A Review of Carbon Nanotube- and Graphene-Based Flexible Thin-Film Transistors

Carbon nanotubes (CNTs) and graphene have attracted great attention for numerous applications for future flexible electronics, owing to their supreme properties including exceptionally high electronic conductivity and mechanical strength. Here, the progress of CNT‐ and graphene‐based flexible thin‐f...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 9; no. 8; pp. 1188 - 1205
Main Authors Sun, Dong-Ming, Liu, Chang, Ren, Wen-Cai, Cheng, Hui-Ming
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 22.04.2013
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1613-6810
1613-6829
1613-6829
DOI10.1002/smll.201203154

Cover

Loading…
Abstract Carbon nanotubes (CNTs) and graphene have attracted great attention for numerous applications for future flexible electronics, owing to their supreme properties including exceptionally high electronic conductivity and mechanical strength. Here, the progress of CNT‐ and graphene‐based flexible thin‐film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State‐of‐the‐art fabrication techniques of thin‐film transistors are divided into three categories: solid‐phase, liquid‐phase, and gas‐phase techniques, and possible scale‐up approaches to achieve realistic production of flexible nanocarbon‐based transistors are discussed. In particular, the recent progress in flexible all‐carbon nanomaterial transistor research is highlighted, and this all‐carbon strategy opens up a perspective to realize extremely flexible, stretchable, and transparent electronics with a relatively low‐cost and fast fabrication technique, compared to traditional rigid silicon, metal and metal oxide electronics. The progress of carbon nanotube‐ and graphene‐based flexible thin‐film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State‐of‐the‐art fabrication techniques of thin‐film transistors are divided into three categories and possible scale‐up approaches to achieve realistic production of flexible nanocarbon‐based transistors are discussed. The recent progress in flexible all‐carbon nanomaterial transistor research is highlighted.
AbstractList Carbon nanotubes (CNTs) and graphene have attracted great attention for numerous applications for future flexible electronics, owing to their supreme properties including exceptionally high electronic conductivity and mechanical strength. Here, the progress of CNT‐ and graphene‐based flexible thin‐film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State‐of‐the‐art fabrication techniques of thin‐film transistors are divided into three categories: solid‐phase, liquid‐phase, and gas‐phase techniques, and possible scale‐up approaches to achieve realistic production of flexible nanocarbon‐based transistors are discussed. In particular, the recent progress in flexible all‐carbon nanomaterial transistor research is highlighted, and this all‐carbon strategy opens up a perspective to realize extremely flexible, stretchable, and transparent electronics with a relatively low‐cost and fast fabrication technique, compared to traditional rigid silicon, metal and metal oxide electronics. The progress of carbon nanotube‐ and graphene‐based flexible thin‐film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State‐of‐the‐art fabrication techniques of thin‐film transistors are divided into three categories and possible scale‐up approaches to achieve realistic production of flexible nanocarbon‐based transistors are discussed. The recent progress in flexible all‐carbon nanomaterial transistor research is highlighted.
Carbon nanotubes (CNTs) and graphene have attracted great attention for numerous applications for future flexible electronics, owing to their supreme properties including exceptionally high electronic conductivity and mechanical strength. Here, the progress of CNT- and graphene-based flexible thin-film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State-of-the-art fabrication techniques of thin-film transistors are divided into three categories: solid-phase, liquid-phase, and gas-phase techniques, and possible scale-up approaches to achieve realistic production of flexible nanocarbon-based transistors are discussed. In particular, the recent progress in flexible all-carbon nanomaterial transistor research is highlighted, and this all-carbon strategy opens up a perspective to realize extremely flexible, stretchable, and transparent electronics with a relatively low-cost and fast fabrication technique, compared to traditional rigid silicon, metal and metal oxide electronics.
Carbon nanotubes (CNTs) and graphene have attracted great attention for numerous applications for future flexible electronics, owing to their supreme properties including exceptionally high electronic conductivity and mechanical strength. Here, the progress of CNT- and graphene-based flexible thin-film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State-of-the-art fabrication techniques of thin-film transistors are divided into three categories: solid-phase, liquid-phase, and gas-phase techniques, and possible scale-up approaches to achieve realistic production of flexible nanocarbon-based transistors are discussed. In particular, the recent progress in flexible all-carbon nanomaterial transistor research is highlighted, and this all-carbon strategy opens up a perspective to realize extremely flexible, stretchable, and transparent electronics with a relatively low-cost and fast fabrication technique, compared to traditional rigid silicon, metal and metal oxide electronics.Carbon nanotubes (CNTs) and graphene have attracted great attention for numerous applications for future flexible electronics, owing to their supreme properties including exceptionally high electronic conductivity and mechanical strength. Here, the progress of CNT- and graphene-based flexible thin-film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State-of-the-art fabrication techniques of thin-film transistors are divided into three categories: solid-phase, liquid-phase, and gas-phase techniques, and possible scale-up approaches to achieve realistic production of flexible nanocarbon-based transistors are discussed. In particular, the recent progress in flexible all-carbon nanomaterial transistor research is highlighted, and this all-carbon strategy opens up a perspective to realize extremely flexible, stretchable, and transparent electronics with a relatively low-cost and fast fabrication technique, compared to traditional rigid silicon, metal and metal oxide electronics.
Carbon nanotubes (CNTs) and graphene have attracted great attention for numerous applications for future flexible electronics, owing to their supreme properties including exceptionally high electronic conductivity and mechanical strength. Here, the progress of CNT- and graphene-based flexible thin-film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State-of-the-art fabrication techniques of thin-film transistors are divided into three categories: solid-phase, liquid-phase, and gas-phase techniques, and possible scale-up approaches to achieve realistic production of flexible nanocarbon-based transistors are discussed. In particular, the recent progress in flexible all-carbon nanomaterial transistor research is highlighted, and this all-carbon strategy opens up a perspective to realize extremely flexible, stretchable, and transparent electronics with a relatively low-cost and fast fabrication technique, compared to traditional rigid silicon, metal and metal oxide electronics. The progress of carbon nanotube- and graphene-based flexible thin-film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State-of-the-art fabrication techniques of thin-film transistors are divided into three categories and possible scale-up approaches to achieve realistic production of flexible nanocarbon-based transistors are discussed. The recent progress in flexible all-carbon nanomaterial transistor research is highlighted.
Carbon nanotubes (CNTs) and graphene have attracted great attention for numerous applications for future flexible electronics, owing to their supreme properties including exceptionally high electronic conductivity and mechanical strength. Here, the progress of CNT- and graphene-based flexible thin-film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State-of-the-art fabrication techniques of thin-film transistors are divided into three categories: solid-phase, liquid-phase, and gas-phase techniques, and possible scale-up approaches to achieve realistic production of flexible nanocarbon-based transistors are discussed. In particular, the recent progress in flexible all-carbon nanomaterial transistor research is highlighted, and this all-carbon strategy opens up a perspective to realize extremely flexible, stretchable, and transparent electronics with a relatively low-cost and fast fabrication technique, compared to traditional rigid silicon, metal and metal oxide electronics. [PUBLICATION ABSTRACT]
Author Cheng, Hui-Ming
Ren, Wen-Cai
Sun, Dong-Ming
Liu, Chang
Author_xml – sequence: 1
  givenname: Dong-Ming
  surname: Sun
  fullname: Sun, Dong-Ming
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China, Fax: +86-24-2390-3126, Website: http://carbon.imr.ac.cn
– sequence: 2
  givenname: Chang
  surname: Liu
  fullname: Liu, Chang
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China, Fax: +86-24-2390-3126, Website: http://carbon.imr.ac.cn
– sequence: 3
  givenname: Wen-Cai
  surname: Ren
  fullname: Ren, Wen-Cai
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China, Fax: +86-24-2390-3126, Website: http://carbon.imr.ac.cn
– sequence: 4
  givenname: Hui-Ming
  surname: Cheng
  fullname: Cheng, Hui-Ming
  email: cheng@imr.ac.cn
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China, Fax: +86-24-2390-3126, Website: http://carbon.imr.ac.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23519953$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvEzEURi1URB-wZYlGYsNmgh_jsWdZIhIqQkBtEEvL49xRXTx2as_Q9t_XUdoIVYKufCWf8-na3zE68MEDQm8JnhCM6cfUOzehmFDMCK9eoCNSE1bWkjYH-5ngQ3Sc0hXODK3EK3RIGSdNw9kRWp4W5_DHwk0RumKqYxt8sdQ-DGMLZaH9uphHvbkED-UnnWBdzBzc2tZBsbq0vpxZ1xerqH2yaQgxvUYvO-0SvHk4T9DP2efV9Eu5-D4_m54uSsOZrEpSa6a7ismaQV2B0FJLaqgxLC9ecdpxYYTRHdN8e8EbYVraaA1SEsmhYyfowy53E8P1CGlQvU0GnNMewpgUqVgjqKhr-TzKaC1oIwTN6Psn6FUYo88PyYFEcF4J3vyXylmYUSZxpt49UGPbw1ptou11vFOPX5-BageYGFKK0CljBz3Y4IeorVMEq23Datuw2jectckT7TH5n0KzE26sg7tnaHXxbbH42y13bm4Xbveujr9VLZjg6tdyrjj9-oNfnM_Vkt0D7VDEQQ
CitedBy_id crossref_primary_10_1016_j_carbon_2020_06_056
crossref_primary_10_1002_adem_201700868
crossref_primary_10_1007_s40820_022_00929_y
crossref_primary_10_1016_j_chroma_2015_08_039
crossref_primary_10_1002_admi_201700508
crossref_primary_10_1016_j_spmi_2018_01_010
crossref_primary_10_1209_0295_5075_112_37008
crossref_primary_10_1002_pol_20200132
crossref_primary_10_1021_acsnano_0c01606
crossref_primary_10_1016_j_inoche_2025_114117
crossref_primary_10_1109_ACCESS_2020_3048173
crossref_primary_10_1016_j_mtcomm_2020_101317
crossref_primary_10_1002_smll_201402422
crossref_primary_10_1002_adfm_201403293
crossref_primary_10_1016_j_cej_2019_03_246
crossref_primary_10_1002_elan_202400084
crossref_primary_10_1016_j_cej_2019_04_173
crossref_primary_10_1021_acs_chemrev_8b00045
crossref_primary_10_1080_15440478_2024_2418347
crossref_primary_10_1002_admi_201600215
crossref_primary_10_1007_s12274_020_2628_9
crossref_primary_10_1016_j_matchemphys_2014_06_032
crossref_primary_10_1088_2053_1583_aab921
crossref_primary_10_1088_2053_1591_aa5687
crossref_primary_10_1063_1_4958850
crossref_primary_10_3390_mi13040509
crossref_primary_10_1016_j_physe_2020_113960
crossref_primary_10_1021_acs_jpcc_9b07724
crossref_primary_10_1016_j_cplett_2019_04_080
crossref_primary_10_1021_acsaelm_4c00305
crossref_primary_10_1021_acs_jpclett_7b02229
crossref_primary_10_1016_j_commatsci_2024_113347
crossref_primary_10_1021_acs_langmuir_0c00844
crossref_primary_10_1088_1361_6528_aaabd1
crossref_primary_10_1021_acsomega_8b02735
crossref_primary_10_1002_aelm_201700427
crossref_primary_10_1016_j_optcom_2014_12_076
crossref_primary_10_1021_acsami_0c04439
crossref_primary_10_1021_acsnano_4c01087
crossref_primary_10_1016_j_jenvman_2019_109814
crossref_primary_10_3390_ma17133293
crossref_primary_10_1007_s40820_024_01534_x
crossref_primary_10_1115_1_4067053
crossref_primary_10_1016_j_mssp_2024_108929
crossref_primary_10_1002_smll_201501298
crossref_primary_10_1002_ppap_202000009
crossref_primary_10_1016_j_nantod_2015_11_008
crossref_primary_10_1021_acsphotonics_3c00737
crossref_primary_10_1002_adfm_201902273
crossref_primary_10_1007_s11664_020_08724_4
crossref_primary_10_1115_1_4040552
crossref_primary_10_1039_C5CP02938D
crossref_primary_10_1016_j_carbon_2013_12_078
crossref_primary_10_1016_j_carbon_2021_05_065
crossref_primary_10_1139_cjc_2016_0205
crossref_primary_10_1007_s12274_014_0652_3
crossref_primary_10_1016_j_physe_2020_114110
crossref_primary_10_1002_bio_4334
crossref_primary_10_1007_s41061_016_0083_6
crossref_primary_10_1002_aelm_201600229
crossref_primary_10_1038_s41928_020_00513_5
crossref_primary_10_1088_1741_2552_ac1e45
crossref_primary_10_3390_catal5031574
crossref_primary_10_1016_j_electacta_2017_07_082
crossref_primary_10_3390_ma15238511
crossref_primary_10_1039_C4CS00181H
crossref_primary_10_1039_C5CP05336F
crossref_primary_10_1103_PhysRevApplied_3_044003
crossref_primary_10_1021_acsami_7b03151
crossref_primary_10_1002_smll_201700918
crossref_primary_10_1016_j_coco_2018_12_009
crossref_primary_10_3390_ma11101857
crossref_primary_10_1021_acs_jpcc_0c05000
crossref_primary_10_1039_c4cc01560f
crossref_primary_10_1039_C6RA23621A
crossref_primary_10_1002_adfm_201801545
crossref_primary_10_1039_D3NR04396G
crossref_primary_10_1002_pssa_201532699
crossref_primary_10_1142_S0218625X22300052
crossref_primary_10_1002_pi_5836
crossref_primary_10_1063_1_4864629
crossref_primary_10_1002_adfm_202205111
crossref_primary_10_3390_ma15144820
crossref_primary_10_1021_am4053656
crossref_primary_10_1088_2053_1583_aac8a9
crossref_primary_10_1088_1742_6596_2478_4_042010
crossref_primary_10_1109_TED_2020_3008891
crossref_primary_10_3390_molecules28031471
crossref_primary_10_1039_C5RA21790C
crossref_primary_10_1088_2058_8585_abe459
crossref_primary_10_1186_s11671_015_1013_1
crossref_primary_10_1016_j_carbon_2014_09_063
crossref_primary_10_1002_elps_201800342
crossref_primary_10_1080_09276440_2023_2229586
crossref_primary_10_1016_j_enmf_2020_11_005
crossref_primary_10_1002_aelm_202300238
crossref_primary_10_3390_s21051907
crossref_primary_10_1039_C4TC00622D
crossref_primary_10_1002_adma_201905028
crossref_primary_10_1002_aenm_201601883
crossref_primary_10_1021_acssensors_8b00056
crossref_primary_10_1021_jp506945f
crossref_primary_10_1016_j_mseb_2021_115181
crossref_primary_10_1088_1361_6528_ab703f
crossref_primary_10_1016_j_biomaterials_2023_122271
crossref_primary_10_1016_j_jmst_2016_09_024
crossref_primary_10_1039_C6TA05286J
crossref_primary_10_1021_acsanm_0c03040
crossref_primary_10_1039_C4NR01600A
crossref_primary_10_1088_2058_8585_aa6a82
crossref_primary_10_1039_D4TA02396J
crossref_primary_10_1039_C8CS00738A
crossref_primary_10_1016_j_mejo_2015_11_006
crossref_primary_10_1007_s10854_021_06852_z
crossref_primary_10_1002_chem_201504444
crossref_primary_10_1002_advs_202001778
crossref_primary_10_1093_annhyg_meu110
crossref_primary_10_1002_admt_202101506
crossref_primary_10_1007_s11224_014_0476_5
crossref_primary_10_1088_1402_4896_ad9a0e
crossref_primary_10_1039_C5RA02704G
crossref_primary_10_1016_j_synthmet_2015_05_004
crossref_primary_10_1109_TCPMT_2016_2586023
crossref_primary_10_1016_j_orgel_2014_08_003
crossref_primary_10_1039_C6RA02524B
crossref_primary_10_1016_j_snb_2014_03_096
crossref_primary_10_1002_aelm_201800737
crossref_primary_10_1007_s40097_020_00378_2
crossref_primary_10_1007_s11467_019_0937_9
crossref_primary_10_1021_nn505979j
crossref_primary_10_1063_1_4972867
crossref_primary_10_1002_smll_201400892
crossref_primary_10_1021_acsami_6b06932
crossref_primary_10_1007_s12613_021_2358_3
crossref_primary_10_1002_adfm_201604447
crossref_primary_10_1021_nn502946f
crossref_primary_10_1039_D0NA01021A
crossref_primary_10_1021_acsnano_7b02695
crossref_primary_10_1039_D0NA00881H
crossref_primary_10_1186_s40486_022_00151_w
crossref_primary_10_1016_j_jechem_2020_05_050
crossref_primary_10_1002_pssa_201701003
crossref_primary_10_1016_j_flatc_2022_100378
crossref_primary_10_1007_s12274_017_1945_0
crossref_primary_10_1016_j_carbon_2016_02_029
crossref_primary_10_1039_C3CP54812K
crossref_primary_10_1002_adem_202301730
crossref_primary_10_1039_C4CP02155J
crossref_primary_10_1063_1_4897528
crossref_primary_10_1002_pssa_201532774
crossref_primary_10_1088_1402_4896_ad8f79
crossref_primary_10_1557_mrs_2017_238
crossref_primary_10_1038_srep28049
crossref_primary_10_1021_am506971b
crossref_primary_10_1088_2631_7990_ad492e
crossref_primary_10_1021_acs_jpcc_5b02633
crossref_primary_10_1049_cje_2021_00_032
crossref_primary_10_1002_adom_202002046
crossref_primary_10_1002_smll_202310257
crossref_primary_10_1515_polyeng_2015_0332
crossref_primary_10_1002_pola_27715
crossref_primary_10_1007_s13369_014_1387_x
crossref_primary_10_1088_0960_1317_24_4_045001
crossref_primary_10_1039_D2NR06771D
crossref_primary_10_1186_s11671_015_0784_8
crossref_primary_10_1080_19475411_2023_2261775
crossref_primary_10_1007_s11434_016_1075_1
crossref_primary_10_1039_C7NR00685C
crossref_primary_10_1016_j_cej_2024_155508
crossref_primary_10_1002_aenm_201801312
crossref_primary_10_1002_pol_20220362
crossref_primary_10_1088_0960_1317_24_9_095021
crossref_primary_10_1021_acsami_7b02684
crossref_primary_10_1021_acsnano_5b05325
crossref_primary_10_1002_adma_201602852
crossref_primary_10_1039_C6NR02540D
crossref_primary_10_1016_j_cej_2019_01_005
crossref_primary_10_1021_acs_chemmater_5b00672
crossref_primary_10_1016_j_jmmm_2025_172966
crossref_primary_10_1007_s00348_021_03247_y
crossref_primary_10_1016_j_elspec_2022_147281
crossref_primary_10_1038_srep39627
crossref_primary_10_1002_mame_201900244
crossref_primary_10_1021_acsami_4c08528
crossref_primary_10_1109_MNANO_2019_2927774
crossref_primary_10_1002_adma_202300034
crossref_primary_10_1016_j_mser_2016_08_002
crossref_primary_10_1016_j_mattod_2022_11_023
crossref_primary_10_1016_j_apsusc_2015_08_023
crossref_primary_10_1016_j_mseb_2014_02_019
crossref_primary_10_1002_smll_201403131
crossref_primary_10_1021_acs_macromol_5b00631
crossref_primary_10_1002_aelm_201800539
crossref_primary_10_1063_5_0077099
crossref_primary_10_1002_adma_201502549
crossref_primary_10_1007_s10853_015_9643_3
crossref_primary_10_1039_D3CP06341K
crossref_primary_10_1002_aelm_201500151
crossref_primary_10_1021_am405040z
crossref_primary_10_1039_C6NR00876C
crossref_primary_10_1039_D3PY00984J
crossref_primary_10_1080_1536383X_2020_1792445
crossref_primary_10_1002_smll_201401549
crossref_primary_10_1021_acs_energyfuels_0c00953
crossref_primary_10_1021_acsami_7b16634
crossref_primary_10_1039_D0TC05321J
crossref_primary_10_1080_00018732_2016_1226804
crossref_primary_10_1039_D3CP01436C
crossref_primary_10_1088_0268_1242_30_7_074001
crossref_primary_10_1016_j_apsusc_2020_146432
crossref_primary_10_1002_pssr_201700435
crossref_primary_10_1063_1_5006877
crossref_primary_10_1007_s11664_019_07049_1
crossref_primary_10_1002_adma_201901408
crossref_primary_10_3389_fchem_2018_00250
crossref_primary_10_1038_s41928_017_0008_6
crossref_primary_10_1063_1_5050998
crossref_primary_10_1002_pi_5555
crossref_primary_10_3390_jcs8110463
crossref_primary_10_1080_03602559_2015_1036441
crossref_primary_10_1002_adma_201306041
crossref_primary_10_1021_acsnano_8b03792
crossref_primary_10_1063_1_4973360
crossref_primary_10_1007_s12274_015_0725_y
crossref_primary_10_1186_s40580_017_0130_1
crossref_primary_10_1039_C7CP06267B
crossref_primary_10_1039_D0NJ01906B
crossref_primary_10_1002_chem_202000228
crossref_primary_10_1002_smll_201403155
crossref_primary_10_1002_smll_201401890
crossref_primary_10_1021_acs_jpclett_9b02874
crossref_primary_10_1103_PhysRevMaterials_1_046003
crossref_primary_10_1021_nn5048734
crossref_primary_10_1002_admt_202401054
crossref_primary_10_1002_adom_202202860
crossref_primary_10_1063_1_4884064
crossref_primary_10_1021_jp406536e
crossref_primary_10_1016_j_smmf_2024_100052
crossref_primary_10_1186_s40580_014_0015_5
crossref_primary_10_1002_smll_201401207
crossref_primary_10_1021_acsami_6b14580
crossref_primary_10_1016_j_cej_2019_123073
crossref_primary_10_1246_bcsj_20190368
crossref_primary_10_1021_acsami_7b15762
crossref_primary_10_1186_s11671_024_04027_3
crossref_primary_10_1016_j_carbon_2021_04_077
crossref_primary_10_1016_j_compositesb_2014_03_009
crossref_primary_10_1021_acsami_5b10439
crossref_primary_10_1007_s40684_021_00356_1
crossref_primary_10_1021_ma5014572
crossref_primary_10_1002_adma_201606586
crossref_primary_10_1021_acsanm_9b00451
crossref_primary_10_1039_C7SC02942J
crossref_primary_10_1016_j_physe_2016_09_009
crossref_primary_10_1021_acsaelm_1c00121
crossref_primary_10_1021_acsami_8b01116
crossref_primary_10_1002_admt_202001016
crossref_primary_10_1002_app_47805
crossref_primary_10_1021_acsnano_0c04259
crossref_primary_10_1039_C6PY00730A
crossref_primary_10_1186_s11671_015_0817_3
crossref_primary_10_1177_09673911241248419
crossref_primary_10_1016_j_flatc_2017_06_002
crossref_primary_10_1007_s40843_017_9077_x
crossref_primary_10_1039_C4NR06057A
crossref_primary_10_1002_adfm_201705568
crossref_primary_10_1002_adma_201802057
Cites_doi 10.1109/JSEN.2011.2167608
10.1109/JPROC.2012.2190168
10.1021/nl035097c
10.1038/354056a0
10.1063/1.3702570
10.1038/nnano.2010.89
10.1021/nl204088b
10.1016/j.carbon.2010.04.032
10.1021/nn1006094
10.1063/1.3467454
10.5772/1742
10.1021/nl202695v
10.1016/j.mee.2011.06.017
10.1021/nn101950n
10.1021/nn3005262
10.1038/nnano.2007.77
10.1002/adma.200501740
10.1021/nl2043375
10.1007/s12274-010-1022-4
10.1021/nl200758b
10.1007/s12274-009-9013-z
10.1126/science.273.5274.483
10.1021/nn201828y
10.1021/nl300948c
10.1038/nature11458
10.1103/PhysRevB.76.064120
10.1039/c2nr30994g
10.1103/PhysRevB.81.155433
10.1166/jnn.2010.2939
10.1021/nl062907m
10.1039/c39770000578
10.1021/jp710691j
10.1109/LED.2011.2163489
10.1007/s12274-011-0152-7
10.1088/0957-4484/21/42/425201
10.1063/1.2958285
10.1021/nn303070p
10.1021/nl104488z
10.1021/nl203968j
10.1039/c0jm00264j
10.1021/nl3012648
10.1103/PhysRevB.54.17954
10.1002/adma.200903689
10.1126/science.1182383
10.1021/nl034841q
10.1103/PhysRevLett.101.026803
10.1088/0957-4484/20/8/085201
10.1038/nmat2003
10.1021/nn2044609
10.1063/1.3242029
10.1021/ja2008278
10.1021/nn3020486
10.1038/am.2012.32
10.1126/science.1150878
10.1063/1.3077021
10.1021/nl0731872
10.1126/science.1157996
10.1016/j.carbon.2009.01.042
10.1021/nl101559n
10.1021/cr900070d
10.1143/APEX.5.055102
10.1002/adma.201103620
10.1073/pnas.0404450101
10.1063/1.1564291
10.1039/c2jm00102k
10.1021/nl9032318
10.1002/adfm.200900166
10.1021/nl035185x
10.1021/ja9068529
10.1038/nmat2082
10.3390/ijms10125257
10.1038/nnano.2011.6
10.1021/nl101832y
10.1002/adfm.201001530
10.1002/adma.201100304
10.1063/1.3683517
10.1038/ncomms2021
10.1038/nnano.2008.215
10.1142/p080
10.1063/1.3622767
10.1088/0953-8984/15/42/003
10.1143/JJAP.50.070108
10.1021/nn2004298
10.1021/nn203771u
10.1016/j.ssc.2008.02.024
10.1021/nl9039636
10.1021/nl0259232
10.1002/adma.201202699
10.1063/1.1940727
10.1021/nl204545q
10.1021/nn800031m
10.1063/1.3676277
10.1126/science.1086534
10.1021/nl202725w
10.1126/science.1130681
10.1103/PhysRevB.80.045401
10.1021/nl072838r
10.1038/nature10680
10.1021/nl103993z
10.1371/journal.pone.0042315
10.1021/nn800434d
10.1038/nmat769
10.1038/am.2012.10
10.1021/nl203691d
10.1143/APEX.4.105101
10.1039/c0jm00331j
10.1038/nnano.2010.8
10.1126/science.1174290
10.1038/nnano.2006.52
10.1021/nl061534m
10.1021/nn800354m
10.1007/s11426-012-4503-3
10.1021/nl049806d
10.1016/S0009-2614(99)01379-2
10.1021/jp9051402
10.1039/C2CS35325C
10.1063/1.4772541
10.1038/nmat2968
10.1021/nn302185d
10.1016/j.physe.2009.11.080
10.1002/adma.200602223
10.1039/c2jm34598f
10.1103/PhysRevB.76.073103
10.1002/smll.201002009
10.1002/adma.200800617
10.1038/ncomms1313
10.1126/science.1158877
10.1038/nnano.2007.300
10.1021/ja074927b
10.1021/cm049598q
10.1116/1.1380721
10.1021/nn301199j
10.1021/nl101680s
10.1021/nl901802m
10.1016/j.surfcoat.2011.02.017
10.1038/nmat1849
10.1021/nn3026172
10.1021/nn204848r
10.1021/nl202765b
10.1126/science.1218461
10.1126/science.1058782
10.1126/science.1156965
10.1038/nature08105
10.1002/adma.200500517
10.1038/nmat3169
10.1038/nnano.2011.196
10.1021/ja046482m
10.1088/0957-4484/23/34/344017
10.1126/science.1102896
10.1021/nl902788u
10.1126/science.1177599
10.1016/j.pmatsci.2011.03.003
10.1126/science.1156588
10.1021/nl203316r
10.1021/ar200229q
10.1038/nmat2710
10.1016/j.ces.2006.02.020
10.1126/science.1133781
10.1021/nn800708w
10.1021/nl052145f
10.1088/0022-3727/44/31/313001
10.1021/nl903272n
10.1038/39827
10.1021/nl900913c
10.1038/nature07110
10.1063/1.121624
10.1143/JJAP.51.06FD18
10.1126/science.1171245
10.1142/S1793292009001538
10.1063/1.2186100
10.1038/nnano.2010.172
10.1039/C1JM14071J
10.1002/adfm.200801065
10.1126/science.1087691
10.1021/nl803279t
10.1002/adma.201003188
10.1088/0957-4484/21/16/165201
10.1021/nn200338r
10.1002/adma.201201386
10.1038/nnano.2011.1
10.1021/nl0509935
10.1039/B913168J
10.1016/j.ssc.2012.04.056
10.1038/ncomms1702
10.1038/nature07919
10.1021/nn100966s
10.1063/1.2431465
10.1103/PhysRevB.84.195453
10.1002/adma.201201794
10.1038/nnano.2010.132
10.1039/c2nr31317k
10.1021/nn302768h
10.1002/pssr.201105289
10.1021/ja8023059
10.1021/ja036622c
10.1088/0957-4484/17/14/011
10.1002/pssa.200925088
10.1038/am.2012.27
10.1038/nnano.2011.251
10.1016/j.eurpolymj.2006.12.012
10.1021/ja058725w
10.1103/PhysRevLett.97.216803
10.1038/nnano.2012.189
10.1021/nl202134z
10.1002/adma.201001068
10.1016/j.tca.2012.03.004
10.1038/nphoton.2010.186
10.1021/ja061324b
10.1021/nn201414d
10.1021/nn200919v
10.1021/nl902522f
ContentType Journal Article
Copyright Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
7SP
F28
FR3
DOI 10.1002/smll.201203154
DatabaseName Istex
CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
PubMed
MEDLINE - Academic
Materials Research Database
CrossRef
Materials Research Database
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage 1205
ExternalDocumentID 3036330591
2942354341
23519953
10_1002_smll_201203154
SMLL201203154
ark_67375_WNG_52KP5SRG_N
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AGQPQ
AGYGG
CITATION
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
7SP
F28
FR3
ID FETCH-LOGICAL-c5384-16a3af43863e64e7a8a82c2cc3829452f57c7caf3a5a82c597cb29aae88185ef3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 02:03:20 EDT 2025
Fri Jul 11 06:49:26 EDT 2025
Fri Jul 25 12:14:38 EDT 2025
Fri Jul 25 12:07:19 EDT 2025
Wed Feb 19 02:15:51 EST 2025
Tue Jul 01 04:57:24 EDT 2025
Thu Apr 24 23:10:55 EDT 2025
Wed Jan 22 16:47:55 EST 2025
Wed Oct 30 09:52:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5384-16a3af43863e64e7a8a82c2cc3829452f57c7caf3a5a82c597cb29aae88185ef3
Notes ArticleID:SMLL201203154
istex:158B3130DB05AE529AEB0C7C274A56D8F70BFC0A
ark:/67375/WNG-52KP5SRG-N
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
PMID 23519953
PQID 1326032380
PQPubID 1046358
PageCount 18
ParticipantIDs proquest_miscellaneous_1439727668
proquest_miscellaneous_1326729772
proquest_journals_1417554759
proquest_journals_1326032380
pubmed_primary_23519953
crossref_citationtrail_10_1002_smll_201203154
crossref_primary_10_1002_smll_201203154
wiley_primary_10_1002_smll_201203154_SMLL201203154
istex_primary_ark_67375_WNG_52KP5SRG_N
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 22, 2013
PublicationDateYYYYMMDD 2013-04-22
PublicationDate_xml – month: 04
  year: 2013
  text: April 22, 2013
  day: 22
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2013
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References T. W. Kim, Y. Yang, F. Li, W. L. Kwan, Asia Mater. 2012, 4, e18.
Y. Sun, J. A. Rogers, Adv. Mater. 2007, 19, 1897.
J. Zhang, C. Wang, Y. Fu, Y. Che, C. Zhou, ACS Nano 2011, 4, 3284.
S. Z. Bisri, J. Gao, V. Derenskyi, W. Gomulya, I. Iezhokin, P. Gordiichuk, A. Herrmann, M. A. Loi, Adv. Mater. 2012, 24, 6147.
F. Gunes, G. H. Han, K. K. Kim, E. S. Kim, S. J. Chae, M. H. Park, H. K. Jeong, S. C. Lim, Y. H. Lee, Nano 2009, 2, 83.
J. Sun, B. Zhang, H. E. Katz, Adv. Funct. Mater. 2011, 21, 29.
J. Y. Hong, J. Jang, J. Mater. Chem. 2012, 22, 8179.
P. Chen, Y. Fu, R. Aminirad, C. Wang, J. Zhang, K. Wang, K. Galatsis, C. Zhou, Nano Lett. 2011, 11, 5301.
J. Zhang, Y. Fu, C. Wang, P. C. Chen, Z. Liu, W. Wei, C. Wu, M. E. Thompson, C. Zhou, Nano Lett. 2011, 11, 4852.
M. Y. Zavodchikova, T. Kulmala, A. G. Nasibulin, V. Ermolov, S. Franssila, K. Grigoras, E. I. Kauppinen, Nanotechnol. 2009, 20, 085201.
X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 2008, 319, 1229.
S. B. Kumar, J. Guo, Nano Lett. 2012, 12, 1362.
A. K. Geim, Science 2009, 324, 1530.
D. M. Sun, M. Y. Timmermans, Y. Tian, A. G. Nasibulin, E. I. Kauppinen, S. Kishimoto, T. Mizutani, Y. Ohno, Nat. Nanotechnol. 2011, 6, 156.
K. Kim, J. Y. Choi, T. Kim, S. H. Cho, H. J. Chung, Nature 2011, 479, 338.
G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, M. Chhowalla, J. Phys. Chem. C. 2009, 113, 15768.
A. Javey, J. Guo, D. B. Farmer, Q. Wang, D. W. Wang, R. G. Gordon, M. Lundstrom, H. J. Dai, Nano Lett. 2004, 4, 447.
S. K. Lee, B. J. Kim, H. Jang, S. C. Yoon, C. Lee, B. H. Hong, J. A. Rogers, J. H. Cho, J. H. Ahn, Nano. Lett. 2011, 11, 4642.
C. Brosseau, Surf. Coat. Technol. 2011, 206, 753.
Y. Miyata, K. Shiozawa, Y. Asada, Y. Ohno, R. Kitaura, T. Mizutani, H. Shinohara, Nano Res. 2011, 4, 963.
J. Lee, L. Tao, K. N. Parrish, Y. Hao, R. S. Ruoff, D. Akinwande, Appl. Phys. Lett. 2012, 101, 252109.
M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerences and Carbon Nanotubes, Academic Press, San Diego, US 1996.
G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, P. J. Kelly, Phys. Rev. Lett. 2008, 101, 026803.
H. Liu, D. Nishide, T. Tanaka, H. Kataura, Nat. Commun. 2011, 2, 309.
C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Adv. Funct. Mater. 2009, 19, 2577.
X. S. Wang, H. P. Tang, X. D. Li, X. Hua, Int. J. Mol. Sci. 2009, 10, 5257.
A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, Nano Lett. 2011, 11, 2396.
F. Leonard, A. A. Talin, Nat. Nanotechnol. 2011, 6, 773.
A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
F. Schwierz, Nat. Nanotechnol. 2010, 5, 487.
X. Liu, C. Wang, B. Cai, X. Xiao, S. Guo, Z. Fan, J. Li, X. Duan, L. Liao, Nano Lett. 2012, 12, 3596.
C. C. Lu, Y. C. Lin, C. H. Yeh, J. C. Huang, P. W. Chiu, ACS Nano 2012, 5, 4469.
S. Lee, K. Lee, C. H. Liu, G. S. Kulkarni, Z. Zhong, Nat. Commun. 2012, 3, 1018.
Q. Cao, M. G. Xia, M. Shim, J. A. Rogers, Adv. Mater. 2006, 16, 2355.
Y. Nosho, Y. Ohno, S. Kishimoto, T. Mizutani, Nanotechnol. 2006, 17, 3412.
J. M. P. Alaboson, Q. H. Wang, J. D. Emery, A. L. Lipson, M. J. Bedzyk, J. W. Elam, M. J. Pellin, M. C. Hersam, ACS Nano 2011, 5, 5223.
M. J. Panzer, C. D. Frisbie, Adv. Mater. 2008, 20, 3177.
D. McClain, N. Thomas, S. Youkey, R. Schaller, J. Jiao, K. P. O'Brien, Carbon 2009, 47, 1493.
S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, 3rd Ed., John Wiley & Sons, Inc., USA 2007.
A. Kaskela, A. G. Nasibulin, M. Y. Timmermans, B. Aitchison, A. Papadimitratos, Y. Tian, Z. Zhu, H. Jiang, D. P. Brown, A. Zakhidov, E. I. Kauppinen, Nano Lett. 2010, 10, 4349.
K. Balasubramanian, R. Sordan, M. Burghard, K. Kern, Nano Lett. 2004, 4, 827.
R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Science 2008, 320, 1038.
X. Liu, Y. Z. Long, L. Liao, X. Duan, Z. Fan, ACS Nano 2012, 3, 1888.
A. Vijayaraghavan, K. Kanzaki, S. Suzuki, Y. Kobayashi, H. Inokawa, Y. Ono, S. Kar, P. M. Ajayan, Nano Lett. 2005, 5, 1575.
H. Numata, K. Ihara, T. Saito, H. Endoh, F. Nihey, Appl. Phys. Express 2012, 5, 055102.
M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, J. M. Tour, R. E. Smalley, Science 2003, 301, 1519.
R. Quhe, J. Zheng, G. Luo, Q. Liu, R. Qin, J. Zhou, D. Yu, S. Nagase, W. N. Mei, Z. Gao, J. Lu, NPG Asia Mater. 2012, 4, e6.
Q. Cao, S. J. Han, G. S Tulevski, A. D. Franklin, W. Haensch, ACS Nano 2012, 6, 6471.
A. Facchetti, M. H. Yoon, T. J. Marks, Adv. Mater. 2005, 17, 1705.
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
W. J. Yu, S. Y. Lee, S. H. Chae, D. Perello, G. H. Han, M. Yun, Y. H. Lee, Nano Lett. 2010, 11, 1344.
L. Xie, C. Liu, J. Zhang, Y. Zhang, L. Jiao, L. Jiang, L. Dai, Z. Liu, J. Am. Chem. Soc. 2007, 129, 12382.
B. Yu, C. Liu, P. X. Hou, Y. Tian, S. Li, B. Liu, F. Li, E. I. Kauppinen, H. M. Cheng, J. Am. Chem. Soc. 2011, 133, 5232.
J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, B. J. LeRoy, Nat. Mater. 2011, 10, 282.
G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, J. van den Brink, Phys. Rev. B 2007, 76, 073103.
A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Science 1996, 273, 483.
O. M. Nayfeh, IEEE Electron Dev. Lett. 2011, 32, 1349.
K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Solid State Commun. 2008, 146, 351.
F. Xia, V. Perebeinos, Y. M. Lin, Y. Wu, Ph. Avouris, Nat. Nanotechnol. 2011, 6, 179.
A. Moisala, A. G. Nasibulin, D. P. Brown, H. Jiang, L. Khriachtchev, E. I. Kauppinen, Chem. Eng. Sci. 2006, 61, 4393.
F. N. Ishikawa, H. K. Chang, K. Ryu, P. C. Chen, A. Badmaev, L. G. De Arco, G. Shen, C. Zhou, ACS Nano 2009, 1, 73.
J. R. Gong, Graphene-Synthesis Characterization, Properties and Applications Chart 6, InTech, Croatia 2011, http://www.intechopen.com/books/graphene-synthesis-characterization-properties-and-applications.
T. Kurkop, S. A. Getty, E. Cobas, M. S. Fuhrer, Nano Lett. 2004, 4, 35.
J. Kang, D. Shin, S. Bae, B. H. Hong, Nanoscale 2012, 4, 5527.
M. J. Bronikowski, P. A. Willis, D. T. Colbert, K. A. Smith, R. E. Smalley, J. Vac. Sci. Technol. A 2001, 19, 1800.
E. S. Snow, J. P. Novak, P. M. Campbell, D. Park, Appl. Phys. Lett. 2003, 82, 2145.
R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Laegsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann, L. Hornekaer, Nat. Mater. 2010, 9, 315.
F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrai, Nat. Photon. 2010, 4, 611.
C. Yan, J. H. Cho, J. H. Ahn, Nanoscale 2012, 4, 4870.
E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Nano Lett. 2006, 6, 96.
B. Yu, P. X. Hou, F. Li, B. L. Liu, C. Liu, H. M. Cheng, Carbon 2010, 48, 2941.
C. Sire, F. Ardiaca, S. Lepilliet, J. W. T. Seo, M. C. Hersam, G. Dambrine, H. Happy, V. Derycke, Nano Lett. 2012, 12, 1184.
Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, F. Wang, Nature 2009, 459, 820.
Z. H. Ni, H. M. Wang, Y. Ma, J. Kasim, Y. H. Wu, Z. X. Shen, ACS Nano 2008, 2, 1033.
L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Nature 2009, 458, 877.
R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, UK 1998.
Q. Cao, S. H. Hur, Z. T. Zhu, Y. Sun, C. Wang, M. A. Meitl, M. Shim, J. A. Rogers, Adv. Mater. 2006, 18, 304.
X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Small 2011, 14, 1876.
C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 2008, 321, 385.
H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, A. J. Heeger, J. Chem. Soc., Chem. Commun. 1977, 16, 578.
Y. Lu, J. Guo, Nano Res. 2010, 3, 189.
A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivisto, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, M. Kauppinen, D. P. Brown, O. G. Okhotnikov, E. I. Kauppinen, ACS Nano 2011, 5, 3214.
Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman, Nat. Nanotechnol. 2008, 3, 563.
L. Sun, Q. Li, H. Ren, H. Su, Q. W. Shi, J. Yang, J. Chem. Phys. 2008, 129, 074704.
S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M. A. Alam, S. V. Rotkin, J. A. Rogers, Nat. Nanotechnol. 2007, 2, 230.
B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, J. H. Cho, Nano Lett. 2010, 10, 3464.
Y. L. Wu, Y. N. Li, B. S. Ong, J. Am. Chem. Soc. 2006, 128, 4202.
S. Aikawa, E. Einarsson, T. Thurakitseree, S. Chiashi, E. Nishikawa, S. Maruyama, Appl. Phys. Lett. 2012, 100, 063502.
L. S. Liyanage, H. Lee, N. Patil, S. Park, S. Mitra, Z. Bao, H. P. Wong, ACS Nano 2012, 6, 451.
D. H. Kim, N. Lu, R. Ghaffari, J. A. Rogers, Asia Mater. 2012, 4, e15.
A. Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, J. A. Rogers, Adv. Mater. 2012, 24, 5284.
D. S. Hecht, L. Hu, G. Irvin, Adv. Mater. 2011, 23, 1482.
C. Wang, J. Zhang, K. Ryu, A. Badmaev, L. G. De Arco, C. Zhou, Nano Lett. 2009, 9, 4285.
A. Moisala, A. G. Nasibulin, E. I. Kauppinen, J. Phys. Condens. Matter 2003, 15, S3011.
R. L. Puurunen, J. Appl. Phys. 2005, 97, 121301.
F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G. W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, A. C. Ferrari, ACS Nano 2012, 6, 2992.
J. U. Park, S. W. Nam, M. S. Lee, C. M. Lieber, Nat. Mater. 2012, 11, 120.
B. J. Kim, S. K. Lee, M. S. Kang, J. H. Ahn, J. H. Cho, ACS Nano 2012, 6, 8646.
W. Zhu, D. Neumayer, V. Perebeinos, Ph. Avouris, Nano Lett. 2010, 10, 3572.
R. Krupke, F. Hennrich, H. V. Lohneysen, M. M. Kappes, Science 2003, 301, 344.
M. S. Arnold, A. A.
2011; 479
2010; 11
2010; 10
2010; 97
1991; 354
2009; 80
2004; 4
2009; 113
2011; 56
2008; 101
2007; 76
2012; 12
2012; 11
2010; 22
1997; 389
2010; 21
2010; 20
2009; 95
2009; 10
2009; 94
2012; 490
2010; 110
2007; 6
2007; 7
2007; 2
2008; 20
2008; 112
2010; 3
2012; 24
2009; 19
2010; 5
2012; 23
2010; 4
2012; 22
2010; 9
2007; 19
2012; 100
2011; 2
2012; 101
2010; 327
2011; 84
1998
2002; 1
2007; 90
1996
2008; 129
2011; 4
2009; 459
2004; 306
2011; 6
2011; 5
2011; 133
2011; 9
2009; 458
2010; 42
2010; 48
1977; 16
2005; 5
2005; 97
2011; 88
1998; 72
2012; 45
2005; 17
2008; 130
2009; 47
2004; 126
2011; 11
2003; 15
2011; 99
2008; 7
2008; 8
2011; 10
2008; 3
2008; 146
2011; 14
2012; 324
2008; 2
2012; 55
2012; 51
2011; 206
2006; 61
2001; 292
2008; 319
2001; 19
2003; 3
2011; 21
2008; 313
2011; 23
2009; 206
2003; 82
2003; 125
2012; 335
2006; 128
2009; 324
2009; 325
2009; 326
2004; 101
2007; 129
2006; 97
2012; 542
2009; 20
2011
2006; 16
2006; 17
2000; 317
2013; 42
2007
2006; 18
2006; 6
2011; 32
2006; 1
2009; 131
2008; 321
2006; 314
2010; 81
2008; 320
1996; 54
2012; 152
2012; 3
2004; 16
2006; 88
2011; 50
2011; 44
2009; 9
1996; 273
2008; 454
2012; 6
2003; 301
2012; 7
2007; 43
2009; 2
2012; 4
2009; 1
2012; 5
2012; 8
e_1_2_8_49_2
e_1_2_8_26_2
e_1_2_8_9_2
Cao Q. (e_1_2_8_115_2) 2006; 16
e_1_2_8_203_2
e_1_2_8_1_2
e_1_2_8_132_2
e_1_2_8_178_2
e_1_2_8_41_2
e_1_2_8_87_2
e_1_2_8_170_2
e_1_2_8_64_2
e_1_2_8_117_2
e_1_2_8_193_2
e_1_2_8_155_2
e_1_2_8_38_2
Dresselhaus M. S. (e_1_2_8_40_2) 1996
e_1_2_8_15_2
e_1_2_8_215_2
e_1_2_8_91_2
e_1_2_8_143_2
e_1_2_8_189_2
e_1_2_8_120_2
e_1_2_8_99_2
e_1_2_8_30_2
e_1_2_8_76_2
e_1_2_8_105_2
e_1_2_8_181_2
e_1_2_8_53_2
e_1_2_8_128_2
e_1_2_8_166_2
e_1_2_8_25_2
e_1_2_8_48_2
Sze S. M. (e_1_2_8_96_2) 2007
e_1_2_8_204_2
e_1_2_8_2_2
e_1_2_8_110_2
e_1_2_8_179_2
e_1_2_8_63_2
e_1_2_8_86_2
e_1_2_8_118_2
e_1_2_8_171_2
e_1_2_8_194_2
e_1_2_8_133_2
e_1_2_8_156_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_216_2
e_1_2_8_90_2
e_1_2_8_121_2
e_1_2_8_98_2
e_1_2_8_75_2
e_1_2_8_106_2
e_1_2_8_129_2
e_1_2_8_182_2
e_1_2_8_144_2
e_1_2_8_167_2
e_1_2_8_28_2
e_1_2_8_119_2
e_1_2_8_89_2
e_1_2_8_205_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_66_2
e_1_2_8_43_2
e_1_2_8_172_2
e_1_2_8_111_2
e_1_2_8_157_2
e_1_2_8_195_2
e_1_2_8_81_2
e_1_2_8_134_2
e_1_2_8_17_2
Biswas C. (e_1_2_8_198_2) 2011; 21
e_1_2_8_78_2
e_1_2_8_217_2
e_1_2_8_160_2
e_1_2_8_55_2
e_1_2_8_32_2
e_1_2_8_107_2
e_1_2_8_183_2
e_1_2_8_122_2
e_1_2_8_168_2
e_1_2_8_93_2
e_1_2_8_70_2
e_1_2_8_145_2
e_1_2_8_27_2
e_1_2_8_206_2
e_1_2_8_80_2
e_1_2_8_150_2
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_65_2
e_1_2_8_88_2
e_1_2_8_112_2
e_1_2_8_135_2
e_1_2_8_158_2
e_1_2_8_173_2
e_1_2_8_196_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_108_2
e_1_2_8_210_2
e_1_2_8_161_2
e_1_2_8_31_2
e_1_2_8_54_2
e_1_2_8_77_2
e_1_2_8_100_2
e_1_2_8_123_2
e_1_2_8_146_2
e_1_2_8_169_2
e_1_2_8_184_2
e_1_2_8_92_2
e_1_2_8_45_2
e_1_2_8_68_2
e_1_2_8_151_2
e_1_2_8_207_2
e_1_2_8_5_2
e_1_2_8_22_2
e_1_2_8_159_2
e_1_2_8_83_2
e_1_2_8_136_2
e_1_2_8_174_2
e_1_2_8_60_2
e_1_2_8_113_2
e_1_2_8_197_2
e_1_2_8_19_2
e_1_2_8_109_2
e_1_2_8_34_2
e_1_2_8_57_2
e_1_2_8_211_2
e_1_2_8_95_2
e_1_2_8_162_2
e_1_2_8_11_2
e_1_2_8_72_2
e_1_2_8_101_2
e_1_2_8_147_2
e_1_2_8_185_2
e_1_2_8_124_2
e_1_2_8_29_2
e_1_2_8_67_2
e_1_2_8_200_2
Tanaka T. (e_1_2_8_52_2) 2011; 9
e_1_2_8_152_2
e_1_2_8_208_2
e_1_2_8_6_2
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_137_2
e_1_2_8_82_2
e_1_2_8_114_2
e_1_2_8_175_2
e_1_2_8_18_2
e_1_2_8_56_2
e_1_2_8_79_2
e_1_2_8_212_2
e_1_2_8_94_2
e_1_2_8_140_2
e_1_2_8_163_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_148_2
e_1_2_8_71_2
e_1_2_8_102_2
e_1_2_8_125_2
e_1_2_8_186_2
e_1_2_8_24_2
e_1_2_8_47_2
e_1_2_8_201_2
e_1_2_8_153_2
e_1_2_8_199_2
e_1_2_8_209_2
e_1_2_8_3_2
e_1_2_8_130_2
e_1_2_8_191_2
e_1_2_8_85_2
e_1_2_8_138_2
e_1_2_8_62_2
e_1_2_8_176_2
e_1_2_8_13_2
e_1_2_8_59_2
e_1_2_8_36_2
e_1_2_8_190_2
e_1_2_8_213_2
e_1_2_8_164_2
e_1_2_8_141_2
e_1_2_8_97_2
e_1_2_8_126_2
e_1_2_8_74_2
e_1_2_8_149_2
e_1_2_8_51_2
e_1_2_8_103_2
e_1_2_8_187_2
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_69_2
e_1_2_8_202_2
e_1_2_8_131_2
e_1_2_8_154_2
e_1_2_8_177_2
e_1_2_8_4_2
e_1_2_8_116_2
e_1_2_8_139_2
e_1_2_8_192_2
e_1_2_8_61_2
e_1_2_8_84_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_58_2
e_1_2_8_214_2
e_1_2_8_142_2
e_1_2_8_165_2
e_1_2_8_188_2
e_1_2_8_104_2
e_1_2_8_127_2
e_1_2_8_180_2
e_1_2_8_50_2
e_1_2_8_73_2
References_xml – reference: H. E. Romero, N. Shen, P. Joshi, H. R. Gutierrez, S. A. Tadigadapa, J. O. Sofo, P. C. Eklund, ACS Nano 2008, 2, 2037.
– reference: J. Y. Hong, J. Jang, J. Mater. Chem. 2012, 22, 8179.
– reference: E. W. Hill, A. Vijayaragahvan, K. Novoselov, IEEE Sens. J. 2011, 11, 3161.
– reference: N. Kharche, S. K. Nayak, Nano Lett. 2011, 11, 5274.
– reference: F. Schwierz, Nat. Nanotechnol. 2010, 5, 487.
– reference: Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, J. H. Ahn, Nano Lett. 2010, 10, 490.
– reference: L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, L. A. Ponomarenko, Science 2012, 335, 947.
– reference: F. Liu, P. Ming, J. Li, Phys. Rev. B 2007, 76, 064120.
– reference: D. S. Hecht, L. Hu, G. Irvin, Adv. Mater. 2011, 23, 1482.
– reference: J. Veres, S. Ogier, G. Lloyd, Chem. Mater. 2004, 16, 4543.
– reference: K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Solid State Commun. 2008, 146, 351.
– reference: A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, H. J. Dai, Nat. Mater. 2002, 1, 241.
– reference: O. M. Nayfeh, IEEE Electron Dev. Lett. 2011, 32, 1349.
– reference: E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Nano Lett. 2006, 6, 96.
– reference: F. Xia, D. B. Farmer, Y. Lin, Ph. Avouris, Nano Lett. 2010, 10, 715.
– reference: V. M. Pereira, A. H. C. Neto, Phys. Rev. B 2009, 80, 045401.
– reference: S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, S. Iijima, Nat. Nanotechnol. 2010, 5, 574.
– reference: C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Adv. Funct. Mater. 2009, 19, 2577.
– reference: X. Liu, C. Wang, B. Cai, X. Xiao, S. Guo, Z. Fan, J. Li, X. Duan, L. Liao, Nano Lett. 2012, 12, 3596.
– reference: B. Lassagne, Y. Tarakanov, J. Kinaret, D. Garcia-Sanchez, A. Bachtold, Science 2009, 325, 1107.
– reference: O. Hod, Nano Lett. 2009, 9, 2619.
– reference: A. Javey, J. Guo, D. B. Farmer, Q. Wang, D. W. Wang, R. G. Gordon, M. Lundstrom, H. J. Dai, Nano Lett. 2004, 4, 447.
– reference: M. C. LeMieux, M. Roberts, S. Barman, Y. W. Jin, J. M. Kim, Z. Bao, Science 2008, 321, 101.
– reference: G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, J. van den Brink, Phys. Rev. B 2007, 76, 073103.
– reference: T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science 2008, 313, 951.
– reference: A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, Nano Lett. 2011, 11, 2396.
– reference: L. S. Liyanage, H. Lee, N. Patil, S. Park, S. Mitra, Z. Bao, H. S. P. Wong, ACS Nano 2012, 6, 451.
– reference: K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
– reference: S. Pang, Y. Hernandez, X. Feng, K. Mullen, Adv. Mater. 2011, 23, 2779.
– reference: J. M. P. Alaboson, Q. H. Wang, J. D. Emery, A. L. Lipson, M. J. Bedzyk, J. W. Elam, M. J. Pellin, M. C. Hersam, ACS Nano 2011, 5, 5223.
– reference: A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Nano Lett. 2008, 8, 902.
– reference: J. Kang, D. Shin, S. Bae, B. H. Hong, Nanoscale 2012, 4, 5527.
– reference: M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, M. C. Hersam, Nat. Nanotechnol. 2006, 1, 60.
– reference: T. Tanaka, H. Liu, S. Fujii, H. Kataura, Phys. Status Solidi 2011, 9, 301.
– reference: L. Zhang, C. Di, G. Yu, Y. Liu, J. Mater. Chem. 2010, 20, 7059.
– reference: N. Pimparkar, Q. Cao, J. A. Rogers, M. A. Alam, Nano Res. 2009, 2, 167.
– reference: F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrai, Nat. Photon. 2010, 4, 611.
– reference: A. Moisala, A. G. Nasibulin, D. P. Brown, H. Jiang, L. Khriachtchev, E. I. Kauppinen, Chem. Eng. Sci. 2006, 61, 4393.
– reference: R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, UK 1998.
– reference: X. Liu, Y. Z. Long, L. Liao, X. Duan, Z. Fan, ACS Nano 2012, 3, 1888.
– reference: B. Yu, P. X. Hou, F. Li, B. L. Liu, C. Liu, H. M. Cheng, Carbon 2010, 48, 2941.
– reference: S. B. Kumar, J. Guo, Nano Lett. 2012, 12, 1362.
– reference: Q. Cao, M. G. Xia, M. Shim, J. A. Rogers, Adv. Mater. 2006, 16, 2355.
– reference: G. Liu, S. Rumyantsev, M. Shur, A. A. Balandin, Appl. Phys. Lett. 2012, 100, 033103.
– reference: R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, Nature 1997, 389, 827.
– reference: K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, Nature 2012, 490, 192.
– reference: B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, J. H. Cho, Nano Lett. 2010, 10, 3464.
– reference: Y. Zhang, Y. Zhang, X. Xian, J. Zhang, Z. Liu, J. Phys. Chem. C 2008, 112, 3849.
– reference: T. Kurkop, S. A. Getty, E. Cobas, M. S. Fuhrer, Nano Lett. 2004, 4, 35.
– reference: C. Wang, J. C. Chien, K. Takei, T. Takahashi, J. Nah, A. M. Niknejad, A. Javey, Nano Lett. 2012, 12, 1527.
– reference: C. Mattevi, F. Colléaux, H. Kim, Y. H. Lin, K. T. Park, M. Chhowalla, T. D. Anthopoulos, Nanotechnol. 2012, 23, 344017.
– reference: L. Xie, C. Liu, J. Zhang, Y. Zhang, L. Jiao, L. Jiang, L. Dai, Z. Liu, J. Am. Chem. Soc. 2007, 129, 12382.
– reference: S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, 3rd Ed., John Wiley & Sons, Inc., USA 2007.
– reference: S. Aikawa, E. Einarsson, T. Thurakitseree, S. Chiashi, E. Nishikawa, S. Maruyama, Appl. Phys. Lett. 2012, 100, 063502.
– reference: D. Y. Khang, J. A. Rogers, H. H. Lee, Adv. Func. Mater. 2009, 19, 1526.
– reference: J. R. Gong, Graphene-Synthesis Characterization, Properties and Applications Chart 6, InTech, Croatia 2011, http://www.intechopen.com/books/graphene-synthesis-characterization-properties-and-applications.
– reference: V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, S. Seal, Prog. Mater. Sci. 2011, 56, 1178.
– reference: H. Wang, Y. Wu, C. Cong, J. Shang, T. Yu, ACS Nano 2010, 4, 7221.
– reference: X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 2008, 319, 1229.
– reference: S. Gross, D. Camozzo, V. D. Noto, L. Armelao, E. Tondello, Eur. Polym. J. 2007, 43, 673.
– reference: A. Javey, P. Qi, Q. Wang, H. Dai, Proc. Natl. Acad. Sci. USA 2004, 101, 13408.
– reference: M. Kim, N. S. Safron, E. Han, M. S. Arnold, P. Gopalan, Nano Lett. 2010, 10, 1125.
– reference: K. Nakada, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. B 1996, 54, 17954.
– reference: L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L. P. Ma, Z. Zhang, Q. Fu, L. M. Peng, X. Bao, H. M. Cheng, Nat. Commun. 2012, 3, 699.
– reference: J. Slawinska, I. Zasado, Z. Klusek, Phys. Rev. B 2010, 81, 155433.
– reference: Q. Cao, S. J. Han, G. S Tulevski, A. D. Franklin, W. Haensch, ACS Nano 2012, 6, 6471.
– reference: S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, R. B. Weisman, J. Am. Chem. Soc. 2003, 125, 11186.
– reference: M. Helgesen, R. Søndergaard, F. C. Krebs, J. Mater. Chem. 2010, 20, 36.
– reference: H. Park, A. Afzali, S. J. Han, G. S. Tulevski, A. D. Franklin, J. Tersoff, J. B. Hannon, W. Haensch, Nat. Nanotechnol. 2012, 7, 787.
– reference: Q. Cao, H. Kim, N. Pimparkar, J. P. Kulkarni, C. Wang, M. Shim, K. Roy, M. A. Alam, J. A. Rogers, Nature 2008, 454, 495.
– reference: J. Velasco Jr., L. Jing, W. Bao, Y. Lee, P. Kratz, V. Aji, M. Bockrath, C. N. Lau, C. Varma, Nat. Nanotechnol. 2012, 7, 156.
– reference: H. Meier, U. Löffelmann, D. Mager, P. J. Smith, J. G. Korvink, Phys. Status Solidi A 2009, 206, 1626.
– reference: Y. Miyata, K. Shiozawa, Y. Asada, Y. Ohno, R. Kitaura, T. Mizutani, H. Shinohara, Nano Res. 2011, 4, 963.
– reference: G. Hong, B. Zhang, B. Peng, J. Zhang, W. M. Choi, J. Y. Choi, J. M. Kim, Z. Liu, J. Am. Chem. Soc. 2009, 131, 14642.
– reference: D. B. Farmer, H. Y. Chiu, Y. M. Lin, K. A. Jenkins, F. Xia, Ph. Avouris, Nano Lett. 2009, 9, 4474.
– reference: J. Zhang, Y. Fu, C. Wang, P. C. Chen, Z. Liu, W. Wei, C. Wu, M. E. Thompson, C. Zhou, Nano Lett. 2011, 11, 4852.
– reference: S. Matsuzaki, Y. Nobusa, R. Shimizu, K. Yanagi, H. Kataura, T. Takenobu, Jpn. J. Appl. Phys. 2012, 51, 06FD18.
– reference: S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M. A. Alam, S. V. Rotkin, J. A. Rogers, Nat. Nanotechnol. 2007, 2, 230.
– reference: J. Lee, L. Tao, K. N. Parrish, Y. Hao, R. S. Ruoff, D. Akinwande, Appl. Phys. Lett. 2012, 101, 252109.
– reference: B. Chandra, H. Park, A. Maarouf, G. J. Martyna, G. S. Tulevski, Appl. Phys. Lett. 2011, 99, 072110.
– reference: S. K. Lee, B. J. Kim, H. Jang, S. C. Yoon, C. Lee, B. H. Hong, J. A. Rogers, J. H. Cho, J. H. Ahn, Nano. Lett. 2011, 11, 4642.
– reference: D. Reddy, L. F. Register, G. D. Carpenter, S. K. Banerjee, J. Phys. D-Appl. Phys. 2011, 44, 313001.
– reference: S. Lee, K. Lee, C. H. Liu, G. S. Kulkarni, Z. Zhong, Nat. Commun. 2012, 3, 1018.
– reference: P. Chen, Y. Fu, R. Aminirad, C. Wang, J. Zhang, K. Wang, K. Galatsis, C. Zhou, Nano Lett. 2011, 11, 5301.
– reference: Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, F. Wang, Nature 2009, 459, 820.
– reference: R. L. Puurunen, J. Appl. Phys. 2005, 97, 121301.
– reference: J. Zhao, Y. Gao, W. Gu, C. Wang, J. Lin, Z. Chen, Z. Cui, J. Mater. Chem. 2012, 22, 20747.
– reference: F. Xia, V. Perebeinos, Y. M. Lin, Y. Wu, Ph. Avouris, Nat. Nanotechnol. 2011, 6, 179.
– reference: G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, M. Chhowalla, J. Phys. Chem. C. 2009, 113, 15768.
– reference: X. Wan, Y. Huang, Y. Chen, Acc. Chem. Res. 2012, 45, 598.
– reference: M. J. Bronikowski, P. A. Willis, D. T. Colbert, K. A. Smith, R. E. Smalley, J. Vac. Sci. Technol. A 2001, 19, 1800.
– reference: C. Sire, F. Ardiaca, S. Lepilliet, J. W. T. Seo, M. C. Hersam, G. Dambrine, H. Happy, V. Derycke, Nano Lett. 2012, 12, 1184.
– reference: N. Rouhi, D. Jain, P. J. Burke, ACS Nano 2011, 5, 8471.
– reference: K. Nagashio, A. Toriumi, Jpn. J. Appl. Phys. 2011, 50, 070108.
– reference: C. Yan, J. H. Cho, J. H. Ahn, Nanoscale 2012, 4, 4870.
– reference: H. Liu, D. Nishide, T. Tanaka, H. Kataura, Nat. Commun. 2011, 2, 309.
– reference: Y. Lu, J. Guo, Nano Res. 2010, 3, 189.
– reference: B. Yu, C. Liu, P. X. Hou, Y. Tian, S. Li, B. Liu, F. Li, E. I. Kauppinen, H. M. Cheng, J. Am. Chem. Soc. 2011, 133, 5232.
– reference: H. Numata, K. Ihara, T. Saito, H. Endoh, F. Nihey, Appl. Phys. Express 2012, 5, 055102.
– reference: J. A. Rogers, T. Someya, Y. Huang, Science 2010, 327, 1603.
– reference: L. Zhang, H. Liu, Y. Zhao, X. Sun, Y. Wen, Y. Guo, X. Gao, C. Di, G. Yu, Y. Liu, Adv. Mater. 2012, 24, 436.
– reference: M. H. Yang, K. B. K. Teo, L. Gangloff, W. I. Milne, D. G. Hasko, Y. Robert, P. Legagneux, Appl. Phys. Lett. 2006, 88, 113507.
– reference: B. Kitiyanan, W. E. Alvarez, J. H. Harwell, D. E. Resasco, Chem. Phys. Lett. 2000, 317, 497.
– reference: Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, Adv. Mater. 2010, 22, 3906.
– reference: S. Matsuzaki, Y. Nobusa, K. Yanagi, H. Kataura, T. Takenobu, Appl. Phys. Express 2011, 4, 105101.
– reference: J. U. Park, S. W. Nam, M. S. Lee, C. M. Lieber, Nat. Mater. 2012, 11, 120.
– reference: X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Small 2011, 14, 1876.
– reference: A. Moisala, A. G. Nasibulin, E. I. Kauppinen, J. Phys. Condens. Matter 2003, 15, S3011.
– reference: S. Jang, H. Jang, Y. Lee, D. Suh, S. Baik, B. H. Hong, J. H. Ahn, Nanotechnol. 2010, 21, 425201.
– reference: G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, P. J. Kelly, Phys. Rev. Lett. 2008, 101, 026803.
– reference: A. Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, J. A. Rogers, Adv. Mater. 2012, 24, 5284.
– reference: C. C. Lu, Y. C. Lin, C. H. Yeh, J. C. Huang, P. W. Chiu, ACS Nano 2012, 5, 4469.
– reference: F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G. W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, A. C. Ferrari, ACS Nano 2012, 6, 2992.
– reference: H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, A. J. Heeger, J. Chem. Soc., Chem. Commun. 1977, 16, 578.
– reference: L. M. Gomez, A. Kumar, Y. Zhang, K. Ryu, A. Badmaev, C. Zhou, Nano Lett. 2009, 9, 3592.
– reference: M. Kumar, Y. Ando, J. Nanosci. Nanotechnol. 2010, 10, 3739.
– reference: S. Z. Bisri, J. Gao, V. Derenskyi, W. Gomulya, I. Iezhokin, P. Gordiichuk, A. Herrmann, M. A. Loi, Adv. Mater. 2012, 24, 6147.
– reference: Q. Cao, M. Xia, C. Kocabas, M. Shim, J. A. Rogers, S. V. Rotkin, Appl. Phys. Lett. 2007, 90, 023516.
– reference: S. B. Jo, J. Park, W. H. Lee, K. Cho, B. H. Hong, Solid State Commun. 2012, 152, 1350.
– reference: C. Kocabas, N. Pimparkar, O. Yesilyurt, S. J. Kang, M. A. Alam, J. A. Rogers, Nano Lett. 2007, 7, 1195.
– reference: T. W. Kim, Y. Yang, F. Li, W. L. Kwan, Asia Mater. 2012, 4, e18.
– reference: V. K. Sangwan, R. P. Ortiz, J. M. P. Alaboson, J. D. Emery, M. J. Bedzyk, L. J. Lauhon, T. J. Marks, M. C. Hersam, ACS Nano 2012, 6, 7480.
– reference: B. Lee, G. Mordi, M. J. Kim, Y. J. Chabal, E. M. Vogel, R. M. Wallace, K. J. Cho, L. Colombo, J. Kim, Appl. Phys. Lett. 2010, 97, 043107.
– reference: F. N. Ishikawa, H. K. Chang, K. Ryu, P. C. Chen, A. Badmaev, L. G. De Arco, G. Shen, C. Zhou, ACS Nano 2009, 1, 73.
– reference: Y. Son, J. Yeo, C. W. Ha, J. Lee, S. Hong, K. H. Nam, D. Y. Yang, S. H. Ko, Thermochim. Acta 2012, 542, 52.
– reference: V. K. Sangwan, A. Southard, T. L. Moore, V. W. Ballarotto, D. R. Hines, M. S. Fuhrer, E. D. Williams, Microelectron. Eng. 2011, 88, 3150.
– reference: M. J. Allen, V. C. Tung, R. B. Kaner, Chem. Rev. 2010, 110, 132.
– reference: M. Ha, Y. Xia, A. A. Green, W. Zhang, M. J. Renn, C. H. Kim, M. C. Hersam, C. D. Frisbie, ACS Nano 2010, 4, 4388.
– reference: Q. N. Thanh, H. Jeong, J. Kim, J. W. Kevek, Y. H. Ahn, S. Lee, E. D. Minot, J. Y. Park, Adv. Mater. 2012, 24, 4499.
– reference: C.R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, J. Hone, Nat. Nanotechnol. 2010, 5, 722.
– reference: S. Li, C. Liu, P. X. Hou, D. M. Sun, H. M. Cheng, ACS Nano 2012, 6, 9657.
– reference: A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. J. Amaratunga, W. I. Milne, Proc. IEEE 2012, 100, 1486.
– reference: J. Sun, B. Zhang, H. E. Katz, Adv. Funct. Mater. 2011, 21, 29.
– reference: F. Leonard, A. A. Talin, Nat. Nanotechnol. 2011, 6, 773.
– reference: C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 2008, 321, 385.
– reference: D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Nano Lett. 2009, 9, 1752.
– reference: Y. W. Son, M. L. Cohen, S. G. Louie, Phys. Rev. Lett. 2006, 97, 216803.
– reference: J. Zhang, P. A. Hu, R. Zhang, X. Wang, B. Yang, W. Cao, Y. Li, X. He, Z. Wang, W. O'Neill, J. Mater. Chem. 2012, 22, 714.
– reference: G. Y. Zhang, P. F. Qi, X. R. Wang, Y. R. Lu, X. L. Li, R. Tu, S. Bangsaruntip, D. Mann, L. Zhang, H. J. Dai, Science 2006, 314, 974.
– reference: M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerences and Carbon Nanotubes, Academic Press, San Diego, US 1996.
– reference: Y. Sun, J. A. Rogers, Adv. Mater. 2007, 19, 1897.
– reference: C. Wang, K. Takei, T. Takahashi, A. Javey, Chem. Soc. Rev. 2013, 42, 2592.
– reference: X. S. Wang, H. P. Tang, X. D. Li, X. Hua, Int. J. Mol. Sci. 2009, 10, 5257.
– reference: S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. De Heer, D. H. Lee, F. Guinea, A. H. C. Neto, A. Lanzara, Nat. Mater. 2007, 6, 770.
– reference: M. Y. Zavodchikova, T. Kulmala, A. G. Nasibulin, V. Ermolov, S. Franssila, K. Grigoras, E. I. Kauppinen, Nanotechnol. 2009, 20, 085201.
– reference: C. Brosseau, Surf. Coat. Technol. 2011, 206, 753.
– reference: P. G. Collins, M. S. Arnold, Ph. Avouris, Science 2001, 292, 706.
– reference: J. Bai, X. Zhong, S. Jiang, Y. Huang, X. Duan, Nat. Nanotechnol. 2010, 5, 190.
– reference: M. C. Lemiex, M. Roberts, S. Berman, Y. W. Jin, J. M. Kim, Z. N. Bao, Science 2008, 321, 101.
– reference: G. Eda, M. Chhowalla, Adv. Mater. 2010, 22, 2392.
– reference: A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Science 1996, 273, 483.
– reference: S. Iijima, Nature 1991, 354, 56.
– reference: L. Sun, Q. Li, H. Ren, H. Su, Q. W. Shi, J. Yang, J. Chem. Phys. 2008, 129, 074704.
– reference: C. Biswas, Y. H. Lee, Adv. Mater. 2011, 21, 3806.
– reference: Y. Wu, V. Perebeinos, Y. M. Lin, T. Low, F. Xia, Ph. Avouris, Nano Lett. 2012, 12, 1417.
– reference: L. An, Q. Fu, C. Lu, J. Liu, J. Am. Chem. Soc. 2004, 126, 10520.
– reference: J. B. H. Tok, Z. Bao, Sci. China 2012, 55, 718.
– reference: C. Wang, A. Badmaev, A. Jooyaie, M. Bao, K. L. Wang, K. Galatsis, C. Zhou, ACS Nano 2011, 5, 4169.
– reference: S. K. Lee, H. Y. Jang, S. Jang, E. Choi, B. H. Hong, J. Lee, S. Park, J. H. Ahn, Nano Lett. 2012, 12, 3472.
– reference: J. Yeo, S. Hong, D. Lee, N. Hotz, M. T. Lee, C. P. Grigoropoulos, S. H. Ko, PLoS ONE 2012, 7, e42315.
– reference: Y. B. Tang, L. C. Yin, Y. Yang, X. H. Bo, Y. L. Cao, H. E. Wang, W. J. Zhang, I. Bello, S. T. Lee, H. M. Cheng, C. S. Lee, ACS Nano 2012, 6, 1970.
– reference: R. Quhe, J. Zheng, G. Luo, Q. Liu, R. Qin, J. Zhou, D. Yu, S. Nagase, W. N. Mei, Z. Gao, J. Lu, NPG Asia Mater. 2012, 4, e6.
– reference: J. Zhang, C. Wang, Y. Fu, Y. Che, C. Zhou, ACS Nano 2011, 4, 3284.
– reference: Ph. Avouris, Z. Chen, V. Perebeinos, Nat. Nanotechnol. 2007, 2, 605.
– reference: J. Hackley, D. Ali, J. DiPasquale, J. D. Demaree, C. J. K. Richardson, Appl. Phys. Lett. 2009, 95, 133114.
– reference: Y. L. Wu, Y. N. Li, B. S. Ong, J. Am. Chem. Soc. 2006, 128, 4202.
– reference: J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, L. M. K. Vandersypen, Nat. Mater. 2008, 7, 151.
– reference: R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Laegsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann, L. Hornekaer, Nat. Mater. 2010, 9, 315.
– reference: B. J. Kim, S. K. Lee, M. S. Kang, J. H. Ahn, J. H. Cho, ACS Nano 2012, 6, 8646.
– reference: Y. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Hung, A. Javey, J. Cao, D. Wang, E. Yenilmez, Q. Wang, J. F. Gibbons, Y. Nishi, H. Dai, Nano Lett. 2004, 4, 317.
– reference: J. Perelaer, P. J. Smith, D. Mager, D. Soltman, S. K. Volkman, V. Subramanian, J. G. Korvink, U. S. Schubert, J. Mater. Chem. 2010, 20, 8446.
– reference: J. Lee, L. Tao, Y. Hao, R. S. Ruoff, D. Akinwande, Appl. Phys. Lett. 2012, 100, 152104.
– reference: K. Kim, J. Y. Choi, T. Kim, S. H. Cho, H. J. Chung, Nature 2011, 479, 338.
– reference: G. Y. Zhang, P. F. Qi, X. R. Wang, Y. R. Lu, D. Mann, X.L. Li, H. J. Dai, J. Am. Chem. Soc. 2006, 128, 6026.
– reference: D. H. Kim, N. Lu, R. Ghaffari, J. A. Rogers, Asia Mater. 2012, 4, e15.
– reference: Q. Cao, S. H. Hur, Z. T. Zhu, Y. Sun, C. Wang, M. A. Meitl, M. Shim, J. A. Rogers, Adv. Mater. 2006, 18, 304.
– reference: E. S. Snow, J. P. Novak, P. M. Campbell, D. Park, Appl. Phys. Lett. 2003, 82, 2145.
– reference: T. Y. Kim, H. Kim, S. W. Kwon, Y. Kim, W. K. Park, D. H. Yoon, A. R. Jang, H. S. Shin, K. S. Suh, W. S. Yang, Nano Lett. 2012, 12, 743.
– reference: Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman, Nat. Nanotechnol. 2008, 3, 563.
– reference: X. Wang, L. J. Zhi, K. Mullen, Nano Lett. 2008, 8, 323.
– reference: Y. Nosho, Y. Ohno, S. Kishimoto, T. Mizutani, Nanotechnol. 2006, 17, 3412.
– reference: D. M. Sun, M. Y. Timmermans, Y. Tian, A. G. Nasibulin, E. I. Kauppinen, S. Kishimoto, T. Mizutani, Y. Ohno, Nat. Nanotechnol. 2011, 6, 156.
– reference: I. Meric, C. R. Dean, A. F. Young, N. Baklitskaya, N. J. Tremblay, C. Nuckolls, P. Kim, K. L. Shepard, Nano Lett. 2011, 11, 1093.
– reference: S. Russo, M. F. Craciun, M. Yamamoto, A. F. Morpurgo, S. Tarucha, Phys. E 2010, 42, 677.
– reference: W. J. Yu, S. Y. Lee, S. H. Chae, D. Perello, G. H. Han, M. Yun, Y. H. Lee, Nano Lett. 2010, 11, 1344.
– reference: L. S. Liyanage, H. Lee, N. Patil, S. Park, S. Mitra, Z. Bao, H. P. Wong, ACS Nano 2012, 6, 451.
– reference: L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Nature 2009, 458, 877.
– reference: N. Moriyama, Y. Ohno, T. Kitamura, S. Kishimoto, T. Mizutani, Nanotechnol. 2010, 21, 165201.
– reference: A. R. Harutyunyan, G. Chen, T. M. Paronyan, E. M Pigos, O. A. Kuznetsov, K. Hewaparakrama, S. M. Kim, D. Zakharov, E. A. Stach, G. U. Sumanasekera, Science 2009, 326, 116.
– reference: J. Yu, G. Liu, A. V. Sumant, V. Goyal, A. A. Balandin, Nano Lett. 2012, 12, 1603.
– reference: M. J. Panzer, C. D. Frisbie, Adv. Mater. 2008, 20, 3177.
– reference: A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivisto, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, M. Kauppinen, D. P. Brown, O. G. Okhotnikov, E. I. Kauppinen, ACS Nano 2011, 5, 3214.
– reference: S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, S. K. Banerjee, Appl. Phys. Lett. 2009, 94, 062107.
– reference: C. Wang, J. Zhang, K. Ryu, A. Badmaev, L. G. De Arco, C. Zhou, Nano Lett. 2009, 9, 4285.
– reference: R. Krupke, F. Hennrich, H. V. Lohneysen, M. M. Kappes, Science 2003, 301, 344.
– reference: A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
– reference: S. Kim, S. Kim, J. Park, S. Ju, S. Mohammadi, ACS Nano 2010, 4, 2994.
– reference: A. Kaskela, A. G. Nasibulin, M. Y. Timmermans, B. Aitchison, A. Papadimitratos, Y. Tian, Z. Zhu, H. Jiang, D. P. Brown, A. Zakhidov, E. I. Kauppinen, Nano Lett. 2010, 10, 4349.
– reference: J. Zhang, C. Wang, C. Zhou, ACS Nano 2012, 8, 7412.
– reference: W. Zhu, D. Neumayer, V. Perebeinos, Ph. Avouris, Nano Lett. 2010, 10, 3572.
– reference: D. McClain, N. Thomas, S. Youkey, R. Schaller, J. Jiao, K. P. O'Brien, Carbon 2009, 47, 1493.
– reference: X. Li, K. M. Borysenko, M. B. Nardelli, K. W. Kim, Phys. Rev. B 2011, 84, 195453.
– reference: R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Science 2008, 320, 1038.
– reference: A. Facchetti, M. H. Yoon, T. J. Marks, Adv. Mater. 2005, 17, 1705.
– reference: A. Vijayaraghavan, K. Kanzaki, S. Suzuki, Y. Kobayashi, H. Inokawa, Y. Ono, S. Kar, P. M. Ajayan, Nano Lett. 2005, 5, 1575.
– reference: X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 2012, 324, 1312.
– reference: K. Balasubramanian, R. Sordan, M. Burghard, K. Kern, Nano Lett. 2004, 4, 827.
– reference: M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, J. M. Tour, R. E. Smalley, Science 2003, 301, 1519.
– reference: J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, B. J. LeRoy, Nat. Mater. 2011, 10, 282.
– reference: A. K. Geim, Science 2009, 324, 1530.
– reference: M. Engel, J. P. Small, M. Steiner, M. Freitag, A. A. Green, M. C. Hersam, Ph. Avouris, ACS Nano 2008, 2, 2445.
– reference: R. T. Weitz, U. Zschieschang, F. Effenberger, H. Klauk, M. Burghard, K. Kern, Nano Lett. 2007, 7, 22.
– reference: F. Gunes, G. H. Han, K. K. Kim, E. S. Kim, S. J. Chae, M. H. Park, H. K. Jeong, S. C. Lim, Y. H. Lee, Nano 2009, 2, 83.
– reference: H. M. Cheng, F. Li, G. Su, H.Y. Pan, L. L. He, X. Sun, M. S. Dresselhaus, Appl. Phys. Lett. 1998, 72, 3282.
– reference: Z. H. Ni, H. M. Wang, Y. Ma, J. Kasim, Y. H. Wu, Z. X. Shen, ACS Nano 2008, 2, 1033.
– reference: W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, D. Dai, Nano Lett. 2003, 3, 193.
– reference: X. Wang, S. M. Tabakman, H. Dai, J. Am. Chem. Soc. 2008, 130, 8152.
– volume: 4
  start-page: 447
  year: 2004
  publication-title: Nano Lett.
– volume: 11
  start-page: 4642
  year: 2011
  publication-title: Nano. Lett.
– volume: 4
  start-page: e15
  year: 2012
  publication-title: Asia Mater.
– volume: 129
  start-page: 074704
  year: 2008
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: 5274
  year: 2011
  publication-title: Nano Lett.
– volume: 389
  start-page: 827
  year: 1997
  publication-title: Nature
– volume: 130
  start-page: 8152
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 4543
  year: 2004
  publication-title: Chem. Mater.
– volume: 152
  start-page: 1350
  year: 2012
  publication-title: Solid State Commun.
– volume: 6
  start-page: 2992
  year: 2012
  publication-title: ACS Nano
– volume: 12
  start-page: 3596
  year: 2012
  publication-title: Nano Lett.
– volume: 8
  start-page: 7412
  year: 2012
  publication-title: ACS Nano
– volume: 6
  start-page: 9657
  year: 2012
  publication-title: ACS Nano
– volume: 44
  start-page: 313001
  year: 2011
  publication-title: J. Phys. D—Appl. Phys.
– volume: 490
  start-page: 192
  year: 2012
  publication-title: Nature
– volume: 100
  start-page: 1486
  year: 2012
  publication-title: Proc. IEEE
– volume: 113
  start-page: 15768
  year: 2009
  publication-title: J. Phys. Chem. C.
– volume: 12
  start-page: 1603
  year: 2012
  publication-title: Nano Lett.
– volume: 76
  start-page: 064120
  year: 2007
  publication-title: Phys. Rev. B
– volume: 112
  start-page: 3849
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 2
  start-page: 1033
  year: 2008
  publication-title: ACS Nano
– volume: 21
  start-page: 165201
  year: 2010
  publication-title: Nanotechnol.
– volume: 7
  start-page: e42315
  year: 2012
  publication-title: PLoS ONE
– volume: 11
  start-page: 120
  year: 2012
  publication-title: Nat. Mater.
– volume: 5
  start-page: 1575
  year: 2005
  publication-title: Nano Lett.
– volume: 97
  start-page: 121301
  year: 2005
  publication-title: J. Appl. Phys.
– volume: 133
  start-page: 5232
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 72
  start-page: 3282
  year: 1998
  publication-title: Appl. Phys. Lett.
– volume: 5
  start-page: 4469
  year: 2012
  publication-title: ACS Nano
– volume: 12
  start-page: 1362
  year: 2012
  publication-title: Nano Lett.
– year: 2007
– volume: 8
  start-page: 902
  year: 2008
  publication-title: Nano Lett.
– volume: 3
  start-page: 699
  year: 2012
  publication-title: Nat. Commun.
– volume: 32
  start-page: 1349
  year: 2011
  publication-title: IEEE Electron Dev. Lett.
– volume: 24
  start-page: 5284
  year: 2012
  publication-title: Adv. Mater.
– volume: 6
  start-page: 6471
  year: 2012
  publication-title: ACS Nano
– volume: 4
  start-page: e6
  year: 2012
  publication-title: NPG Asia Mater.
– volume: 10
  start-page: 3739
  year: 2010
  publication-title: J. Nanosci. Nanotechnol.
– volume: 61
  start-page: 4393
  year: 2006
  publication-title: Chem. Eng. Sci.
– volume: 100
  start-page: 033103
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 42
  start-page: 677
  year: 2010
  publication-title: Phys. E
– volume: 9
  start-page: 315
  year: 2010
  publication-title: Nat. Mater.
– volume: 20
  start-page: 7059
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 4169
  year: 2011
  publication-title: ACS Nano
– volume: 273
  start-page: 483
  year: 1996
  publication-title: Science
– volume: 24
  start-page: 4499
  year: 2012
  publication-title: Adv. Mater.
– volume: 321
  start-page: 101
  year: 2008
  publication-title: Science
– volume: 4
  start-page: 2994
  year: 2010
  publication-title: ACS Nano
– volume: 55
  start-page: 718
  year: 2012
  publication-title: Sci. China
– volume: 7
  start-page: 151
  year: 2008
  publication-title: Nat. Mater.
– volume: 4
  start-page: 105101
  year: 2011
  publication-title: Appl. Phys. Express
– volume: 22
  start-page: 714
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 320
  start-page: 1038
  year: 2008
  publication-title: Science
– volume: 10
  start-page: 4349
  year: 2010
  publication-title: Nano Lett.
– volume: 4
  start-page: 3284
  year: 2011
  publication-title: ACS Nano
– volume: 314
  start-page: 974
  year: 2006
  publication-title: Science
– volume: 6
  start-page: 156
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 787
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 179
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 19
  start-page: 1897
  year: 2007
  publication-title: Adv. Mater.
– volume: 301
  start-page: 344
  year: 2003
  publication-title: Science
– volume: 101
  start-page: 026803
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 97
  start-page: 216803
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 2
  start-page: 605
  year: 2007
  publication-title: Nat. Nanotechnol.
– volume: 324
  start-page: 1530
  year: 2009
  publication-title: Science
– volume: 5
  start-page: 055102
  year: 2012
  publication-title: Appl. Phys. Express
– volume: 324
  start-page: 1312
  year: 2012
  publication-title: Science
– volume: 88
  start-page: 113507
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 4285
  year: 2009
  publication-title: Nano Lett.
– volume: 10
  start-page: 3572
  year: 2010
  publication-title: Nano Lett.
– volume: 2
  start-page: 230
  year: 2007
  publication-title: Nat. Nanotechnol.
– volume: 313
  start-page: 951
  year: 2008
  publication-title: Science
– volume: 22
  start-page: 20747
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 20
  start-page: 8446
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 35
  year: 2004
  publication-title: Nano Lett.
– volume: 4
  start-page: 827
  year: 2004
  publication-title: Nano Lett.
– volume: 48
  start-page: 2941
  year: 2010
  publication-title: Carbon
– volume: 12
  start-page: 743
  year: 2012
  publication-title: Nano Lett.
– volume: 6
  start-page: 770
  year: 2007
  publication-title: Nat. Mater.
– volume: 4
  start-page: 5527
  year: 2012
  publication-title: Nanoscale
– volume: 335
  start-page: 947
  year: 2012
  publication-title: Science
– volume: 4
  start-page: 4870
  year: 2012
  publication-title: Nanoscale
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 14
  start-page: 1876
  year: 2011
  publication-title: Small
– volume: 6
  start-page: 773
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 45
  start-page: 598
  year: 2012
  publication-title: Acc. Chem. Res.
– year: 1996
– volume: 10
  start-page: 5257
  year: 2009
  publication-title: Int. J. Mol. Sci.
– volume: 22
  start-page: 8179
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 43
  start-page: 673
  year: 2007
  publication-title: Eur. Polym. J.
– volume: 325
  start-page: 1107
  year: 2009
  publication-title: Science
– volume: 11
  start-page: 1344
  year: 2010
  publication-title: Nano Lett.
– volume: 21
  start-page: 3806
  year: 2011
  publication-title: Adv. Mater.
– volume: 5
  start-page: 3214
  year: 2011
  publication-title: ACS Nano
– volume: 20
  start-page: 36
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 11
  start-page: 3161
  year: 2011
  publication-title: IEEE Sens. J.
– volume: 292
  start-page: 706
  year: 2001
  publication-title: Science
– volume: 129
  start-page: 12382
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 7480
  year: 2012
  publication-title: ACS Nano
– volume: 12
  start-page: 1184
  year: 2012
  publication-title: Nano Lett.
– volume: 23
  start-page: 344017
  year: 2012
  publication-title: Nanotechnol.
– volume: 47
  start-page: 1493
  year: 2009
  publication-title: Carbon
– volume: 10
  start-page: 1125
  year: 2010
  publication-title: Nano Lett.
– volume: 21
  start-page: 425201
  year: 2010
  publication-title: Nanotechnol.
– volume: 19
  start-page: 1800
  year: 2001
  publication-title: J. Vac. Sci. Technol. A
– volume: 4
  start-page: 7221
  year: 2010
  publication-title: ACS Nano
– volume: 17
  start-page: 3412
  year: 2006
  publication-title: Nanotechnol.
– year: 2011
– volume: 101
  start-page: 13408
  year: 2004
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6
  start-page: 96
  year: 2006
  publication-title: Nano Lett.
– volume: 317
  start-page: 497
  year: 2000
  publication-title: Chem. Phys. Lett.
– volume: 9
  start-page: 2619
  year: 2009
  publication-title: Nano Lett.
– volume: 94
  start-page: 062107
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 1888
  year: 2012
  publication-title: ACS Nano
– volume: 128
  start-page: 4202
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 3464
  year: 2010
  publication-title: Nano Lett.
– volume: 100
  start-page: 152104
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 22
  year: 2007
  publication-title: Nano Lett.
– volume: 76
  start-page: 073103
  year: 2007
  publication-title: Phys. Rev. B
– volume: 23
  start-page: 1482
  year: 2011
  publication-title: Adv. Mater.
– volume: 101
  start-page: 252109
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 15
  start-page: S3011
  year: 2003
  publication-title: J. Phys. Condens. Matter
– year: 1998
– volume: 146
  start-page: 351
  year: 2008
  publication-title: Solid State Commun.
– volume: 5
  start-page: 487
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 131
  start-page: 14642
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 4388
  year: 2010
  publication-title: ACS Nano
– volume: 4
  start-page: e18
  year: 2012
  publication-title: Asia Mater.
– volume: 458
  start-page: 877
  year: 2009
  publication-title: Nature
– volume: 327
  start-page: 1603
  year: 2010
  publication-title: Science
– volume: 5
  start-page: 8471
  year: 2011
  publication-title: ACS Nano
– volume: 42
  start-page: 2592
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 95
  start-page: 133114
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 90
  start-page: 023516
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 1752
  year: 2009
  publication-title: Nano Lett.
– volume: 11
  start-page: 1093
  year: 2011
  publication-title: Nano Lett.
– volume: 319
  start-page: 1229
  year: 2008
  publication-title: Science
– volume: 80
  start-page: 045401
  year: 2009
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 1018
  year: 2012
  publication-title: Nat. Commun.
– volume: 4
  start-page: 611
  year: 2010
  publication-title: Nat. Photon.
– volume: 24
  start-page: 436
  year: 2012
  publication-title: Adv. Mater.
– volume: 126
  start-page: 10520
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 81
  start-page: 155433
  year: 2010
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 5223
  year: 2011
  publication-title: ACS Nano
– volume: 100
  start-page: 063502
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 11
  start-page: 2396
  year: 2011
  publication-title: Nano Lett.
– volume: 542
  start-page: 52
  year: 2012
  publication-title: Thermochim. Acta
– volume: 18
  start-page: 304
  year: 2006
  publication-title: Adv. Mater.
– volume: 3
  start-page: 563
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 326
  start-page: 116
  year: 2009
  publication-title: Science
– volume: 9
  start-page: 3592
  year: 2009
  publication-title: Nano Lett.
– volume: 56
  start-page: 1178
  year: 2011
  publication-title: Prog. Mater. Sci.
– volume: 88
  start-page: 3150
  year: 2011
  publication-title: Microelectron. Eng.
– volume: 17
  start-page: 1705
  year: 2005
  publication-title: Adv. Mater.
– volume: 4
  start-page: 963
  year: 2011
  publication-title: Nano Res.
– volume: 206
  start-page: 1626
  year: 2009
  publication-title: Phys. Status Solidi A
– volume: 125
  start-page: 11186
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 578
  year: 1977
  publication-title: J. Chem. Soc., Chem. Commun.
– volume: 5
  start-page: 574
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 2
  start-page: 83
  year: 2009
  publication-title: Nano
– volume: 1
  start-page: 60
  year: 2006
  publication-title: Nat. Nanotechnol.
– volume: 2
  start-page: 167
  year: 2009
  publication-title: Nano Res.
– volume: 206
  start-page: 753
  year: 2011
  publication-title: Surf. Coat. Technol.
– volume: 8
  start-page: 323
  year: 2008
  publication-title: Nano Lett.
– volume: 97
  start-page: 043107
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 84
  start-page: 195453
  year: 2011
  publication-title: Phys. Rev. B
– volume: 11
  start-page: 5301
  year: 2011
  publication-title: Nano Lett.
– volume: 10
  start-page: 490
  year: 2010
  publication-title: Nano Lett.
– volume: 99
  start-page: 072110
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 2
  start-page: 309
  year: 2011
  publication-title: Nat. Commun.
– volume: 22
  start-page: 3906
  year: 2010
  publication-title: Adv. Mater.
– volume: 321
  start-page: 385
  year: 2008
  publication-title: Science
– volume: 54
  start-page: 17954
  year: 1996
  publication-title: Phys. Rev. B
– volume: 22
  start-page: 2392
  year: 2010
  publication-title: Adv. Mater.
– volume: 10
  start-page: 282
  year: 2011
  publication-title: Nat. Mater.
– volume: 454
  start-page: 495
  year: 2008
  publication-title: Nature
– volume: 110
  start-page: 132
  year: 2010
  publication-title: Chem. Rev.
– volume: 1
  start-page: 241
  year: 2002
  publication-title: Nat. Mater.
– volume: 24
  start-page: 6147
  year: 2012
  publication-title: Adv. Mater.
– volume: 20
  start-page: 085201
  year: 2009
  publication-title: Nanotechnol.
– volume: 11
  start-page: 4852
  year: 2011
  publication-title: Nano Lett.
– volume: 6
  start-page: 8646
  year: 2012
  publication-title: ACS Nano
– volume: 4
  start-page: 317
  year: 2004
  publication-title: Nano Lett.
– volume: 21
  start-page: 29
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 2355
  year: 2006
  publication-title: Adv. Mater.
– volume: 479
  start-page: 338
  year: 2011
  publication-title: Nature
– volume: 2
  start-page: 2037
  year: 2008
  publication-title: ACS Nano
– volume: 5
  start-page: 190
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 1
  start-page: 73
  year: 2009
  publication-title: ACS Nano
– volume: 6
  start-page: 451
  year: 2012
  publication-title: ACS Nano
– volume: 7
  start-page: 156
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 4474
  year: 2009
  publication-title: Nano Lett.
– volume: 20
  start-page: 3177
  year: 2008
  publication-title: Adv. Mater.
– volume: 6
  start-page: 183
  year: 2007
  publication-title: Nat. Mater.
– volume: 128
  start-page: 6026
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 1526
  year: 2009
  publication-title: Adv. Func. Mater.
– volume: 354
  start-page: 56
  year: 1991
  publication-title: Nature
– volume: 12
  start-page: 1417
  year: 2012
  publication-title: Nano Lett.
– volume: 82
  start-page: 2145
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 2
  start-page: 2445
  year: 2008
  publication-title: ACS Nano
– volume: 51
  start-page: 06FD18
  year: 2012
  publication-title: Jpn. J. Appl. Phys.
– volume: 7
  start-page: 1195
  year: 2007
  publication-title: Nano Lett.
– volume: 6
  start-page: 1970
  year: 2012
  publication-title: ACS Nano
– volume: 23
  start-page: 2779
  year: 2011
  publication-title: Adv. Mater.
– volume: 301
  start-page: 1519
  year: 2003
  publication-title: Science
– volume: 19
  start-page: 2577
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 3472
  year: 2012
  publication-title: Nano Lett.
– volume: 5
  start-page: 722
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 3
  start-page: 193
  year: 2003
  publication-title: Nano Lett.
– volume: 3
  start-page: 189
  year: 2010
  publication-title: Nano Res.
– volume: 9
  start-page: 301
  year: 2011
  publication-title: Phys. Status Solidi
– volume: 12
  start-page: 1527
  year: 2012
  publication-title: Nano Lett.
– volume: 50
  start-page: 070108
  year: 2011
  publication-title: Jpn. J. Appl. Phys.
– volume: 10
  start-page: 715
  year: 2010
  publication-title: Nano Lett.
– volume: 459
  start-page: 820
  year: 2009
  publication-title: Nature
– ident: e_1_2_8_23_2
  doi: 10.1109/JSEN.2011.2167608
– ident: e_1_2_8_29_2
  doi: 10.1109/JPROC.2012.2190168
– ident: e_1_2_8_151_2
  doi: 10.1021/nl035097c
– ident: e_1_2_8_1_2
  doi: 10.1038/354056a0
– ident: e_1_2_8_123_2
  doi: 10.1063/1.3702570
– ident: e_1_2_8_19_2
  doi: 10.1038/nnano.2010.89
– ident: e_1_2_8_80_2
  doi: 10.1021/nl204088b
– ident: e_1_2_8_163_2
  doi: 10.1016/j.carbon.2010.04.032
– ident: e_1_2_8_165_2
  doi: 10.1021/nn1006094
– ident: e_1_2_8_113_2
  doi: 10.1063/1.3467454
– ident: e_1_2_8_107_2
  doi: 10.5772/1742
– ident: e_1_2_8_135_2
  doi: 10.1021/nl202695v
– ident: e_1_2_8_204_2
  doi: 10.1016/j.mee.2011.06.017
– ident: e_1_2_8_217_2
  doi: 10.1021/nn101950n
– ident: e_1_2_8_182_2
  doi: 10.1021/nn3005262
– ident: e_1_2_8_148_2
  doi: 10.1038/nnano.2007.77
– ident: e_1_2_8_203_2
  doi: 10.1002/adma.200501740
– ident: e_1_2_8_124_2
  doi: 10.1021/nl2043375
– ident: e_1_2_8_195_2
  doi: 10.1007/s12274-010-1022-4
– ident: e_1_2_8_5_2
  doi: 10.1021/nl200758b
– ident: e_1_2_8_166_2
  doi: 10.1007/s12274-009-9013-z
– ident: e_1_2_8_41_2
  doi: 10.1126/science.273.5274.483
– ident: e_1_2_8_45_2
  doi: 10.1021/nn201828y
– ident: e_1_2_8_207_2
  doi: 10.1021/nl300948c
– ident: e_1_2_8_68_2
  doi: 10.1038/nature11458
– ident: e_1_2_8_197_2
  doi: 10.1103/PhysRevB.76.064120
– ident: e_1_2_8_35_2
  doi: 10.1039/c2nr30994g
– ident: e_1_2_8_188_2
  doi: 10.1103/PhysRevB.81.155433
– ident: e_1_2_8_56_2
  doi: 10.1166/jnn.2010.2939
– ident: e_1_2_8_149_2
  doi: 10.1021/nl062907m
– ident: e_1_2_8_91_2
  doi: 10.1039/c39770000578
– ident: e_1_2_8_159_2
  doi: 10.1021/jp710691j
– ident: e_1_2_8_98_2
  doi: 10.1109/LED.2011.2163489
– ident: e_1_2_8_130_2
  doi: 10.1007/s12274-011-0152-7
– ident: e_1_2_8_212_2
  doi: 10.1088/0957-4484/21/42/425201
– ident: e_1_2_8_193_2
  doi: 10.1063/1.2958285
– ident: e_1_2_8_169_2
  doi: 10.1021/nn303070p
– ident: e_1_2_8_213_2
  doi: 10.1021/nl104488z
– ident: e_1_2_8_192_2
  doi: 10.1021/nl203968j
– ident: e_1_2_8_89_2
  doi: 10.1039/c0jm00264j
– ident: e_1_2_8_83_2
  doi: 10.1021/nl3012648
– ident: e_1_2_8_170_2
  doi: 10.1103/PhysRevB.54.17954
– ident: e_1_2_8_16_2
  doi: 10.1002/adma.200903689
– ident: e_1_2_8_85_2
  doi: 10.1126/science.1182383
– ident: e_1_2_8_6_2
  doi: 10.1021/nl034841q
– ident: e_1_2_8_81_2
  doi: 10.1103/PhysRevLett.101.026803
– ident: e_1_2_8_147_2
  doi: 10.1088/0957-4484/20/8/085201
– ident: e_1_2_8_184_2
  doi: 10.1038/nmat2003
– ident: e_1_2_8_143_2
  doi: 10.1021/nn2044609
– ident: e_1_2_8_66_2
  doi: 10.1063/1.3242029
– ident: e_1_2_8_62_2
  doi: 10.1021/ja2008278
– ident: e_1_2_8_209_2
  doi: 10.1021/nn3020486
– ident: e_1_2_8_27_2
  doi: 10.1038/am.2012.32
– ident: e_1_2_8_171_2
  doi: 10.1126/science.1150878
– volume: 21
  start-page: 3806
  year: 2011
  ident: e_1_2_8_198_2
  publication-title: Adv. Mater.
– ident: e_1_2_8_108_2
  doi: 10.1063/1.3077021
– volume: 16
  start-page: 2355
  year: 2006
  ident: e_1_2_8_115_2
  publication-title: Adv. Mater.
– ident: e_1_2_8_10_2
  doi: 10.1021/nl0731872
– ident: e_1_2_8_13_2
  doi: 10.1126/science.1157996
– ident: e_1_2_8_216_2
  doi: 10.1016/j.carbon.2009.01.042
– volume-title: Science of Fullerences and Carbon Nanotubes
  year: 1996
  ident: e_1_2_8_40_2
– ident: e_1_2_8_100_2
  doi: 10.1021/nl101559n
– ident: e_1_2_8_17_2
  doi: 10.1021/cr900070d
– ident: e_1_2_8_142_2
  doi: 10.1143/APEX.5.055102
– ident: e_1_2_8_144_2
  doi: 10.1002/adma.201103620
– ident: e_1_2_8_9_2
  doi: 10.1073/pnas.0404450101
– ident: e_1_2_8_101_2
  doi: 10.1063/1.1564291
– ident: e_1_2_8_38_2
  doi: 10.1039/c2jm00102k
– ident: e_1_2_8_175_2
  doi: 10.1021/nl9032318
– ident: e_1_2_8_72_2
  doi: 10.1002/adfm.200900166
– ident: e_1_2_8_104_2
  doi: 10.1021/nl035185x
– ident: e_1_2_8_152_2
  doi: 10.1021/ja9068529
– ident: e_1_2_8_176_2
  doi: 10.1038/nmat2082
– ident: e_1_2_8_92_2
  doi: 10.3390/ijms10125257
– ident: e_1_2_8_79_2
  doi: 10.1038/nnano.2011.6
– ident: e_1_2_8_110_2
  doi: 10.1021/nl101832y
– ident: e_1_2_8_32_2
  doi: 10.1002/adfm.201001530
– ident: e_1_2_8_71_2
  doi: 10.1002/adma.201100304
– ident: e_1_2_8_205_2
  doi: 10.1063/1.3683517
– ident: e_1_2_8_210_2
  doi: 10.1038/ncomms2021
– ident: e_1_2_8_63_2
  doi: 10.1038/nnano.2008.215
– ident: e_1_2_8_3_2
  doi: 10.1142/p080
– ident: e_1_2_8_164_2
  doi: 10.1063/1.3622767
– ident: e_1_2_8_57_2
  doi: 10.1088/0953-8984/15/42/003
– ident: e_1_2_8_77_2
  doi: 10.1143/JJAP.50.070108
– ident: e_1_2_8_200_2
  doi: 10.1021/nn2004298
– ident: e_1_2_8_48_2
  doi: 10.1021/nn203771u
– ident: e_1_2_8_4_2
  doi: 10.1016/j.ssc.2008.02.024
– ident: e_1_2_8_179_2
  doi: 10.1021/nl9039636
– ident: e_1_2_8_215_2
  doi: 10.1021/nl0259232
– ident: e_1_2_8_53_2
  doi: 10.1002/adma.201202699
– ident: e_1_2_8_106_2
  doi: 10.1063/1.1940727
– ident: e_1_2_8_8_2
  doi: 10.1021/nl204545q
– ident: e_1_2_8_114_2
  doi: 10.1021/nn800031m
– ident: e_1_2_8_82_2
  doi: 10.1063/1.3676277
– ident: e_1_2_8_47_2
  doi: 10.1126/science.1086534
– ident: e_1_2_8_189_2
  doi: 10.1021/nl202725w
– ident: e_1_2_8_64_2
  doi: 10.1126/science.1130681
– ident: e_1_2_8_168_2
  doi: 10.1021/nn203771u
– ident: e_1_2_8_196_2
  doi: 10.1103/PhysRevB.80.045401
– ident: e_1_2_8_65_2
  doi: 10.1021/nl072838r
– ident: e_1_2_8_24_2
  doi: 10.1038/nature10680
– ident: e_1_2_8_7_2
  doi: 10.1021/nl103993z
– ident: e_1_2_8_90_2
  doi: 10.1371/journal.pone.0042315
– ident: e_1_2_8_127_2
  doi: 10.1021/nn800434d
– ident: e_1_2_8_103_2
  doi: 10.1038/nmat769
– ident: e_1_2_8_190_2
  doi: 10.1038/am.2012.10
– ident: e_1_2_8_208_2
  doi: 10.1021/nl203691d
– ident: e_1_2_8_139_2
  doi: 10.1143/APEX.4.105101
– ident: e_1_2_8_88_2
  doi: 10.1039/c0jm00331j
– ident: e_1_2_8_174_2
  doi: 10.1038/nnano.2010.8
– ident: e_1_2_8_26_2
  doi: 10.1126/science.1174290
– ident: e_1_2_8_49_2
  doi: 10.1038/nnano.2006.52
– ident: e_1_2_8_99_2
  doi: 10.1021/nl061534m
– ident: e_1_2_8_102_2
  doi: 10.1021/nn800354m
– ident: e_1_2_8_39_2
  doi: 10.1007/s11426-012-4503-3
– ident: e_1_2_8_156_2
  doi: 10.1021/nl049806d
– ident: e_1_2_8_43_2
  doi: 10.1016/S0009-2614(99)01379-2
– ident: e_1_2_8_146_2
  doi: 10.1021/jp9051402
– ident: e_1_2_8_214_2
  doi: 10.1039/C2CS35325C
– ident: e_1_2_8_84_2
  doi: 10.1063/1.4772541
– ident: e_1_2_8_186_2
  doi: 10.1038/nmat2968
– ident: e_1_2_8_54_2
  doi: 10.1021/nn302185d
– ident: e_1_2_8_78_2
  doi: 10.1016/j.physe.2009.11.080
– ident: e_1_2_8_34_2
  doi: 10.1002/adma.200602223
– ident: e_1_2_8_138_2
  doi: 10.1039/c2jm34598f
– volume-title: Physics of Semiconductor Devices
  year: 2007
  ident: e_1_2_8_96_2
– ident: e_1_2_8_187_2
  doi: 10.1103/PhysRevB.76.073103
– ident: e_1_2_8_30_2
  doi: 10.1002/smll.201002009
– ident: e_1_2_8_120_2
  doi: 10.1002/adma.200800617
– ident: e_1_2_8_50_2
  doi: 10.1038/ncomms1313
– ident: e_1_2_8_15_2
  doi: 10.1126/science.1158877
– ident: e_1_2_8_44_2
  doi: 10.1038/nnano.2007.300
– ident: e_1_2_8_25_2
  doi: 10.1021/ja074927b
– ident: e_1_2_8_117_2
  doi: 10.1021/cm049598q
– ident: e_1_2_8_42_2
  doi: 10.1116/1.1380721
– ident: e_1_2_8_97_2
  doi: 10.1021/nn301199j
– ident: e_1_2_8_61_2
  doi: 10.1021/nl101680s
– ident: e_1_2_8_160_2
  doi: 10.1021/nl901802m
– ident: e_1_2_8_28_2
  doi: 10.1016/j.surfcoat.2011.02.017
– ident: e_1_2_8_14_2
  doi: 10.1038/nmat1849
– ident: e_1_2_8_137_2
  doi: 10.1021/nn3026172
– ident: e_1_2_8_31_2
  doi: 10.1021/nn204848r
– ident: e_1_2_8_134_2
  doi: 10.1021/nl202765b
– ident: e_1_2_8_191_2
  doi: 10.1126/science.1218461
– ident: e_1_2_8_157_2
  doi: 10.1126/science.1058782
– ident: e_1_2_8_12_2
  doi: 10.1126/science.1156965
– ident: e_1_2_8_178_2
  doi: 10.1038/nature08105
– ident: e_1_2_8_116_2
  doi: 10.1002/adma.200500517
– ident: e_1_2_8_211_2
  doi: 10.1038/nmat3169
– ident: e_1_2_8_76_2
  doi: 10.1038/nnano.2011.196
– ident: e_1_2_8_155_2
  doi: 10.1021/ja046482m
– ident: e_1_2_8_119_2
  doi: 10.1088/0957-4484/23/34/344017
– ident: e_1_2_8_2_2
  doi: 10.1126/science.1102896
– ident: e_1_2_8_109_2
  doi: 10.1021/nl902788u
– ident: e_1_2_8_153_2
  doi: 10.1126/science.1177599
– ident: e_1_2_8_21_2
  doi: 10.1016/j.pmatsci.2011.03.003
– ident: e_1_2_8_46_2
  doi: 10.1126/science.1156588
– ident: e_1_2_8_125_2
  doi: 10.1021/nl203316r
– ident: e_1_2_8_69_2
  doi: 10.1021/ar200229q
– ident: e_1_2_8_183_2
  doi: 10.1038/nmat2710
– ident: e_1_2_8_59_2
  doi: 10.1016/j.ces.2006.02.020
– ident: e_1_2_8_162_2
  doi: 10.1126/science.1133781
– ident: e_1_2_8_132_2
  doi: 10.1021/nn800708w
– ident: e_1_2_8_167_2
  doi: 10.1126/science.1156588
– ident: e_1_2_8_11_2
  doi: 10.1021/nl052145f
– ident: e_1_2_8_22_2
  doi: 10.1088/0022-3727/44/31/313001
– ident: e_1_2_8_129_2
  doi: 10.1021/nl903272n
– ident: e_1_2_8_141_2
  doi: 10.1038/39827
– ident: e_1_2_8_194_2
  doi: 10.1021/nl900913c
– ident: e_1_2_8_122_2
  doi: 10.1038/nature07110
– ident: e_1_2_8_58_2
  doi: 10.1063/1.121624
– ident: e_1_2_8_140_2
  doi: 10.1143/JJAP.51.06FD18
– ident: e_1_2_8_67_2
  doi: 10.1126/science.1171245
– ident: e_1_2_8_201_2
  doi: 10.1142/S1793292009001538
– ident: e_1_2_8_105_2
  doi: 10.1063/1.2186100
– ident: e_1_2_8_185_2
  doi: 10.1038/nnano.2010.172
– ident: e_1_2_8_145_2
  doi: 10.1039/C1JM14071J
– ident: e_1_2_8_86_2
  doi: 10.1002/adfm.200801065
– ident: e_1_2_8_154_2
  doi: 10.1126/science.1087691
– ident: e_1_2_8_181_2
  doi: 10.1021/nl803279t
– ident: e_1_2_8_202_2
  doi: 10.1002/adma.201003188
– ident: e_1_2_8_199_2
  doi: 10.1088/0957-4484/21/16/165201
– ident: e_1_2_8_60_2
  doi: 10.1021/nn200338r
– ident: e_1_2_8_33_2
  doi: 10.1002/adma.201201386
– ident: e_1_2_8_126_2
  doi: 10.1038/nnano.2011.1
– ident: e_1_2_8_158_2
  doi: 10.1021/nl0509935
– ident: e_1_2_8_87_2
  doi: 10.1039/B913168J
– ident: e_1_2_8_70_2
  doi: 10.1016/j.ssc.2012.04.056
– ident: e_1_2_8_74_2
  doi: 10.1038/ncomms1702
– ident: e_1_2_8_172_2
  doi: 10.1038/nature07919
– ident: e_1_2_8_121_2
  doi: 10.1021/nn100966s
– ident: e_1_2_8_131_2
  doi: 10.1063/1.2431465
– ident: e_1_2_8_180_2
  doi: 10.1103/PhysRevB.84.195453
– ident: e_1_2_8_128_2
  doi: 10.1002/adma.201201794
– ident: e_1_2_8_73_2
  doi: 10.1038/nnano.2010.132
– ident: e_1_2_8_36_2
  doi: 10.1039/c2nr31317k
– ident: e_1_2_8_51_2
  doi: 10.1021/nn302768h
– volume: 9
  start-page: 301
  year: 2011
  ident: e_1_2_8_52_2
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssr.201105289
– ident: e_1_2_8_111_2
  doi: 10.1021/ja8023059
– ident: e_1_2_8_150_2
  doi: 10.1021/ja036622c
– ident: e_1_2_8_75_2
  doi: 10.1088/0957-4484/17/14/011
– ident: e_1_2_8_94_2
  doi: 10.1002/pssa.200925088
– ident: e_1_2_8_37_2
  doi: 10.1038/am.2012.27
– ident: e_1_2_8_177_2
  doi: 10.1038/nnano.2011.251
– ident: e_1_2_8_118_2
  doi: 10.1016/j.eurpolymj.2006.12.012
– ident: e_1_2_8_93_2
  doi: 10.1021/ja058725w
– ident: e_1_2_8_173_2
  doi: 10.1103/PhysRevLett.97.216803
– ident: e_1_2_8_55_2
  doi: 10.1038/nnano.2012.189
– ident: e_1_2_8_206_2
  doi: 10.1021/nl202134z
– ident: e_1_2_8_20_2
  doi: 10.1002/adma.201001068
– ident: e_1_2_8_95_2
  doi: 10.1016/j.tca.2012.03.004
– ident: e_1_2_8_18_2
  doi: 10.1038/nphoton.2010.186
– ident: e_1_2_8_161_2
  doi: 10.1021/ja061324b
– ident: e_1_2_8_112_2
  doi: 10.1021/nn201414d
– ident: e_1_2_8_136_2
  doi: 10.1021/nn200919v
– ident: e_1_2_8_133_2
  doi: 10.1021/nl902522f
SSID ssj0031247
Score 2.5491793
SecondaryResourceType review_article
Snippet Carbon nanotubes (CNTs) and graphene have attracted great attention for numerous applications for future flexible electronics, owing to their supreme...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1188
SubjectTerms Carbon
carbon nanotubes
Categories
Electronics
flexible devices
graphene
Nanocomposites
Nanomaterials
Nanostructure
Nanotechnology
Semiconductor devices
Thin films
thin-film transistors
Transistors
Title A Review of Carbon Nanotube- and Graphene-Based Flexible Thin-Film Transistors
URI https://api.istex.fr/ark:/67375/WNG-52KP5SRG-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201203154
https://www.ncbi.nlm.nih.gov/pubmed/23519953
https://www.proquest.com/docview/1326032380
https://www.proquest.com/docview/1417554759
https://www.proquest.com/docview/1326729772
https://www.proquest.com/docview/1439727668
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQucCB9yNQkJEQnNImduwkx1KxW0G7Qn2I3qyx15aqbhO0Dwlx4ifwG_klzDi7oYsKSHBMPI78mPF8E9vfMPayDCHoIPLU-wwwQFEyrcDX6ThIlylncyvpNvLBSO-dFO9O1emlW_wdP0T_w40sI67XZOBgZ9s_SUNnFxPaOsgF5SkgQlA6sEWo6LDnj5LovGJ2FfRZKRFvrVgbM7G9Xn3NK12nAf58FeRcR7DRBQ1uM1g1vjt5cr61mNst9-UXXsf_6d0ddmuJT_lOp1B32TXf3GM3L7EW3mfHO7zbUeBt4LswtW3DcZFu5wvrv3_9xqEZ8yHxYOMyis9v0E-O-YCIN-3Ec0oUim8HZ5MLHh1l5CmZPWAng7fHu3vpMjlD6nCNLNJcg4RQyEpLrwtfQgWVcMI5WYm6UCKo0pUOggRFBRi3OCtqAF8RRPBBPmQbTdv4x4w7VRJ_OYwtYg2Qqs5DFjLvMh2cd0InLF1NjnFL5nJKoDExHeeyMDRaph-thL3u5T91nB2_lXwV57oXg-k5nXQrlfk4Ghol3n9QR4dDM0rY5koZzNLIZwYDeZ1JxDzZ1cUFQjNFfIoJe9EXo_XSlgw0vl10n8CuY4jzBxnCjKLUukrYo04P-_YKyq9YK5kwEbXpL_01Rwf7-_3Tk3-p9JTdEDEjSJEKsck25tOFf4a4bG6fR9v7AdWpMBI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CdgEseD8CBYyEYOU2sWMnWZbCzEBnRqidCnaW7bEl1GmC5iEhVnwC38iX4JtMAoMKSLB0bEd-Xd_j1zkATzPvvfQsoc7FOixQBKe5dgWdem5jYU1iOL5GHo3l4CR98160twnxLUzDD9FtuKFl1PM1GjhuSO_9YA1dnM3w7CBhKFSQXoRtlPVGEYOXRx2DFA_uq9ZXCV6LIvVWy9sYs73N_Bt-aRub-NN5oHMTw9ZOqHcNTFv85u7J6e5qaXbt51-YHf-rftfh6hqikv1mTN2AC668CVd-Ii68BZN90hwqkMqTAz03VUnCPF0tV8Z9-_KV6HJK-kiFHWbSEH4RXOWU9JB708wcQa3Q8LX3YXZGal9ZU5UsbsNJ79XkYEDX-gzUhmkypYnUXPuU55I7mbpM5zpnllnLc1akgnmR2cxqz7XAiLB0sYYVWrscUYLz_A5slVXp7gGxIkMKcz01AW5oLorExz52NpbeOstkBLTtHWXX5OWooTFTDe0yU9haqmutCJ536T82tB2_Tfms7uwumZ6f4mW3TKh3474S7PCtOD7qq3EEO-1oUGs7X6iwlpcxD7AnPj86DehMIKViBE-66GDAeCqjS1etml-EqodVzh_SIGxkmZR5BHebgdiVl6HEYiF4BKweTn-przoeDYdd6P6_ZHoMlwaT0VANX48PH8BlVguEpJSxHdhazlfuYYBpS_OoNsTvvhQ0LA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKyE4lDcNFDASglPaxI6d5FgKu4VuV1UfojfLcWwJdZtU-5AQJ34Cv5FfwkyyG7qogATHxOPIjxnPN7H9DcDL1HuvPI9D5yKDAYoUYWZcHpZe2EjaIi4E3UbeH6rdk-TDqTy9dIu_5YfofriRZTTrNRn4Rem3fpKGTs5HtHUQc8pTkFyH1UShxRAsOuwIpAR6rya9CjqtkJi3FrSNEd9arr_kllZphD9fhTmXIWzjg3q3wSxa3x49OducTYtN--UXYsf_6d4dWJsDVLbdatRduOaqe3DrEm3hfTjeZu2WAqs92zHjoq4YrtL1dFa471-_MVOVrE9E2LiO4vMbdJQl6xHzZjFyjDKF4tvep9E5azxlQ1QyeQAnvXfHO7vhPDtDaHGRTMJYGWF8IjIlnEpcajKTccutFRnPE8m9TG1qjRdGUgEGLrbguTEuI4zgvHgIK1VduXVgVqZEYG7KAsGGETKPfeQjZyPlrbNcBRAuJkfbOXU5ZdAY6ZZ0mWsaLd2NVgCvO_mLlrTjt5KvmrnuxMz4jI66pVJ_HPa15HsH8uiwr4cBbCyUQc-tfKIxkleRQNATXV2cIDaTRKgYwIuuGM2X9mRM5epZ-wnsOsY4f5Ah0MhTpbIAHrV62LWXU4LFXIoAeKNNf-mvPtofDLqnx_9S6TncOHjb04P3w70ncJM32UGSkPMNWJmOZ-4pYrRp8awxwx8ShDLk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Carbon+Nanotube%E2%80%90+and+Graphene%E2%80%90Based+Flexible+Thin%E2%80%90Film+Transistors&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Sun%2C+Dong%E2%80%90Ming&rft.au=Liu%2C+Chang&rft.au=Ren%2C+Wen%E2%80%90Cai&rft.au=Cheng%2C+Hui%E2%80%90Ming&rft.date=2013-04-22&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=9&rft.issue=8&rft.spage=1188&rft.epage=1205&rft_id=info:doi/10.1002%2Fsmll.201203154&rft.externalDBID=10.1002%252Fsmll.201203154&rft.externalDocID=SMLL201203154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon