Spatial patterns and climate relationships of major plant traits in the New World differ between woody and herbaceous species
Aim: Despite several recent efforts to map plant traits and to identify their climatic drivers, there are still major gaps. Global trait patterns for major functional groups, in particular, the differences between woody and herbaceous plants, have yet to be identified. Here, we take advantage of big...
Saved in:
Published in | Journal of biogeography Vol. 45; no. 4; pp. 895 - 916 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
John Wiley & Sons Ltd
01.04.2018
Wiley Subscription Services, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aim: Despite several recent efforts to map plant traits and to identify their climatic drivers, there are still major gaps. Global trait patterns for major functional groups, in particular, the differences between woody and herbaceous plants, have yet to be identified. Here, we take advantage of big data efforts to compile plant species occurrence and trait data to analyse the spatial patterns of assemblage means and variances of key plant traits. We tested whether these patterns and their climatic drivers are similar for woody and herbaceous plants. Location: New World (North and South America). Methods: Using the largest currently available database of plant occurrences, we provide maps of 200 × 200 km grid-cell trait means and variances for both woody and herbaceous species and identify environmental drivers related to these patterns. We focus on six plant traits: maximum plant height, specific leaf area, seed mass, wood density, leaf nitrogen concentration and leaf phosphorus concentration. Results: For woody assemblages, we found a strong climate signal for both means and variances of most of the studied traits, consistent with strong environmental filtering. In contrast, for herbaceous assemblages, spatial patterns of trait means and variances were more variable, the climate signal on trait means was often different and weaker. Main conclusion: Trait variations for woody versus herbaceous assemblages appear to reflect alternative strategies and differing environmental constraints. Given that most large-scale trait studies are based on woody species, the strikingly different biogeographic patterns of herbaceous traits suggest that a more synthetic framework is needed that addresses how suites of traits within and across broad functional groups respond to climate. |
---|---|
AbstractList | AimDespite several recent efforts to map plant traits and to identify their climatic drivers, there are still major gaps. Global trait patterns for major functional groups, in particular, the differences between woody and herbaceous plants, have yet to be identified. Here, we take advantage of big data efforts to compile plant species occurrence and trait data to analyse the spatial patterns of assemblage means and variances of key plant traits. We tested whether these patterns and their climatic drivers are similar for woody and herbaceous plants.LocationNew World (North and South America).MethodsUsing the largest currently available database of plant occurrences, we provide maps of 200 × 200 km grid‐cell trait means and variances for both woody and herbaceous species and identify environmental drivers related to these patterns. We focus on six plant traits: maximum plant height, specific leaf area, seed mass, wood density, leaf nitrogen concentration and leaf phosphorus concentration.ResultsFor woody assemblages, we found a strong climate signal for both means and variances of most of the studied traits, consistent with strong environmental filtering. In contrast, for herbaceous assemblages, spatial patterns of trait means and variances were more variable, the climate signal on trait means was often different and weaker.Main conclusionTrait variations for woody versus herbaceous assemblages appear to reflect alternative strategies and differing environmental constraints. Given that most large‐scale trait studies are based on woody species, the strikingly different biogeographic patterns of herbaceous traits suggest that a more synthetic framework is needed that addresses how suites of traits within and across broad functional groups respond to climate. Aim: Despite several recent efforts to map plant traits and to identify their climatic drivers, there are still major gaps. Global trait patterns for major functional groups, in particular, the differences between woody and herbaceous plants, have yet to be identified. Here, we take advantage of big data efforts to compile plant species occurrence and trait data to analyse the spatial patterns of assemblage means and variances of key plant traits. We tested whether these patterns and their climatic drivers are similar for woody and herbaceous plants. Location: New World (North and South America). Methods: Using the largest currently available database of plant occurrences, we provide maps of 200 × 200 km grid-cell trait means and variances for both woody and herbaceous species and identify environmental drivers related to these patterns. We focus on six plant traits: maximum plant height, specific leaf area, seed mass, wood density, leaf nitrogen concentration and leaf phosphorus concentration. Results: For woody assemblages, we found a strong climate signal for both means and variances of most of the studied traits, consistent with strong environmental filtering. In contrast, for herbaceous assemblages, spatial patterns of trait means and variances were more variable, the climate signal on trait means was often different and weaker. Main conclusion: Trait variations for woody versus herbaceous assemblages appear to reflect alternative strategies and differing environmental constraints. Given that most large-scale trait studies are based on woody species, the strikingly different biogeographic patterns of herbaceous traits suggest that a more synthetic framework is needed that addresses how suites of traits within and across broad functional groups respond to climate. Aim Despite several recent efforts to map plant traits and to identify their climatic drivers, there are still major gaps. Global trait patterns for major functional groups, in particular, the differences between woody and herbaceous plants, have yet to be identified. Here, we take advantage of big data efforts to compile plant species occurrence and trait data to analyse the spatial patterns of assemblage means and variances of key plant traits. We tested whether these patterns and their climatic drivers are similar for woody and herbaceous plants. Location New World (North and South America). Methods Using the largest currently available database of plant occurrences, we provide maps of 200 × 200 km grid‐cell trait means and variances for both woody and herbaceous species and identify environmental drivers related to these patterns. We focus on six plant traits: maximum plant height, specific leaf area, seed mass, wood density, leaf nitrogen concentration and leaf phosphorus concentration. Results For woody assemblages, we found a strong climate signal for both means and variances of most of the studied traits, consistent with strong environmental filtering. In contrast, for herbaceous assemblages, spatial patterns of trait means and variances were more variable, the climate signal on trait means was often different and weaker. Main conclusion Trait variations for woody versus herbaceous assemblages appear to reflect alternative strategies and differing environmental constraints. Given that most large‐scale trait studies are based on woody species, the strikingly different biogeographic patterns of herbaceous traits suggest that a more synthetic framework is needed that addresses how suites of traits within and across broad functional groups respond to climate. |
Author | Tószögyová, Anna Blonder, Benjamin Wiser, Susan K. Morueta-Holme, Naia Bahn, Michael Peet, Robert K. Kattge, Jens Engemann, Kristine Šímová, Irena McGill, Brian J. Svenning, Jens-Christian Sandel, Brody van Bodegom, Peter M. Ozinga, Wim A. Violle, Cyrille Gutiérrez, Alvaro G. Boyle, Brad Kraft, Nathan J. B. Enquist, Brian J. |
Author_xml | – sequence: 1 givenname: Irena surname: Šímová fullname: Šímová, Irena – sequence: 2 givenname: Cyrille surname: Violle fullname: Violle, Cyrille – sequence: 3 givenname: Jens-Christian surname: Svenning fullname: Svenning, Jens-Christian – sequence: 4 givenname: Jens surname: Kattge fullname: Kattge, Jens – sequence: 5 givenname: Kristine surname: Engemann fullname: Engemann, Kristine – sequence: 6 givenname: Brody surname: Sandel fullname: Sandel, Brody – sequence: 7 givenname: Robert K. surname: Peet fullname: Peet, Robert K. – sequence: 8 givenname: Susan K. surname: Wiser fullname: Wiser, Susan K. – sequence: 9 givenname: Benjamin surname: Blonder fullname: Blonder, Benjamin – sequence: 10 givenname: Brian J. surname: McGill fullname: McGill, Brian J. – sequence: 11 givenname: Brad surname: Boyle fullname: Boyle, Brad – sequence: 12 givenname: Naia surname: Morueta-Holme fullname: Morueta-Holme, Naia – sequence: 13 givenname: Nathan J. B. surname: Kraft fullname: Kraft, Nathan J. B. – sequence: 14 givenname: Peter M. surname: van Bodegom fullname: van Bodegom, Peter M. – sequence: 15 givenname: Alvaro G. surname: Gutiérrez fullname: Gutiérrez, Alvaro G. – sequence: 16 givenname: Michael surname: Bahn fullname: Bahn, Michael – sequence: 17 givenname: Wim A. surname: Ozinga fullname: Ozinga, Wim A. – sequence: 18 givenname: Anna surname: Tószögyová fullname: Tószögyová, Anna – sequence: 19 givenname: Brian J. surname: Enquist fullname: Enquist, Brian J. |
BackLink | https://hal.science/hal-02411821$$DView record in HAL |
BookMark | eNp1kU9v1DAQxSNUJLaFAx8AyRIXOKT1nziJubUV0KIVHABxtOxkwnrltYPtJdoD3x1n0xYJgQ8eyf690cx7p8WJ8w6K4jnB5ySfi60254SRhjwqVoTVvKS1ECfFCjPMS0wb_KQ4jXGLMRacVavi1-dRJaMsyiVBcBEp16POmp1KgALY_Otd3JgxIj-gndr6gEarXEIpKJMiMg6lDaCPMKFvPtge9WYYICANaQJwaPK-Pxy7biBo1YHfRxRH6AzEp8XjQdkIz-7qWfH13dsv1zfl-tP72-vLddlx1pKyripe04ZzrSnRA2krznBFq67BZGjxwETb6kZ0TYXrftCcC6xbqhVRQLRggp0Vb5a-k_oOzrh8SadCZ6L0ykhrdFDhIKd9kM7OZdzrKDljWDRZ_HoRb5SVY8jOZHSW3Vyu5fyGaUVIS8lPktlXCzsG_2MPMcmdiR3YbNi8t6Q4LySoYDP68i906_fBZRsyRYRgFeFtpi4Wqgs-xgCD7Ew6ZjLbbyXBcs5d5tzlMfc_4z4o7mf-F3vXfTIWDv8H5Yer23vFi0WxjcmHBwWta9qKqmG_ATNVyKU |
CitedBy_id | crossref_primary_10_3389_fevo_2018_00219 crossref_primary_10_1038_s41586_021_03876_7 crossref_primary_10_1111_oik_09579 crossref_primary_10_1093_aob_mcy165 crossref_primary_10_1016_j_rse_2024_114276 crossref_primary_10_1016_j_ecolind_2022_109098 crossref_primary_10_1111_geb_13309 crossref_primary_10_1111_jse_13157 crossref_primary_10_1111_plb_13082 crossref_primary_10_1016_j_ecolind_2019_105774 crossref_primary_10_1111_geb_13149 crossref_primary_10_1111_jvs_13280 crossref_primary_10_1111_jvs_13046 crossref_primary_10_3389_fevo_2018_00194 crossref_primary_10_1111_1365_2435_14185 crossref_primary_10_1111_jvs_12756 crossref_primary_10_3389_fpls_2022_757077 crossref_primary_10_1111_jvs_12999 crossref_primary_10_1126_science_aaz4797 crossref_primary_10_3390_f14091875 crossref_primary_10_1111_nph_18099 crossref_primary_10_1016_j_ecolind_2024_112199 crossref_primary_10_3389_fpls_2024_1504238 crossref_primary_10_1093_jxb_erac231 crossref_primary_10_1111_ecog_05598 crossref_primary_10_3390_f13020218 crossref_primary_10_1111_jvs_13211 crossref_primary_10_1111_ecog_07010 crossref_primary_10_1016_j_gecco_2021_e01666 crossref_primary_10_1111_geb_13649 crossref_primary_10_1111_geb_13887 crossref_primary_10_1016_j_scitotenv_2024_173730 crossref_primary_10_1016_j_jhydrol_2020_125088 crossref_primary_10_3389_ffgc_2023_1187724 crossref_primary_10_1038_s44185_023_00018_2 crossref_primary_10_1007_s00376_024_4034_9 crossref_primary_10_1029_2021JG006378 crossref_primary_10_1016_j_scitotenv_2023_167954 crossref_primary_10_1111_jvs_13229 crossref_primary_10_3389_fpls_2020_01222 crossref_primary_10_1111_gcb_14375 crossref_primary_10_1007_s00442_021_04867_1 crossref_primary_10_1111_geb_13086 crossref_primary_10_1002_ecs2_4828 crossref_primary_10_1029_2020JG005747 crossref_primary_10_1071_BT23111 crossref_primary_10_1002_ajb2_1838 crossref_primary_10_1111_geb_13877 crossref_primary_10_1111_ecog_06504 crossref_primary_10_3389_fpls_2022_895720 crossref_primary_10_1016_j_scitotenv_2020_138267 crossref_primary_10_1111_jbi_14114 crossref_primary_10_3389_fpls_2021_799401 crossref_primary_10_1093_jpe_rtz025 crossref_primary_10_1016_j_pld_2021_11_004 crossref_primary_10_1111_geb_13077 crossref_primary_10_1111_geb_13627 crossref_primary_10_1038_s42003_022_03573_9 crossref_primary_10_3389_fevo_2020_531947 crossref_primary_10_1111_eva_12776 crossref_primary_10_1111_jbi_13809 crossref_primary_10_1038_s41598_019_46878_2 crossref_primary_10_1038_s42003_021_02359_9 crossref_primary_10_3390_plants13233287 crossref_primary_10_1111_jvs_12792 crossref_primary_10_1111_jbi_13653 crossref_primary_10_1093_biolinnean_bly158 crossref_primary_10_1111_1365_2745_13252 crossref_primary_10_1007_s11258_021_01113_9 crossref_primary_10_1111_jvs_13249 crossref_primary_10_1038_s42003_024_06777_3 crossref_primary_10_1007_s11427_023_2430_2 crossref_primary_10_1111_1365_2435_14422 crossref_primary_10_1111_nph_18905 crossref_primary_10_26848_rbgf_v18_1_p369_404 crossref_primary_10_1016_j_pecon_2021_07_002 crossref_primary_10_1111_brv_12782 crossref_primary_10_1073_pnas_1813723116 crossref_primary_10_1111_oik_09829 crossref_primary_10_1016_j_fecs_2022_100033 crossref_primary_10_1111_nph_20019 crossref_primary_10_1111_jvs_13130 crossref_primary_10_1016_j_flora_2018_07_009 crossref_primary_10_1111_jvs_13256 crossref_primary_10_1111_jvs_13018 crossref_primary_10_1016_j_baae_2023_07_006 crossref_primary_10_1111_1365_2745_13163 crossref_primary_10_1111_geb_13056 crossref_primary_10_1111_geb_13176 crossref_primary_10_1016_j_envexpbot_2021_104598 crossref_primary_10_1111_geb_12996 crossref_primary_10_1002_ajb2_70019 crossref_primary_10_1016_j_flora_2019_04_004 crossref_primary_10_1371_journal_pone_0263508 crossref_primary_10_3389_fpls_2023_1243209 crossref_primary_10_1111_1365_2745_13673 crossref_primary_10_1111_jvs_13146 |
Cites_doi | 10.1111/1365-2745.12211 10.1111/j.1469-8137.2005.01349.x 10.1038/nplants.2016.129 10.1086/285388 10.1111/j.0269-8463.2004.00825.x 10.1073/pnas.1300673111 10.1007/s00442-016-3549-x 10.1016/j.ppees.2011.04.003 10.1890/13-2124.1 10.1111/j.1366-9516.2006.00216.x 10.1007/978-3-662-05214-3 10.1890/09-1509.1 10.3758/BF03206482 10.1098/rspb.2008.0137 10.1111/jvs.12041 10.1073/pnas.0704716104 10.1046/j.1365-2435.2002.00664.x 10.1890/09-1743.1 10.1111/j.1466-822X.2005.00187.x 10.1111/jvs.12066 10.1111/1365-2435.12510 10.1111/j.1466-822x.2005.00172.x 10.1073/pnas.0704469104 10.1111/geb.12623 10.1016/j.ecolmodel.2005.03.026 10.1146/annurev.ecolsys.37.091305.110215 10.1002/joc.1276 10.1073/pnas.1216065111 10.1016/j.scitotenv.2015.03.141 10.1111/nph.12210 10.1046/j.1365-2699.2003.00781.x 10.1007/978-0-387-78341-3 10.1111/ecog.00845 10.1046/j.0305-0270.2003.00993.x 10.1111/ecog.00867 10.1111/j.1466-8238.2010.00645.x 10.1002/ecy.1569 10.1111/j.1461-0248.2009.01285.x 10.1111/j.1365-2745.2009.01526.x 10.1111/jvs.12325 10.1046/j.1365-2435.1998.00274.x 10.1111/ele.12508 10.1111/j.2041-210X.2011.00134.x 10.1023/A:1004327224729 10.1038/nature16489 10.1073/pnas.1415442111 10.1111/geb.12573 10.1111/2041-210X.12548 10.1111/jvs.12190 10.2307/1313077 10.1073/pnas.1317722111 10.1111/1365-2745.12031 10.1111/j.1466-8238.2008.00441.x 10.1111/j.1365-2486.2011.02451.x 10.1007/s004420100628 10.5194/bgd-6-3993-2009 10.1016/j.tree.2011.11.014 10.1038/nature02361 10.1016/j.tree.2016.12.001 10.1111/j.1466-8238.2011.00727.x 10.1002/ece3.3297 10.1016/bs.aecr.2015.02.001 10.1086/605982 10.1080/01621459.1995.10476572 10.1016/j.tree.2006.02.002 |
ContentType | Journal Article |
Copyright | Copyright © 2018 John Wiley & Sons Ltd. 2018 John Wiley & Sons Ltd Copyright © 2018 John Wiley & Sons Ltd Distributed under a Creative Commons Attribution 4.0 International License Wageningen University & Research |
Copyright_xml | – notice: Copyright © 2018 John Wiley & Sons Ltd. – notice: 2018 John Wiley & Sons Ltd – notice: Copyright © 2018 John Wiley & Sons Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Wageningen University & Research |
DBID | AAYXX CITATION 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 1XC QVL |
DOI | 10.1111/jbi.13171 |
DatabaseName | CrossRef Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) NARCIS:Publications |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Biology Ecology Environmental Sciences |
EISSN | 1365-2699 |
EndPage | 916 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_533097 oai_HAL_hal_02411821v1 10_1111_jbi_13171 JBI13171 26628947 |
Genre | article |
GeographicLocations | South America |
GeographicLocations_xml | – name: South America |
GrantInformation_xml | – fundername: CONICYT‐PAI funderid: 82130046 – fundername: Crown Research Institutes – fundername: French Foundation for Research on Biodiversity funderid: DIVGRASS – fundername: National Science Foundation funderid: DBI‐0735191; EF‐0553768; DEB‐1457812; ABI‐1565118 – fundername: Danish National Research Foundation funderid: DNRF96 – fundername: Fondo Nacional de Desarrollo Científico y Tecnológico funderid: 11150835 – fundername: Marie Curie International Outgoing Fellowship funderid: 221060 – fundername: European Research Council funderid: ERC‐StG‐2014‐639706‐CONSTRAINTS; ERC‐2012‐StG‐310886‐HISTFUNC – fundername: Carlsberg Foundation – fundername: VILLUM FONDEN funderid: 16549 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1OC 29J 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABJNI ABLJU ABPLY ABPPZ ABPVW ABTLG ABXSQ ACAHQ ACCZN ACGFS ACPOU ACPRK ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ANHSF ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ TN5 UB1 W8V W99 WBKPD WIH WIK WMRSR WOHZO WQJ WSUWO WXSBR XG1 YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 1OB 31~ AAHHS AAISJ AANHP ABEML ACBWZ ACCFJ ACHIC ACRPL ACSCC ACYXJ ADNMO ADULT ADZOD AEEZP AEQDE AEUQT AFPWT AHXOZ AI. AILXY AIWBW AJBDE AQVQM ASPBG AVWKF AZFZN BDRZF CAG COF DOOOF EQZMY ESX FEDTE GTFYD HF~ HGD HQ2 HTVGU HVGLF H~9 JSODD SAMSI VH1 VOH VQP WRC AAYXX ABSQW AGQPQ AGUYK CITATION 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 1XC 08R ABFLS ABHUG ABPTK ACXME ADAWD ADDAD ADZLD AESBF AFVGU AGJLS AIRJO CWIXF DWIUU IPNFZ QVL UMP |
ID | FETCH-LOGICAL-c5381-644562755bb21bf184530424c701f80f3988b79c7406dfb5590b82ba1ae1b9393 |
IEDL.DBID | DR2 |
ISSN | 0305-0270 |
IngestDate | Thu Oct 13 09:31:38 EDT 2022 Thu Aug 14 06:48:25 EDT 2025 Fri Jul 11 18:33:55 EDT 2025 Fri Jul 25 10:36:26 EDT 2025 Thu Apr 24 23:05:46 EDT 2025 Tue Jul 01 01:14:14 EDT 2025 Wed Jan 22 17:05:47 EST 2025 Thu Jul 03 21:54:33 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5381-644562755bb21bf184530424c701f80f3988b79c7406dfb5590b82ba1ae1b9393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5061-2385 0000-0002-0776-4092 0000-0003-2823-6587 0000-0002-6124-7096 0000-0002-6369-7859 0000-0002-9474-569X 0000-0002-3415-0862 0000-0001-6084-625X 0000-0002-2471-9226 0000-0001-8928-3198 0000-0003-0771-4500 0000-0002-8938-8181 0000-0001-7482-9776 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jbi.13171 |
PQID | 2019934158 |
PQPubID | 1086398 |
PageCount | 22 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_533097 hal_primary_oai_HAL_hal_02411821v1 proquest_miscellaneous_2053892931 proquest_journals_2019934158 crossref_citationtrail_10_1111_jbi_13171 crossref_primary_10_1111_jbi_13171 wiley_primary_10_1111_jbi_13171_JBI13171 jstor_primary_26628947 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2018 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: April 2018 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Journal of biogeography |
PublicationYear | 2018 |
Publisher | John Wiley & Sons Ltd Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons Ltd – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2002; 16 2007; 104 2017; 7 2015; 38 2013; 24 1997; 47 2006; 37 1898 2016; 30 2014; 25 2011; 13 2011; 17 1998; 199 2016; 180 2005; 25 2009; 12 2004; 31 2009; 97 2015; 534 2006; 21 2017; 32 2011; 20 2013; 198 2012; 27 2014; 95 2008; 275 1998; 12 2012; 21 2009; 18 1988 1995; 90 2015; 18 2017; 26 2006; 12 2010 2015; 52 2016; 529 2013; 101 2006; 7 2016; 97 2008 2009; 174 2003 2002 2004; 428 2014; 111 2003; 30 2001; 126 2016; 4 2004; 11 2015; 26 2016; 7 2012; 3 2016; 2 2004; 18 2006; 190 2014; 37 1992; 139 2017 2016 2009; 6 2014 2010; 91 2005; 14 2014; 102 e_1_2_7_5_1 e_1_2_7_3_1 Enquist B. J. (e_1_2_7_16_1) 2016; 4 e_1_2_7_9_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Thuiller W. (e_1_2_7_68_1) 2010 Becker R. A. (e_1_2_7_4_1) 1988 e_1_2_7_73_1 e_1_2_7_71_1 Zhao P. (e_1_2_7_78_1) 2006; 7 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 Burnham K. P. (e_1_2_7_7_1) 2002 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_8_1 Maitner B. S. (e_1_2_7_35_1) e_1_2_7_18_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 Schimper A. F. W. (e_1_2_7_57_1) 1898 R Development Core Team (e_1_2_7_50_1) 2017 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 52 start-page: 249 year: 2015 end-page: 318 article-title: Scaling from traits to ecosystems: Developing a general trait driver theory via integrating trait‐based and metabolic scaling theories publication-title: Advances in Ecological Research – article-title: The bien r package: A tool to access the Botanical Information and Ecology Network (BIEN) database publication-title: Methods in Ecology and Evolution – volume: 38 start-page: 649 year: 2015 end-page: 658 article-title: Shifts in trait means and variances in North American tree assemblages: Species richness patterns are loosely related to the functional space publication-title: Ecography – volume: 25 start-page: 1167 year: 2014 end-page: 1180 article-title: Which is a better predictor of plant traits: Temperature or precipitation? publication-title: Journal of Vegetation Science – volume: 18 start-page: 137 year: 2009 end-page: 149 article-title: A global study of relationships between leaf traits, climate and soil measures of nutrient fertility publication-title: Global Ecology and Biogeography – volume: 95 start-page: 2236 year: 2014 end-page: 2245 article-title: Nitrogen fixation strategies can explain the latitudinal shift in nitrogen‐fixing tree abundance publication-title: Ecology – volume: 180 start-page: 923 year: 2016 end-page: 931 article-title: Reinforcing loose foundation stones in trait‐based plant ecology publication-title: Oecologia – volume: 14 start-page: 585 year: 2005 end-page: 598 article-title: Plant allometry, stoichiometry and the temperature‐dependence of primary productivity publication-title: Global Ecology and Biogeography – volume: 30 start-page: 330 year: 2016 end-page: 344 article-title: Macrophysiology – progress and prospects publication-title: Functional Ecology – volume: 111 start-page: 13745 year: 2014 end-page: 13750 article-title: Functional trait space and the latitudinal diversity gradient publication-title: Proceedings of the National Academy of Sciences – volume: 104 start-page: 13384 year: 2007 end-page: 13389 article-title: Species richness, hotspots, and the scale dependence of range maps in ecology and conservation publication-title: Proceedings of the National Academy of Sciences – volume: 4 start-page: e2615v2 year: 2016 article-title: Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity publication-title: PeerJ Preprints – volume: 25 start-page: 235 year: 2014 end-page: 247 article-title: Are trait‐based species rankings consistent across data sets and spatial scales? publication-title: Journal of Vegetation Science – year: 2014 – volume: 529 start-page: 167 year: 2016 end-page: 171 article-title: The global spectrum of plant form and function publication-title: Nature – volume: 199 start-page: 213 year: 1998 end-page: 227 article-title: A leaf‐height‐seed (LHS) plant ecology strategy scheme publication-title: Plant and Soil – volume: 6 start-page: 3993 year: 2009 end-page: 4057 article-title: Regional and large‐scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties publication-title: Biogeosciences Discussion – volume: 21 start-page: 798 year: 2012 end-page: 808 article-title: The biogeography and filtering of woody plant functional diversity in North and South America publication-title: Global Ecology and Biogeography – volume: 97 start-page: 923 year: 2009 end-page: 932 article-title: Global patterns in plant height publication-title: Journal of Ecology – volume: 275 start-page: 1469 year: 2008 end-page: 1478 article-title: Macrophysiology for a changing world publication-title: Proceedings of the Royal Society B: Biological Sciences – year: 1898 – year: 2008 – volume: 2 start-page: 16129 year: 2016 article-title: The energetic and carbon economic origins of leaf thermoregulation publication-title: Nature Plants – volume: 3 start-page: 53 year: 2012 end-page: 64 article-title: CliMond: Global high‐resolution historical and future scenario climate surfaces for bioclimatic modelling publication-title: Methods in Ecology and Evolution – start-page: 77 year: 2010 end-page: 85 – volume: 37 start-page: 187 year: 2006 end-page: 214 article-title: Some evolutionary consequences of being a tree publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 14 start-page: 411 year: 2005 end-page: 421 article-title: Modulation of leaf economic traits and trait relationships by climate publication-title: Global Ecology and Biogeography – volume: 12 start-page: 49 year: 2006 end-page: 60 article-title: Using niche‐based modelling to assess the impact of climate change on tree functional diversity in Europe publication-title: Diversity and Distributions – volume: 126 start-page: 457 year: 2001 end-page: 461 article-title: Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure publication-title: Oecologia – volume: 13 start-page: 217 year: 2011 end-page: 225 article-title: When and how should intraspecific variability be considered in trait‐based plant ecology? publication-title: Perspectives in Plant Ecology, Evolution and Systematics – volume: 20 start-page: 744 year: 2011 end-page: 754 article-title: Variation in above‐ground forest biomass across broad climatic gradients publication-title: Global Ecology and Biogeography – volume: 26 start-page: 729 year: 2017 end-page: 739 article-title: Sensitivity of community‐level trait–environment relationships to data representativeness: A test for functional biogeography publication-title: Global Ecology and Biogeography – volume: 7 start-page: 2541 year: 2006 end-page: 2563 article-title: On model selection consistency of Lasso publication-title: Journal of Machine Learning Research – volume: 190 start-page: 231 year: 2006 end-page: 259 article-title: Maximum entropy modeling of species geographic distributions publication-title: Ecological Modelling – volume: 16 start-page: 545 year: 2002 end-page: 556 article-title: Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail publication-title: Functional Ecology – volume: 139 start-page: 1305 year: 1992 end-page: 1321 article-title: Intercontinental correlation of geographical ranges suggests stasis in ecological traits of relict genera of temperate perennial herbs publication-title: The American Naturalist – volume: 102 start-page: 275 year: 2014 end-page: 301 article-title: The world‐wide ‘fast–slow’ plant economics spectrum: A traits manifesto publication-title: Journal of Ecology – volume: 198 start-page: 957 year: 2013 end-page: 969 article-title: Next‐generation dynamic global vegetation models: Learning from community ecology publication-title: New Phytologist – year: 2003 – volume: 17 start-page: 2905 year: 2011 end-page: 2935 article-title: TRY – a global database of plant traits publication-title: Global Change Biology – volume: 91 start-page: 3218 year: 2010 end-page: 3228 article-title: Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply publication-title: Ecology – volume: 428 start-page: 553 year: 2004 end-page: 557 article-title: Ferns diversified in the shadow of angiosperms publication-title: Nature – volume: 90 start-page: 773 year: 1995 end-page: 795 article-title: Bayes factors publication-title: Journal of the American Statistical Association – volume: 11 start-page: 192 year: 2004 end-page: 196 article-title: AIC model selection using Akaike weights publication-title: Psychonomic Bulletin & Review – volume: 12 start-page: 948 year: 1998 end-page: 958 article-title: Leaf structure (specific leaf area) modulates photosynthesis–nitrogen relations: Evidence from within and across species and functional groups publication-title: Functional Ecology – year: 2016 – volume: 111 start-page: 13739 year: 2014 end-page: 13744 article-title: Predicting species’ range limits from functional traits for the tree flora of North America publication-title: Proceedings of the National Academy of Sciences – volume: 91 start-page: 2234 year: 2010 end-page: 2241 article-title: Plant geography upon the basis of functional traits: An example from eastern North American trees publication-title: Ecology – volume: 111 start-page: 13690 year: 2014 end-page: 13696 article-title: The emergence and promise of functional biogeography publication-title: Proceedings of the National Academy of Sciences – volume: 428 start-page: 821 year: 2004 end-page: 827 article-title: The worldwide leaf economics spectrum publication-title: Nature – volume: 32 start-page: 86 year: 2017 end-page: 87 article-title: It's about time: A critique of macroecological inferences concerning plant competition publication-title: Trends in Ecology & Evolution – volume: 25 start-page: 1965 year: 2005 end-page: 1978 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: International Journal of Climatology – year: 2010 – volume: 26 start-page: 1138 issue: 10 year: 2017 end-page: 1152 article-title: Plant community structure and nitrogen inputs modulate the climate signal on leaf traits publication-title: Global Ecology and Biogeography – volume: 18 start-page: 1406 year: 2015 end-page: 1419 article-title: A global meta‐analysis of the relative extent of intraspecific trait variation in plant communities publication-title: Ecology Letters – volume: 26 start-page: 826 year: 2015 end-page: 827 article-title: Trait databases: Misuses and precautions publication-title: Journal of Vegetation Science – volume: 12 start-page: 351 year: 2009 end-page: 366 article-title: Towards a worldwide wood economics spectrum publication-title: Ecology Letters – volume: 7 start-page: 7548 year: 2017 end-page: 7559 article-title: Stress from cold and drought as drivers of functional trait spectra in North American angiosperm tree assemblages publication-title: Ecology and Evolution – volume: 7 start-page: 960 year: 2016 end-page: 965 article-title: Plant‐O‐Matic: A dynamic and mobile guide to all plants of the Americas publication-title: Methods in Ecology and Evolution – volume: 97 start-page: 3243 year: 2016 end-page: 3243 article-title: A plant growth form dataset for the New World publication-title: Ecology – volume: 101 start-page: 4 year: 2013 end-page: 8 article-title: Plant functional effects on ecosystem services publication-title: Journal of Ecology – year: 2002 – year: 1988 – volume: 24 start-page: 921 year: 2013 end-page: 931 article-title: Intra‐specific and inter‐specific variation in specific leaf area reveal the importance of abiotic and biotic drivers of species diversity across elevation and latitude publication-title: Journal of Vegetation Science – volume: 31 start-page: 379 year: 2004 end-page: 388 article-title: Geographical gradients in seed mass in relation to climate publication-title: Journal of Biogeography – volume: 47 start-page: 235 year: 1997 end-page: 242 article-title: Hydraulic limits to tree height and tree growth publication-title: BioScience – volume: 21 start-page: 178 year: 2006 end-page: 185 article-title: Rebuilding community ecology from functional traits publication-title: Trends in Ecology & Evolution – volume: 174 start-page: 595 year: 2009 end-page: 612 article-title: Macrophysiology: A conceptual reunification publication-title: The American Naturalist – volume: 18 start-page: 159 year: 2004 end-page: 167 article-title: Macrophysiology: Large‐scale patterns in physiological traits and their ecological implications publication-title: Functional Ecology – volume: 27 start-page: 244 year: 2012 end-page: 252 article-title: The return of the variance: Intraspecific variability in community ecology publication-title: Trends in Ecology & Evolution – year: 2017 – volume: 111 start-page: 13697 year: 2014 end-page: 13702 article-title: Linking plant and ecosystem functional biogeography publication-title: Proceedings of the National Academy of Sciences – volume: 104 start-page: 20684 year: 2007 end-page: 20689 article-title: Incorporating plant functional diversity effects in ecosystem service assessments publication-title: Proceedings of the National Academy of Sciences – volume: 37 start-page: 1267 year: 2014 end-page: 1281 article-title: What do we gain from simplicity versus complexity in species distribution models? publication-title: Ecography – volume: 30 start-page: 105 year: 2003 end-page: 128 article-title: Latitude, seed predation and seed mass publication-title: Journal of Biogeography – volume: 534 start-page: 43 year: 2015 end-page: 51 article-title: Vegetation ecology meets ecosystem science: Permanent grasslands as a functional biogeography case study publication-title: Science of the Total Environment – ident: e_1_2_7_51_1 doi: 10.1111/1365-2745.12211 – ident: e_1_2_7_77_1 doi: 10.1111/j.1469-8137.2005.01349.x – volume: 7 start-page: 2541 year: 2006 ident: e_1_2_7_78_1 article-title: On model selection consistency of Lasso publication-title: Journal of Machine Learning Research – ident: e_1_2_7_39_1 doi: 10.1038/nplants.2016.129 – ident: e_1_2_7_54_1 doi: 10.1086/285388 – ident: e_1_2_7_11_1 doi: 10.1111/j.0269-8463.2004.00825.x – ident: e_1_2_7_63_1 doi: 10.1073/pnas.1300673111 – start-page: 77 volume-title: Habitat suitability modelling. Effects of climate change on birds year: 2010 ident: e_1_2_7_68_1 – ident: e_1_2_7_59_1 doi: 10.1007/s00442-016-3549-x – ident: e_1_2_7_2_1 doi: 10.1016/j.ppees.2011.04.003 – ident: e_1_2_7_37_1 doi: 10.1890/13-2124.1 – ident: e_1_2_7_67_1 doi: 10.1111/j.1366-9516.2006.00216.x – ident: e_1_2_7_3_1 – ident: e_1_2_7_32_1 doi: 10.1007/978-3-662-05214-3 – ident: e_1_2_7_44_1 doi: 10.1890/09-1509.1 – ident: e_1_2_7_74_1 doi: 10.3758/BF03206482 – ident: e_1_2_7_9_1 doi: 10.1098/rspb.2008.0137 – ident: e_1_2_7_23_1 doi: 10.1111/jvs.12041 – ident: e_1_2_7_14_1 doi: 10.1073/pnas.0704716104 – ident: e_1_2_7_34_1 doi: 10.1046/j.1365-2435.2002.00664.x – ident: e_1_2_7_66_1 doi: 10.1890/09-1743.1 – ident: e_1_2_7_28_1 doi: 10.1111/j.1466-822X.2005.00187.x – volume-title: The new S language year: 1988 ident: e_1_2_7_4_1 – ident: e_1_2_7_27_1 doi: 10.1111/jvs.12066 – ident: e_1_2_7_10_1 doi: 10.1111/1365-2435.12510 – ident: e_1_2_7_76_1 doi: 10.1111/j.1466-822x.2005.00172.x – ident: e_1_2_7_24_1 doi: 10.1073/pnas.0704469104 – ident: e_1_2_7_5_1 doi: 10.1111/geb.12623 – ident: e_1_2_7_48_1 doi: 10.1016/j.ecolmodel.2005.03.026 – ident: e_1_2_7_47_1 doi: 10.1146/annurev.ecolsys.37.091305.110215 – ident: e_1_2_7_21_1 doi: 10.1002/joc.1276 – ident: e_1_2_7_53_1 doi: 10.1073/pnas.1216065111 – ident: e_1_2_7_71_1 doi: 10.1016/j.scitotenv.2015.03.141 – ident: e_1_2_7_56_1 doi: 10.1111/nph.12210 – ident: e_1_2_7_46_1 – volume-title: Pflanzen‐geographie auf physiologischer Grundlage year: 1898 ident: e_1_2_7_57_1 – ident: e_1_2_7_42_1 doi: 10.1046/j.1365-2699.2003.00781.x – ident: e_1_2_7_31_1 doi: 10.1007/978-0-387-78341-3 – ident: e_1_2_7_38_1 doi: 10.1111/ecog.00845 – ident: e_1_2_7_43_1 doi: 10.1046/j.0305-0270.2003.00993.x – ident: e_1_2_7_62_1 doi: 10.1111/ecog.00867 – ident: e_1_2_7_64_1 doi: 10.1111/j.1466-8238.2010.00645.x – ident: e_1_2_7_15_1 doi: 10.1002/ecy.1569 – ident: e_1_2_7_8_1 doi: 10.1111/j.1461-0248.2009.01285.x – ident: e_1_2_7_41_1 doi: 10.1111/j.1365-2745.2009.01526.x – ident: e_1_2_7_70_1 doi: 10.1111/jvs.12325 – ident: e_1_2_7_52_1 doi: 10.1046/j.1365-2435.1998.00274.x – ident: e_1_2_7_60_1 doi: 10.1111/ele.12508 – ident: e_1_2_7_29_1 doi: 10.1111/j.2041-210X.2011.00134.x – ident: e_1_2_7_75_1 doi: 10.1023/A:1004327224729 – ident: e_1_2_7_13_1 doi: 10.1038/nature16489 – ident: e_1_2_7_73_1 doi: 10.1073/pnas.1415442111 – ident: e_1_2_7_6_1 doi: 10.1111/geb.12573 – ident: e_1_2_7_19_1 doi: 10.1111/2041-210X.12548 – ident: e_1_2_7_22_1 – ident: e_1_2_7_40_1 doi: 10.1111/jvs.12190 – volume-title: R: A language and environment for statistical computing year: 2017 ident: e_1_2_7_50_1 – ident: e_1_2_7_55_1 doi: 10.2307/1313077 – ident: e_1_2_7_30_1 doi: 10.1073/pnas.1317722111 – ident: e_1_2_7_33_1 doi: 10.1111/1365-2745.12031 – ident: e_1_2_7_45_1 doi: 10.1111/j.1466-8238.2008.00441.x – ident: e_1_2_7_26_1 doi: 10.1111/j.1365-2486.2011.02451.x – ident: e_1_2_7_20_1 doi: 10.1007/s004420100628 – ident: e_1_2_7_49_1 doi: 10.5194/bgd-6-3993-2009 – ident: e_1_2_7_72_1 doi: 10.1016/j.tree.2011.11.014 – ident: e_1_2_7_58_1 doi: 10.1038/nature02361 – ident: e_1_2_7_69_1 – ident: e_1_2_7_12_1 doi: 10.1016/j.tree.2016.12.001 – volume: 4 start-page: e2615v2 year: 2016 ident: e_1_2_7_16_1 article-title: Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity publication-title: PeerJ Preprints – ident: e_1_2_7_65_1 doi: 10.1111/j.1466-8238.2011.00727.x – ident: e_1_2_7_61_1 doi: 10.1002/ece3.3297 – ident: e_1_2_7_35_1 article-title: The bien r package: A tool to access the Botanical Information and Ecology Network (BIEN) database publication-title: Methods in Ecology and Evolution – volume-title: Model selection and multimodel inference: A practical information‐theoretic approach year: 2002 ident: e_1_2_7_7_1 – ident: e_1_2_7_17_1 doi: 10.1016/bs.aecr.2015.02.001 – ident: e_1_2_7_18_1 doi: 10.1086/605982 – ident: e_1_2_7_25_1 doi: 10.1080/01621459.1995.10476572 – ident: e_1_2_7_36_1 doi: 10.1016/j.tree.2006.02.002 |
SSID | ssj0009534 |
Score | 2.5403175 |
Snippet | Aim: Despite several recent efforts to map plant traits and to identify their climatic drivers, there are still major gaps. Global trait patterns for major... Aim Despite several recent efforts to map plant traits and to identify their climatic drivers, there are still major gaps. Global trait patterns for major... AimDespite several recent efforts to map plant traits and to identify their climatic drivers, there are still major gaps. Global trait patterns for major... AIM: Despite several recent efforts to map plant traits and to identify their climatic drivers, there are still major gaps. Global trait patterns for major... |
SourceID | wageningen hal proquest crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 895 |
SubjectTerms | BIEN database Biodiversity and Ecology biogeography climatic factors Data management Data processing Environmental filtering Environmental Sciences Filtration Functional biogeography Functional groups Growth form Habit herbaceous plants Herbivores Leaf area Leaves Macroecology moieties nitrogen content Phosphorus Plant functional traits Plant functional types plant height Plant species Plants seed weight South America Spatial analysis Spatial data Species Trait distributions TRY database wood density woody plants |
Title | Spatial patterns and climate relationships of major plant traits in the New World differ between woody and herbaceous species |
URI | https://www.jstor.org/stable/26628947 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjbi.13171 https://www.proquest.com/docview/2019934158 https://www.proquest.com/docview/2053892931 https://hal.science/hal-02411821 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F533097 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGJMReYHxMdGzIIB72kqpOnMQWTwNtKhPwgJi0ByTLdmI1o7hV027qpP3v3DkfrAgkxFOs5JLYzp39O-fnO0LeMJ2UmeMyyiTAN57GLjK5hJLgzjKJv2ZwHfLT52x8zs8u0ost8rbbC9PEh-gX3NAywniNBq5NfdfITTVkMPuh64NcLQREX-I7AXeTJnQUktPifNRGFQosnu7Ojbno3gSZkA0pcQNu7lyDZfuw1WkTwYYp6PQR-dZVvmGefB-ulmZob36L6_ifrdslD1toSo8bXXpMtkr_hNxvklWuoXRi29KDNnP6ZP2U3GJOY9BhOg-BOn1NtS-onVaAhEu66Kh2k2pe05mjP_TlbEHnU_ieFLNTLGtaeQoglMJoSwOzhzY5W2jLIKNIClqHp4J6GW3L2aqmuEEUfPxn5Pz05Ov7cdSmdIgsjKwsAvSVYlzk1JiYGQfuZYrrKdzmI-bEyCVSCNAVmwPOKJwBd2dkRGw00yUzMpHJHtn2M18-J7QorIyz3NqMW54Ko02eucIYLiznUqcDctR9XGXbeOfYsKnq_R5TqdDHA_K6F503QT7-KAQa0l_HsNzj448KzwHOQT-NXYHQXlCgXgzwD7i0PB-Qg06jVDtK1ArAF8BDgFBiQF71l8G-8aeN9tifIAMdBxg2gWcnvzRReUw1VYdqtPqkrlcL5ad4AFOuFfKGJbz4KOjZ3xumzt59CIX9fxd9QXag8qKhMB2Q7eViVR4COlual8EMfwKMyzRw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbGENou4-dEYYBBHHZJVSdOYktcBmzqRrcD2qRdkBU7sZpR3KppNxWJ_533nB-sCCTEqVbzmsbJe_b3nM_fI-Qty6IisVwGiQT4xuPQBjqV0BLcGibx1QyuQ56eJcMLfnIZX26Qd-1emFofoltww8jw4zUGOC5I345yXfYZTH-Q-9zFit6onP_xc3hLcjeqxaOQnhamg0ZXyPN42p-uzUZ3xsiFrGmJa4Bz-wZi2_nNTusY1k9CR_fJl_bya-7J1_5yofvm-2_Kjv_bvwdkp0Gn9KB2p4dko3CPyL26XuUKWoemaW01xdPHq8fkB5Y1BjemM6_V6SqauZyaSQlguKDzlm03LmcVnVr6LbuazulsAo-UYoGKRUVLRwGHUhhwqSf30LpsC21IZBR5QSt_VvAwnZliuqwo7hGFNP8JuTg6PP8wDJqqDoGBwZUFAMBilEaOtQ6ZtpBhxrikwk06YFYMbCSFAHcxKUCN3GrIeAZahDpjWcG0jGS0Szbd1BVPCc1zI8MkNSbhhsdCZzpNbK41F4ZzmcU9st8-XWUayXPs2ER1qY8ulb_HPfKmM53VOh9_NAIX6Y6jMvfwYKTwO4A6mKqxazDa9R7UmQEEgqyWpz2y17qUagaKSgH-AoQIKEr0yOvuMIQ4vrfJHN5PsIEbBzA2gnNHv1xROaw2VfnLaBxK3Sznyk3wA6K5UkgdlvDH-97R_t4xdfL-2Dee_bvpK7I1PD8dqdHx2afnZBs6ImpG0x7ZXMyXxQsAawv90sfkT7MyOIw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGELAXrpsoDDCIh72kysW5WDwNtqobY0KISXtAsmwnVsM6N2papiLx3znHubAikBBPtZrTNE6-Y3_H-XwOIa8DGRWJYdxLONA3FofGUymHVsaMDji-msF1yA-nyfiMHZ_H5xvkTbcXpskP0S-4oWe48RodvMrNdSdX5TCA2Q9Cn5ss8TnWbTj4FF7LuBs1uaNQnRamfptWyMl4up-uTUY3JiiFbFSJa3xz6wpc27q9TusU1s1Bo3vkS3f1jfTkYrhcqKH-_ltix__s3n1yt-WmdL8B0wOyUdiH5FZTrXIFrUPdtu60pdMnq0fkBxY1BhDTymXqtDWVNqd6WgIVLui809pNyqqmM0Mv5dfZnFZTeKAUy1MsalpaCiyUwnBLnbSHNkVbaCsho6gKWrmzAr6U1MVsWVPcIQpB_jY5Gx1-fjf22poOnoahNfCAfsWYGDlWKgyUgfgyxgUVplM_MJlvIp5lABadAtHIjYJ4x1dZqGQgi0DxiEc7ZNPObPGY0DzXPExSrROmWZwpqdLE5EqxTDPGZTwge93DFbpNeI4dm4o-8FGlcPd4QF71plWT5eOPRoCQ_jjm5R7vnwj8DogOBmrBNzDacQDqzYAAQUzL0gHZ7RAl2mGiFsC-gB8Ch8oG5GV_GBwc39pIi_cTbODGAYmN4NzRLyQKi7WmancZLZ7E1XIu7BQ_wJdrgcJhDn-853D2946J47dHrvHk301fkNsfD0bi5Oj0_VOyBf3IGjnTLtlczJfFM2BqC_XceeRP4EY3Ow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+patterns+and+climate+relationships+of+major+plant+traits+in+the+New+World+differ+between+woody+and+herbaceous+species&rft.jtitle=Journal+of+biogeography&rft.au=%C5%A0%C3%ADmov%C3%A1%2C+Irena&rft.au=Violle%2C+Cyrille&rft.au=Jens%E2%80%90Christian+Svenning&rft.au=Kattge%2C+Jens&rft.date=2018-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0305-0270&rft.eissn=1365-2699&rft.volume=45&rft.issue=4&rft.spage=895&rft.epage=916&rft_id=info:doi/10.1111%2Fjbi.13171&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0270&client=summon |