Spatial patterns and climate relationships of major plant traits in the New World differ between woody and herbaceous species

Aim: Despite several recent efforts to map plant traits and to identify their climatic drivers, there are still major gaps. Global trait patterns for major functional groups, in particular, the differences between woody and herbaceous plants, have yet to be identified. Here, we take advantage of big...

Full description

Saved in:
Bibliographic Details
Published inJournal of biogeography Vol. 45; no. 4; pp. 895 - 916
Main Authors Šímová, Irena, Violle, Cyrille, Svenning, Jens-Christian, Kattge, Jens, Engemann, Kristine, Sandel, Brody, Peet, Robert K., Wiser, Susan K., Blonder, Benjamin, McGill, Brian J., Boyle, Brad, Morueta-Holme, Naia, Kraft, Nathan J. B., van Bodegom, Peter M., Gutiérrez, Alvaro G., Bahn, Michael, Ozinga, Wim A., Tószögyová, Anna, Enquist, Brian J.
Format Journal Article
LanguageEnglish
Published Oxford John Wiley & Sons Ltd 01.04.2018
Wiley Subscription Services, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aim: Despite several recent efforts to map plant traits and to identify their climatic drivers, there are still major gaps. Global trait patterns for major functional groups, in particular, the differences between woody and herbaceous plants, have yet to be identified. Here, we take advantage of big data efforts to compile plant species occurrence and trait data to analyse the spatial patterns of assemblage means and variances of key plant traits. We tested whether these patterns and their climatic drivers are similar for woody and herbaceous plants. Location: New World (North and South America). Methods: Using the largest currently available database of plant occurrences, we provide maps of 200 × 200 km grid-cell trait means and variances for both woody and herbaceous species and identify environmental drivers related to these patterns. We focus on six plant traits: maximum plant height, specific leaf area, seed mass, wood density, leaf nitrogen concentration and leaf phosphorus concentration. Results: For woody assemblages, we found a strong climate signal for both means and variances of most of the studied traits, consistent with strong environmental filtering. In contrast, for herbaceous assemblages, spatial patterns of trait means and variances were more variable, the climate signal on trait means was often different and weaker. Main conclusion: Trait variations for woody versus herbaceous assemblages appear to reflect alternative strategies and differing environmental constraints. Given that most large-scale trait studies are based on woody species, the strikingly different biogeographic patterns of herbaceous traits suggest that a more synthetic framework is needed that addresses how suites of traits within and across broad functional groups respond to climate.
AbstractList AimDespite several recent efforts to map plant traits and to identify their climatic drivers, there are still major gaps. Global trait patterns for major functional groups, in particular, the differences between woody and herbaceous plants, have yet to be identified. Here, we take advantage of big data efforts to compile plant species occurrence and trait data to analyse the spatial patterns of assemblage means and variances of key plant traits. We tested whether these patterns and their climatic drivers are similar for woody and herbaceous plants.LocationNew World (North and South America).MethodsUsing the largest currently available database of plant occurrences, we provide maps of 200 × 200 km grid‐cell trait means and variances for both woody and herbaceous species and identify environmental drivers related to these patterns. We focus on six plant traits: maximum plant height, specific leaf area, seed mass, wood density, leaf nitrogen concentration and leaf phosphorus concentration.ResultsFor woody assemblages, we found a strong climate signal for both means and variances of most of the studied traits, consistent with strong environmental filtering. In contrast, for herbaceous assemblages, spatial patterns of trait means and variances were more variable, the climate signal on trait means was often different and weaker.Main conclusionTrait variations for woody versus herbaceous assemblages appear to reflect alternative strategies and differing environmental constraints. Given that most large‐scale trait studies are based on woody species, the strikingly different biogeographic patterns of herbaceous traits suggest that a more synthetic framework is needed that addresses how suites of traits within and across broad functional groups respond to climate.
Aim: Despite several recent efforts to map plant traits and to identify their climatic drivers, there are still major gaps. Global trait patterns for major functional groups, in particular, the differences between woody and herbaceous plants, have yet to be identified. Here, we take advantage of big data efforts to compile plant species occurrence and trait data to analyse the spatial patterns of assemblage means and variances of key plant traits. We tested whether these patterns and their climatic drivers are similar for woody and herbaceous plants. Location: New World (North and South America). Methods: Using the largest currently available database of plant occurrences, we provide maps of 200 × 200 km grid-cell trait means and variances for both woody and herbaceous species and identify environmental drivers related to these patterns. We focus on six plant traits: maximum plant height, specific leaf area, seed mass, wood density, leaf nitrogen concentration and leaf phosphorus concentration. Results: For woody assemblages, we found a strong climate signal for both means and variances of most of the studied traits, consistent with strong environmental filtering. In contrast, for herbaceous assemblages, spatial patterns of trait means and variances were more variable, the climate signal on trait means was often different and weaker. Main conclusion: Trait variations for woody versus herbaceous assemblages appear to reflect alternative strategies and differing environmental constraints. Given that most large-scale trait studies are based on woody species, the strikingly different biogeographic patterns of herbaceous traits suggest that a more synthetic framework is needed that addresses how suites of traits within and across broad functional groups respond to climate.
Aim Despite several recent efforts to map plant traits and to identify their climatic drivers, there are still major gaps. Global trait patterns for major functional groups, in particular, the differences between woody and herbaceous plants, have yet to be identified. Here, we take advantage of big data efforts to compile plant species occurrence and trait data to analyse the spatial patterns of assemblage means and variances of key plant traits. We tested whether these patterns and their climatic drivers are similar for woody and herbaceous plants. Location New World (North and South America). Methods Using the largest currently available database of plant occurrences, we provide maps of 200 × 200 km grid‐cell trait means and variances for both woody and herbaceous species and identify environmental drivers related to these patterns. We focus on six plant traits: maximum plant height, specific leaf area, seed mass, wood density, leaf nitrogen concentration and leaf phosphorus concentration. Results For woody assemblages, we found a strong climate signal for both means and variances of most of the studied traits, consistent with strong environmental filtering. In contrast, for herbaceous assemblages, spatial patterns of trait means and variances were more variable, the climate signal on trait means was often different and weaker. Main conclusion Trait variations for woody versus herbaceous assemblages appear to reflect alternative strategies and differing environmental constraints. Given that most large‐scale trait studies are based on woody species, the strikingly different biogeographic patterns of herbaceous traits suggest that a more synthetic framework is needed that addresses how suites of traits within and across broad functional groups respond to climate.
Author Tószögyová, Anna
Blonder, Benjamin
Wiser, Susan K.
Morueta-Holme, Naia
Bahn, Michael
Peet, Robert K.
Kattge, Jens
Engemann, Kristine
Šímová, Irena
McGill, Brian J.
Svenning, Jens-Christian
Sandel, Brody
van Bodegom, Peter M.
Ozinga, Wim A.
Violle, Cyrille
Gutiérrez, Alvaro G.
Boyle, Brad
Kraft, Nathan J. B.
Enquist, Brian J.
Author_xml – sequence: 1
  givenname: Irena
  surname: Šímová
  fullname: Šímová, Irena
– sequence: 2
  givenname: Cyrille
  surname: Violle
  fullname: Violle, Cyrille
– sequence: 3
  givenname: Jens-Christian
  surname: Svenning
  fullname: Svenning, Jens-Christian
– sequence: 4
  givenname: Jens
  surname: Kattge
  fullname: Kattge, Jens
– sequence: 5
  givenname: Kristine
  surname: Engemann
  fullname: Engemann, Kristine
– sequence: 6
  givenname: Brody
  surname: Sandel
  fullname: Sandel, Brody
– sequence: 7
  givenname: Robert K.
  surname: Peet
  fullname: Peet, Robert K.
– sequence: 8
  givenname: Susan K.
  surname: Wiser
  fullname: Wiser, Susan K.
– sequence: 9
  givenname: Benjamin
  surname: Blonder
  fullname: Blonder, Benjamin
– sequence: 10
  givenname: Brian J.
  surname: McGill
  fullname: McGill, Brian J.
– sequence: 11
  givenname: Brad
  surname: Boyle
  fullname: Boyle, Brad
– sequence: 12
  givenname: Naia
  surname: Morueta-Holme
  fullname: Morueta-Holme, Naia
– sequence: 13
  givenname: Nathan J. B.
  surname: Kraft
  fullname: Kraft, Nathan J. B.
– sequence: 14
  givenname: Peter M.
  surname: van Bodegom
  fullname: van Bodegom, Peter M.
– sequence: 15
  givenname: Alvaro G.
  surname: Gutiérrez
  fullname: Gutiérrez, Alvaro G.
– sequence: 16
  givenname: Michael
  surname: Bahn
  fullname: Bahn, Michael
– sequence: 17
  givenname: Wim A.
  surname: Ozinga
  fullname: Ozinga, Wim A.
– sequence: 18
  givenname: Anna
  surname: Tószögyová
  fullname: Tószögyová, Anna
– sequence: 19
  givenname: Brian J.
  surname: Enquist
  fullname: Enquist, Brian J.
BackLink https://hal.science/hal-02411821$$DView record in HAL
BookMark eNp1kU9v1DAQxSNUJLaFAx8AyRIXOKT1nziJubUV0KIVHABxtOxkwnrltYPtJdoD3x1n0xYJgQ8eyf690cx7p8WJ8w6K4jnB5ySfi60254SRhjwqVoTVvKS1ECfFCjPMS0wb_KQ4jXGLMRacVavi1-dRJaMsyiVBcBEp16POmp1KgALY_Otd3JgxIj-gndr6gEarXEIpKJMiMg6lDaCPMKFvPtge9WYYICANaQJwaPK-Pxy7biBo1YHfRxRH6AzEp8XjQdkIz-7qWfH13dsv1zfl-tP72-vLddlx1pKyripe04ZzrSnRA2krznBFq67BZGjxwETb6kZ0TYXrftCcC6xbqhVRQLRggp0Vb5a-k_oOzrh8SadCZ6L0ykhrdFDhIKd9kM7OZdzrKDljWDRZ_HoRb5SVY8jOZHSW3Vyu5fyGaUVIS8lPktlXCzsG_2MPMcmdiR3YbNi8t6Q4LySoYDP68i906_fBZRsyRYRgFeFtpi4Wqgs-xgCD7Ew6ZjLbbyXBcs5d5tzlMfc_4z4o7mf-F3vXfTIWDv8H5Yer23vFi0WxjcmHBwWta9qKqmG_ATNVyKU
CitedBy_id crossref_primary_10_3389_fevo_2018_00219
crossref_primary_10_1038_s41586_021_03876_7
crossref_primary_10_1111_oik_09579
crossref_primary_10_1093_aob_mcy165
crossref_primary_10_1016_j_rse_2024_114276
crossref_primary_10_1016_j_ecolind_2022_109098
crossref_primary_10_1111_geb_13309
crossref_primary_10_1111_jse_13157
crossref_primary_10_1111_plb_13082
crossref_primary_10_1016_j_ecolind_2019_105774
crossref_primary_10_1111_geb_13149
crossref_primary_10_1111_jvs_13280
crossref_primary_10_1111_jvs_13046
crossref_primary_10_3389_fevo_2018_00194
crossref_primary_10_1111_1365_2435_14185
crossref_primary_10_1111_jvs_12756
crossref_primary_10_3389_fpls_2022_757077
crossref_primary_10_1111_jvs_12999
crossref_primary_10_1126_science_aaz4797
crossref_primary_10_3390_f14091875
crossref_primary_10_1111_nph_18099
crossref_primary_10_1016_j_ecolind_2024_112199
crossref_primary_10_3389_fpls_2024_1504238
crossref_primary_10_1093_jxb_erac231
crossref_primary_10_1111_ecog_05598
crossref_primary_10_3390_f13020218
crossref_primary_10_1111_jvs_13211
crossref_primary_10_1111_ecog_07010
crossref_primary_10_1016_j_gecco_2021_e01666
crossref_primary_10_1111_geb_13649
crossref_primary_10_1111_geb_13887
crossref_primary_10_1016_j_scitotenv_2024_173730
crossref_primary_10_1016_j_jhydrol_2020_125088
crossref_primary_10_3389_ffgc_2023_1187724
crossref_primary_10_1038_s44185_023_00018_2
crossref_primary_10_1007_s00376_024_4034_9
crossref_primary_10_1029_2021JG006378
crossref_primary_10_1016_j_scitotenv_2023_167954
crossref_primary_10_1111_jvs_13229
crossref_primary_10_3389_fpls_2020_01222
crossref_primary_10_1111_gcb_14375
crossref_primary_10_1007_s00442_021_04867_1
crossref_primary_10_1111_geb_13086
crossref_primary_10_1002_ecs2_4828
crossref_primary_10_1029_2020JG005747
crossref_primary_10_1071_BT23111
crossref_primary_10_1002_ajb2_1838
crossref_primary_10_1111_geb_13877
crossref_primary_10_1111_ecog_06504
crossref_primary_10_3389_fpls_2022_895720
crossref_primary_10_1016_j_scitotenv_2020_138267
crossref_primary_10_1111_jbi_14114
crossref_primary_10_3389_fpls_2021_799401
crossref_primary_10_1093_jpe_rtz025
crossref_primary_10_1016_j_pld_2021_11_004
crossref_primary_10_1111_geb_13077
crossref_primary_10_1111_geb_13627
crossref_primary_10_1038_s42003_022_03573_9
crossref_primary_10_3389_fevo_2020_531947
crossref_primary_10_1111_eva_12776
crossref_primary_10_1111_jbi_13809
crossref_primary_10_1038_s41598_019_46878_2
crossref_primary_10_1038_s42003_021_02359_9
crossref_primary_10_3390_plants13233287
crossref_primary_10_1111_jvs_12792
crossref_primary_10_1111_jbi_13653
crossref_primary_10_1093_biolinnean_bly158
crossref_primary_10_1111_1365_2745_13252
crossref_primary_10_1007_s11258_021_01113_9
crossref_primary_10_1111_jvs_13249
crossref_primary_10_1038_s42003_024_06777_3
crossref_primary_10_1007_s11427_023_2430_2
crossref_primary_10_1111_1365_2435_14422
crossref_primary_10_1111_nph_18905
crossref_primary_10_26848_rbgf_v18_1_p369_404
crossref_primary_10_1016_j_pecon_2021_07_002
crossref_primary_10_1111_brv_12782
crossref_primary_10_1073_pnas_1813723116
crossref_primary_10_1111_oik_09829
crossref_primary_10_1016_j_fecs_2022_100033
crossref_primary_10_1111_nph_20019
crossref_primary_10_1111_jvs_13130
crossref_primary_10_1016_j_flora_2018_07_009
crossref_primary_10_1111_jvs_13256
crossref_primary_10_1111_jvs_13018
crossref_primary_10_1016_j_baae_2023_07_006
crossref_primary_10_1111_1365_2745_13163
crossref_primary_10_1111_geb_13056
crossref_primary_10_1111_geb_13176
crossref_primary_10_1016_j_envexpbot_2021_104598
crossref_primary_10_1111_geb_12996
crossref_primary_10_1002_ajb2_70019
crossref_primary_10_1016_j_flora_2019_04_004
crossref_primary_10_1371_journal_pone_0263508
crossref_primary_10_3389_fpls_2023_1243209
crossref_primary_10_1111_1365_2745_13673
crossref_primary_10_1111_jvs_13146
Cites_doi 10.1111/1365-2745.12211
10.1111/j.1469-8137.2005.01349.x
10.1038/nplants.2016.129
10.1086/285388
10.1111/j.0269-8463.2004.00825.x
10.1073/pnas.1300673111
10.1007/s00442-016-3549-x
10.1016/j.ppees.2011.04.003
10.1890/13-2124.1
10.1111/j.1366-9516.2006.00216.x
10.1007/978-3-662-05214-3
10.1890/09-1509.1
10.3758/BF03206482
10.1098/rspb.2008.0137
10.1111/jvs.12041
10.1073/pnas.0704716104
10.1046/j.1365-2435.2002.00664.x
10.1890/09-1743.1
10.1111/j.1466-822X.2005.00187.x
10.1111/jvs.12066
10.1111/1365-2435.12510
10.1111/j.1466-822x.2005.00172.x
10.1073/pnas.0704469104
10.1111/geb.12623
10.1016/j.ecolmodel.2005.03.026
10.1146/annurev.ecolsys.37.091305.110215
10.1002/joc.1276
10.1073/pnas.1216065111
10.1016/j.scitotenv.2015.03.141
10.1111/nph.12210
10.1046/j.1365-2699.2003.00781.x
10.1007/978-0-387-78341-3
10.1111/ecog.00845
10.1046/j.0305-0270.2003.00993.x
10.1111/ecog.00867
10.1111/j.1466-8238.2010.00645.x
10.1002/ecy.1569
10.1111/j.1461-0248.2009.01285.x
10.1111/j.1365-2745.2009.01526.x
10.1111/jvs.12325
10.1046/j.1365-2435.1998.00274.x
10.1111/ele.12508
10.1111/j.2041-210X.2011.00134.x
10.1023/A:1004327224729
10.1038/nature16489
10.1073/pnas.1415442111
10.1111/geb.12573
10.1111/2041-210X.12548
10.1111/jvs.12190
10.2307/1313077
10.1073/pnas.1317722111
10.1111/1365-2745.12031
10.1111/j.1466-8238.2008.00441.x
10.1111/j.1365-2486.2011.02451.x
10.1007/s004420100628
10.5194/bgd-6-3993-2009
10.1016/j.tree.2011.11.014
10.1038/nature02361
10.1016/j.tree.2016.12.001
10.1111/j.1466-8238.2011.00727.x
10.1002/ece3.3297
10.1016/bs.aecr.2015.02.001
10.1086/605982
10.1080/01621459.1995.10476572
10.1016/j.tree.2006.02.002
ContentType Journal Article
Copyright Copyright © 2018 John Wiley & Sons Ltd.
2018 John Wiley & Sons Ltd
Copyright © 2018 John Wiley & Sons Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Wageningen University & Research
Copyright_xml – notice: Copyright © 2018 John Wiley & Sons Ltd.
– notice: 2018 John Wiley & Sons Ltd
– notice: Copyright © 2018 John Wiley & Sons Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Wageningen University & Research
DBID AAYXX
CITATION
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
1XC
QVL
DOI 10.1111/jbi.13171
DatabaseName CrossRef
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
NARCIS:Publications
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts

AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Geography
Biology
Ecology
Environmental Sciences
EISSN 1365-2699
EndPage 916
ExternalDocumentID oai_library_wur_nl_wurpubs_533097
oai_HAL_hal_02411821v1
10_1111_jbi_13171
JBI13171
26628947
Genre article
GeographicLocations South America
GeographicLocations_xml – name: South America
GrantInformation_xml – fundername: CONICYT‐PAI
  funderid: 82130046
– fundername: Crown Research Institutes
– fundername: French Foundation for Research on Biodiversity
  funderid: DIVGRASS
– fundername: National Science Foundation
  funderid: DBI‐0735191; EF‐0553768; DEB‐1457812; ABI‐1565118
– fundername: Danish National Research Foundation
  funderid: DNRF96
– fundername: Fondo Nacional de Desarrollo Científico y Tecnológico
  funderid: 11150835
– fundername: Marie Curie International Outgoing Fellowship
  funderid: 221060
– fundername: European Research Council
  funderid: ERC‐StG‐2014‐639706‐CONSTRAINTS; ERC‐2012‐StG‐310886‐HISTFUNC
– fundername: Carlsberg Foundation
– fundername: VILLUM FONDEN
  funderid: 16549
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1OC
29J
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABJNI
ABLJU
ABPLY
ABPPZ
ABPVW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACGFS
ACPOU
ACPRK
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ANHSF
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TN5
UB1
W8V
W99
WBKPD
WIH
WIK
WMRSR
WOHZO
WQJ
WSUWO
WXSBR
XG1
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
1OB
31~
AAHHS
AAISJ
AANHP
ABEML
ACBWZ
ACCFJ
ACHIC
ACRPL
ACSCC
ACYXJ
ADNMO
ADULT
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AI.
AILXY
AIWBW
AJBDE
AQVQM
ASPBG
AVWKF
AZFZN
BDRZF
CAG
COF
DOOOF
EQZMY
ESX
FEDTE
GTFYD
HF~
HGD
HQ2
HTVGU
HVGLF
H~9
JSODD
SAMSI
VH1
VOH
VQP
WRC
AAYXX
ABSQW
AGQPQ
AGUYK
CITATION
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
1XC
08R
ABFLS
ABHUG
ABPTK
ACXME
ADAWD
ADDAD
ADZLD
AESBF
AFVGU
AGJLS
AIRJO
CWIXF
DWIUU
IPNFZ
QVL
UMP
ID FETCH-LOGICAL-c5381-644562755bb21bf184530424c701f80f3988b79c7406dfb5590b82ba1ae1b9393
IEDL.DBID DR2
ISSN 0305-0270
IngestDate Thu Oct 13 09:31:38 EDT 2022
Thu Aug 14 06:48:25 EDT 2025
Fri Jul 11 18:33:55 EDT 2025
Fri Jul 25 10:36:26 EDT 2025
Thu Apr 24 23:05:46 EDT 2025
Tue Jul 01 01:14:14 EDT 2025
Wed Jan 22 17:05:47 EST 2025
Thu Jul 03 21:54:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5381-644562755bb21bf184530424c701f80f3988b79c7406dfb5590b82ba1ae1b9393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5061-2385
0000-0002-0776-4092
0000-0003-2823-6587
0000-0002-6124-7096
0000-0002-6369-7859
0000-0002-9474-569X
0000-0002-3415-0862
0000-0001-6084-625X
0000-0002-2471-9226
0000-0001-8928-3198
0000-0003-0771-4500
0000-0002-8938-8181
0000-0001-7482-9776
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jbi.13171
PQID 2019934158
PQPubID 1086398
PageCount 22
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_533097
hal_primary_oai_HAL_hal_02411821v1
proquest_miscellaneous_2053892931
proquest_journals_2019934158
crossref_citationtrail_10_1111_jbi_13171
crossref_primary_10_1111_jbi_13171
wiley_primary_10_1111_jbi_13171_JBI13171
jstor_primary_26628947
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2018
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: April 2018
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of biogeography
PublicationYear 2018
Publisher John Wiley & Sons Ltd
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: John Wiley & Sons Ltd
– name: Wiley Subscription Services, Inc
– name: Wiley
References 2002; 16
2007; 104
2017; 7
2015; 38
2013; 24
1997; 47
2006; 37
1898
2016; 30
2014; 25
2011; 13
2011; 17
1998; 199
2016; 180
2005; 25
2009; 12
2004; 31
2009; 97
2015; 534
2006; 21
2017; 32
2011; 20
2013; 198
2012; 27
2014; 95
2008; 275
1998; 12
2012; 21
2009; 18
1988
1995; 90
2015; 18
2017; 26
2006; 12
2010
2015; 52
2016; 529
2013; 101
2006; 7
2016; 97
2008
2009; 174
2003
2002
2004; 428
2014; 111
2003; 30
2001; 126
2016; 4
2004; 11
2015; 26
2016; 7
2012; 3
2016; 2
2004; 18
2006; 190
2014; 37
1992; 139
2017
2016
2009; 6
2014
2010; 91
2005; 14
2014; 102
e_1_2_7_5_1
e_1_2_7_3_1
Enquist B. J. (e_1_2_7_16_1) 2016; 4
e_1_2_7_9_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Thuiller W. (e_1_2_7_68_1) 2010
Becker R. A. (e_1_2_7_4_1) 1988
e_1_2_7_73_1
e_1_2_7_71_1
Zhao P. (e_1_2_7_78_1) 2006; 7
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
Burnham K. P. (e_1_2_7_7_1) 2002
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_8_1
Maitner B. S. (e_1_2_7_35_1)
e_1_2_7_18_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Schimper A. F. W. (e_1_2_7_57_1) 1898
R Development Core Team (e_1_2_7_50_1) 2017
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 52
  start-page: 249
  year: 2015
  end-page: 318
  article-title: Scaling from traits to ecosystems: Developing a general trait driver theory via integrating trait‐based and metabolic scaling theories
  publication-title: Advances in Ecological Research
– article-title: The bien r package: A tool to access the Botanical Information and Ecology Network (BIEN) database
  publication-title: Methods in Ecology and Evolution
– volume: 38
  start-page: 649
  year: 2015
  end-page: 658
  article-title: Shifts in trait means and variances in North American tree assemblages: Species richness patterns are loosely related to the functional space
  publication-title: Ecography
– volume: 25
  start-page: 1167
  year: 2014
  end-page: 1180
  article-title: Which is a better predictor of plant traits: Temperature or precipitation?
  publication-title: Journal of Vegetation Science
– volume: 18
  start-page: 137
  year: 2009
  end-page: 149
  article-title: A global study of relationships between leaf traits, climate and soil measures of nutrient fertility
  publication-title: Global Ecology and Biogeography
– volume: 95
  start-page: 2236
  year: 2014
  end-page: 2245
  article-title: Nitrogen fixation strategies can explain the latitudinal shift in nitrogen‐fixing tree abundance
  publication-title: Ecology
– volume: 180
  start-page: 923
  year: 2016
  end-page: 931
  article-title: Reinforcing loose foundation stones in trait‐based plant ecology
  publication-title: Oecologia
– volume: 14
  start-page: 585
  year: 2005
  end-page: 598
  article-title: Plant allometry, stoichiometry and the temperature‐dependence of primary productivity
  publication-title: Global Ecology and Biogeography
– volume: 30
  start-page: 330
  year: 2016
  end-page: 344
  article-title: Macrophysiology – progress and prospects
  publication-title: Functional Ecology
– volume: 111
  start-page: 13745
  year: 2014
  end-page: 13750
  article-title: Functional trait space and the latitudinal diversity gradient
  publication-title: Proceedings of the National Academy of Sciences
– volume: 104
  start-page: 13384
  year: 2007
  end-page: 13389
  article-title: Species richness, hotspots, and the scale dependence of range maps in ecology and conservation
  publication-title: Proceedings of the National Academy of Sciences
– volume: 4
  start-page: e2615v2
  year: 2016
  article-title: Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity
  publication-title: PeerJ Preprints
– volume: 25
  start-page: 235
  year: 2014
  end-page: 247
  article-title: Are trait‐based species rankings consistent across data sets and spatial scales?
  publication-title: Journal of Vegetation Science
– year: 2014
– volume: 529
  start-page: 167
  year: 2016
  end-page: 171
  article-title: The global spectrum of plant form and function
  publication-title: Nature
– volume: 199
  start-page: 213
  year: 1998
  end-page: 227
  article-title: A leaf‐height‐seed (LHS) plant ecology strategy scheme
  publication-title: Plant and Soil
– volume: 6
  start-page: 3993
  year: 2009
  end-page: 4057
  article-title: Regional and large‐scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties
  publication-title: Biogeosciences Discussion
– volume: 21
  start-page: 798
  year: 2012
  end-page: 808
  article-title: The biogeography and filtering of woody plant functional diversity in North and South America
  publication-title: Global Ecology and Biogeography
– volume: 97
  start-page: 923
  year: 2009
  end-page: 932
  article-title: Global patterns in plant height
  publication-title: Journal of Ecology
– volume: 275
  start-page: 1469
  year: 2008
  end-page: 1478
  article-title: Macrophysiology for a changing world
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– year: 1898
– year: 2008
– volume: 2
  start-page: 16129
  year: 2016
  article-title: The energetic and carbon economic origins of leaf thermoregulation
  publication-title: Nature Plants
– volume: 3
  start-page: 53
  year: 2012
  end-page: 64
  article-title: CliMond: Global high‐resolution historical and future scenario climate surfaces for bioclimatic modelling
  publication-title: Methods in Ecology and Evolution
– start-page: 77
  year: 2010
  end-page: 85
– volume: 37
  start-page: 187
  year: 2006
  end-page: 214
  article-title: Some evolutionary consequences of being a tree
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 14
  start-page: 411
  year: 2005
  end-page: 421
  article-title: Modulation of leaf economic traits and trait relationships by climate
  publication-title: Global Ecology and Biogeography
– volume: 12
  start-page: 49
  year: 2006
  end-page: 60
  article-title: Using niche‐based modelling to assess the impact of climate change on tree functional diversity in Europe
  publication-title: Diversity and Distributions
– volume: 126
  start-page: 457
  year: 2001
  end-page: 461
  article-title: Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure
  publication-title: Oecologia
– volume: 13
  start-page: 217
  year: 2011
  end-page: 225
  article-title: When and how should intraspecific variability be considered in trait‐based plant ecology?
  publication-title: Perspectives in Plant Ecology, Evolution and Systematics
– volume: 20
  start-page: 744
  year: 2011
  end-page: 754
  article-title: Variation in above‐ground forest biomass across broad climatic gradients
  publication-title: Global Ecology and Biogeography
– volume: 26
  start-page: 729
  year: 2017
  end-page: 739
  article-title: Sensitivity of community‐level trait–environment relationships to data representativeness: A test for functional biogeography
  publication-title: Global Ecology and Biogeography
– volume: 7
  start-page: 2541
  year: 2006
  end-page: 2563
  article-title: On model selection consistency of Lasso
  publication-title: Journal of Machine Learning Research
– volume: 190
  start-page: 231
  year: 2006
  end-page: 259
  article-title: Maximum entropy modeling of species geographic distributions
  publication-title: Ecological Modelling
– volume: 16
  start-page: 545
  year: 2002
  end-page: 556
  article-title: Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail
  publication-title: Functional Ecology
– volume: 139
  start-page: 1305
  year: 1992
  end-page: 1321
  article-title: Intercontinental correlation of geographical ranges suggests stasis in ecological traits of relict genera of temperate perennial herbs
  publication-title: The American Naturalist
– volume: 102
  start-page: 275
  year: 2014
  end-page: 301
  article-title: The world‐wide ‘fast–slow’ plant economics spectrum: A traits manifesto
  publication-title: Journal of Ecology
– volume: 198
  start-page: 957
  year: 2013
  end-page: 969
  article-title: Next‐generation dynamic global vegetation models: Learning from community ecology
  publication-title: New Phytologist
– year: 2003
– volume: 17
  start-page: 2905
  year: 2011
  end-page: 2935
  article-title: TRY – a global database of plant traits
  publication-title: Global Change Biology
– volume: 91
  start-page: 3218
  year: 2010
  end-page: 3228
  article-title: Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply
  publication-title: Ecology
– volume: 428
  start-page: 553
  year: 2004
  end-page: 557
  article-title: Ferns diversified in the shadow of angiosperms
  publication-title: Nature
– volume: 90
  start-page: 773
  year: 1995
  end-page: 795
  article-title: Bayes factors
  publication-title: Journal of the American Statistical Association
– volume: 11
  start-page: 192
  year: 2004
  end-page: 196
  article-title: AIC model selection using Akaike weights
  publication-title: Psychonomic Bulletin & Review
– volume: 12
  start-page: 948
  year: 1998
  end-page: 958
  article-title: Leaf structure (specific leaf area) modulates photosynthesis–nitrogen relations: Evidence from within and across species and functional groups
  publication-title: Functional Ecology
– year: 2016
– volume: 111
  start-page: 13739
  year: 2014
  end-page: 13744
  article-title: Predicting species’ range limits from functional traits for the tree flora of North America
  publication-title: Proceedings of the National Academy of Sciences
– volume: 91
  start-page: 2234
  year: 2010
  end-page: 2241
  article-title: Plant geography upon the basis of functional traits: An example from eastern North American trees
  publication-title: Ecology
– volume: 111
  start-page: 13690
  year: 2014
  end-page: 13696
  article-title: The emergence and promise of functional biogeography
  publication-title: Proceedings of the National Academy of Sciences
– volume: 428
  start-page: 821
  year: 2004
  end-page: 827
  article-title: The worldwide leaf economics spectrum
  publication-title: Nature
– volume: 32
  start-page: 86
  year: 2017
  end-page: 87
  article-title: It's about time: A critique of macroecological inferences concerning plant competition
  publication-title: Trends in Ecology & Evolution
– volume: 25
  start-page: 1965
  year: 2005
  end-page: 1978
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: International Journal of Climatology
– year: 2010
– volume: 26
  start-page: 1138
  issue: 10
  year: 2017
  end-page: 1152
  article-title: Plant community structure and nitrogen inputs modulate the climate signal on leaf traits
  publication-title: Global Ecology and Biogeography
– volume: 18
  start-page: 1406
  year: 2015
  end-page: 1419
  article-title: A global meta‐analysis of the relative extent of intraspecific trait variation in plant communities
  publication-title: Ecology Letters
– volume: 26
  start-page: 826
  year: 2015
  end-page: 827
  article-title: Trait databases: Misuses and precautions
  publication-title: Journal of Vegetation Science
– volume: 12
  start-page: 351
  year: 2009
  end-page: 366
  article-title: Towards a worldwide wood economics spectrum
  publication-title: Ecology Letters
– volume: 7
  start-page: 7548
  year: 2017
  end-page: 7559
  article-title: Stress from cold and drought as drivers of functional trait spectra in North American angiosperm tree assemblages
  publication-title: Ecology and Evolution
– volume: 7
  start-page: 960
  year: 2016
  end-page: 965
  article-title: Plant‐O‐Matic: A dynamic and mobile guide to all plants of the Americas
  publication-title: Methods in Ecology and Evolution
– volume: 97
  start-page: 3243
  year: 2016
  end-page: 3243
  article-title: A plant growth form dataset for the New World
  publication-title: Ecology
– volume: 101
  start-page: 4
  year: 2013
  end-page: 8
  article-title: Plant functional effects on ecosystem services
  publication-title: Journal of Ecology
– year: 2002
– year: 1988
– volume: 24
  start-page: 921
  year: 2013
  end-page: 931
  article-title: Intra‐specific and inter‐specific variation in specific leaf area reveal the importance of abiotic and biotic drivers of species diversity across elevation and latitude
  publication-title: Journal of Vegetation Science
– volume: 31
  start-page: 379
  year: 2004
  end-page: 388
  article-title: Geographical gradients in seed mass in relation to climate
  publication-title: Journal of Biogeography
– volume: 47
  start-page: 235
  year: 1997
  end-page: 242
  article-title: Hydraulic limits to tree height and tree growth
  publication-title: BioScience
– volume: 21
  start-page: 178
  year: 2006
  end-page: 185
  article-title: Rebuilding community ecology from functional traits
  publication-title: Trends in Ecology & Evolution
– volume: 174
  start-page: 595
  year: 2009
  end-page: 612
  article-title: Macrophysiology: A conceptual reunification
  publication-title: The American Naturalist
– volume: 18
  start-page: 159
  year: 2004
  end-page: 167
  article-title: Macrophysiology: Large‐scale patterns in physiological traits and their ecological implications
  publication-title: Functional Ecology
– volume: 27
  start-page: 244
  year: 2012
  end-page: 252
  article-title: The return of the variance: Intraspecific variability in community ecology
  publication-title: Trends in Ecology & Evolution
– year: 2017
– volume: 111
  start-page: 13697
  year: 2014
  end-page: 13702
  article-title: Linking plant and ecosystem functional biogeography
  publication-title: Proceedings of the National Academy of Sciences
– volume: 104
  start-page: 20684
  year: 2007
  end-page: 20689
  article-title: Incorporating plant functional diversity effects in ecosystem service assessments
  publication-title: Proceedings of the National Academy of Sciences
– volume: 37
  start-page: 1267
  year: 2014
  end-page: 1281
  article-title: What do we gain from simplicity versus complexity in species distribution models?
  publication-title: Ecography
– volume: 30
  start-page: 105
  year: 2003
  end-page: 128
  article-title: Latitude, seed predation and seed mass
  publication-title: Journal of Biogeography
– volume: 534
  start-page: 43
  year: 2015
  end-page: 51
  article-title: Vegetation ecology meets ecosystem science: Permanent grasslands as a functional biogeography case study
  publication-title: Science of the Total Environment
– ident: e_1_2_7_51_1
  doi: 10.1111/1365-2745.12211
– ident: e_1_2_7_77_1
  doi: 10.1111/j.1469-8137.2005.01349.x
– volume: 7
  start-page: 2541
  year: 2006
  ident: e_1_2_7_78_1
  article-title: On model selection consistency of Lasso
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_7_39_1
  doi: 10.1038/nplants.2016.129
– ident: e_1_2_7_54_1
  doi: 10.1086/285388
– ident: e_1_2_7_11_1
  doi: 10.1111/j.0269-8463.2004.00825.x
– ident: e_1_2_7_63_1
  doi: 10.1073/pnas.1300673111
– start-page: 77
  volume-title: Habitat suitability modelling. Effects of climate change on birds
  year: 2010
  ident: e_1_2_7_68_1
– ident: e_1_2_7_59_1
  doi: 10.1007/s00442-016-3549-x
– ident: e_1_2_7_2_1
  doi: 10.1016/j.ppees.2011.04.003
– ident: e_1_2_7_37_1
  doi: 10.1890/13-2124.1
– ident: e_1_2_7_67_1
  doi: 10.1111/j.1366-9516.2006.00216.x
– ident: e_1_2_7_3_1
– ident: e_1_2_7_32_1
  doi: 10.1007/978-3-662-05214-3
– ident: e_1_2_7_44_1
  doi: 10.1890/09-1509.1
– ident: e_1_2_7_74_1
  doi: 10.3758/BF03206482
– ident: e_1_2_7_9_1
  doi: 10.1098/rspb.2008.0137
– ident: e_1_2_7_23_1
  doi: 10.1111/jvs.12041
– ident: e_1_2_7_14_1
  doi: 10.1073/pnas.0704716104
– ident: e_1_2_7_34_1
  doi: 10.1046/j.1365-2435.2002.00664.x
– ident: e_1_2_7_66_1
  doi: 10.1890/09-1743.1
– ident: e_1_2_7_28_1
  doi: 10.1111/j.1466-822X.2005.00187.x
– volume-title: The new S language
  year: 1988
  ident: e_1_2_7_4_1
– ident: e_1_2_7_27_1
  doi: 10.1111/jvs.12066
– ident: e_1_2_7_10_1
  doi: 10.1111/1365-2435.12510
– ident: e_1_2_7_76_1
  doi: 10.1111/j.1466-822x.2005.00172.x
– ident: e_1_2_7_24_1
  doi: 10.1073/pnas.0704469104
– ident: e_1_2_7_5_1
  doi: 10.1111/geb.12623
– ident: e_1_2_7_48_1
  doi: 10.1016/j.ecolmodel.2005.03.026
– ident: e_1_2_7_47_1
  doi: 10.1146/annurev.ecolsys.37.091305.110215
– ident: e_1_2_7_21_1
  doi: 10.1002/joc.1276
– ident: e_1_2_7_53_1
  doi: 10.1073/pnas.1216065111
– ident: e_1_2_7_71_1
  doi: 10.1016/j.scitotenv.2015.03.141
– ident: e_1_2_7_56_1
  doi: 10.1111/nph.12210
– ident: e_1_2_7_46_1
– volume-title: Pflanzen‐geographie auf physiologischer Grundlage
  year: 1898
  ident: e_1_2_7_57_1
– ident: e_1_2_7_42_1
  doi: 10.1046/j.1365-2699.2003.00781.x
– ident: e_1_2_7_31_1
  doi: 10.1007/978-0-387-78341-3
– ident: e_1_2_7_38_1
  doi: 10.1111/ecog.00845
– ident: e_1_2_7_43_1
  doi: 10.1046/j.0305-0270.2003.00993.x
– ident: e_1_2_7_62_1
  doi: 10.1111/ecog.00867
– ident: e_1_2_7_64_1
  doi: 10.1111/j.1466-8238.2010.00645.x
– ident: e_1_2_7_15_1
  doi: 10.1002/ecy.1569
– ident: e_1_2_7_8_1
  doi: 10.1111/j.1461-0248.2009.01285.x
– ident: e_1_2_7_41_1
  doi: 10.1111/j.1365-2745.2009.01526.x
– ident: e_1_2_7_70_1
  doi: 10.1111/jvs.12325
– ident: e_1_2_7_52_1
  doi: 10.1046/j.1365-2435.1998.00274.x
– ident: e_1_2_7_60_1
  doi: 10.1111/ele.12508
– ident: e_1_2_7_29_1
  doi: 10.1111/j.2041-210X.2011.00134.x
– ident: e_1_2_7_75_1
  doi: 10.1023/A:1004327224729
– ident: e_1_2_7_13_1
  doi: 10.1038/nature16489
– ident: e_1_2_7_73_1
  doi: 10.1073/pnas.1415442111
– ident: e_1_2_7_6_1
  doi: 10.1111/geb.12573
– ident: e_1_2_7_19_1
  doi: 10.1111/2041-210X.12548
– ident: e_1_2_7_22_1
– ident: e_1_2_7_40_1
  doi: 10.1111/jvs.12190
– volume-title: R: A language and environment for statistical computing
  year: 2017
  ident: e_1_2_7_50_1
– ident: e_1_2_7_55_1
  doi: 10.2307/1313077
– ident: e_1_2_7_30_1
  doi: 10.1073/pnas.1317722111
– ident: e_1_2_7_33_1
  doi: 10.1111/1365-2745.12031
– ident: e_1_2_7_45_1
  doi: 10.1111/j.1466-8238.2008.00441.x
– ident: e_1_2_7_26_1
  doi: 10.1111/j.1365-2486.2011.02451.x
– ident: e_1_2_7_20_1
  doi: 10.1007/s004420100628
– ident: e_1_2_7_49_1
  doi: 10.5194/bgd-6-3993-2009
– ident: e_1_2_7_72_1
  doi: 10.1016/j.tree.2011.11.014
– ident: e_1_2_7_58_1
  doi: 10.1038/nature02361
– ident: e_1_2_7_69_1
– ident: e_1_2_7_12_1
  doi: 10.1016/j.tree.2016.12.001
– volume: 4
  start-page: e2615v2
  year: 2016
  ident: e_1_2_7_16_1
  article-title: Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity
  publication-title: PeerJ Preprints
– ident: e_1_2_7_65_1
  doi: 10.1111/j.1466-8238.2011.00727.x
– ident: e_1_2_7_61_1
  doi: 10.1002/ece3.3297
– ident: e_1_2_7_35_1
  article-title: The bien r package: A tool to access the Botanical Information and Ecology Network (BIEN) database
  publication-title: Methods in Ecology and Evolution
– volume-title: Model selection and multimodel inference: A practical information‐theoretic approach
  year: 2002
  ident: e_1_2_7_7_1
– ident: e_1_2_7_17_1
  doi: 10.1016/bs.aecr.2015.02.001
– ident: e_1_2_7_18_1
  doi: 10.1086/605982
– ident: e_1_2_7_25_1
  doi: 10.1080/01621459.1995.10476572
– ident: e_1_2_7_36_1
  doi: 10.1016/j.tree.2006.02.002
SSID ssj0009534
Score 2.5403175
Snippet Aim: Despite several recent efforts to map plant traits and to identify their climatic drivers, there are still major gaps. Global trait patterns for major...
Aim Despite several recent efforts to map plant traits and to identify their climatic drivers, there are still major gaps. Global trait patterns for major...
AimDespite several recent efforts to map plant traits and to identify their climatic drivers, there are still major gaps. Global trait patterns for major...
AIM: Despite several recent efforts to map plant traits and to identify their climatic drivers, there are still major gaps. Global trait patterns for major...
SourceID wageningen
hal
proquest
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 895
SubjectTerms BIEN database
Biodiversity and Ecology
biogeography
climatic factors
Data management
Data processing
Environmental filtering
Environmental Sciences
Filtration
Functional biogeography
Functional groups
Growth form
Habit
herbaceous plants
Herbivores
Leaf area
Leaves
Macroecology
moieties
nitrogen content
Phosphorus
Plant functional traits
Plant functional types
plant height
Plant species
Plants
seed weight
South America
Spatial analysis
Spatial data
Species
Trait distributions
TRY database
wood density
woody plants
Title Spatial patterns and climate relationships of major plant traits in the New World differ between woody and herbaceous species
URI https://www.jstor.org/stable/26628947
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjbi.13171
https://www.proquest.com/docview/2019934158
https://www.proquest.com/docview/2053892931
https://hal.science/hal-02411821
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F533097
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGJMReYHxMdGzIIB72kqpOnMQWTwNtKhPwgJi0ByTLdmI1o7hV027qpP3v3DkfrAgkxFOs5JLYzp39O-fnO0LeMJ2UmeMyyiTAN57GLjK5hJLgzjKJv2ZwHfLT52x8zs8u0ost8rbbC9PEh-gX3NAywniNBq5NfdfITTVkMPuh64NcLQREX-I7AXeTJnQUktPifNRGFQosnu7Ojbno3gSZkA0pcQNu7lyDZfuw1WkTwYYp6PQR-dZVvmGefB-ulmZob36L6_ifrdslD1toSo8bXXpMtkr_hNxvklWuoXRi29KDNnP6ZP2U3GJOY9BhOg-BOn1NtS-onVaAhEu66Kh2k2pe05mjP_TlbEHnU_ieFLNTLGtaeQoglMJoSwOzhzY5W2jLIKNIClqHp4J6GW3L2aqmuEEUfPxn5Pz05Ov7cdSmdIgsjKwsAvSVYlzk1JiYGQfuZYrrKdzmI-bEyCVSCNAVmwPOKJwBd2dkRGw00yUzMpHJHtn2M18-J7QorIyz3NqMW54Ko02eucIYLiznUqcDctR9XGXbeOfYsKnq_R5TqdDHA_K6F503QT7-KAQa0l_HsNzj448KzwHOQT-NXYHQXlCgXgzwD7i0PB-Qg06jVDtK1ArAF8BDgFBiQF71l8G-8aeN9tifIAMdBxg2gWcnvzRReUw1VYdqtPqkrlcL5ad4AFOuFfKGJbz4KOjZ3xumzt59CIX9fxd9QXag8qKhMB2Q7eViVR4COlual8EMfwKMyzRw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbGENou4-dEYYBBHHZJVSdOYktcBmzqRrcD2qRdkBU7sZpR3KppNxWJ_533nB-sCCTEqVbzmsbJe_b3nM_fI-Qty6IisVwGiQT4xuPQBjqV0BLcGibx1QyuQ56eJcMLfnIZX26Qd-1emFofoltww8jw4zUGOC5I345yXfYZTH-Q-9zFit6onP_xc3hLcjeqxaOQnhamg0ZXyPN42p-uzUZ3xsiFrGmJa4Bz-wZi2_nNTusY1k9CR_fJl_bya-7J1_5yofvm-2_Kjv_bvwdkp0Gn9KB2p4dko3CPyL26XuUKWoemaW01xdPHq8fkB5Y1BjemM6_V6SqauZyaSQlguKDzlm03LmcVnVr6LbuazulsAo-UYoGKRUVLRwGHUhhwqSf30LpsC21IZBR5QSt_VvAwnZliuqwo7hGFNP8JuTg6PP8wDJqqDoGBwZUFAMBilEaOtQ6ZtpBhxrikwk06YFYMbCSFAHcxKUCN3GrIeAZahDpjWcG0jGS0Szbd1BVPCc1zI8MkNSbhhsdCZzpNbK41F4ZzmcU9st8-XWUayXPs2ER1qY8ulb_HPfKmM53VOh9_NAIX6Y6jMvfwYKTwO4A6mKqxazDa9R7UmQEEgqyWpz2y17qUagaKSgH-AoQIKEr0yOvuMIQ4vrfJHN5PsIEbBzA2gnNHv1xROaw2VfnLaBxK3Sznyk3wA6K5UkgdlvDH-97R_t4xdfL-2Dee_bvpK7I1PD8dqdHx2afnZBs6ImpG0x7ZXMyXxQsAawv90sfkT7MyOIw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGELAXrpsoDDCIh72kysW5WDwNtqobY0KISXtAsmwnVsM6N2papiLx3znHubAikBBPtZrTNE6-Y3_H-XwOIa8DGRWJYdxLONA3FofGUymHVsaMDji-msF1yA-nyfiMHZ_H5xvkTbcXpskP0S-4oWe48RodvMrNdSdX5TCA2Q9Cn5ss8TnWbTj4FF7LuBs1uaNQnRamfptWyMl4up-uTUY3JiiFbFSJa3xz6wpc27q9TusU1s1Bo3vkS3f1jfTkYrhcqKH-_ltix__s3n1yt-WmdL8B0wOyUdiH5FZTrXIFrUPdtu60pdMnq0fkBxY1BhDTymXqtDWVNqd6WgIVLui809pNyqqmM0Mv5dfZnFZTeKAUy1MsalpaCiyUwnBLnbSHNkVbaCsho6gKWrmzAr6U1MVsWVPcIQpB_jY5Gx1-fjf22poOnoahNfCAfsWYGDlWKgyUgfgyxgUVplM_MJlvIp5lABadAtHIjYJ4x1dZqGQgi0DxiEc7ZNPObPGY0DzXPExSrROmWZwpqdLE5EqxTDPGZTwge93DFbpNeI4dm4o-8FGlcPd4QF71plWT5eOPRoCQ_jjm5R7vnwj8DogOBmrBNzDacQDqzYAAQUzL0gHZ7RAl2mGiFsC-gB8Ch8oG5GV_GBwc39pIi_cTbODGAYmN4NzRLyQKi7WmancZLZ7E1XIu7BQ_wJdrgcJhDn-853D2946J47dHrvHk301fkNsfD0bi5Oj0_VOyBf3IGjnTLtlczJfFM2BqC_XceeRP4EY3Ow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+patterns+and+climate+relationships+of+major+plant+traits+in+the+New+World+differ+between+woody+and+herbaceous+species&rft.jtitle=Journal+of+biogeography&rft.au=%C5%A0%C3%ADmov%C3%A1%2C+Irena&rft.au=Violle%2C+Cyrille&rft.au=Jens%E2%80%90Christian+Svenning&rft.au=Kattge%2C+Jens&rft.date=2018-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0305-0270&rft.eissn=1365-2699&rft.volume=45&rft.issue=4&rft.spage=895&rft.epage=916&rft_id=info:doi/10.1111%2Fjbi.13171&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0270&client=summon