Tandem application of cationic colloidal silica and Triton X-114 for plasma membrane protein isolation and purification: Towards developing an MDCK protein database

Plasma membrane (PM) proteins are attractive therapeutic targets because of their accessibility to drugs. Although genes encoding PM proteins represent 20–30% of eukaryotic genomes, a detailed characterisation of their encoded proteins is underrepresented, due, to their low copy number and the inher...

Full description

Saved in:
Bibliographic Details
Published inProteomics (Weinheim) Vol. 11; no. 7; pp. 1238 - 1253
Main Authors Mathias, Rommel A., Chen, Yuan-Shou, Goode, Robert J. A., Kapp, Eugene A., Mathivanan, Suresh, Moritz, Robert L., Zhu, Hong-Jian, Simpson, Richard J.
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.04.2011
WILEY‐VCH Verlag
Wiley-VCH
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plasma membrane (PM) proteins are attractive therapeutic targets because of their accessibility to drugs. Although genes encoding PM proteins represent 20–30% of eukaryotic genomes, a detailed characterisation of their encoded proteins is underrepresented, due, to their low copy number and the inherent difficulties in their isolation and purification as a consequence of their high hydrophobicity. We describe here a strategy that combines two orthogonal methods to isolate and purify PM proteins from Madin Darby canine kidney (MDCK) cells. In this two‐step method, we first used cationic colloidal silica (CCS) to isolate adherent (Ad) and non‐adherent (nAd) PM fractions, and then subjected each fraction to Triton X‐114 (TX‐114) phase partitioning to further enrich for hydrophobic proteins. While CCS alone identified 255/757 (34%) membrane proteins, CCS/TX‐114 in combination yielded 453/745 (61%). Strikingly, of those proteins unique to CCS/TX‐114, 277/393 (70%) had membrane annotation. Further characterisation of the CCS/TX‐114 data set using Uniprot and transmembrane hidden Markov model revealed that 306/745 (41%) contained one or more transmembrane domains (TMDs), including proteins with 25 and 17 TMDs. Of the remaining proteins in the data set, 69/439 (16%) are known to contain lipid modifications. Of all membrane proteins identified, 93 had PM origin, including proteins that mediate cell adhesion, modulate transmembrane ion transport, and cell–cell communication. These studies reveal that the application of CCS to first isolate Ad and nAd PM fractions, followed by their detergent‐phase TX‐114 partitioning, to be a powerful method to isolate low‐abundance PM proteins, and a useful adjunct for in‐depth cell surface proteome analyses.
AbstractList Plasma membrane (PM) proteins are attractive therapeutic targets because of their accessibility to drugs. Although genes encoding PM proteins represent 20–30% of eukaryotic genomes, a detailed characterisation of their encoded proteins is underrepresented, due, to their low copy number and the inherent difficulties in their isolation and purification as a consequence of their high hydrophobicity. We describe here a strategy that combines two orthogonal methods to isolate and purify PM proteins from Madin Darby canine kidney (MDCK) cells. In this two‐step method, we first used cationic colloidal silica (CCS) to isolate adherent (Ad) and non‐adherent (nAd) PM fractions, and then subjected each fraction to Triton X‐114 (TX‐114) phase partitioning to further enrich for hydrophobic proteins. While CCS alone identified 255/757 (34%) membrane proteins, CCS/TX‐114 in combination yielded 453/745 (61%). Strikingly, of those proteins unique to CCS/TX‐114, 277/393 (70%) had membrane annotation. Further characterisation of the CCS/TX‐114 data set using Uniprot and transmembrane hidden Markov model revealed that 306/745 (41%) contained one or more transmembrane domains (TMDs), including proteins with 25 and 17 TMDs. Of the remaining proteins in the data set, 69/439 (16%) are known to contain lipid modifications. Of all membrane proteins identified, 93 had PM origin, including proteins that mediate cell adhesion, modulate transmembrane ion transport, and cell–cell communication. These studies reveal that the application of CCS to first isolate Ad and nAd PM fractions, followed by their detergent‐phase TX‐114 partitioning, to be a powerful method to isolate low‐abundance PM proteins, and a useful adjunct for in‐depth cell surface proteome analyses.
Plasma membrane (PM) proteins are attractive therapeutic targets because of their accessibility to drugs. Although genes encoding PM proteins represent 20-30% of eukaryotic genomes, a detailed characterisation of their encoded proteins is underrepresented, due, to their low copy number and the inherent difficulties in their isolation and purification as a consequence of their high hydrophobicity. We describe here a strategy that combines two orthogonal methods to isolate and purify PM proteins from Madin Darby canine kidney (MDCK) cells. In this two-step method, we first used cationic colloidal silica (CCS) to isolate adherent (Ad) and non-adherent (nAd) PM fractions, and then subjected each fraction to Triton X-114 (TX-114) phase partitioning to further enrich for hydrophobic proteins. While CCS alone identified 255/757 (34%) membrane proteins, CCS/TX-114 in combination yielded 453/745 (61%). Strikingly, of those proteins unique to CCS/TX-114, 277/393 (70%) had membrane annotation. Further characterisation of the CCS/TX-114 data set using Uniprot and transmembrane hidden Markov model revealed that 306/745 (41%) contained one or more transmembrane domains (TMDs), including proteins with 25 and 17 TMDs. Of the remaining proteins in the data set, 69/439 (16%) are known to contain lipid modifications. Of all membrane proteins identified, 93 had PM origin, including proteins that mediate cell adhesion, modulate transmembrane ion transport, and cell-cell communication. These studies reveal that the application of CCS to first isolate Ad and nAd PM fractions, followed by their detergent-phase TX-114 partitioning, to be a powerful method to isolate low-abundance PM proteins, and a useful adjunct for in-depth cell surface proteome analyses. [PUBLICATION ABSTRACT]
Author Kapp, Eugene A.
Moritz, Robert L.
Mathias, Rommel A.
Mathivanan, Suresh
Simpson, Richard J.
Goode, Robert J. A.
Chen, Yuan-Shou
Zhu, Hong-Jian
Author_xml – sequence: 1
  givenname: Rommel A.
  surname: Mathias
  fullname: Mathias, Rommel A.
  organization: Ludwig Institute for Cancer Research, Parkville, Victoria, Australia
– sequence: 2
  givenname: Yuan-Shou
  surname: Chen
  fullname: Chen, Yuan-Shou
  organization: Ludwig Institute for Cancer Research, Parkville, Victoria, Australia
– sequence: 3
  givenname: Robert J. A.
  surname: Goode
  fullname: Goode, Robert J. A.
  organization: Ludwig Institute for Cancer Research, Parkville, Victoria, Australia
– sequence: 4
  givenname: Eugene A.
  surname: Kapp
  fullname: Kapp, Eugene A.
  organization: Ludwig Institute for Cancer Research, Parkville, Victoria, Australia
– sequence: 5
  givenname: Suresh
  surname: Mathivanan
  fullname: Mathivanan, Suresh
  organization: Ludwig Institute for Cancer Research, Parkville, Victoria, Australia
– sequence: 6
  givenname: Robert L.
  surname: Moritz
  fullname: Moritz, Robert L.
  organization: Ludwig Institute for Cancer Research, Parkville, Victoria, Australia
– sequence: 7
  givenname: Hong-Jian
  surname: Zhu
  fullname: Zhu, Hong-Jian
  organization: Department of Surgery (RMH), The University of Melbourne, Parkville, Victoria, Australia
– sequence: 8
  givenname: Richard J.
  surname: Simpson
  fullname: Simpson, Richard J.
  email: Richard.Simpson@ludwig.edu.au
  organization: Ludwig Institute for Cancer Research, Parkville, Victoria, Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24028508$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21337516$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhSNURB-wZYksIcQqgz2OX-zQANOKKSAxqOwsx7lBLk4c7ITS_8MPxaMMA2LT1T2L79x7rs5pcdSHHoriMcELgvHyxdA5u1jirDFT5F5xQjhhpZKcHB00o8fFaUrXGBMhlXhQHC8JpYIRflL82pq-gQ6ZYfDOmtGFHoUWzcpZZIP3wTXGo-R2AMo42kY3Zu5LSUiF2hDR4E3qDOqgq6PpAQ0xjOB65FLw886dbZiia_dHXqJtuDGxSaiBH-DD4PqvGUKXr1fvDvbGjKY2CR4W91vjEzzaz7Pi89s329V5ufmwvli92pSWUUlKKpThnAtWCyAAta0MA2WEAQacg7Qto4KrmirDOChYcgmUSIGhaZQBRc-K5_PeHOD7BGnUnUsWvM8_hSlpKSmmhAlxN8mkkJgLmcmn_5HXYYp9fkMTRkRVVViRTC1mysaQUoRWD9F1Jt5qgvWuaL0rWh-KzoYn-7VT3UFzwP80m4Fne8Aka3ybe7Eu_eUqvJQM7_KpmbtxHm7vOKs_Xl6s_g1Rzl6XRvh58Jr4TXORY-ir92u9rjbn6pO80oz-BoJB1Cc
CitedBy_id crossref_primary_10_1002_pmic_201700453
crossref_primary_10_1007_s11051_014_2823_2
crossref_primary_10_1016_j_jprot_2014_09_016
crossref_primary_10_1039_D3AY00982C
crossref_primary_10_1002_mas_21690
crossref_primary_10_2217_nnm_13_96
crossref_primary_10_1073_pnas_1821076116
crossref_primary_10_1002_pmic_201200340
crossref_primary_10_1021_pr301107x
crossref_primary_10_1194_jlr_M059972
crossref_primary_10_1016_j_jprot_2012_07_009
Cites_doi 10.1002/(SICI)1522-2683(20000501)21:9<1707::AID-ELPS1707>3.0.CO;2-Q
10.1038/nbt.1532
10.1002/elps.1150170512
10.1002/1522-2683(20001001)21:16<3517::AID-ELPS3517>3.0.CO;2-H
10.1152/physrev.00001.2003
10.1074/jbc.M210184200
10.1038/85686
10.1038/nprot.2006.444
10.1016/S0021-9258(17)44606-0
10.1038/nature01511
10.1073/pnas.0907939106
10.1038/nbt827
10.1002/pmic.200300781
10.1016/j.chroma.2005.02.034
10.1002/pmic.200800116
10.1038/nrm1593
10.1021/pr900907g
10.1002/elps.200600059
10.1002/pmic.200800597
10.1083/jcb.17.2.375
10.1002/pmic.200500126
10.1006/jmbi.2000.4315
10.1016/j.cell.2006.02.045
10.1186/gb-2009-10-8-235
10.1093/nar/gkn803
10.1002/pmic.200401163
10.1016/j.bbapap.2009.05.001
10.1007/978-1-60327-310-7_13
10.1002/(SICI)1522-2683(20000401)21:6<1054::AID-ELPS1054>3.0.CO;2-8
10.1515/bchm3.1985.366.2.695
10.1002/1615-9861(200211)2:11<1479::AID-PROT1479>3.0.CO;2-A
10.1002/pmic.200800120
10.1002/elps.200900050
10.1016/j.jprot.2010.1008.1005
10.1074/mcp.M500209-MCP200
10.1021/pr900278c
10.1007/s00216-007-1486-6
10.1002/prca.200780067
10.1002/pro.5560070420
10.1002/pros.20809
10.1126/science.2672330
10.1038/ncb1109
10.1074/mcp.M110.001131
10.1016/j.ymeth.2006.07.026
10.1021/pr8010974
10.1038/nbt819
10.1083/jcb.77.3.853
10.1021/ci049686v
10.1126/science.7660128
10.1021/ac034184m
10.1016/S0378-1119(02)01181-2
10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
10.1038/nbt0303-262
10.1038/nature06828
10.1021/pr040004t
10.1002/iub.175
10.1002/pmic.200800312
10.1074/mcp.M800272-MCP200
10.1016/j.tcb.2006.08.006
10.1074/mcp.M500216-MCP200
10.1074/mcp.T500030-MCP200
10.1002/elps.200305569
10.1016/S0021-9258(19)69848-0
ContentType Journal Article
Copyright Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 INIST-CNRS
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 INIST-CNRS
– notice: Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7QP
7TK
7TM
8FD
FR3
K9.
M7N
P64
RC3
7X8
DOI 10.1002/pmic.201000591
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Engineering Research Database
MEDLINE - Academic
Genetics Abstracts
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Chemistry
EISSN 1615-9861
EndPage 1253
ExternalDocumentID 3278816331
10_1002_pmic_201000591
21337516
24028508
PMIC201000591
ark_67375_WNG_G4LH9S8W_5
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Australian Government Endeavour International Postgraduate Research Scholarship
– fundername: National Health and Medical Research Council of Australia
  funderid: ♯381413
– fundername: University of Melbourne International Research Scholarship
– fundername: Australian Proteomics Computational Facility
– fundername: National Health and Medical Research Council of Australia
  funderid: ♯487922; ♯280913; ♯433619
– fundername: Operational Infrastructure Support Program provided by the Victorian Government Australia
– fundername: Australian Cancer Research Foundation
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-1
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
Y6R
ZGI
ZZTAW
~IA
~KM
~WT
AAPBV
ABHUG
ABWRO
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IQODW
ZA5
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ACRPL
CITATION
7QO
7QP
7TK
7TM
8FD
FR3
K9.
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c5381-379a66675b7e1eebc4a5e9a7ae5e66e8cf53769b39a56e9e268e31870edd9ae93
IEDL.DBID DR2
ISSN 1615-9853
1615-9861
IngestDate Tue Dec 03 22:05:06 EST 2024
Wed Dec 04 01:14:44 EST 2024
Thu Oct 10 20:11:25 EDT 2024
Fri Dec 06 00:50:44 EST 2024
Sat Sep 28 07:51:17 EDT 2024
Sun Oct 22 16:07:21 EDT 2023
Sat Aug 24 00:52:45 EDT 2024
Wed Oct 30 09:52:58 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Membrane protein
Purification
Plasma membrane
Proteomics
Database
Cell biology
Isolation
Cationic colloidal silica
MDCK
Triton X-114
Language English
License CC BY 4.0
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5381-379a66675b7e1eebc4a5e9a7ae5e66e8cf53769b39a56e9e268e31870edd9ae93
Notes National Health and Medical Research Council of Australia - No. ♯487922; No. ♯280913; No. ♯433619
Australian Proteomics Computational Facility
Australian Cancer Research Foundation
ark:/67375/WNG-G4LH9S8W-5
ArticleID:PMIC201000591
Colour Online: See the article online to view Figs. 1-4 in colour.
National Health and Medical Research Council of Australia - No. ♯381413
Operational Infrastructure Support Program provided by the Victorian Government Australia
University of Melbourne International Research Scholarship
Australian Government Endeavour International Postgraduate Research Scholarship
istex:D3B75C67FC0FFC987B9CDA8BA762A886A4AA5B5F
in colour.
See the article online to view Figs.
1–4
Colour Online
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 21337516
PQID 1517444091
PQPubID 1016439
PageCount 16
ParticipantIDs proquest_miscellaneous_883031577
proquest_miscellaneous_858780678
proquest_journals_1517444091
crossref_primary_10_1002_pmic_201000591
pubmed_primary_21337516
pascalfrancis_primary_24028508
wiley_primary_10_1002_pmic_201000591_PMIC201000591
istex_primary_ark_67375_WNG_G4LH9S8W_5
PublicationCentury 2000
PublicationDate April 2011
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: April 2011
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Proteomics (Weinheim)
PublicationTitleAlternate Proteomics
PublicationYear 2011
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley-VCH
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley-VCH
– name: Wiley Subscription Services, Inc
References Wells, C. D., Fawcett, J. P., Traweger, A., Yamanaka, Y. et al., A Rich1/Amot complex regulates the Cdc42 GTPase and apical-polarity proteins in epithelial cells. Cell 2006, 125, 535-548.
Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E. L., Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 2001, 305, 567-580.
Scheurer, S. B., Rybak, J. N., Roesli, C., Brunisholz, R. A. et al., Identification and relative quantification of membrane proteins by surface biotinylation and two-dimensional peptide mapping. Proteomics 2005, 5, 2718-2728.
Zhang, W., Zhou, G., Zhao, Y., White, M. A., Affinity enrichment of plasma membrane for proteomics analysis. Electrophoresis 2003, 24, 2855-2863.
Moebius, J., Zahedi, R. P., Lewandrowski, U., Berger, C. et al., The human platelet membrane proteome reveals several new potential membrane proteins. Mol. Cell. Proteomics 2005, 4, 1754-1761.
Chen, Y. S., Mathias, R. A., Mathivanan, S., Kapp, E. A. et al., Proteomic profiling of MDCK plasma membranes reveals Wnt-5a involvement during oncogenic H-Ras/TGF-beta-mediated epithelial-mesenchymal transition. Mol. Cell. Proteomics 2010, doi: 10.1074/mcp.M110.001131.
Rabilloud, T., Membrane proteins and proteomics: love is possible, but so difficult. Electrophoresis 2009, 30, S174-S180.
Punta, M., Forrest, L. R., Bigelow, H., Kernytsky, A. et al., Membrane protein prediction methods. Methods 2007, 41, 460-474.
Moritz, R. L., Eddes, J. S., Reid, G. E., Simpson, R. J., S-pyridylethylation of intact polyacrylamide gels and in situ digestion of electrophoretically separated proteins: a rapid mass spectrometric method for identifying cysteine-containing peptides. Electrophoresis 1996, 17, 907-917.
Mathias, R. A., Simpson, R. J., Towards understanding epithelial-mesenchymal transition: a proteomics perspective. Biochim. Biophys. Acta 2009, 1794, 1325-1331.
Wollscheid, B., Bausch-Fluck, D., Henderson, C., O'Brien, R. et al., Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat. Biotechnol. 2009, 27, 378-386.
Bordier, C., Phase separation of integral membrane proteins in Triton X-114 solution. J. Biol. Chem. 1981, 256, 1604-1607.
Eisenhaber, B., Eisenhaber, F., Maurer-Stroh, S., Neuberger, G., Prediction of sequence signals for lipid post-translational modifications: insights from case studies. Proteomics 2004, 4, 1614-1625.
Goode, R. J., Simpson, R. J., Purification of basolateral integral membrane proteins by cationic colloidal silica-based apical membrane subtraction. Meth. Mol. Biol. 2009, 528, 177-187.
Cereijido, M., Robbins, E. S., Dolan, W. J., Rotunno, C. A., Sabatini, D. D., Polarized monolayers formed bsy epithelial cells on a permeable and translucent support. J. Cell Biol. 1978, 77, 853-880.
Ho, L. L., Kench, J. G., Handelsman, D. J., Scheffer, G. L. et al., Androgen regulation of multidrug resistance-associated protein 4 (MRP4/ABCC4) in prostate cancer. Prostate 2008, 68, 1421-1429.
Simpson, R. J., Connolly, L. M., Eddes, J. S., Pereira, J. J. et al., Proteomic analysis of the human colon carcinoma cell line (LIM 1215): development of a membrane protein database. Electrophoresis 2000, 21, 1707-1732.
Wu, C. C., 3rd, Yates, J. R., The application of mass spectrometry to membrane proteomics. Nat. Biotechnol. 2003, 21, 262-267.
Tuma, P. L., Hubbard, A. L., Transcytosis: crossing cellular barriers. Physiol. Rev. 2003, 83, 871-932.
McDonald, C. A., Yang, J. Y., Marathe, V., Yen, T. Y., Macher, B. A., Combining results from lectin affinity chromatography and glycocapture approaches substantially improves the coverage of the glycoproteome. Mol. Cell. Proteomics 2009, 8, 287-301.
Yang, Z., Hancock, W. S., Monitoring glycosylation pattern changes of glycoproteins using multi-lectin affinity chromatography. J. Chromatogr. A 2005, 1070, 57-64.
Wu, C. C., MacCoss, M. J., Howell, K. E., Yates, J. R., 3rd, A method for the comprehensive proteomic analysis of membrane proteins. Nat. Biotechnol. 2003, 21, 532-538.
Mathias, R. A., Chen, Y. S., Wang, B., Ji, H. et al., Extracellular remodelling during oncogenic Ras-induced epithelial-mesenchymal transition facilitates MDCK cell migration. J. Proteome Res. 2010, 9, 1007-1019.
Lawson, E. L., Clifton, J. G., Huang, F., Li, X. et al., Use of magnetic beads with immobilized monoclonal antibodies for isolation of highly pure plasma membranes. Electrophoresis 2006, 27, 2747-2758.
Mathias, R. A., Wang, B., Ji, H., Kapp, E. A. et al., Secretome-based proteomic profiling of Ras-transformed MDCK cells reveals extracellular modulators of epithelial-mesenchymal transition. J. Proteome Res. 2009, 8, 2827-2837.
da Cunha, J. P., Galante, P. A., de Souza, J. E., de Souza, R. F. et al., Bioinformatics construction of the human cell surfaceome. Proc. Natl. Acad. Sci. USA 2009, 106, 16752-16757.
Aebersold, R., Mann, M., Mass spectrometry-based proteomics. Nature 2003, 422, 198-207.
Deborde, S., Perret, E., Gravotta, D., Deora, A. et al., Clathrin is a key regulator of basolateral polarity. Nature 2008, 452, 719-723.
Perkins, D. N., Pappin, D. J., Creasy, D. M., Cottrell, J. S., Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999, 20, 3551-3567.
Zhang, H., Li, X. J., Martin, D. B., Aebersold, R., Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol. 2003, 21, 660-666.
Kapp, E. A., Schutz, F., Connolly, L. M., Chakel, J. A. et al., An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: sensitivity and specificity analysis. Proteomics 2005, 5, 3475-3490.
Lal-Nag, M., Morin, P. J., The claudins. Genome Biol. 2009, 10, 235.
Zhao, Y., Zhang, W., White, M. A., Capillary high-performance liquid chromatography/mass spectrometric analysis of proteins from affinity-purified plasma membrane. Anal. Chem. 2003, 75, 3751-3757.
Ferro, M., Seigneurin-Berny, D., Rolland, N., Chapel, A. et al., Organic solvent extraction as a versatile procedure to identify hydrophobic chloroplast membrane proteins. Electrophoresis 2000, 21, 3517-3526.
Henningsen, R., Gale, B. L., Straub, K. M., DeNagel, D. C., Application of zwitterionic detergents to the solubilization of integral membrane proteins for two-dimensional gel electrophoresis and mass spectrometry. Proteomics 2002, 2, 1479-1488.
Chaney, L. K., Jacobson, B. S., Coating cells with colloidal silica for high yield isolation of plasma membrane sheets and identification of transmembrane proteins. J. Biol. Chem. 1983, 258, 10062-10072.
Schnitzer, J. E., McIntosh, D. P., Dvorak, A. M., Liu, J., Oh, P., Separation of caveolae from associated microdomains of GPI-anchored proteins. Science 1995, 269, 1435-1439.
Rodriguez-Boulan, E., Kreitzer, G., Musch, A., Organization of vesicular trafficking in epithelia. Nat. Rev. Mol. Cell Biol. 2005, 6, 233-247.
Ridley, A. J., Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol. 2006, 16, 522-529.
Arcinas, A., Yen, T. Y., Kebebew, E., Macher, B. A., Cell surface and secreted protein profiles of human thyroid cancer cell lines reveal distinct glycoprotein patterns. J. Proteome Res. 2009, 8, 3958-3968.
Kopp, F., Meyer, H. E., Reinauer, H., Insulin receptor protein rendered visible in Triton X-114 membranes. Biol. Chem. Hoppe-Seyler 1985, 366, 695-698.
Greening, D. W., Glenister, K. M., Kapp, E. A., Moritz, R. L. et al., Comparison of human platelet membrane-cytoskeletal proteins with the plasma proteome: towards understanding the platelet-plasma nexus. Proteomics Clin. Appl. 2008, 2, 63-77.
Sonnhammer, E. L., von Heijne, G., Krogh, A., A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 1998, 6, 175-182.
Findley, M. K., Koval, M., Regulation and roles for claudin-family tight junction proteins. IUBMB Life 2009, 61, 431-437.
Kaji, H., Yamauchi, Y., Takahashi, N., Isobe, T., Mass spectrometric identification of N-linked glycopeptides using lectin-mediated affinity capture and glycosylation site-specific stable isotope tagging. Nat. Protoc. 2006, 1, 3019-3027.
Rodriguez-Boulan, E., Nelson, W. J., Morphogenesis of the polarized epithelial cell phenotype. Science 1989, 245, 718-725.
Rahbar, A. M., Fenselau, C., Integration of Jacobson's pellicle method into proteomic strategies for plasma membrane proteins. J. Proteome Res. 2004, 3, 1267-1277.
Olsen, J. V., de Godoy, L. M., Li, G., Macek, B. et al., Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell. Proteomics 2005, 4, 2010-2021.
Bantscheff, M., Schirle, M., Sweetman, G., Rick, J., Kuster, B., Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 2007, 389, 1017-1031.
Ahn, S. M., Goode, R. J., Simpson, R. J., Stem cell markers: insights from membrane proteomics? Proteomics 2008, 8, 4946-4957.
Nunomura, K., Nagano, K., Itagaki, C., Taoka, M. et al., Cell surface labeling and mass spectrometry reveal diversity of cell surface markers and signaling molecules expressed in undifferentiated mouse embryonic stem cells. Mol. Cell. Proteomics 2005, 4, 1968-1976.
Wallin, E., von Heijne, G., Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 1998, 7, 1029-1038.
Santoni, V., Molloy, M., Rabilloud, T., Membrane proteins and proteomics: un amour impossible? Electrophoresis 2000, 21, 1054-1070.
Adam, P. J., Boyd, R., Tyson, K. L., Fletcher, G. C. et al., Comprehensive proteomic analysis of breast cancer cell membranes reveals unique proteins with potential roles in clinical cancer. J. Biol. Chem. 2003, 278, 6482-6489.
Arai, M., Ikeda, M., Shimizu, T., Comprehensive analysis of transmembrane topologies in prokaryotic genomes. Gene 2003, 304, 77-86.
Donoghue, P. M., Hughes, C., Vissers,
2007; 389
1978; 77
2004; 4
2004; 3
1985; 366
2004; 6
2008; 8
2005; 1070
2001; 305
2008; 2
2003; 278
2009; 10
2006; 27
2001; 19
2008; 68
2003; 83
2009; 528
2009; 1794
2006; 125
2010; 9
1983; 258
1996; 17
2010
2009; 61
2000; 21
2006; 16
2002; 2
1999; 20
2006; 1
2003; 75
2009; 27
2005; 45
2009; 30
2003; 304
1981; 256
1989; 245
2005; 5
2003; 24
2005; 4
1995; 269
2009; 8
2005; 6
2007; 41
1998; 7
1998; 6
2003; 422
2008; 452
1963; 17
2003; 21
2009; 37
2009; 106
e_1_2_6_51_2
e_1_2_6_53_2
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_59_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_62_2
e_1_2_6_64_2
e_1_2_6_20_2
e_1_2_6_60_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_31_2
e_1_2_6_18_2
Sonnhammer E. L. (e_1_2_6_41_2) 1998; 6
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_61_2
e_1_2_6_63_2
e_1_2_6_42_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_65_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 21
  start-page: 660
  year: 2003
  end-page: 666
  article-title: Identification and quantification of N‐linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry
  publication-title: Nat. Biotechnol.
– volume: 8
  start-page: 287
  year: 2009
  end-page: 301
  article-title: Combining results from lectin affinity chromatography and glycocapture approaches substantially improves the coverage of the glycoproteome
  publication-title: Mol. Cell. Proteomics
– volume: 7
  start-page: 1029
  year: 1998
  end-page: 1038
  article-title: Genome‐wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms
  publication-title: Protein Sci.
– volume: 258
  start-page: 10062
  year: 1983
  end-page: 10072
  article-title: Coating cells with colloidal silica for high yield isolation of plasma membrane sheets and identification of transmembrane proteins
  publication-title: J. Biol. Chem.
– volume: 24
  start-page: 2855
  year: 2003
  end-page: 2863
  article-title: Affinity enrichment of plasma membrane for proteomics analysis
  publication-title: Electrophoresis
– volume: 21
  start-page: 3517
  year: 2000
  end-page: 3526
  article-title: Organic solvent extraction as a versatile procedure to identify hydrophobic chloroplast membrane proteins
  publication-title: Electrophoresis
– volume: 20
  start-page: 3551
  year: 1999
  end-page: 3567
  article-title: Probability‐based protein identification by searching sequence databases using mass spectrometry data
  publication-title: Electrophoresis
– volume: 3
  start-page: 1267
  year: 2004
  end-page: 1277
  article-title: Integration of Jacobson's pellicle method into proteomic strategies for plasma membrane proteins
  publication-title: J. Proteome Res.
– volume: 245
  start-page: 718
  year: 1989
  end-page: 725
  article-title: Morphogenesis of the polarized epithelial cell phenotype
  publication-title: Science
– volume: 4
  start-page: 1754
  year: 2005
  end-page: 1761
  article-title: The human platelet membrane proteome reveals several new potential membrane proteins
  publication-title: Mol. Cell. Proteomics
– volume: 27
  start-page: 378
  year: 2009
  end-page: 386
  article-title: Mass‐spectrometric identification and relative quantification of N‐linked cell surface glycoproteins
  publication-title: Nat. Biotechnol.
– volume: 30
  start-page: S174
  year: 2009
  end-page: S180
  article-title: Membrane proteins and proteomics: love is possible, but so difficult
  publication-title: Electrophoresis
– volume: 21
  start-page: 1707
  year: 2000
  end-page: 1732
  article-title: Proteomic analysis of the human colon carcinoma cell line (LIM 1215): development of a membrane protein database
  publication-title: Electrophoresis
– volume: 45
  start-page: 407
  year: 2005
  end-page: 413
  article-title: Prediction of membrane protein types by incorporating amphipathic effects
  publication-title: J. Chem. Inf. Model.
– year: 2010
  article-title: Advances in shotgun proteomics and the analysis of membrane proteomes
  publication-title: J. Proteomics
– volume: 77
  start-page: 853
  year: 1978
  end-page: 880
  article-title: Polarized monolayers formed bsy epithelial cells on a permeable and translucent support
  publication-title: J. Cell Biol.
– volume: 6
  start-page: 233
  year: 2005
  end-page: 247
  article-title: Organization of vesicular trafficking in epithelia
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 6
  start-page: 297
  year: 2004
  end-page: 307
  article-title: Delivery of raft‐associated, GPI‐anchored proteins to the apical surface of polarized MDCK cells by a transcytotic pathway
  publication-title: Nat. Cell Biol.
– volume: 125
  start-page: 535
  year: 2006
  end-page: 548
  article-title: A Rich1/Amot complex regulates the Cdc42 GTPase and apical‐polarity proteins in epithelial cells
  publication-title: Cell
– volume: 9
  start-page: 1007
  year: 2010
  end-page: 1019
  article-title: Extracellular remodelling during oncogenic Ras‐induced epithelial‐mesenchymal transition facilitates MDCK cell migration
  publication-title: J. Proteome Res.
– volume: 8
  start-page: 3958
  year: 2009
  end-page: 3968
  article-title: Cell surface and secreted protein profiles of human thyroid cancer cell lines reveal distinct glycoprotein patterns
  publication-title: J. Proteome Res.
– volume: 4
  start-page: 1968
  year: 2005
  end-page: 1976
  article-title: Cell surface labeling and mass spectrometry reveal diversity of cell surface markers and signaling molecules expressed in undifferentiated mouse embryonic stem cells
  publication-title: Mol. Cell. Proteomics
– volume: 5
  start-page: 2718
  year: 2005
  end-page: 2728
  article-title: Identification and relative quantification of membrane proteins by surface biotinylation and two‐dimensional peptide mapping
  publication-title: Proteomics
– volume: 452
  start-page: 719
  year: 2008
  end-page: 723
  article-title: Clathrin is a key regulator of basolateral polarity
  publication-title: Nature
– volume: 389
  start-page: 1017
  year: 2007
  end-page: 1031
  article-title: Quantitative mass spectrometry in proteomics: a critical review
  publication-title: Anal. Bioanal. Chem.
– volume: 8
  start-page: 3895
  year: 2008
  end-page: 3905
  article-title: Nonionic detergent phase extraction for the proteomic analysis of heart membrane proteins using label‐free LC‐MS
  publication-title: Proteomics
– volume: 8
  start-page: 3924
  year: 2008
  end-page: 3932
  article-title: Membrane proteins and membrane proteomics
  publication-title: Proteomics
– volume: 422
  start-page: 198
  year: 2003
  end-page: 207
  article-title: Mass spectrometry‐based proteomics
  publication-title: Nature
– year: 2010
  article-title: Proteomic profiling of MDCK plasma membranes reveals Wnt‐5a involvement during oncogenic H‐Ras/TGF‐beta‐mediated epithelial‐mesenchymal transition
  publication-title: Mol. Cell. Proteomics
– volume: 5
  start-page: 3475
  year: 2005
  end-page: 3490
  article-title: An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: sensitivity and specificity analysis
  publication-title: Proteomics
– volume: 21
  start-page: 262
  year: 2003
  end-page: 267
  article-title: The application of mass spectrometry to membrane proteomics
  publication-title: Nat. Biotechnol.
– volume: 19
  start-page: 242
  year: 2001
  end-page: 247
  article-title: Large‐scale analysis of the yeast proteome by multidimensional protein identification technology
  publication-title: Nat. Biotechnol.
– volume: 10
  start-page: 235
  year: 2009
  article-title: The claudins
  publication-title: Genome Biol.
– volume: 27
  start-page: 2747
  year: 2006
  end-page: 2758
  article-title: Use of magnetic beads with immobilized monoclonal antibodies for isolation of highly pure plasma membranes
  publication-title: Electrophoresis
– volume: 75
  start-page: 3751
  year: 2003
  end-page: 3757
  article-title: Capillary high‐performance liquid chromatography/mass spectrometric analysis of proteins from affinity‐purified plasma membrane
  publication-title: Anal. Chem.
– volume: 269
  start-page: 1435
  year: 1995
  end-page: 1439
  article-title: Separation of caveolae from associated microdomains of GPI‐anchored proteins
  publication-title: Science
– volume: 1070
  start-page: 57
  year: 2005
  end-page: 64
  article-title: Monitoring glycosylation pattern changes of glycoproteins using multi‐lectin affinity chromatography
  publication-title: J. Chromatogr. A
– volume: 41
  start-page: 460
  year: 2007
  end-page: 474
  article-title: Membrane protein prediction methods
  publication-title: Methods
– volume: 256
  start-page: 1604
  year: 1981
  end-page: 1607
  article-title: Phase separation of integral membrane proteins in Triton X‐114 solution
  publication-title: J. Biol. Chem.
– volume: 1
  start-page: 3019
  year: 2006
  end-page: 3027
  article-title: Mass spectrometric identification of N‐linked glycopeptides using lectin‐mediated affinity capture and glycosylation site‐specific stable isotope tagging
  publication-title: Nat. Protoc.
– volume: 8
  start-page: 2827
  year: 2009
  end-page: 2837
  article-title: Secretome‐based proteomic profiling of Ras‐transformed MDCK cells reveals extracellular modulators of epithelial‐mesenchymal transition
  publication-title: J. Proteome Res.
– volume: 68
  start-page: 1421
  year: 2008
  end-page: 1429
  article-title: Androgen regulation of multidrug resistance‐associated protein 4 (MRP4/ABCC4) in prostate cancer
  publication-title: Prostate
– volume: 4
  start-page: 1614
  year: 2004
  end-page: 1625
  article-title: Prediction of sequence signals for lipid post‐translational modifications: insights from case studies
  publication-title: Proteomics
– volume: 8
  start-page: 4946
  year: 2008
  end-page: 4957
  article-title: Stem cell markers: insights from membrane proteomics?
  publication-title: Proteomics
– volume: 106
  start-page: 16752
  year: 2009
  end-page: 16757
  article-title: Bioinformatics construction of the human cell surfaceome
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 2
  start-page: 1479
  year: 2002
  end-page: 1488
  article-title: Application of zwitterionic detergents to the solubilization of integral membrane proteins for two‐dimensional gel electrophoresis and mass spectrometry
  publication-title: Proteomics
– volume: 83
  start-page: 871
  year: 2003
  end-page: 932
  article-title: Transcytosis: crossing cellular barriers
  publication-title: Physiol. Rev.
– volume: 17
  start-page: 907
  year: 1996
  end-page: 917
  article-title: ‐pyridylethylation of intact polyacrylamide gels and in situ digestion of electrophoretically separated proteins: a rapid mass spectrometric method for identifying cysteine‐containing peptides
  publication-title: Electrophoresis
– volume: 21
  start-page: 532
  year: 2003
  end-page: 538
  article-title: A method for the comprehensive proteomic analysis of membrane proteins
  publication-title: Nat. Biotechnol.
– volume: 6
  start-page: 175
  year: 1998
  end-page: 182
  article-title: A hidden Markov model for predicting transmembrane helices in protein sequences
  publication-title: Proc. Int. Conf. Intell. Syst. Mol. Biol.
– volume: 305
  start-page: 567
  year: 2001
  end-page: 580
  article-title: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes
  publication-title: J. Mol. Biol.
– volume: 1794
  start-page: 1325
  year: 2009
  end-page: 1331
  article-title: Towards understanding epithelial‐mesenchymal transition: a proteomics perspective
  publication-title: Biochim. Biophys. Acta
– volume: 17
  start-page: 375
  year: 1963
  end-page: 412
  article-title: Junctional complexes in various epithelia
  publication-title: J. Cell Biol.
– volume: 278
  start-page: 6482
  year: 2003
  end-page: 6489
  article-title: Comprehensive proteomic analysis of breast cancer cell membranes reveals unique proteins with potential roles in clinical cancer
  publication-title: J. Biol. Chem.
– volume: 21
  start-page: 1054
  year: 2000
  end-page: 1070
  article-title: Membrane proteins and proteomics: un amour impossible?
  publication-title: Electrophoresis
– volume: 61
  start-page: 431
  year: 2009
  end-page: 437
  article-title: Regulation and roles for claudin‐family tight junction proteins
  publication-title: IUBMB Life
– volume: 528
  start-page: 177
  year: 2009
  end-page: 187
  article-title: Purification of basolateral integral membrane proteins by cationic colloidal silica‐based apical membrane subtraction
  publication-title: Meth. Mol. Biol.
– volume: 8
  start-page: 3947
  year: 2008
  end-page: 3955
  article-title: Strategies for shotgun identification of integral membrane proteins by tandem mass spectrometry
  publication-title: Proteomics
– volume: 2
  start-page: 63
  year: 2008
  end-page: 77
  article-title: Comparison of human platelet membrane‐cytoskeletal proteins with the plasma proteome: towards understanding the platelet‐plasma nexus
  publication-title: Proteomics Clin. Appl.
– volume: 304
  start-page: 77
  year: 2003
  end-page: 86
  article-title: Comprehensive analysis of transmembrane topologies in prokaryotic genomes
  publication-title: Gene
– volume: 37
  start-page: D396
  year: 2009
  end-page: D403
  article-title: The GOA database in 2009 – an integrated gene ontology annotation resource
  publication-title: Nucleic Acids Res.
– volume: 366
  start-page: 695
  year: 1985
  end-page: 698
  article-title: Insulin receptor protein rendered visible in Triton X‐114 membranes
  publication-title: Biol. Chem. Hoppe–Seyler
– volume: 4
  start-page: 2010
  year: 2005
  end-page: 2021
  article-title: Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C‐trap
  publication-title: Mol. Cell. Proteomics
– volume: 16
  start-page: 522
  year: 2006
  end-page: 529
  article-title: Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking
  publication-title: Trends Cell Biol.
– ident: e_1_2_6_12_2
  doi: 10.1002/(SICI)1522-2683(20000501)21:9<1707::AID-ELPS1707>3.0.CO;2-Q
– ident: e_1_2_6_20_2
  doi: 10.1038/nbt.1532
– ident: e_1_2_6_36_2
  doi: 10.1002/elps.1150170512
– ident: e_1_2_6_27_2
  doi: 10.1002/1522-2683(20001001)21:16<3517::AID-ELPS3517>3.0.CO;2-H
– ident: e_1_2_6_47_2
  doi: 10.1152/physrev.00001.2003
– ident: e_1_2_6_55_2
  doi: 10.1074/jbc.M210184200
– ident: e_1_2_6_29_2
  doi: 10.1038/85686
– ident: e_1_2_6_56_2
  doi: 10.1038/nprot.2006.444
– ident: e_1_2_6_32_2
  doi: 10.1016/S0021-9258(17)44606-0
– ident: e_1_2_6_53_2
  doi: 10.1038/nature01511
– ident: e_1_2_6_52_2
  doi: 10.1073/pnas.0907939106
– ident: e_1_2_6_21_2
  doi: 10.1038/nbt827
– ident: e_1_2_6_7_2
  doi: 10.1002/pmic.200300781
– ident: e_1_2_6_23_2
  doi: 10.1016/j.chroma.2005.02.034
– ident: e_1_2_6_25_2
  doi: 10.1002/pmic.200800116
– ident: e_1_2_6_46_2
  doi: 10.1038/nrm1593
– ident: e_1_2_6_63_2
  doi: 10.1021/pr900907g
– ident: e_1_2_6_16_2
  doi: 10.1002/elps.200600059
– ident: e_1_2_6_9_2
  doi: 10.1002/pmic.200800597
– ident: e_1_2_6_44_2
  doi: 10.1083/jcb.17.2.375
– ident: e_1_2_6_40_2
  doi: 10.1002/pmic.200500126
– ident: e_1_2_6_6_2
  doi: 10.1006/jmbi.2000.4315
– ident: e_1_2_6_61_2
  doi: 10.1016/j.cell.2006.02.045
– volume: 6
  start-page: 175
  year: 1998
  ident: e_1_2_6_41_2
  article-title: A hidden Markov model for predicting transmembrane helices in protein sequences
  publication-title: Proc. Int. Conf. Intell. Syst. Mol. Biol.
  contributor:
    fullname: Sonnhammer E. L.
– ident: e_1_2_6_51_2
  doi: 10.1186/gb-2009-10-8-235
– ident: e_1_2_6_42_2
  doi: 10.1093/nar/gkn803
– ident: e_1_2_6_17_2
  doi: 10.1002/pmic.200401163
– ident: e_1_2_6_64_2
  doi: 10.1016/j.bbapap.2009.05.001
– ident: e_1_2_6_33_2
  doi: 10.1007/978-1-60327-310-7_13
– ident: e_1_2_6_24_2
  doi: 10.1002/(SICI)1522-2683(20000401)21:6<1054::AID-ELPS1054>3.0.CO;2-8
– ident: e_1_2_6_26_2
  doi: 10.1515/bchm3.1985.366.2.695
– ident: e_1_2_6_28_2
  doi: 10.1002/1615-9861(200211)2:11<1479::AID-PROT1479>3.0.CO;2-A
– ident: e_1_2_6_34_2
  doi: 10.1002/pmic.200800120
– ident: e_1_2_6_30_2
  doi: 10.1002/elps.200900050
– ident: e_1_2_6_31_2
  doi: 10.1016/j.jprot.2010.1008.1005
– ident: e_1_2_6_13_2
  doi: 10.1074/mcp.M500209-MCP200
– ident: e_1_2_6_19_2
  doi: 10.1021/pr900278c
– ident: e_1_2_6_54_2
  doi: 10.1007/s00216-007-1486-6
– ident: e_1_2_6_39_2
  doi: 10.1002/prca.200780067
– ident: e_1_2_6_4_2
  doi: 10.1002/pro.5560070420
– ident: e_1_2_6_48_2
  doi: 10.1002/pros.20809
– ident: e_1_2_6_43_2
  doi: 10.1126/science.2672330
– ident: e_1_2_6_60_2
  doi: 10.1038/ncb1109
– ident: e_1_2_6_62_2
  doi: 10.1074/mcp.M110.001131
– ident: e_1_2_6_8_2
  doi: 10.1016/j.ymeth.2006.07.026
– ident: e_1_2_6_65_2
  doi: 10.1021/pr8010974
– ident: e_1_2_6_11_2
  doi: 10.1038/nbt819
– ident: e_1_2_6_45_2
  doi: 10.1083/jcb.77.3.853
– ident: e_1_2_6_3_2
  doi: 10.1021/ci049686v
– ident: e_1_2_6_15_2
  doi: 10.1126/science.7660128
– ident: e_1_2_6_18_2
  doi: 10.1021/ac034184m
– ident: e_1_2_6_5_2
  doi: 10.1016/S0378-1119(02)01181-2
– ident: e_1_2_6_38_2
  doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
– ident: e_1_2_6_2_2
  doi: 10.1038/nbt0303-262
– ident: e_1_2_6_59_2
  doi: 10.1038/nature06828
– ident: e_1_2_6_14_2
  doi: 10.1021/pr040004t
– ident: e_1_2_6_50_2
  doi: 10.1002/iub.175
– ident: e_1_2_6_10_2
  doi: 10.1002/pmic.200800312
– ident: e_1_2_6_22_2
  doi: 10.1074/mcp.M800272-MCP200
– ident: e_1_2_6_49_2
  doi: 10.1016/j.tcb.2006.08.006
– ident: e_1_2_6_57_2
  doi: 10.1074/mcp.M500216-MCP200
– ident: e_1_2_6_37_2
  doi: 10.1074/mcp.T500030-MCP200
– ident: e_1_2_6_58_2
  doi: 10.1002/elps.200305569
– ident: e_1_2_6_35_2
  doi: 10.1016/S0021-9258(19)69848-0
SSID ssj0017897
Score 2.1099312
Snippet Plasma membrane (PM) proteins are attractive therapeutic targets because of their accessibility to drugs. Although genes encoding PM proteins represent 20–30%...
Plasma membrane (PM) proteins are attractive therapeutic targets because of their accessibility to drugs. Although genes encoding PM proteins represent 20-30%...
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1238
SubjectTerms Analytical, structural and metabolic biochemistry
Animals
Biological and medical sciences
Blotting, Western
Cationic colloidal silica
Cations - metabolism
Cell adhesion
Cell adhesion & migration
Cell Adhesion Molecules - genetics
Cell Adhesion Molecules - isolation & purification
Cell Adhesion Molecules - metabolism
Cell biology
Cell Fractionation
Cell Membrane - chemistry
Cell Membrane - genetics
Cell Membrane - metabolism
Cell surface
Cells, Cultured
Colloids - metabolism
copy number
Data processing
Databases, Protein
Dogs
Drug development
Drugs
Female
Fundamental and applied biological sciences. Psychology
Genomes
hidden Markov models
Hydrophobic and Hydrophilic Interactions
Hydrophobicity
Intercellular signalling
Ion Transport - genetics
Kidney - cytology
Lipids
Mass Spectrometry
MDCK
Membrane proteins
Membrane Proteins - genetics
Membrane Proteins - isolation & purification
Membrane Proteins - metabolism
Miscellaneous
Plasma
Plasma membrane
Plasma membranes
Polyethylene Glycols - metabolism
Protein Array Analysis - methods
protein purification
Protein Structure, Tertiary
Proteins
Proteome - chemistry
Proteome - genetics
Proteome - metabolism
proteomics
Proteomics - methods
Silica
Silicon Dioxide - metabolism
Transmembrane domains
Triton X-114
Title Tandem application of cationic colloidal silica and Triton X-114 for plasma membrane protein isolation and purification: Towards developing an MDCK protein database
URI https://api.istex.fr/ark:/67375/WNG-G4LH9S8W-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpmic.201000591
https://www.ncbi.nlm.nih.gov/pubmed/21337516
https://www.proquest.com/docview/1517444091
https://search.proquest.com/docview/858780678
https://search.proquest.com/docview/883031577
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQOQAHHimPhVL5gMpp2-zDay-3KqWNgFYIUjU3y2s70qraTZRNJODET-BX8MP4JczY2U2CEEhwyyYz69gez8Mef0PIC8tMrKNJEiqIkcNU93moVL8ITapFXxVGaVe-7fwiG16mb8ZsvHGL3-NDdBtuuDKcvsYFrormaA0aOqtK7VKz8P4kxj9RwjGn7-RDhx8VceGrq4DZDnMwTC1qYz8-2mbfsko3cYA_YZakamCgJr7Cxe9c0G2P1pmk03tEtZ3xmSjXh8tFcai__ILz-D-9vU_urvxVeuwF7AG5Yese2T2uIVavPtMD6jJI3dZ8j9watNXjeuTOBtDhLvk-wr3qim4cl9PphPpPpaYojdPSQENNiQQUyOloDtqmpuMfX79BOEXBu6Yz8PUrRStbQV9qSx3KRFnTElaQfysyzpZzTIByX7yiI5cY3ND19TAgoucng7cdO6bJojl_SC5PX48Gw3BVISLUoKgj0I65gviLs4LbyNpCp4rZXHFlmc0yK_QE0WryIskVy2xu40zgni_vW2MQlTx5RHbqaW2fEKpZnHmB5jaNbJon2mpjjCiM0cAckJethMiZBwKRHvI5ljg5spucgBw4AerI1Pwa0-c4k1cXZ_IsfTfMP4oryQKyvyVhHQOeeAnwnAOy14qcXKmWRkaILZ5CWA4N0e5nmF086YGhny4bKZjgAv2QP5CIBAt8cB6Qx16Y181HCfzZKAtI7ETyL_2V70FhdE9P_4XpGbnt9-oxI2qP7CzmS_scnL1Fse8W9E_h3lAl
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQeygceKQ8FkrxAZXTtvu2l1uV0gaaRAhStTfLazvSqtpNlIcEnPgJ_Ap-GL-EGTu7aRACCW55eOLYOx7PjD9_Q8hLk-pIhePYlxAj-4kKmC9lUPg6UTyQhZbKlm8bDLPeRfLuKm3QhHgXxvFDtAk3XBnWXuMCx4T00Zo1dFqVymKz8AIlBEDbsOZDRHWdfGgZpELGXX0V2Lj9HLamhrcxiI425Tf2pW2c4k-Ik5RzmKqxq3HxOyd006e1m9LpPVI0w3FYlOvD5aI4VF9-YXr8r_HeJ3dXLis9djr2gNwydYfsHtcQrlef6QG1IFKbne-QnW5TQK5D7tzgOtwl30eYrq7ojRNzOhlT96pUFBVyUmroaF5iAwrN6WgGBqemVz--foOIioKDTafg7leSVqaCwdSGWqKJsqYlLCL3qyg4Xc4QA2U_eE1HFhs8p-sbYtCIDk665604ImVxR39ILk7fjLo9f1Ukwldgq0MwkLmEEIylBTOhMYVKZGpyyaRJTZYZrsZIWJMXcS7TzOQmyjimfVlgtEZi8vgR2aontXlCqEqjzOk0M0lokjxWRmmteaG1AmGPvGpUREwdF4hwrM-RwIcj2ofjkQOrQW0zObtGBB1LxeXwTJwl_V7-kV-K1CP7GyrWCuChFwfn2SN7jc6JlXWZixDpxROIzKEj2n4NTxcPe2DqJ8u54ClnHF2RPzThMdb4YMwjj502r7sPY_izYeaRyOrkX8Yr3oPNaN89_RehF2SnNxr0Rf_t8PwZue1S9wiQ2iNbi9nSPAffb1Hs29X9E8kOVEY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQK_E4FEgpXSjFB1RO22af9nKrEtJA26iCVM3N8tqOtKp2E-UhASd-Ar-CH8YvYcZONglCIMEtm8ysY3s8D3v8DSGvTKJDFQwjX0KM7MeqyXwpm7mvY8WbMtdS2fJtl720ex2_HySDtVv8Dh-i3nDDlWH1NS7wsR6erEBDx2WhbGoW3p-E-Gc7TsMM0fPbH2oAqYBxV14F7LafgWVawjY2w5NN_g2ztI0j_AnTJOUURmroSlz8zgfddGmtTeo8JHLZG5eKcns8n-XH6ssvQI__091HZGfhsNJTJ2GPyR1TNcjuaQXBevmZHlGbQmr35hvkXmtZPq5BHqwhHe6S733crC7p2nk5HQ2p-1QoiuI4KjQ0NC2QgAI57U9A3VR08OPrN4inKLjXdAzOfilpaUroS2WohZkoKlrAEnJvRcbxfIIZUPaLN7RvM4OndHU_DIjoZbt1XrNjniza8yfkuvO23-r6ixIRvgJNHYB6zCQEYCzJmQmMyVUsE5NJJk1i0tRwNUS4miyPMpmkJjNhynHTlzWN1ghLHu2RrWpUmX1CVRKmTqKZiQMTZ5EySmvNc60VMHvk9VJCxNghgQiH-RwKnBxRT45HjqwA1WRycov5cywRN70zcRZfdLOP_EYkHjnckLCaAY-8OLjOHjlYipxY6JapCBBcPIa4HBqi9c8wu3jUA0M_mk8FTzjj6Ij8gYRHWOGDMY88dcK8aj6I4M8GqUdCK5J_6a-4Ao1RPz37F6aX5O5VuyMu3vXOn5P7bt8es6MOyNZsMjcvwPGb5Yd2bf8EjkNS9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tandem+application+of+cationic+colloidal+silica+and+Triton+X%E2%80%90114+for+plasma+membrane+protein+isolation+and+purification%3A+Towards+developing+an+MDCK+protein+database&rft.jtitle=Proteomics+%28Weinheim%29&rft.au=Mathias%2C+Rommel+A.&rft.au=Chen%2C+Yuan%E2%80%90Shou&rft.au=Goode%2C+Robert+J.+A.&rft.au=Kapp%2C+Eugene+A.&rft.date=2011-04-01&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1615-9853&rft.eissn=1615-9861&rft.volume=11&rft.issue=7&rft.spage=1238&rft.epage=1253&rft_id=info:doi/10.1002%2Fpmic.201000591&rft.externalDBID=10.1002%252Fpmic.201000591&rft.externalDocID=PMIC201000591
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-9853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-9853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-9853&client=summon