vogel, R. M. Wallace, K. J. Cho, L. Colombo, J. Kim, Appl. Phys. Lett. 2010, 97, 043107. – reference: F. N. Ishikawa, H. K. Chang, K. Ryu, P. C. Chen, A. Badmaev, L. G. De Arco, G. Shen, C. Zhou, ACS Nano 2009, 1, 73. – reference: Y. Son, J. Yeo, C. W. Ha, J. Lee, S. Hong, K. H. Nam, D. Y. Yang, S. H. Ko, Thermochim. Acta 2012, 542, 52. – reference: V. K. Sangwan, A. Southard, T. L. Moore, V. W. Ballarotto, D. R. Hines, M. S. Fuhrer, E. D. Williams, Microelectron. Eng. 2011, 88, 3150. – reference: M. J. Allen, V. C. Tung, R. B. Kaner, Chem. Rev. 2010, 110, 132. – reference: M. Ha, Y. Xia, A. A. Green, W. Zhang, M. J. Renn, C. H. Kim, M. C. Hersam, C. D. Frisbie, ACS Nano 2010, 4, 4388. – reference: Q. N. Thanh, H. Jeong, J. Kim, J. W. Kevek, Y. H. Ahn, S. Lee, E. D. Minot, J. Y. Park, Adv. Mater. 2012, 24, 4499. – reference: C.R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, J. Hone, Nat. Nanotechnol. 2010, 5, 722. – reference: S. Li, C. Liu, P. X. Hou, D. M. Sun, H. M. Cheng, ACS Nano 2012, 6, 9657. – reference: A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. J. Amaratunga, W. I. Milne, Proc. IEEE 2012, 100, 1486. – reference: J. Sun, B. Zhang, H. E. Katz, Adv. Funct. Mater. 2011, 21, 29. – reference: F. Leonard, A. A. Talin, Nat. Nanotechnol. 2011, 6, 773. – reference: C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 2008, 321, 385. – reference: D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Nano Lett. 2009, 9, 1752. – reference: Y. W. Son, M. L. Cohen, S. G. Louie, Phys. Rev. Lett. 2006, 97, 216803. – reference: J. Zhang, P. A. Hu, R. Zhang, X. Wang, B. Yang, W. Cao, Y. Li, X. He, Z. Wang, W. O'Neill, J. Mater. Chem. 2012, 22, 714. – reference: G. Y. Zhang, P. F. Qi, X. R. Wang, Y. R. Lu, X. L. Li, R. Tu, S. Bangsaruntip, D. Mann, L. Zhang, H. J. Dai, Science 2006, 314, 974. – reference: M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerences and Carbon Nanotubes, Academic Press, San Diego, US 1996. – reference: Y. Sun, J. A. Rogers, Adv. Mater. 2007, 19, 1897. – reference: C. Wang, K. Takei, T. Takahashi, A. Javey, Chem. Soc. Rev. 2013, 42, 2592. – reference: X. S. Wang, H. P. Tang, X. D. Li, X. Hua, Int. J. Mol. Sci. 2009, 10, 5257. – reference: S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. De Heer, D. H. Lee, F. Guinea, A. H. C. Neto, A. Lanzara, Nat. Mater. 2007, 6, 770. – reference: M. Y. Zavodchikova, T. Kulmala, A. G. Nasibulin, V. Ermolov, S. Franssila, K. Grigoras, E. I. Kauppinen, Nanotechnol. 2009, 20, 085201. – reference: C. Brosseau, Surf. Coat. Technol. 2011, 206, 753. – reference: P. G. Collins, M. S. Arnold, Ph. Avouris, Science 2001, 292, 706. – reference: J. Bai, X. Zhong, S. Jiang, Y. Huang, X. Duan, Nat. Nanotechnol. 2010, 5, 190. – reference: M. C. Lemiex, M. Roberts, S. Berman, Y. W. Jin, J. M. Kim, Z. N. Bao, Science 2008, 321, 101. – reference: G. Eda, M. Chhowalla, Adv. Mater. 2010, 22, 2392. – reference: A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Science 1996, 273, 483. – reference: S. Iijima, Nature 1991, 354, 56. – reference: L. Sun, Q. Li, H. Ren, H. Su, Q. W. Shi, J. Yang, J. Chem. Phys. 2008, 129, 074704. – reference: C. Biswas, Y. H. Lee, Adv. Mater. 2011, 21, 3806. – reference: Y. Wu, V. Perebeinos, Y. M. Lin, T. Low, F. Xia, Ph. Avouris, Nano Lett. 2012, 12, 1417. – reference: L. An, Q. Fu, C. Lu, J. Liu, J. Am. Chem. Soc. 2004, 126, 10520. – reference: J. B. H. Tok, Z. Bao, Sci. China 2012, 55, 718. – reference: C. Wang, A. Badmaev, A. Jooyaie, M. Bao, K. L. Wang, K. Galatsis, C. Zhou, ACS Nano 2011, 5, 4169. – reference: S. K. Lee, H. Y. Jang, S. Jang, E. Choi, B. H. Hong, J. Lee, S. Park, J. H. Ahn, Nano Lett. 2012, 12, 3472. – reference: J. Yeo, S. Hong, D. Lee, N. Hotz, M. T. Lee, C. P. Grigoropoulos, S. H. Ko, PLoS ONE 2012, 7, e42315. – reference: Y. B. Tang, L. C. Yin, Y. Yang, X. H. Bo, Y. L. Cao, H. E. Wang, W. J. Zhang, I. Bello, S. T. Lee, H. M. Cheng, C. S. Lee, ACS Nano 2012, 6, 1970. – reference: R. Quhe, J. Zheng, G. Luo, Q. Liu, R. Qin, J. Zhou, D. Yu, S. Nagase, W. N. Mei, Z. Gao, J. Lu, NPG Asia Mater. 2012, 4, e6. – reference: J. Zhang, C. Wang, Y. Fu, Y. Che, C. Zhou, ACS Nano 2011, 4, 3284. – reference: Ph. Avouris, Z. Chen, V. Perebeinos, Nat. Nanotechnol. 2007, 2, 605. – reference: J. Hackley, D. Ali, J. DiPasquale, J. D. Demaree, C. J. K. Richardson, Appl. Phys. Lett. 2009, 95, 133114. – reference: Y. L. Wu, Y. N. Li, B. S. Ong, J. Am. Chem. Soc. 2006, 128, 4202. – reference: J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, L. M. K. Vandersypen, Nat. Mater. 2008, 7, 151. – reference: R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Laegsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann, L. Hornekaer, Nat. Mater. 2010, 9, 315. – reference: B. J. Kim, S. K. Lee, M. S. Kang, J. H. Ahn, J. H. Cho, ACS Nano 2012, 6, 8646. – reference: Y. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Hung, A. Javey, J. Cao, D. Wang, E. Yenilmez, Q. Wang, J. F. Gibbons, Y. Nishi, H. Dai, Nano Lett. 2004, 4, 317. – reference: J. Perelaer, P. J. Smith, D. Mager, D. Soltman, S. K. Volkman, V. Subramanian, J. G. Korvink, U. S. Schubert, J. Mater. Chem. 2010, 20, 8446. – reference: J. Lee, L. Tao, Y. Hao, R. S. Ruoff, D. Akinwande, Appl. Phys. Lett. 2012, 100, 152104. – reference: K. Kim, J. Y. Choi, T. Kim, S. H. Cho, H. J. Chung, Nature 2011, 479, 338. – reference: G. Y. Zhang, P. F. Qi, X. R. Wang, Y. R. Lu, D. Mann, X.L. Li, H. J. Dai, J. Am. Chem. Soc. 2006, 128, 6026. – reference: D. H. Kim, N. Lu, R. Ghaffari, J. A. Rogers, Asia Mater. 2012, 4, e15. – reference: Q. Cao, S. H. Hur, Z. T. Zhu, Y. Sun, C. Wang, M. A. Meitl, M. Shim, J. A. Rogers, Adv. Mater. 2006, 18, 304. – reference: E. S. Snow, J. P. Novak, P. M. Campbell, D. Park, Appl. Phys. Lett. 2003, 82, 2145. – reference: T. Y. Kim, H. Kim, S. W. Kwon, Y. Kim, W. K. Park, D. H. Yoon, A. R. Jang, H. S. Shin, K. S. Suh, W. S. Yang, Nano Lett. 2012, 12, 743. – reference: Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman, Nat. Nanotechnol. 2008, 3, 563. – reference: X. Wang, L. J. Zhi, K. Mullen, Nano Lett. 2008, 8, 323. – reference: Y. Nosho, Y. Ohno, S. Kishimoto, T. Mizutani, Nanotechnol. 2006, 17, 3412. – reference: D. M. Sun, M. Y. Timmermans, Y. Tian, A. G. Nasibulin, E. I. Kauppinen, S. Kishimoto, T. Mizutani, Y. Ohno, Nat. Nanotechnol. 2011, 6, 156. – reference: I. Meric, C. R. Dean, A. F. Young, N. Baklitskaya, N. J. Tremblay, C. Nuckolls, P. Kim, K. L. Shepard, Nano Lett. 2011, 11, 1093. – reference: S. Russo, M. F. Craciun, M. Yamamoto, A. F. Morpurgo, S. Tarucha, Phys. E 2010, 42, 677. – reference: W. J. Yu, S. Y. Lee, S. H. Chae, D. Perello, G. H. Han, M. Yun, Y. H. Lee, Nano Lett. 2010, 11, 1344. – reference: L. S. Liyanage, H. Lee, N. Patil, S. Park, S. Mitra, Z. Bao, H. P. Wong, ACS Nano 2012, 6, 451. – reference: L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Nature 2009, 458, 877. – reference: N. Moriyama, Y. Ohno, T. Kitamura, S. Kishimoto, T. Mizutani, Nanotechnol. 2010, 21, 165201. – reference: A. R. Harutyunyan, G. Chen, T. M. Paronyan, E. M Pigos, O. A. Kuznetsov, K. Hewaparakrama, S. M. Kim, D. Zakharov, E. A. Stach, G. U. Sumanasekera, Science 2009, 326, 116. – reference: J. Yu, G. Liu, A. V. Sumant, V. Goyal, A. A. Balandin, Nano Lett. 2012, 12, 1603. – reference: M. J. Panzer, C. D. Frisbie, Adv. Mater. 2008, 20, 3177. – reference: A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivisto, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, M. Kauppinen, D. P. Brown, O. G. Okhotnikov, E. I. Kauppinen, ACS Nano 2011, 5, 3214. – reference: S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, S. K. Banerjee, Appl. Phys. Lett. 2009, 94, 062107. – reference: C. Wang, J. Zhang, K. Ryu, A. Badmaev, L. G. De Arco, C. Zhou, Nano Lett. 2009, 9, 4285. – reference: R. Krupke, F. Hennrich, H. V. Lohneysen, M. M. Kappes, Science 2003, 301, 344. – reference: A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183. – reference: S. Kim, S. Kim, J. Park, S. Ju, S. Mohammadi, ACS Nano 2010, 4, 2994. – reference: A. Kaskela, A. G. Nasibulin, M. Y. Timmermans, B. Aitchison, A. Papadimitratos, Y. Tian, Z. Zhu, H. Jiang, D. P. Brown, A. Zakhidov, E. I. Kauppinen, Nano Lett. 2010, 10, 4349. – reference: J. Zhang, C. Wang, C. Zhou, ACS Nano 2012, 8, 7412. – reference: W. Zhu, D. Neumayer, V. Perebeinos, Ph. Avouris, Nano Lett. 2010, 10, 3572. – reference: D. McClain, N. Thomas, S. Youkey, R. Schaller, J. Jiao, K. P. O'Brien, Carbon 2009, 47, 1493. – reference: X. Li, K. M. Borysenko, M. B. Nardelli, K. W. Kim, Phys. Rev. B 2011, 84, 195453. – reference: R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Science 2008, 320, 1038. – reference: A. Facchetti, M. H. Yoon, T. J. Marks, Adv. Mater. 2005, 17, 1705. – reference: A. Vijayaraghavan, K. Kanzaki, S. Suzuki, Y. Kobayashi, H. Inokawa, Y. Ono, S. Kar, P. M. Ajayan, Nano Lett. 2005, 5, 1575. – reference: X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 2012, 324, 1312. – reference: K. Balasubramanian, R. Sordan, M. Burghard, K. Kern, Nano Lett. 2004, 4, 827. – reference: M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, J. M. Tour, R. E. Smalley, Science 2003, 301, 1519. – reference: J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, B. J. LeRoy, Nat. Mater. 2011, 10, 282. – reference: A. K. Geim, Science 2009, 324, 1530. – reference: M. Engel, J. P. Small, M. Steiner, M. Freitag, A. A. Green, M. C. Hersam, Ph. Avouris, ACS Nano 2008, 2, 2445. – reference: R. T. Weitz, U. Zschieschang, F. Effenberger, H. Klauk, M. Burghard, K. Kern, Nano Lett. 2007, 7, 22. – reference: F. Gunes, G. H. Han, K. K. Kim, E. S. Kim, S. J. Chae, M. H. Park, H. K. Jeong, S. C. Lim, Y. H. Lee, Nano 2009, 2, 83. – reference: H. M. Cheng, F. Li, G. Su, H.Y. Pan, L. L. He, X. Sun, M. S. Dresselhaus, Appl. Phys. Lett. 1998, 72, 3282. – reference: Z. H. Ni, H. M. Wang, Y. Ma, J. Kasim, Y. H. Wu, Z. X. Shen, ACS Nano 2008, 2, 1033. – reference: W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, D. Dai, Nano Lett. 2003, 3, 193. – reference: X. Wang, S. M. Tabakman, H. Dai, J. Am. Chem. Soc. 2008, 130, 8152. – volume: 4 start-page: 447 year: 2004 publication-title: Nano Lett. – volume: 11 start-page: 4642 year: 2011 publication-title: Nano. Lett. – volume: 4 start-page: e15 year: 2012 publication-title: Asia Mater. – volume: 129 start-page: 074704 year: 2008 publication-title: J. Chem. Phys. – volume: 11 start-page: 5274 year: 2011 publication-title: Nano Lett. – volume: 389 start-page: 827 year: 1997 publication-title: Nature – volume: 130 start-page: 8152 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 4543 year: 2004 publication-title: Chem. Mater. – volume: 152 start-page: 1350 year: 2012 publication-title: Solid State Commun. – volume: 6 start-page: 2992 year: 2012 publication-title: ACS Nano – volume: 12 start-page: 3596 year: 2012 publication-title: Nano Lett. – volume: 8 start-page: 7412 year: 2012 publication-title: ACS Nano – volume: 6 start-page: 9657 year: 2012 publication-title: ACS Nano – volume: 44 start-page: 313001 year: 2011 publication-title: J. Phys. D—Appl. Phys. – volume: 490 start-page: 192 year: 2012 publication-title: Nature – volume: 100 start-page: 1486 year: 2012 publication-title: Proc. IEEE – volume: 113 start-page: 15768 year: 2009 publication-title: J. Phys. Chem. C. – volume: 12 start-page: 1603 year: 2012 publication-title: Nano Lett. – volume: 76 start-page: 064120 year: 2007 publication-title: Phys. Rev. B – volume: 112 start-page: 3849 year: 2008 publication-title: J. Phys. Chem. C – volume: 2 start-page: 1033 year: 2008 publication-title: ACS Nano – volume: 21 start-page: 165201 year: 2010 publication-title: Nanotechnol. – volume: 7 start-page: e42315 year: 2012 publication-title: PLoS ONE – volume: 11 start-page: 120 year: 2012 publication-title: Nat. Mater. – volume: 5 start-page: 1575 year: 2005 publication-title: Nano Lett. – volume: 97 start-page: 121301 year: 2005 publication-title: J. Appl. Phys. – volume: 133 start-page: 5232 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 72 start-page: 3282 year: 1998 publication-title: Appl. Phys. Lett. – volume: 5 start-page: 4469 year: 2012 publication-title: ACS Nano – volume: 12 start-page: 1362 year: 2012 publication-title: Nano Lett. – year: 2007 – volume: 8 start-page: 902 year: 2008 publication-title: Nano Lett. – volume: 3 start-page: 699 year: 2012 publication-title: Nat. Commun. – volume: 32 start-page: 1349 year: 2011 publication-title: IEEE Electron Dev. Lett. – volume: 24 start-page: 5284 year: 2012 publication-title: Adv. Mater. – volume: 6 start-page: 6471 year: 2012 publication-title: ACS Nano – volume: 4 start-page: e6 year: 2012 publication-title: NPG Asia Mater. – volume: 10 start-page: 3739 year: 2010 publication-title: J. Nanosci. Nanotechnol. – volume: 61 start-page: 4393 year: 2006 publication-title: Chem. Eng. Sci. – volume: 100 start-page: 033103 year: 2012 publication-title: Appl. Phys. Lett. – volume: 42 start-page: 677 year: 2010 publication-title: Phys. E – volume: 9 start-page: 315 year: 2010 publication-title: Nat. Mater. – volume: 20 start-page: 7059 year: 2010 publication-title: J. Mater. Chem. – volume: 5 start-page: 4169 year: 2011 publication-title: ACS Nano – volume: 273 start-page: 483 year: 1996 publication-title: Science – volume: 24 start-page: 4499 year: 2012 publication-title: Adv. Mater. – volume: 321 start-page: 101 year: 2008 publication-title: Science – volume: 4 start-page: 2994 year: 2010 publication-title: ACS Nano – volume: 55 start-page: 718 year: 2012 publication-title: Sci. China – volume: 7 start-page: 151 year: 2008 publication-title: Nat. Mater. – volume: 4 start-page: 105101 year: 2011 publication-title: Appl. Phys. Express – volume: 22 start-page: 714 year: 2012 publication-title: J. Mater. Chem. – volume: 320 start-page: 1038 year: 2008 publication-title: Science – volume: 10 start-page: 4349 year: 2010 publication-title: Nano Lett. – volume: 4 start-page: 3284 year: 2011 publication-title: ACS Nano – volume: 314 start-page: 974 year: 2006 publication-title: Science – volume: 6 start-page: 156 year: 2011 publication-title: Nat. Nanotechnol. – volume: 7 start-page: 787 year: 2012 publication-title: Nat. Nanotechnol. – volume: 6 start-page: 179 year: 2011 publication-title: Nat. Nanotechnol. – volume: 19 start-page: 1897 year: 2007 publication-title: Adv. Mater. – volume: 301 start-page: 344 year: 2003 publication-title: Science – volume: 101 start-page: 026803 year: 2008 publication-title: Phys. Rev. Lett. – volume: 97 start-page: 216803 year: 2006 publication-title: Phys. Rev. Lett. – volume: 2 start-page: 605 year: 2007 publication-title: Nat. Nanotechnol. – volume: 324 start-page: 1530 year: 2009 publication-title: Science – volume: 5 start-page: 055102 year: 2012 publication-title: Appl. Phys. Express – volume: 324 start-page: 1312 year: 2012 publication-title: Science – volume: 88 start-page: 113507 year: 2006 publication-title: Appl. Phys. Lett. – volume: 9 start-page: 4285 year: 2009 publication-title: Nano Lett. – volume: 10 start-page: 3572 year: 2010 publication-title: Nano Lett. – volume: 2 start-page: 230 year: 2007 publication-title: Nat. Nanotechnol. – volume: 313 start-page: 951 year: 2008 publication-title: Science – volume: 22 start-page: 20747 year: 2012 publication-title: J. Mater. Chem. – volume: 20 start-page: 8446 year: 2010 publication-title: J. Mater. Chem. – volume: 4 start-page: 35 year: 2004 publication-title: Nano Lett. – volume: 4 start-page: 827 year: 2004 publication-title: Nano Lett. – volume: 48 start-page: 2941 year: 2010 publication-title: Carbon – volume: 12 start-page: 743 year: 2012 publication-title: Nano Lett. – volume: 6 start-page: 770 year: 2007 publication-title: Nat. Mater. – volume: 4 start-page: 5527 year: 2012 publication-title: Nanoscale – volume: 335 start-page: 947 year: 2012 publication-title: Science – volume: 4 start-page: 4870 year: 2012 publication-title: Nanoscale – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 14 start-page: 1876 year: 2011 publication-title: Small – volume: 6 start-page: 773 year: 2011 publication-title: Nat. Nanotechnol. – volume: 45 start-page: 598 year: 2012 publication-title: Acc. Chem. Res. – year: 1996 – volume: 10 start-page: 5257 year: 2009 publication-title: Int. J. Mol. Sci. – volume: 22 start-page: 8179 year: 2012 publication-title: J. Mater. Chem. – volume: 43 start-page: 673 year: 2007 publication-title: Eur. Polym. J. – volume: 325 start-page: 1107 year: 2009 publication-title: Science – volume: 11 start-page: 1344 year: 2010 publication-title: Nano Lett. – volume: 21 start-page: 3806 year: 2011 publication-title: Adv. Mater. – volume: 5 start-page: 3214 year: 2011 publication-title: ACS Nano – volume: 20 start-page: 36 year: 2010 publication-title: J. Mater. Chem. – volume: 11 start-page: 3161 year: 2011 publication-title: IEEE Sens. J. – volume: 292 start-page: 706 year: 2001 publication-title: Science – volume: 129 start-page: 12382 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 7480 year: 2012 publication-title: ACS Nano – volume: 12 start-page: 1184 year: 2012 publication-title: Nano Lett. – volume: 23 start-page: 344017 year: 2012 publication-title: Nanotechnol. – volume: 47 start-page: 1493 year: 2009 publication-title: Carbon – volume: 10 start-page: 1125 year: 2010 publication-title: Nano Lett. – volume: 21 start-page: 425201 year: 2010 publication-title: Nanotechnol. – volume: 19 start-page: 1800 year: 2001 publication-title: J. Vac. Sci. Technol. A – volume: 4 start-page: 7221 year: 2010 publication-title: ACS Nano – volume: 17 start-page: 3412 year: 2006 publication-title: Nanotechnol. – year: 2011 – volume: 101 start-page: 13408 year: 2004 publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 start-page: 96 year: 2006 publication-title: Nano Lett. – volume: 317 start-page: 497 year: 2000 publication-title: Chem. Phys. Lett. – volume: 9 start-page: 2619 year: 2009 publication-title: Nano Lett. – volume: 94 start-page: 062107 year: 2009 publication-title: Appl. Phys. Lett. – volume: 3 start-page: 1888 year: 2012 publication-title: ACS Nano – volume: 128 start-page: 4202 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 3464 year: 2010 publication-title: Nano Lett. – volume: 100 start-page: 152104 year: 2012 publication-title: Appl. Phys. Lett. – volume: 7 start-page: 22 year: 2007 publication-title: Nano Lett. – volume: 76 start-page: 073103 year: 2007 publication-title: Phys. Rev. B – volume: 23 start-page: 1482 year: 2011 publication-title: Adv. Mater. – volume: 101 start-page: 252109 year: 2012 publication-title: Appl. Phys. Lett. – volume: 15 start-page: S3011 year: 2003 publication-title: J. Phys. Condens. Matter – year: 1998 – volume: 146 start-page: 351 year: 2008 publication-title: Solid State Commun. – volume: 5 start-page: 487 year: 2010 publication-title: Nat. Nanotechnol. – volume: 131 start-page: 14642 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 4388 year: 2010 publication-title: ACS Nano – volume: 4 start-page: e18 year: 2012 publication-title: Asia Mater. – volume: 458 start-page: 877 year: 2009 publication-title: Nature – volume: 327 start-page: 1603 year: 2010 publication-title: Science – volume: 5 start-page: 8471 year: 2011 publication-title: ACS Nano – volume: 42 start-page: 2592 year: 2013 publication-title: Chem. Soc. Rev. – volume: 95 start-page: 133114 year: 2009 publication-title: Appl. Phys. Lett. – volume: 90 start-page: 023516 year: 2007 publication-title: Appl. Phys. Lett. – volume: 9 start-page: 1752 year: 2009 publication-title: Nano Lett. – volume: 11 start-page: 1093 year: 2011 publication-title: Nano Lett. – volume: 319 start-page: 1229 year: 2008 publication-title: Science – volume: 80 start-page: 045401 year: 2009 publication-title: Phys. Rev. B – volume: 3 start-page: 1018 year: 2012 publication-title: Nat. Commun. – volume: 4 start-page: 611 year: 2010 publication-title: Nat. Photon. – volume: 24 start-page: 436 year: 2012 publication-title: Adv. Mater. – volume: 126 start-page: 10520 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 81 start-page: 155433 year: 2010 publication-title: Phys. Rev. B – volume: 5 start-page: 5223 year: 2011 publication-title: ACS Nano – volume: 100 start-page: 063502 year: 2012 publication-title: Appl. Phys. Lett. – volume: 11 start-page: 2396 year: 2011 publication-title: Nano Lett. – volume: 542 start-page: 52 year: 2012 publication-title: Thermochim. Acta – volume: 18 start-page: 304 year: 2006 publication-title: Adv. Mater. – volume: 3 start-page: 563 year: 2008 publication-title: Nat. Nanotechnol. – volume: 326 start-page: 116 year: 2009 publication-title: Science – volume: 9 start-page: 3592 year: 2009 publication-title: Nano Lett. – volume: 56 start-page: 1178 year: 2011 publication-title: Prog. Mater. Sci. – volume: 88 start-page: 3150 year: 2011 publication-title: Microelectron. Eng. – volume: 17 start-page: 1705 year: 2005 publication-title: Adv. Mater. – volume: 4 start-page: 963 year: 2011 publication-title: Nano Res. – volume: 206 start-page: 1626 year: 2009 publication-title: Phys. Status Solidi A – volume: 125 start-page: 11186 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 578 year: 1977 publication-title: J. Chem. Soc., Chem. Commun. – volume: 5 start-page: 574 year: 2010 publication-title: Nat. Nanotechnol. – volume: 2 start-page: 83 year: 2009 publication-title: Nano – volume: 1 start-page: 60 year: 2006 publication-title: Nat. Nanotechnol. – volume: 2 start-page: 167 year: 2009 publication-title: Nano Res. – volume: 206 start-page: 753 year: 2011 publication-title: Surf. Coat. Technol. – volume: 8 start-page: 323 year: 2008 publication-title: Nano Lett. – volume: 97 start-page: 043107 year: 2010 publication-title: Appl. Phys. Lett. – volume: 84 start-page: 195453 year: 2011 publication-title: Phys. Rev. B – volume: 11 start-page: 5301 year: 2011 publication-title: Nano Lett. – volume: 10 start-page: 490 year: 2010 publication-title: Nano Lett. – volume: 99 start-page: 072110 year: 2011 publication-title: Appl. Phys. Lett. – volume: 2 start-page: 309 year: 2011 publication-title: Nat. Commun. – volume: 22 start-page: 3906 year: 2010 publication-title: Adv. Mater. – volume: 321 start-page: 385 year: 2008 publication-title: Science – volume: 54 start-page: 17954 year: 1996 publication-title: Phys. Rev. B – volume: 22 start-page: 2392 year: 2010 publication-title: Adv. Mater. – volume: 10 start-page: 282 year: 2011 publication-title: Nat. Mater. – volume: 454 start-page: 495 year: 2008 publication-title: Nature – volume: 110 start-page: 132 year: 2010 publication-title: Chem. Rev. – volume: 1 start-page: 241 year: 2002 publication-title: Nat. Mater. – volume: 24 start-page: 6147 year: 2012 publication-title: Adv. Mater. – volume: 20 start-page: 085201 year: 2009 publication-title: Nanotechnol. – volume: 11 start-page: 4852 year: 2011 publication-title: Nano Lett. – volume: 6 start-page: 8646 year: 2012 publication-title: ACS Nano – volume: 4 start-page: 317 year: 2004 publication-title: Nano Lett. – volume: 21 start-page: 29 year: 2011 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 2355 year: 2006 publication-title: Adv. Mater. – volume: 479 start-page: 338 year: 2011 publication-title: Nature – volume: 2 start-page: 2037 year: 2008 publication-title: ACS Nano – volume: 5 start-page: 190 year: 2010 publication-title: Nat. Nanotechnol. – volume: 1 start-page: 73 year: 2009 publication-title: ACS Nano – volume: 6 start-page: 451 year: 2012 publication-title: ACS Nano – volume: 7 start-page: 156 year: 2012 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 4474 year: 2009 publication-title: Nano Lett. – volume: 20 start-page: 3177 year: 2008 publication-title: Adv. Mater. – volume: 6 start-page: 183 year: 2007 publication-title: Nat. Mater. – volume: 128 start-page: 6026 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 1526 year: 2009 publication-title: Adv. Func. Mater. – volume: 354 start-page: 56 year: 1991 publication-title: Nature – volume: 12 start-page: 1417 year: 2012 publication-title: Nano Lett. – volume: 82 start-page: 2145 year: 2003 publication-title: Appl. Phys. Lett. – volume: 2 start-page: 2445 year: 2008 publication-title: ACS Nano – volume: 51 start-page: 06FD18 year: 2012 publication-title: Jpn. J. Appl. Phys. – volume: 7 start-page: 1195 year: 2007 publication-title: Nano Lett. – volume: 6 start-page: 1970 year: 2012 publication-title: ACS Nano – volume: 23 start-page: 2779 year: 2011 publication-title: Adv. Mater. – volume: 301 start-page: 1519 year: 2003 publication-title: Science – volume: 19 start-page: 2577 year: 2009 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 3472 year: 2012 publication-title: Nano Lett. – volume: 5 start-page: 722 year: 2010 publication-title: Nat. Nanotechnol. – volume: 3 start-page: 193 year: 2003 publication-title: Nano Lett. – volume: 3 start-page: 189 year: 2010 publication-title: Nano Res. – volume: 9 start-page: 301 year: 2011 publication-title: Phys. Status Solidi – volume: 12 start-page: 1527 year: 2012 publication-title: Nano Lett. – volume: 50 start-page: 070108 year: 2011 publication-title: Jpn. J. Appl. Phys. – volume: 10 start-page: 715 year: 2010 publication-title: Nano Lett. – volume: 459 start-page: 820 year: 2009 publication-title: Nature – ident: e_1_2_8_23_2 doi: 10.1109/JSEN.2011.2167608 – ident: e_1_2_8_29_2 doi: 10.1109/JPROC.2012.2190168 – ident: e_1_2_8_151_2 doi: 10.1021/nl035097c – ident: e_1_2_8_1_2 doi: 10.1038/354056a0 – ident: e_1_2_8_123_2 doi: 10.1063/1.3702570 – ident: e_1_2_8_19_2 doi: 10.1038/nnano.2010.89 – ident: e_1_2_8_80_2 doi: 10.1021/nl204088b – ident: e_1_2_8_163_2 doi: 10.1016/j.carbon.2010.04.032 – ident: e_1_2_8_165_2 doi: 10.1021/nn1006094 – ident: e_1_2_8_113_2 doi: 10.1063/1.3467454 – ident: e_1_2_8_107_2 doi: 10.5772/1742 – ident: e_1_2_8_135_2 doi: 10.1021/nl202695v – ident: e_1_2_8_204_2 doi: 10.1016/j.mee.2011.06.017 – ident: e_1_2_8_217_2 doi: 10.1021/nn101950n – ident: e_1_2_8_182_2 doi: 10.1021/nn3005262 – ident: e_1_2_8_148_2 doi: 10.1038/nnano.2007.77 – ident: e_1_2_8_203_2 doi: 10.1002/adma.200501740 – ident: e_1_2_8_124_2 doi: 10.1021/nl2043375 – ident: e_1_2_8_195_2 doi: 10.1007/s12274-010-1022-4 – ident: e_1_2_8_5_2 doi: 10.1021/nl200758b – ident: e_1_2_8_166_2 doi: 10.1007/s12274-009-9013-z – ident: e_1_2_8_41_2 doi: 10.1126/science.273.5274.483 – ident: e_1_2_8_45_2 doi: 10.1021/nn201828y – ident: e_1_2_8_207_2 doi: 10.1021/nl300948c – ident: e_1_2_8_68_2 doi: 10.1038/nature11458 – ident: e_1_2_8_197_2 doi: 10.1103/PhysRevB.76.064120 – ident: e_1_2_8_35_2 doi: 10.1039/c2nr30994g – ident: e_1_2_8_188_2 doi: 10.1103/PhysRevB.81.155433 – ident: e_1_2_8_56_2 doi: 10.1166/jnn.2010.2939 – ident: e_1_2_8_149_2 doi: 10.1021/nl062907m – ident: e_1_2_8_91_2 doi: 10.1039/c39770000578 – ident: e_1_2_8_159_2 doi: 10.1021/jp710691j – ident: e_1_2_8_98_2 doi: 10.1109/LED.2011.2163489 – ident: e_1_2_8_130_2 doi: 10.1007/s12274-011-0152-7 – ident: e_1_2_8_212_2 doi: 10.1088/0957-4484/21/42/425201 – ident: e_1_2_8_193_2 doi: 10.1063/1.2958285 – ident: e_1_2_8_169_2 doi: 10.1021/nn303070p – ident: e_1_2_8_213_2 doi: 10.1021/nl104488z – ident: e_1_2_8_192_2 doi: 10.1021/nl203968j – ident: e_1_2_8_89_2 doi: 10.1039/c0jm00264j – ident: e_1_2_8_83_2 doi: 10.1021/nl3012648 – ident: e_1_2_8_170_2 doi: 10.1103/PhysRevB.54.17954 – ident: e_1_2_8_16_2 doi: 10.1002/adma.200903689 – ident: e_1_2_8_85_2 doi: 10.1126/science.1182383 – ident: e_1_2_8_6_2 doi: 10.1021/nl034841q – ident: e_1_2_8_81_2 doi: 10.1103/PhysRevLett.101.026803 – ident: e_1_2_8_147_2 doi: 10.1088/0957-4484/20/8/085201 – ident: e_1_2_8_184_2 doi: 10.1038/nmat2003 – ident: e_1_2_8_143_2 doi: 10.1021/nn2044609 – ident: e_1_2_8_66_2 doi: 10.1063/1.3242029 – ident: e_1_2_8_62_2 doi: 10.1021/ja2008278 – ident: e_1_2_8_209_2 doi: 10.1021/nn3020486 – ident: e_1_2_8_27_2 doi: 10.1038/am.2012.32 – ident: e_1_2_8_171_2 doi: 10.1126/science.1150878 – volume: 21 start-page: 3806 year: 2011 ident: e_1_2_8_198_2 publication-title: Adv. Mater. – ident: e_1_2_8_108_2 doi: 10.1063/1.3077021 – volume: 16 start-page: 2355 year: 2006 ident: e_1_2_8_115_2 publication-title: Adv. Mater. – ident: e_1_2_8_10_2 doi: 10.1021/nl0731872 – ident: e_1_2_8_13_2 doi: 10.1126/science.1157996 – ident: e_1_2_8_216_2 doi: 10.1016/j.carbon.2009.01.042 – volume-title: Science of Fullerences and Carbon Nanotubes year: 1996 ident: e_1_2_8_40_2 – ident: e_1_2_8_100_2 doi: 10.1021/nl101559n – ident: e_1_2_8_17_2 doi: 10.1021/cr900070d – ident: e_1_2_8_142_2 doi: 10.1143/APEX.5.055102 – ident: e_1_2_8_144_2 doi: 10.1002/adma.201103620 – ident: e_1_2_8_9_2 doi: 10.1073/pnas.0404450101 – ident: e_1_2_8_101_2 doi: 10.1063/1.1564291 – ident: e_1_2_8_38_2 doi: 10.1039/c2jm00102k – ident: e_1_2_8_175_2 doi: 10.1021/nl9032318 – ident: e_1_2_8_72_2 doi: 10.1002/adfm.200900166 – ident: e_1_2_8_104_2 doi: 10.1021/nl035185x – ident: e_1_2_8_152_2 doi: 10.1021/ja9068529 – ident: e_1_2_8_176_2 doi: 10.1038/nmat2082 – ident: e_1_2_8_92_2 doi: 10.3390/ijms10125257 – ident: e_1_2_8_79_2 doi: 10.1038/nnano.2011.6 – ident: e_1_2_8_110_2 doi: 10.1021/nl101832y – ident: e_1_2_8_32_2 doi: 10.1002/adfm.201001530 – ident: e_1_2_8_71_2 doi: 10.1002/adma.201100304 – ident: e_1_2_8_205_2 doi: 10.1063/1.3683517 – ident: e_1_2_8_210_2 doi: 10.1038/ncomms2021 – ident: e_1_2_8_63_2 doi: 10.1038/nnano.2008.215 – ident: e_1_2_8_3_2 doi: 10.1142/p080 – ident: e_1_2_8_164_2 doi: 10.1063/1.3622767 – ident: e_1_2_8_57_2 doi: 10.1088/0953-8984/15/42/003 – ident: e_1_2_8_77_2 doi: 10.1143/JJAP.50.070108 – ident: e_1_2_8_200_2 doi: 10.1021/nn2004298 – ident: e_1_2_8_48_2 doi: 10.1021/nn203771u – ident: e_1_2_8_4_2 doi: 10.1016/j.ssc.2008.02.024 – ident: e_1_2_8_179_2 doi: 10.1021/nl9039636 – ident: e_1_2_8_215_2 doi: 10.1021/nl0259232 – ident: e_1_2_8_53_2 doi: 10.1002/adma.201202699 – ident: e_1_2_8_106_2 doi: 10.1063/1.1940727 – ident: e_1_2_8_8_2 doi: 10.1021/nl204545q – ident: e_1_2_8_114_2 doi: 10.1021/nn800031m – ident: e_1_2_8_82_2 doi: 10.1063/1.3676277 – ident: e_1_2_8_47_2 doi: 10.1126/science.1086534 – ident: e_1_2_8_189_2 doi: 10.1021/nl202725w – ident: e_1_2_8_64_2 doi: 10.1126/science.1130681 – ident: e_1_2_8_168_2 doi: 10.1021/nn203771u – ident: e_1_2_8_196_2 doi: 10.1103/PhysRevB.80.045401 – ident: e_1_2_8_65_2 doi: 10.1021/nl072838r – ident: e_1_2_8_24_2 doi: 10.1038/nature10680 – ident: e_1_2_8_7_2 doi: 10.1021/nl103993z – ident: e_1_2_8_90_2 doi: 10.1371/journal.pone.0042315 – ident: e_1_2_8_127_2 doi: 10.1021/nn800434d – ident: e_1_2_8_103_2 doi: 10.1038/nmat769 – ident: e_1_2_8_190_2 doi: 10.1038/am.2012.10 – ident: e_1_2_8_208_2 doi: 10.1021/nl203691d – ident: e_1_2_8_139_2 doi: 10.1143/APEX.4.105101 – ident: e_1_2_8_88_2 doi: 10.1039/c0jm00331j – ident: e_1_2_8_174_2 doi: 10.1038/nnano.2010.8 – ident: e_1_2_8_26_2 doi: 10.1126/science.1174290 – ident: e_1_2_8_49_2 doi: 10.1038/nnano.2006.52 – ident: e_1_2_8_99_2 doi: 10.1021/nl061534m – ident: e_1_2_8_102_2 doi: 10.1021/nn800354m – ident: e_1_2_8_39_2 doi: 10.1007/s11426-012-4503-3 – ident: e_1_2_8_156_2 doi: 10.1021/nl049806d – ident: e_1_2_8_43_2 doi: 10.1016/S0009-2614(99)01379-2 – ident: e_1_2_8_146_2 doi: 10.1021/jp9051402 – ident: e_1_2_8_214_2 doi: 10.1039/C2CS35325C – ident: e_1_2_8_84_2 doi: 10.1063/1.4772541 – ident: e_1_2_8_186_2 doi: 10.1038/nmat2968 – ident: e_1_2_8_54_2 doi: 10.1021/nn302185d – ident: e_1_2_8_78_2 doi: 10.1016/j.physe.2009.11.080 – ident: e_1_2_8_34_2 doi: 10.1002/adma.200602223 – ident: e_1_2_8_138_2 doi: 10.1039/c2jm34598f – volume-title: Physics of Semiconductor Devices year: 2007 ident: e_1_2_8_96_2 – ident: e_1_2_8_187_2 doi: 10.1103/PhysRevB.76.073103 – ident: e_1_2_8_30_2 doi: 10.1002/smll.201002009 – ident: e_1_2_8_120_2 doi: 10.1002/adma.200800617 – ident: e_1_2_8_50_2 doi: 10.1038/ncomms1313 – ident: e_1_2_8_15_2 doi: 10.1126/science.1158877 – ident: e_1_2_8_44_2 doi: 10.1038/nnano.2007.300 – ident: e_1_2_8_25_2 doi: 10.1021/ja074927b – ident: e_1_2_8_117_2 doi: 10.1021/cm049598q – ident: e_1_2_8_42_2 doi: 10.1116/1.1380721 – ident: e_1_2_8_97_2 doi: 10.1021/nn301199j – ident: e_1_2_8_61_2 doi: 10.1021/nl101680s – ident: e_1_2_8_160_2 doi: 10.1021/nl901802m – ident: e_1_2_8_28_2 doi: 10.1016/j.surfcoat.2011.02.017 – ident: e_1_2_8_14_2 doi: 10.1038/nmat1849 – ident: e_1_2_8_137_2 doi: 10.1021/nn3026172 – ident: e_1_2_8_31_2 doi: 10.1021/nn204848r – ident: e_1_2_8_134_2 doi: 10.1021/nl202765b – ident: e_1_2_8_191_2 doi: 10.1126/science.1218461 – ident: e_1_2_8_157_2 doi: 10.1126/science.1058782 – ident: e_1_2_8_12_2 doi: 10.1126/science.1156965 – ident: e_1_2_8_178_2 doi: 10.1038/nature08105 – ident: e_1_2_8_116_2 doi: 10.1002/adma.200500517 – ident: e_1_2_8_211_2 doi: 10.1038/nmat3169 – ident: e_1_2_8_76_2 doi: 10.1038/nnano.2011.196 – ident: e_1_2_8_155_2 doi: 10.1021/ja046482m – ident: e_1_2_8_119_2 doi: 10.1088/0957-4484/23/34/344017 – ident: e_1_2_8_2_2 doi: 10.1126/science.1102896 – ident: e_1_2_8_109_2 doi: 10.1021/nl902788u – ident: e_1_2_8_153_2 doi: 10.1126/science.1177599 – ident: e_1_2_8_21_2 doi: 10.1016/j.pmatsci.2011.03.003 – ident: e_1_2_8_46_2 doi: 10.1126/science.1156588 – ident: e_1_2_8_125_2 doi: 10.1021/nl203316r – ident: e_1_2_8_69_2 doi: 10.1021/ar200229q – ident: e_1_2_8_183_2 doi: 10.1038/nmat2710 – ident: e_1_2_8_59_2 doi: 10.1016/j.ces.2006.02.020 – ident: e_1_2_8_162_2 doi: 10.1126/science.1133781 – ident: e_1_2_8_132_2 doi: 10.1021/nn800708w – ident: e_1_2_8_167_2 doi: 10.1126/science.1156588 – ident: e_1_2_8_11_2 doi: 10.1021/nl052145f – ident: e_1_2_8_22_2 doi: 10.1088/0022-3727/44/31/313001 – ident: e_1_2_8_129_2 doi: 10.1021/nl903272n – ident: e_1_2_8_141_2 doi: 10.1038/39827 – ident: e_1_2_8_194_2 doi: 10.1021/nl900913c – ident: e_1_2_8_122_2 doi: 10.1038/nature07110 – ident: e_1_2_8_58_2 doi: 10.1063/1.121624 – ident: e_1_2_8_140_2 doi: 10.1143/JJAP.51.06FD18 – ident: e_1_2_8_67_2 doi: 10.1126/science.1171245 – ident: e_1_2_8_201_2 doi: 10.1142/S1793292009001538 – ident: e_1_2_8_105_2 doi: 10.1063/1.2186100 – ident: e_1_2_8_185_2 doi: 10.1038/nnano.2010.172 – ident: e_1_2_8_145_2 doi: 10.1039/C1JM14071J – ident: e_1_2_8_86_2 doi: 10.1002/adfm.200801065 – ident: e_1_2_8_154_2 doi: 10.1126/science.1087691 – ident: e_1_2_8_181_2 doi: 10.1021/nl803279t – ident: e_1_2_8_202_2 doi: 10.1002/adma.201003188 – ident: e_1_2_8_199_2 doi: 10.1088/0957-4484/21/16/165201 – ident: e_1_2_8_60_2 doi: 10.1021/nn200338r – ident: e_1_2_8_33_2 doi: 10.1002/adma.201201386 – ident: e_1_2_8_126_2 doi: 10.1038/nnano.2011.1 – ident: e_1_2_8_158_2 doi: 10.1021/nl0509935 – ident: e_1_2_8_87_2 doi: 10.1039/B913168J – ident: e_1_2_8_70_2 doi: 10.1016/j.ssc.2012.04.056 – ident: e_1_2_8_74_2 doi: 10.1038/ncomms1702 – ident: e_1_2_8_172_2 doi: 10.1038/nature07919 – ident: e_1_2_8_121_2 doi: 10.1021/nn100966s – ident: e_1_2_8_131_2 doi: 10.1063/1.2431465 – ident: e_1_2_8_180_2 doi: 10.1103/PhysRevB.84.195453 – ident: e_1_2_8_128_2 doi: 10.1002/adma.201201794 – ident: e_1_2_8_73_2 doi: 10.1038/nnano.2010.132 – ident: e_1_2_8_36_2 doi: 10.1039/c2nr31317k – ident: e_1_2_8_51_2 doi: 10.1021/nn302768h – volume: 9 start-page: 301 year: 2011 ident: e_1_2_8_52_2 publication-title: Phys. Status Solidi doi: 10.1002/pssr.201105289 – ident: e_1_2_8_111_2 doi: 10.1021/ja8023059 – ident: e_1_2_8_150_2 doi: 10.1021/ja036622c – ident: e_1_2_8_75_2 doi: 10.1088/0957-4484/17/14/011 – ident: e_1_2_8_94_2 doi: 10.1002/pssa.200925088 – ident: e_1_2_8_37_2 doi: 10.1038/am.2012.27 – ident: e_1_2_8_177_2 doi: 10.1038/nnano.2011.251 – ident: e_1_2_8_118_2 doi: 10.1016/j.eurpolymj.2006.12.012 – ident: e_1_2_8_93_2 doi: 10.1021/ja058725w – ident: e_1_2_8_173_2 doi: 10.1103/PhysRevLett.97.216803 – ident: e_1_2_8_55_2 doi: 10.1038/nnano.2012.189 – ident: e_1_2_8_206_2 doi: 10.1021/nl202134z – ident: e_1_2_8_20_2 doi: 10.1002/adma.201001068 – ident: e_1_2_8_95_2 doi: 10.1016/j.tca.2012.03.004 – ident: e_1_2_8_18_2 doi: 10.1038/nphoton.2010.186 – ident: e_1_2_8_161_2 doi: 10.1021/ja061324b – ident: e_1_2_8_112_2 doi: 10.1021/nn201414d – ident: e_1_2_8_136_2 doi: 10.1021/nn200919v – ident: e_1_2_8_133_2 doi: 10.1021/nl902522f |
SSID | ssj0031247 |
Score | 2.5491793 |
SecondaryResourceType | review_article |
Snippet | Carbon nanotubes (CNTs) and graphene have attracted great attention for numerous applications for future flexible electronics, owing to their supreme... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1188 |
SubjectTerms | Carbon carbon nanotubes Categories Electronics flexible devices graphene Nanocomposites Nanomaterials Nanostructure Nanotechnology Semiconductor devices Thin films thin-film transistors Transistors |
Title | A Review of Carbon Nanotube- and Graphene-Based Flexible Thin-Film Transistors |
URI | https://api.istex.fr/ark:/67375/WNG-52KP5SRG-N/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201203154 https://www.ncbi.nlm.nih.gov/pubmed/23519953 https://www.proquest.com/docview/1326032380 https://www.proquest.com/docview/1417554759 https://www.proquest.com/docview/1326729772 https://www.proquest.com/docview/1439727668 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQucCB9yNQkJEQnNImduwkx1KxW0G7Qn2I3qyx15aqbhO0Dwlx4ifwG_klzDi7oYsKSHBMPI78mPF8E9vfMPayDCHoIPLU-wwwQFEyrcDX6ThIlylncyvpNvLBSO-dFO9O1emlW_wdP0T_w40sI67XZOBgZ9s_SUNnFxPaOsgF5SkgQlA6sEWo6LDnj5LovGJ2FfRZKRFvrVgbM7G9Xn3NK12nAf58FeRcR7DRBQ1uM1g1vjt5cr61mNst9-UXXsf_6d0ddmuJT_lOp1B32TXf3GM3L7EW3mfHO7zbUeBt4LswtW3DcZFu5wvrv3_9xqEZ8yHxYOMyis9v0E-O-YCIN-3Ec0oUim8HZ5MLHh1l5CmZPWAng7fHu3vpMjlD6nCNLNJcg4RQyEpLrwtfQgWVcMI5WYm6UCKo0pUOggRFBRi3OCtqAF8RRPBBPmQbTdv4x4w7VRJ_OYwtYg2Qqs5DFjLvMh2cd0InLF1NjnFL5nJKoDExHeeyMDRaph-thL3u5T91nB2_lXwV57oXg-k5nXQrlfk4Ghol3n9QR4dDM0rY5koZzNLIZwYDeZ1JxDzZ1cUFQjNFfIoJe9EXo_XSlgw0vl10n8CuY4jzBxnCjKLUukrYo04P-_YKyq9YK5kwEbXpL_01Rwf7-_3Tk3-p9JTdEDEjSJEKsck25tOFf4a4bG6fR9v7AdWpMBI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CdgEseD8CBYyEYOU2sWMnWZbCzEBnRqidCnaW7bEl1GmC5iEhVnwC38iX4JtMAoMKSLB0bEd-Xd_j1zkATzPvvfQsoc7FOixQBKe5dgWdem5jYU1iOL5GHo3l4CR98160twnxLUzDD9FtuKFl1PM1GjhuSO_9YA1dnM3w7CBhKFSQXoRtlPVGEYOXRx2DFA_uq9ZXCV6LIvVWy9sYs73N_Bt-aRub-NN5oHMTw9ZOqHcNTFv85u7J6e5qaXbt51-YHf-rftfh6hqikv1mTN2AC668CVd-Ii68BZN90hwqkMqTAz03VUnCPF0tV8Z9-_KV6HJK-kiFHWbSEH4RXOWU9JB708wcQa3Q8LX3YXZGal9ZU5UsbsNJ79XkYEDX-gzUhmkypYnUXPuU55I7mbpM5zpnllnLc1akgnmR2cxqz7XAiLB0sYYVWrscUYLz_A5slVXp7gGxIkMKcz01AW5oLorExz52NpbeOstkBLTtHWXX5OWooTFTDe0yU9haqmutCJ536T82tB2_Tfms7uwumZ6f4mW3TKh3474S7PCtOD7qq3EEO-1oUGs7X6iwlpcxD7AnPj86DehMIKViBE-66GDAeCqjS1etml-EqodVzh_SIGxkmZR5BHebgdiVl6HEYiF4BKweTn-przoeDYdd6P6_ZHoMlwaT0VANX48PH8BlVguEpJSxHdhazlfuYYBpS_OoNsTvvhQ0LA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKyE4lDcNFDASglPaxI6d5FgKu4VuV1UfojfLcWwJdZtU-5AQJ34Cv5FfwkyyG7qogATHxOPIjxnPN7H9DcDL1HuvPI9D5yKDAYoUYWZcHpZe2EjaIi4E3UbeH6rdk-TDqTy9dIu_5YfofriRZTTrNRn4Rem3fpKGTs5HtHUQc8pTkFyH1UShxRAsOuwIpAR6rya9CjqtkJi3FrSNEd9arr_kllZphD9fhTmXIWzjg3q3wSxa3x49OducTYtN--UXYsf_6d4dWJsDVLbdatRduOaqe3DrEm3hfTjeZu2WAqs92zHjoq4YrtL1dFa471-_MVOVrE9E2LiO4vMbdJQl6xHzZjFyjDKF4tvep9E5azxlQ1QyeQAnvXfHO7vhPDtDaHGRTMJYGWF8IjIlnEpcajKTccutFRnPE8m9TG1qjRdGUgEGLrbguTEuI4zgvHgIK1VduXVgVqZEYG7KAsGGETKPfeQjZyPlrbNcBRAuJkfbOXU5ZdAY6ZZ0mWsaLd2NVgCvO_mLlrTjt5KvmrnuxMz4jI66pVJ_HPa15HsH8uiwr4cBbCyUQc-tfKIxkleRQNATXV2cIDaTRKgYwIuuGM2X9mRM5epZ-wnsOsY4f5Ah0MhTpbIAHrV62LWXU4LFXIoAeKNNf-mvPtofDLqnx_9S6TncOHjb04P3w70ncJM32UGSkPMNWJmOZ-4pYrRp8awxwx8ShDLk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Carbon+Nanotube%E2%80%90+and+Graphene%E2%80%90Based+Flexible+Thin%E2%80%90Film+Transistors&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Sun%2C+Dong%E2%80%90Ming&rft.au=Liu%2C+Chang&rft.au=Ren%2C+Wen%E2%80%90Cai&rft.au=Cheng%2C+Hui%E2%80%90Ming&rft.date=2013-04-22&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=9&rft.issue=8&rft.spage=1188&rft.epage=1205&rft_id=info:doi/10.1002%2Fsmll.201203154&rft.externalDBID=10.1002%252Fsmll.201203154&rft.externalDocID=SMLL201203154 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |