Molecular evolution of aquaporins and silicon influx in plants

Summary Silicon (Si), although mostly ignored by plant nutritionists and ecologists, is now gaining more attention because of its beneficial role in plant fitness under stress environment imposed by a diverse range of biotic and abiotic factors. Si appears to systematically confer benefits to plants...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 30; no. 8; pp. 1277 - 1285
Main Authors Deshmukh, Rupesh, Bélanger, Richard R.
Format Journal Article
LanguageEnglish
Published London Wiley 01.08.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0269-8463
1365-2435
DOI10.1111/1365-2435.12570

Cover

Abstract Summary Silicon (Si), although mostly ignored by plant nutritionists and ecologists, is now gaining more attention because of its beneficial role in plant fitness under stress environment imposed by a diverse range of biotic and abiotic factors. Si appears to systematically confer benefits to plants as long as a given species can absorb the element. Here, we review recent developments regarding the molecular mechanisms, evolution, regulation and structural specificity of influx transporter proteins involved in Si uptake by plants. Si absorption is facilitated by specific nodulin 26‐like intrinsic proteins (NIPs). The Si transporter NIPs have evolved a unique amino acid selective filter (SF), which is one of the required features to regulate the influx of Si. While Si accumulation in plants requires the dual action of both an influx transporter and an efflux transporter, it appears that the presence of the former is the indispensable key for a plant to be able to absorb Si. Based on sequence analyses and comparisons, influx transporters appear to have conserved features across all species that allow to discriminate between plants that are Si competent or not. While it is unclear how and why plants have acquired or lost this trait, genomic data now offer a reliable tool to predict with accuracy which plant species are predisposed to benefit from Si. This will undoubtedly result in a better understanding of Si role in many fundamental aspects of ecology regarding plant fitness under stress. Lay Summary
AbstractList Silicon (Si), although mostly ignored by plant nutritionists and ecologists, is now gaining more attention because of its beneficial role in plant fitness under stress environment imposed by a diverse range of biotic and abiotic factors. Si appears to systematically confer benefits to plants as long as a given species can absorb the element. Here, we review recent developments regarding the molecular mechanisms, evolution, regulation and structural specificity of influx transporter proteins involved in Si uptake by plants.Si absorption is facilitated by specific nodulin 26‐like intrinsic proteins (NIPs). The Si transporter NIPs have evolved a unique amino acid selective filter (SF), which is one of the required features to regulate the influx of Si. While Si accumulation in plants requires the dual action of both an influx transporter and an efflux transporter, it appears that the presence of the former is the indispensable key for a plant to be able to absorb Si.Based on sequence analyses and comparisons, influx transporters appear to have conserved features across all species that allow to discriminate between plants that are Si competent or not. While it is unclear how and why plants have acquired or lost this trait, genomic data now offer a reliable tool to predict with accuracy which plant species are predisposed to benefit from Si. This will undoubtedly result in a better understanding of Si role in many fundamental aspects of ecology regarding plant fitness under stress.
Silicon (Si), although mostly ignored by plant nutritionists and ecologists, is now gaining more attention because of its beneficial role in plant fitness under stress environment imposed by a diverse range of biotic and abiotic factors. Si appears to systematically confer benefits to plants as long as a given species can absorb the element. Here, we review recent developments regarding the molecular mechanisms, evolution, regulation and structural specificity of influx transporter proteins involved in Si uptake by plants. Si absorption is facilitated by specific nodulin 26‐like intrinsic proteins ( NIP s). The Si transporter NIP s have evolved a unique amino acid selective filter ( SF ), which is one of the required features to regulate the influx of Si. While Si accumulation in plants requires the dual action of both an influx transporter and an efflux transporter, it appears that the presence of the former is the indispensable key for a plant to be able to absorb Si. Based on sequence analyses and comparisons, influx transporters appear to have conserved features across all species that allow to discriminate between plants that are Si competent or not. While it is unclear how and why plants have acquired or lost this trait, genomic data now offer a reliable tool to predict with accuracy which plant species are predisposed to benefit from Si. This will undoubtedly result in a better understanding of Si role in many fundamental aspects of ecology regarding plant fitness under stress.
Summary Silicon (Si), although mostly ignored by plant nutritionists and ecologists, is now gaining more attention because of its beneficial role in plant fitness under stress environment imposed by a diverse range of biotic and abiotic factors. Si appears to systematically confer benefits to plants as long as a given species can absorb the element. Here, we review recent developments regarding the molecular mechanisms, evolution, regulation and structural specificity of influx transporter proteins involved in Si uptake by plants. Si absorption is facilitated by specific nodulin 26‐like intrinsic proteins (NIPs). The Si transporter NIPs have evolved a unique amino acid selective filter (SF), which is one of the required features to regulate the influx of Si. While Si accumulation in plants requires the dual action of both an influx transporter and an efflux transporter, it appears that the presence of the former is the indispensable key for a plant to be able to absorb Si. Based on sequence analyses and comparisons, influx transporters appear to have conserved features across all species that allow to discriminate between plants that are Si competent or not. While it is unclear how and why plants have acquired or lost this trait, genomic data now offer a reliable tool to predict with accuracy which plant species are predisposed to benefit from Si. This will undoubtedly result in a better understanding of Si role in many fundamental aspects of ecology regarding plant fitness under stress. Lay Summary
Summary Silicon (Si), although mostly ignored by plant nutritionists and ecologists, is now gaining more attention because of its beneficial role in plant fitness under stress environment imposed by a diverse range of biotic and abiotic factors. Si appears to systematically confer benefits to plants as long as a given species can absorb the element. Here, we review recent developments regarding the molecular mechanisms, evolution, regulation and structural specificity of influx transporter proteins involved in Si uptake by plants. Si absorption is facilitated by specific nodulin 26-like intrinsic proteins (NIPs). The Si transporter NIPs have evolved a unique amino acid selective filter (SF), which is one of the required features to regulate the influx of Si. While Si accumulation in plants requires the dual action of both an influx transporter and an efflux transporter, it appears that the presence of the former is the indispensable key for a plant to be able to absorb Si. Based on sequence analyses and comparisons, influx transporters appear to have conserved features across all species that allow to discriminate between plants that are Si competent or not. While it is unclear how and why plants have acquired or lost this trait, genomic data now offer a reliable tool to predict with accuracy which plant species are predisposed to benefit from Si. This will undoubtedly result in a better understanding of Si role in many fundamental aspects of ecology regarding plant fitness under stress.
1. Silicon (Si), although mostly ignored by plant nutritionists and ecologists, is now gaining more attention because of its beneficial role in plant fitness under stress environment imposed by a diverse range of biotic and abiotic factors. Si appears to systematically confer benefits to plants as long as a given species can absorb the element. Here, we review recent developments regarding the molecular mechanisms, evolution, regulation and structural specificity of influx transporter proteins involved in Si uptake by plants. 2. Si absorption is facilitated by specific nodulin 26-like intrinsic proteins (NIPs). The Si transporter NIPs have evolved a unique amino acid selective filter (SF), which is one of the required features to regulate the influx of Si. While Si accumulation in plants requires the dual action of both an influx transporter and an efflux transporter, it appears that the presence of the former is the indispensable key for a plant to be able to absorb Si. 3. Based on sequence analyses and comparisons, influx transporters appear to have conserved features across all species that allow to discriminate between plants that are Si competent or not. While it is unclear how and why plants have acquired or lost this trait, genomic data now offer a reliable tool to predict with accuracy which plant species are predisposed to benefit from Si. This will undoubtedly result in a better understanding of Si role in many fundamental aspects of ecology regarding plant fitness under stress. Lay Summary
Author Deshmukh, Rupesh
Bélanger, Richard R.
Author_xml – sequence: 1
  givenname: Rupesh
  surname: Deshmukh
  fullname: Deshmukh, Rupesh
– sequence: 2
  givenname: Richard R.
  surname: Bélanger
  fullname: Bélanger, Richard R.
BookMark eNqNkUtLAzEURoNUsD7WroQBN25G855kI0ipD6i40XXITDOQEpM2mfHx783Y2kUXajYXknNukvsdgpEP3gBwiuAlyusKEc5KTAm7RJhVcA-MtzsjMIaYy1JQTg7AYUoLCKFkGI_B9WNwpumdjoV5C67vbPBFaAu96vUyROtTof28SNbZJp9Y37r-I5di6bTv0jHYb7VL5mRTj8DL7fR5cl_Onu4eJjezsmFEwJLAOYZaNrSlnPNayqqqG6INQVQaUWNaEwQhwpprgVgrBJKy1nBOKyMJxJAcgYt132UMq96kTr3a1BiXH2FCnxQShHNKeMX_gaI8HiYIy-j5DroIffT5IwqTilJIBSW_UbkXEaKSaKDYmmpiSCmaVjW208M4u6itUwiqISY1hKKGUNR3TNm72vGW0b7q-PmLsbnp3Trz-ReubqeTH-9s7S1SF-LWo4IJjLPwBUhyqmM
CODEN FECOE5
CitedBy_id crossref_primary_10_1007_s11104_022_05463_9
crossref_primary_10_3389_fpls_2017_01334
crossref_primary_10_3390_biom11081103
crossref_primary_10_1016_j_plgene_2024_100453
crossref_primary_10_3389_fpls_2022_842832
crossref_primary_10_1038_srep46137
crossref_primary_10_1007_s11104_021_05076_8
crossref_primary_10_3390_plants8030071
crossref_primary_10_1111_1365_2435_12713
crossref_primary_10_1111_1365_2435_12711
crossref_primary_10_1007_s11738_018_2765_x
crossref_primary_10_1016_j_plaphy_2021_11_010
crossref_primary_10_7717_peerj_10053
crossref_primary_10_1007_s11104_022_05395_4
crossref_primary_10_1111_aab_12666
crossref_primary_10_1007_s12633_022_02220_6
crossref_primary_10_1080_09064710_2021_1984564
crossref_primary_10_3389_fpls_2017_01858
crossref_primary_10_1111_oik_10030
crossref_primary_10_1007_s11104_020_04588_z
crossref_primary_10_1016_j_plaphy_2024_108529
crossref_primary_10_1016_j_soilbio_2017_05_008
crossref_primary_10_3390_jmse11091645
crossref_primary_10_3390_plants10050885
crossref_primary_10_3390_ijms25094582
crossref_primary_10_1007_s11104_018_3650_5
crossref_primary_10_1111_nph_14867
crossref_primary_10_1111_nph_15559
crossref_primary_10_1016_j_hpj_2021_02_003
crossref_primary_10_1007_s11104_022_05400_w
crossref_primary_10_3390_agronomy9070388
crossref_primary_10_1016_j_jhazmat_2020_124598
crossref_primary_10_1111_gcb_13971
crossref_primary_10_1111_1365_2435_12692
crossref_primary_10_1007_s12633_022_02251_z
crossref_primary_10_1007_s11104_022_05385_6
crossref_primary_10_1093_jxb_eraa291
crossref_primary_10_1371_journal_pone_0243172
crossref_primary_10_1016_j_plaphy_2021_02_023
crossref_primary_10_3390_plants12112190
crossref_primary_10_1016_j_plaphy_2021_04_021
crossref_primary_10_14720_abs_62_1_15735
crossref_primary_10_3390_agronomy9100637
crossref_primary_10_1007_s13562_018_0484_4
crossref_primary_10_1007_s11104_017_3357_z
crossref_primary_10_1007_s11104_024_06506_z
crossref_primary_10_1016_j_jare_2024_05_027
crossref_primary_10_1038_s41598_017_02877_9
crossref_primary_10_1007_s00344_022_10776_1
crossref_primary_10_1093_pcp_pcab145
crossref_primary_10_1007_s11105_020_01235_w
crossref_primary_10_1007_s13593_018_0496_4
crossref_primary_10_1007_s12633_021_01270_6
crossref_primary_10_3389_fpls_2022_1030620
crossref_primary_10_3389_fpls_2020_01065
crossref_primary_10_1016_j_plaphy_2021_04_013
crossref_primary_10_1007_s11104_022_05298_4
crossref_primary_10_3390_plants9060799
crossref_primary_10_3390_agronomy11030525
crossref_primary_10_1016_j_ygeno_2019_02_005
crossref_primary_10_1093_jxb_eraa448
crossref_primary_10_1186_s13068_018_1166_0
crossref_primary_10_3390_ijms22147269
crossref_primary_10_1016_j_chemosphere_2020_128645
crossref_primary_10_1016_j_rhisph_2020_100229
crossref_primary_10_1098_rsbl_2020_0608
crossref_primary_10_3390_ijms21249485
crossref_primary_10_3389_fpls_2016_00744
crossref_primary_10_1016_j_envpol_2021_118606
crossref_primary_10_1007_s12633_022_02254_w
crossref_primary_10_1093_aob_mcy009
crossref_primary_10_1111_gcbb_12635
crossref_primary_10_1016_j_scienta_2021_110856
crossref_primary_10_1007_s13744_020_00775_w
crossref_primary_10_1111_nph_16217
crossref_primary_10_1016_j_plaphy_2022_01_033
crossref_primary_10_1111_1365_2435_13565
crossref_primary_10_3390_ijms22137182
crossref_primary_10_1007_s12633_023_02302_z
crossref_primary_10_1093_jxb_eraa342
crossref_primary_10_1098_rspb_2021_2536
crossref_primary_10_1007_s13562_021_00738_1
crossref_primary_10_1007_s12633_023_02806_8
crossref_primary_10_1039_D1EN01132D
crossref_primary_10_1186_s12898_018_0208_6
crossref_primary_10_1111_1365_2435_13295
crossref_primary_10_3390_plants8040081
crossref_primary_10_5194_bg_17_6475_2020
crossref_primary_10_1007_s00299_024_03250_7
crossref_primary_10_1016_j_sjbs_2017_11_049
crossref_primary_10_1038_s41438_021_00681_1
crossref_primary_10_1002_pld3_163
crossref_primary_10_1007_s00442_021_04978_9
crossref_primary_10_1017_S0007485319000798
crossref_primary_10_1016_j_jare_2023_04_020
crossref_primary_10_3390_ijms22147689
crossref_primary_10_1016_j_cropro_2023_106296
crossref_primary_10_1016_j_plaphy_2021_03_033
crossref_primary_10_1051_e3sconf_202123203022
crossref_primary_10_1080_14620316_2023_2272153
crossref_primary_10_1111_1365_2435_12893
crossref_primary_10_2174_0118743315257272230921044537
crossref_primary_10_2174_18743315_v16_e221117_2022_HT14_3623_3
crossref_primary_10_1016_j_jbiotec_2020_09_026
crossref_primary_10_1016_j_jplph_2016_06_011
crossref_primary_10_2174_1389203720666181102095910
crossref_primary_10_14295_bjs_v3i7_586
crossref_primary_10_1016_j_plaphy_2021_06_039
crossref_primary_10_1007_s42729_022_00952_3
crossref_primary_10_1590_1678_4499_20210147
crossref_primary_10_1016_j_sajb_2024_05_046
crossref_primary_10_1080_01904167_2019_1589500
crossref_primary_10_3389_fpls_2017_01199
crossref_primary_10_1007_s42729_022_01106_1
crossref_primary_10_1111_ppl_13416
crossref_primary_10_1007_s42360_023_00659_0
crossref_primary_10_3389_fpls_2020_520161
crossref_primary_10_1016_j_plaphy_2021_07_005
crossref_primary_10_1111_pce_15260
crossref_primary_10_3390_agronomy9110733
crossref_primary_10_3390_ijms21114183
crossref_primary_10_3389_fpls_2016_01802
crossref_primary_10_3389_fpls_2017_00948
crossref_primary_10_3390_molecules23081895
crossref_primary_10_1007_s00442_018_4244_x
crossref_primary_10_3390_plants12050995
crossref_primary_10_3389_fpls_2017_00949
crossref_primary_10_3390_agronomy10030450
crossref_primary_10_1111_1365_2435_12706
crossref_primary_10_3389_fpls_2016_01896
crossref_primary_10_1111_1365_2435_12704
crossref_primary_10_1186_s12870_017_1216_y
Cites_doi 10.1073/pnas.91.1.11
10.1016/j.plaphy.2013.10.025
10.1111/j.1365-313X.2012.05082.x
10.1021/bi982110c
10.1094/PHYTO.2003.93.5.535
10.1038/nature04590
10.1007/978-3-642-14369-4_1
10.1016/j.plantsci.2006.05.001
10.1016/S0065-2113(08)60734-8
10.1023/A:1022842421926
10.1104/pp.125.3.1206
10.2135/cropsci2004.0505
10.1038/385688b0
10.1007/s00018-008-7580-x
10.1111/j.1365-313X.2012.05005.x
10.1371/journal.pone.0079052
10.1094/Phyto-81-84
10.1016/j.bbamem.2009.03.009
10.1111/j.1365-313X.2008.03728.x
10.1016/0885-5765(92)90053-X
10.1016/S0928-3420(01)80005-7
10.1105/tpc.109.067884
10.3389/fpls.2014.00478
10.1139/b91-020
10.1007/s00018-007-7163-2
10.1111/1365-2435.12365
10.1093/jxb/err158
10.1093/pcp/pci172
10.1146/annurev.arplant.50.1.641
10.1007/s00438-014-0874-9
10.1111/mpp.12213
10.1016/S1369-5266(03)00041-4
10.1016/j.femsle.2005.06.034
10.1007/s11103-011-9737-5
10.1021/bi0511888
10.1016/S0928-3420(01)80012-4
10.1093/pcp/pcn110
10.1094/PHYTO.1998.88.5.396
10.1186/1471-2229-9-134
10.1093/aob/mci255
10.1111/tpj.12904
10.1007/s11434-010-4031-5
10.1111/j.1469-8137.2009.02985.x
10.1186/1471-2229-10-142
10.1093/oxfordjournals.aob.a087212
10.1007/s11103-012-9892-3
10.1111/tpj.12026
10.1371/journal.pone.0055506
10.1016/j.biotechadv.2010.11.002
10.1146/annurev.arplant.59.032607.092734
10.1016/j.tplants.2006.06.007
10.1016/j.tplants.2015.04.007
10.1038/nrm1469
10.1186/1471-2229-10-256
10.1038/nature05964
10.1111/j.1365-313X.2011.04483.x
10.1094/PD-79-0329
10.1007/s11103-013-0087-3
10.3389/fpls.2015.00035
10.1186/1471-2229-8-45
10.2183/pjab.87.377
10.1093/nar/15.2.813
10.1016/j.plantsci.2011.01.019
10.1016/S0928-3420(01)80014-8
ContentType Journal Article
Copyright 2015 The Authors. © 2015 British Ecological Society
2015 The Authors. Functional Ecology © 2015 British Ecological Society
Functional Ecology © 2016 British Ecological Society
Copyright_xml – notice: 2015 The Authors. © 2015 British Ecological Society
– notice: 2015 The Authors. Functional Ecology © 2015 British Ecological Society
– notice: Functional Ecology © 2016 British Ecological Society
DBID AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
DOI 10.1111/1365-2435.12570
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts
CrossRef

Entomology Abstracts
Ecology Abstracts
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
EndPage 1285
ExternalDocumentID 4158149561
10_1111_1365_2435_12570
FEC12570
48582224
Genre reviewArticle
GroupedDBID .3N
.GA
05W
0R~
10A
1OC
24P
29H
2AX
2WC
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAISJ
AAKGQ
AAMMB
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACHIC
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AHBTC
AHXOZ
AIAGR
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
ZCA
ZZTAW
~02
~IA
~KM
~WT
.Y3
31~
42X
53G
AAHHS
ABEFU
ABTAH
ACCFJ
ACCMX
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
GTFYD
HF~
HGD
HGLYW
HQ2
HTVGU
JSODD
MVM
VOH
WRC
ZY4
AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
ID FETCH-LOGICAL-c5380-30d20a9c4f4666b9977bc3ae3149e8b24b310012a6a815f88199ba0d47e930203
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Fri Jul 11 18:27:23 EDT 2025
Fri Jul 11 06:24:42 EDT 2025
Fri Jul 25 08:42:48 EDT 2025
Fri Jul 25 05:14:00 EDT 2025
Tue Jul 01 01:15:44 EDT 2025
Thu Apr 24 22:50:11 EDT 2025
Wed Jan 22 16:43:05 EST 2025
Thu Jul 03 22:17:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5380-30d20a9c4f4666b9977bc3ae3149e8b24b310012a6a815f88199ba0d47e930203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.12570
PQID 1813887913
PQPubID 1066355
PageCount 9
ParticipantIDs proquest_miscellaneous_1836643676
proquest_miscellaneous_1815705835
proquest_journals_2374404843
proquest_journals_1813887913
crossref_citationtrail_10_1111_1365_2435_12570
crossref_primary_10_1111_1365_2435_12570
wiley_primary_10_1111_1365_2435_12570_FEC12570
jstor_primary_48582224
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2016
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: August 2016
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Functional ecology
PublicationYear 2016
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2010; 55
2010; 10
1995; 79
2011; 62
2008; 8
2004; 5
2006; 171
2003; 93
2013; 8
1998; 88
2012; 72
2012; 71
2009; 57
2014; 5
2003; 249
2001
2009; 50
2015; 83
2003; 6
1997; 385
1967; 19
2006; 440
2011; 66
2008; 65
1999; 50
2007; 64
2007; 1
2007; 67
2011; 29
1992; 41
2014; 289
2009; 1788
2006; 96
2015; 6
2007; 448
2015; 16
2009; 21
2011
2006; 11
2013; 83
1986; 58
2011; 75
1991; 81
2008; 59
2002; 3
1992
2012; 79
2005; 44
2001; 125
2005; 45
1987; 15
2005; 46
1991; 69
2015; 29
2015; 20
2013; 73
1999; 38
2001; 8
2005; 249
2005; 96
2009; 9
2011; 87
2011; 180
2009; 184
1994; 91
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Quigley F. (e_1_2_10_55_1) 2002; 3
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
Cote‐Beaulieu C. (e_1_2_10_12_1) 2006; 96
Blomhard C. (e_1_2_10_7_1) 1992
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Wu J.R. (e_1_2_10_69_1) 2007; 1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Biradar H. (e_1_2_10_6_1) 2007; 67
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 8
  start-page: 1
  year: 2001
  end-page: 15
  article-title: Silicon in plants: Facts vs. concepts
  publication-title: Studies in Plant Science
– volume: 67
  start-page: 105
  year: 2007
  end-page: 109
  article-title: Identification of QTL associated with silicon and zinc content in rice ( L.) and their role in blast disease resistance
  publication-title: The Indian Journal of Genetics and Plant Breeding
– volume: 171
  start-page: 441
  year: 2006
  end-page: 448
  article-title: Genetic dissection of silicon uptake ability in rice ( L.)
  publication-title: Plant Science
– volume: 184
  start-page: 289
  year: 2009
  end-page: 302
  article-title: A look inside: localization patterns and functions of intracellular plant aquaporins
  publication-title: New Phytologist
– volume: 57
  start-page: 810
  year: 2009
  end-page: 818
  article-title: HvLsi1 is a silicon influx transporter in barley
  publication-title: The Plant Journal
– year: 2001
– volume: 29
  start-page: 199
  year: 2011
  end-page: 209
  article-title: Genomic resources in horticultural crops: status, utility and challenges
  publication-title: Biotechnology Advances
– volume: 15
  start-page: 813
  year: 1987
  end-page: 824
  article-title: Nodulin‐26, a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment
  publication-title: Nucleic Acids Research
– volume: 69
  start-page: 140
  year: 1991
  end-page: 146
  article-title: Distribution of silicon in cucumber leaves during infection by powdery mildew fungus ( )
  publication-title: Canadian Journal of Botany
– volume: 55
  start-page: 3283
  year: 2010
  end-page: 3287
  article-title: Fine mapping of qHUS6. 1, a quantitative trait locus for silicon content in rice ( L.)
  publication-title: Chinese Science Bulletin
– volume: 289
  start-page: 1131
  year: 2014
  end-page: 1145
  article-title: Genome‐wide identification and characterization of aquaporin genes (AQPs) in Chinese cabbage ( ssp. pekinensis)
  publication-title: Molecular Genetics and Genomics
– volume: 65
  start-page: 3049
  year: 2008
  end-page: 3057
  article-title: Functions and transport of silicon in plants
  publication-title: Cellular and Molecular Life Sciences
– volume: 59
  start-page: 595
  year: 2008
  end-page: 624
  article-title: Plant aquaporins: membrane channels with multiple integrated functions
  publication-title: Annual Review of Plant Biology
– volume: 93
  start-page: 535
  year: 2003
  end-page: 546
  article-title: Ultrastructural and cytochemical aspects of silicon‐mediated rice blast resistance
  publication-title: Phytopathology
– volume: 180
  start-page: 746
  year: 2011
  end-page: 756
  article-title: Calcium and silicon mineralization in land plants: transport, structure and function
  publication-title: Plant Science
– volume: 75
  start-page: 413
  year: 2011
  end-page: 430
  article-title: Plant aquaporins with non‐aqua functions: deciphering the signature sequences
  publication-title: Plant Molecular Biology
– volume: 6
  start-page: 268
  year: 2003
  end-page: 272
  article-title: Got silicon? The non‐essential beneficial plant nutrient
  publication-title: Current Opinion in Plant Biology
– volume: 8
  start-page: 45
  year: 2008
  article-title: Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens
  publication-title: BMC Plant Biology
– volume: 29
  start-page: 151
  year: 2015
  end-page: 153
  article-title: Round and round in cycles? Silicon‐based plant defences and vole population dynamics
  publication-title: Functional Ecology
– volume: 44
  start-page: 16826
  year: 2005
  end-page: 16834
  article-title: Distinct transport selectivity of two structural subclasses of the nodulin‐like intrinsic protein family of plant aquaglyceroporin channels
  publication-title: Biochemistry
– volume: 91
  start-page: 11
  year: 1994
  end-page: 17
  article-title: The anomaly of silicon in plant biology
  publication-title: Proceedings of the National Academy of Sciences
– volume: 440
  start-page: 688
  year: 2006
  end-page: 691
  article-title: A silicon transporter in rice
  publication-title: Nature
– volume: 46
  start-page: 1568
  year: 2005
  end-page: 1577
  article-title: Identification of 33 rice aquaporin genes and analysis of their expression and function
  publication-title: Plant and Cell Physiology
– volume: 41
  start-page: 411
  year: 1992
  end-page: 425
  article-title: Silicon induced resistance in cucumber plants against Pythium ultimum
  publication-title: Physiological and Molecular Plant Pathology
– volume: 20
  start-page: 435
  year: 2015
  end-page: 442
  article-title: A cooperated system of silicon transport in plants
  publication-title: Trends in Plant Science
– volume: 73
  start-page: 143
  year: 2013
  end-page: 153
  article-title: The fate of duplicated genes in a polyploid plant genome
  publication-title: The Plant Journal
– volume: 249
  start-page: 1
  year: 2005
  end-page: 6
  article-title: Silicon and plant disease resistance against pathogenic fungi
  publication-title: FEMS Microbiology Letters
– volume: 3
  start-page: 1
  year: 2002
  end-page: 17
  article-title: From genome to function: the Arabidopsis aquaporins
  publication-title: Genome Biology
– volume: 79
  start-page: 35
  year: 2012
  end-page: 46
  article-title: Cloning, functional characterization and heterologous expression of , a wheat silicon transporter gene
  publication-title: Plant Molecular Biology
– volume: 96
  start-page: 1027
  year: 2005
  end-page: 1046
  article-title: Phylogenetic variation in the silicon composition of plants
  publication-title: Annals of Botany
– volume: 21
  start-page: 2133
  year: 2009
  end-page: 2142
  article-title: Identification and characterization of maize and barley Lsi2‐like silicon efflux transporters reveals a distinct silicon uptake system from that in rice
  publication-title: The Plant Cell Online
– volume: 6
  start-page: 35
  year: 2015
  article-title: Defending the leaf surface: intra‐and inter‐specific differences in silicon deposition in grasses in response to damage and silicon supply
  publication-title: Frontiers in Plant Science
– start-page: 17
  year: 1992
– volume: 8
  start-page: e55506
  year: 2013
  article-title: Developmental and environmental regulation of Aquaporin gene expression across Populus species: divergence or redundancy?
  publication-title: PLoS ONE
– volume: 58
  start-page: 343
  year: 1986
  end-page: 351
  article-title: The effect of silicon in cucumber plants grown in recirculating nutrient solution
  publication-title: Annals of Botany
– volume: 87
  start-page: 377
  year: 2011
  article-title: Transport of silicon from roots to panicles in plants
  publication-title: Proceedings of the Japan Academy. Series B, Physical and Biological Sciences
– volume: 11
  start-page: 392
  year: 2006
  end-page: 397
  article-title: Silicon uptake and accumulation in higher plants
  publication-title: Trends in Plant Science
– volume: 385
  start-page: 688
  year: 1997
  article-title: A gene family of silicon transporters
  publication-title: Nature
– volume: 50
  start-page: 5
  year: 2009
  end-page: 12
  article-title: Identification of maize silicon influx transporters
  publication-title: Plant and Cell Physiology
– volume: 1
  start-page: 001
  year: 2007
  article-title: Mapping of QTLs for Silicon Contents in the Stem and Flag Leaf Recombinant Inbred Rice Population
  publication-title: Scientia Agricultura Sinica
– volume: 8
  start-page: e79052
  year: 2013
  article-title: Genome‐wide identification and expression analysis of aquaporins in tomato
  publication-title: PLoS ONE
– volume: 249
  start-page: 383
  year: 2003
  end-page: 387
  article-title: Genotypic variation in silicon concentration of barley grain
  publication-title: Plant and Soil
– volume: 125
  start-page: 1206
  year: 2001
  end-page: 1215
  article-title: Aquaporins constitute a large and highly divergent protein family in maize
  publication-title: Plant Physiology
– volume: 72
  start-page: 320
  year: 2012
  end-page: 330
  article-title: Discovery of a multigene family of aquaporin silicon transporters in the primitive plant
  publication-title: The Plant Journal
– volume: 96
  start-page: 155
  year: 2006
  end-page: 161
  article-title: Absorption of aqueous inorganic and organic silicon compounds by wheat and their effect on powdery mildew
  publication-title: Phytopathology
– volume: 448
  start-page: 209
  year: 2007
  end-page: 212
  article-title: An efflux transporter of silicon in rice
  publication-title: Nature
– volume: 45
  start-page: 1345
  year: 2005
  end-page: 1352
  article-title: Genetic dissection of silicon content in different organs of rice
  publication-title: Crop Science
– volume: 81
  start-page: 84
  year: 1991
  end-page: 88
  article-title: Effects of soluble silicon on the parasitic fitness of Sphaerotheca fuliginea on
  publication-title: Phytopathology
– volume: 8
  start-page: 149
  year: 2001
  end-page: 158
  article-title: Plant genotype, silicon concentration, and silicon‐related responses
  publication-title: Studies in Plant Science
– volume: 1788
  start-page: 1213
  year: 2009
  end-page: 1228
  article-title: Aquaporins are multifunctional water and solute transporters highly divergent in living organisms
  publication-title: Biochimica et Biophysica Acta (BBA)‐Biomembranes
– volume: 73
  start-page: 392
  year: 2013
  end-page: 404
  article-title: Genome‐wide analysis and expression profiling of the aquaporins
  publication-title: Plant Physiology and Biochemistry
– volume: 83
  start-page: 489
  year: 2015
  end-page: 500
  article-title: A precise spacing between NPA domains of aquaporins is essential for silicon permeability in plants
  publication-title: The Plant Journal
– volume: 9
  start-page: 134
  year: 2009
  article-title: Genome‐wide analysis of major intrinsic proteins in the tree plant : characterization of XIP subfamily of aquaporins from evolutionary perspective
  publication-title: BMC Plant Biology
– volume: 38
  start-page: 347
  year: 1999
  end-page: 353
  article-title: Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties
  publication-title: Biochemistry
– volume: 62
  start-page: 4391
  year: 2011
  end-page: 4398
  article-title: The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic
  publication-title: Journal of Experimental Botany
– volume: 50
  start-page: 641
  year: 1999
  end-page: 664
  article-title: Silicon
  publication-title: Annual Review of Plant Biology
– volume: 19
  start-page: 107
  year: 1967
  end-page: 149
  article-title: Silica in soils, plants, and animals
  publication-title: Advances in Agronomy
– volume: 79
  start-page: 329
  year: 1995
  end-page: 336
  article-title: Soluble silicon: its role in crop and disease management of greenhouse crops
  publication-title: Plant Disease
– volume: 10
  start-page: 256
  year: 2010
  article-title: Functional divergence of the NIP III subgroup proteins involved altered selective constraints and positive selection
  publication-title: BMC Plant Biology
– volume: 16
  start-page: 572
  year: 2015
  end-page: 582
  article-title: Silicon‐mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)‐dependent defence pathway
  publication-title: Molecular Plant Pathology
– volume: 5
  start-page: 687
  year: 2004
  end-page: 698
  article-title: From structure to disease: the evolving tale of aquaporin biology
  publication-title: Nature Reviews Molecular Cell Biology
– volume: 10
  start-page: 142
  year: 2010
  article-title: Identification of the family of aquaporin genes and their expression in upland cotton ( L.)
  publication-title: BMC Plant Biology
– volume: 83
  start-page: 303
  year: 2013
  end-page: 315
  article-title: Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice
  publication-title: Plant Molecular Biology
– volume: 66
  start-page: 231
  year: 2011
  end-page: 240
  article-title: Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation
  publication-title: The Plant Journal
– start-page: 3
  year: 2011
  end-page: 36
– volume: 88
  start-page: 396
  year: 1998
  end-page: 401
  article-title: Silicon‐mediated accumulation of flavonoid phytoalexins in cucumber
  publication-title: Phytopathology
– volume: 5
  start-page: 478
  year: 2014
  article-title: Silicon, endophytes and secondary metabolites as grass defenses against mammalian herbivores
  publication-title: Frontiers in Plant Science
– volume: 64
  start-page: 2413
  year: 2007
  end-page: 2421
  article-title: Aquaporins with selectivity for unconventional permeants
  publication-title: Cellular and Molecular Life Sciences
– volume: 71
  start-page: 492
  year: 2012
  end-page: 502
  article-title: Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolution
  publication-title: The Plant Journal
– ident: e_1_2_10_21_1
  doi: 10.1073/pnas.91.1.11
– ident: e_1_2_10_64_1
  doi: 10.1016/j.plaphy.2013.10.025
– ident: e_1_2_10_29_1
  doi: 10.1111/j.1365-313X.2012.05082.x
– ident: e_1_2_10_17_1
  doi: 10.1021/bi982110c
– volume: 3
  start-page: 1
  year: 2002
  ident: e_1_2_10_55_1
  article-title: From genome to function: the Arabidopsis aquaporins
  publication-title: Genome Biology
– ident: e_1_2_10_58_1
  doi: 10.1094/PHYTO.2003.93.5.535
– ident: e_1_2_10_45_1
  doi: 10.1038/nature04590
– ident: e_1_2_10_5_1
  doi: 10.1007/978-3-642-14369-4_1
– ident: e_1_2_10_68_1
  doi: 10.1016/j.plantsci.2006.05.001
– ident: e_1_2_10_37_1
  doi: 10.1016/S0065-2113(08)60734-8
– ident: e_1_2_10_44_1
  doi: 10.1023/A:1022842421926
– ident: e_1_2_10_8_1
  doi: 10.1104/pp.125.3.1206
– ident: e_1_2_10_13_1
  doi: 10.2135/cropsci2004.0505
– ident: e_1_2_10_33_1
  doi: 10.1038/385688b0
– ident: e_1_2_10_41_1
  doi: 10.1007/s00018-008-7580-x
– ident: e_1_2_10_16_1
  doi: 10.1111/j.1365-313X.2012.05005.x
– ident: e_1_2_10_56_1
  doi: 10.1371/journal.pone.0079052
– volume: 1
  start-page: 001
  year: 2007
  ident: e_1_2_10_69_1
  article-title: Mapping of QTLs for Silicon Contents in the Stem and Flag Leaf Recombinant Inbred Rice Population
  publication-title: Scientia Agricultura Sinica
– ident: e_1_2_10_48_1
  doi: 10.1094/Phyto-81-84
– ident: e_1_2_10_27_1
  doi: 10.1016/j.bbamem.2009.03.009
– ident: e_1_2_10_10_1
  doi: 10.1111/j.1365-313X.2008.03728.x
– ident: e_1_2_10_9_1
  doi: 10.1016/0885-5765(92)90053-X
– ident: e_1_2_10_23_1
  doi: 10.1016/S0928-3420(01)80005-7
– ident: e_1_2_10_50_1
  doi: 10.1105/tpc.109.067884
– start-page: 17
  volume-title: Annual Report
  year: 1992
  ident: e_1_2_10_7_1
– volume: 96
  start-page: 155
  year: 2006
  ident: e_1_2_10_12_1
  article-title: Absorption of aqueous inorganic and organic silicon compounds by wheat and their effect on powdery mildew
  publication-title: Phytopathology
– ident: e_1_2_10_36_1
  doi: 10.3389/fpls.2014.00478
– ident: e_1_2_10_61_1
  doi: 10.1139/b91-020
– ident: e_1_2_10_67_1
  doi: 10.1007/s00018-007-7163-2
– ident: e_1_2_10_31_1
  doi: 10.1111/1365-2435.12365
– ident: e_1_2_10_52_1
  doi: 10.1093/jxb/err158
– ident: e_1_2_10_60_1
  doi: 10.1093/pcp/pci172
– ident: e_1_2_10_22_1
  doi: 10.1146/annurev.arplant.50.1.641
– ident: e_1_2_10_63_1
  doi: 10.1007/s00438-014-0874-9
– ident: e_1_2_10_65_1
  doi: 10.1111/mpp.12213
– ident: e_1_2_10_57_1
  doi: 10.1016/S1369-5266(03)00041-4
– ident: e_1_2_10_24_1
  doi: 10.1016/j.femsle.2005.06.034
– ident: e_1_2_10_35_1
  doi: 10.1007/s11103-011-9737-5
– ident: e_1_2_10_66_1
  doi: 10.1021/bi0511888
– volume: 67
  start-page: 105
  year: 2007
  ident: e_1_2_10_6_1
  article-title: Identification of QTL associated with silicon and zinc content in rice (Oryza sativa L.) and their role in blast disease resistance
  publication-title: The Indian Journal of Genetics and Plant Breeding
– ident: e_1_2_10_18_1
  doi: 10.1016/S0928-3420(01)80012-4
– ident: e_1_2_10_49_1
  doi: 10.1093/pcp/pcn110
– ident: e_1_2_10_25_1
  doi: 10.1094/PHYTO.1998.88.5.396
– ident: e_1_2_10_30_1
  doi: 10.1186/1471-2229-9-134
– ident: e_1_2_10_34_1
  doi: 10.1093/aob/mci255
– ident: e_1_2_10_20_1
  doi: 10.1111/tpj.12904
– ident: e_1_2_10_28_1
  doi: 10.1007/s11434-010-4031-5
– ident: e_1_2_10_70_1
  doi: 10.1111/j.1469-8137.2009.02985.x
– ident: e_1_2_10_54_1
  doi: 10.1186/1471-2229-10-142
– ident: e_1_2_10_2_1
  doi: 10.1093/oxfordjournals.aob.a087212
– ident: e_1_2_10_53_1
  doi: 10.1007/s11103-012-9892-3
– ident: e_1_2_10_59_1
  doi: 10.1111/tpj.12026
– ident: e_1_2_10_11_1
  doi: 10.1371/journal.pone.0055506
– ident: e_1_2_10_62_1
  doi: 10.1016/j.biotechadv.2010.11.002
– ident: e_1_2_10_47_1
  doi: 10.1146/annurev.arplant.59.032607.092734
– ident: e_1_2_10_40_1
  doi: 10.1016/j.tplants.2006.06.007
– ident: e_1_2_10_42_1
  doi: 10.1016/j.tplants.2015.04.007
– ident: e_1_2_10_38_1
  doi: 10.1038/nrm1469
– ident: e_1_2_10_39_1
  doi: 10.1186/1471-2229-10-256
– ident: e_1_2_10_46_1
  doi: 10.1038/nature05964
– ident: e_1_2_10_51_1
  doi: 10.1111/j.1365-313X.2011.04483.x
– ident: e_1_2_10_4_1
  doi: 10.1094/PD-79-0329
– ident: e_1_2_10_19_1
  doi: 10.1007/s11103-013-0087-3
– ident: e_1_2_10_32_1
  doi: 10.3389/fpls.2015.00035
– ident: e_1_2_10_14_1
  doi: 10.1186/1471-2229-8-45
– ident: e_1_2_10_43_1
  doi: 10.2183/pjab.87.377
– ident: e_1_2_10_26_1
  doi: 10.1093/nar/15.2.813
– ident: e_1_2_10_3_1
  doi: 10.1016/j.plantsci.2011.01.019
– ident: e_1_2_10_15_1
  doi: 10.1016/S0928-3420(01)80014-8
SSID ssj0009522
Score 2.5257485
Snippet Summary Silicon (Si), although mostly ignored by plant nutritionists and ecologists, is now gaining more attention because of its beneficial role in plant...
Silicon (Si), although mostly ignored by plant nutritionists and ecologists, is now gaining more attention because of its beneficial role in plant fitness...
Summary Silicon (Si), although mostly ignored by plant nutritionists and ecologists, is now gaining more attention because of its beneficial role in plant...
1. Silicon (Si), although mostly ignored by plant nutritionists and ecologists, is now gaining more attention because of its beneficial role in plant fitness...
SourceID proquest
crossref
wiley
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1277
SubjectTerms Abiotic factors
absorption
Amino acids
aquaporin
Aquaporins
Conserved sequence
ecology
Efflux
environmental factors
Evolution
Fitness
Molecular evolution
Molecular modelling
nodulin 26‐like intrinsic proteins
phylogeny
Plant nutrition
Plant species
Protein transport
Proteins
Reproductive fitness
Reviews
sequence analysis
Silicon
Species
transporter
transporters
Title Molecular evolution of aquaporins and silicon influx in plants
URI https://www.jstor.org/stable/48582224
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.12570
https://www.proquest.com/docview/1813887913
https://www.proquest.com/docview/2374404843
https://www.proquest.com/docview/1815705835
https://www.proquest.com/docview/1836643676
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSyMxFA4iCL6sum6xXpYIPvgyZSbJpDMvgmiLLKwPouDbcJLJgGyZVqeV3f31e04y062yF8SnhiZpm8s550vzzXcYO5EUdGNdRdoBREqUeQTCqWgY27KSNs6c8Szfa311p77cpx2bkJ6FCfoQyz_cyDK8vyYDB9OsGHngZ2G0HySUiQ29ML5D6vmXN2JFdjfcIwidRxhpZSvuQ1yeV_1fxKVATXwBOlehq4894y1mul8dKCffBou5GdifrwQd3zWsbfahRab8PGylHbbm6o9sI-Sq_IGlkW1LvdHvh-OwQ-sdml129rXLtcvdc7ul-bTi8LiAGRH9Gg51yZuHCW6_mj9QfpTv-MJnE2LjfGJ349HtxVXU5meILLpJdN9xKWLIraoUHoJMjlDSWAlO4qnLZUYoQ7cHiQANWZJWGYKP3EBcqqHLJd2A9th6Pa3dHuNDAZBZGVfaSxgCaFElskS06apSZGmfDbrVKWwrXk45NCZFd4iheSto3go_b312uuwwC7odf2_a88u9bKeylGCT6rPDbv2L1rKbAhGRRMecJ_KP1UJ6xcVMYfXxshpNlu5hoHbThf8I_NoUse-_2kiNYFEPNQ7d75f_DaMYjy58Yf-tHQ7YJsJAHWiNh2x9_rRwRwi15uazt6ZfFZUYDw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8x0DReYF8VhTI8aQ97SZXYjpu8IKHSqjDgYQKJt8hxHAlRpWVtp42_njs7KQXtQ9OeYsl2Etv38Tv7fAfwSZDSDVUZKKt1IHmRBppbGfRCU5TChInNnZfvhRpdydPr-HrlLoyPD7HccCPOcPKaGJw2pFe43DtoobrvRpSK7QVsSIQbZIAdf-UrgXf9SQJXaYC6VtThfcib59kLnmgm75z4BHauglenfYbbYJr_9k4nt93FPO-a-2chHf9vYK9hqwan7MhT0xtYs9VbeOnTVf7E0sDUpdbg8X4cdqgFxOwdHJ436XaZ_V5TNZuUTN8t9JR8_WZMVwWb3YyRAit2QylSfuCDTcfkkPMeroaDy_4oqFM0BAYlJUrwsOChTo0sJdpBeYpoMjdCW4GGl01yLnM6QIi4VjqJ4jJB_JHmOixkz6aCDkFbsF5NKrsDrMe1TowIS-WiGGqteBmJAgGnLQuexG3oNsuTmTp-OaXRGGeNHUPzltG8ZW7e2vB52WHqQ3f8vmnLrfeynUxiQk6yDZ2GALKauWcZgiKBsjmNxC-ruXBBFxOJ1R-X1ci1dBSjKztZuFfgZ2OEv39qIxTiRdVTOHRHMH8bRjYc9F1h9187HMCr0eX5WXZ2cvFlDzYRFSrv5diB9fm3hd1H5DXPPzjWegC2Ihwu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTaC9bOOjWmEMI_HAS6rEdtzkBQltrTY-JoSYxFtkO7Y0rUoLbRHsr-fOTko3wRDiKZb8kfjj7n6Of74DeCHI6KbKJ8ppnUhel4nmTibD1NZe2LRwJrB8z9TJuXzzOe_YhHQXJvqHWP1wI8kI-poEfFb7NSGP_Cy09oOMIrHdgS2pEE8QLvrI1_zuxoMErsoETa1ovfsQmedGA9cMU-QmXkOd69g1GJ_xLpjusyPn5HKwXJiBvbrh0fG_-rUHOy00Za_jWroPG655AHdjsMofmBrZNtUb_bodhxVa9TB_CK_ed8F2mfvWrmk29Ux_WeoZMf3mTDc1m19McP017IICpHzHB5tNiI7zCM7Ho09HJ0kboCGxqCdRf6c1T3VppZe4CzIlYkljhXYCt12uMFwaOj7IuFa6yHJfIPoojU5rOXSloCPQHmw208btAxtyrQsrUq-CD0OtFfeZqBFuOl_zIu_DoJudyrbeyymIxqTqdjE0bhWNWxXGrQ8vVxVm0XHHn4v2wnSvyskiJ9wk-3DQzX_Viva8QkgkUDOXmfhtNhfB5WIhMfv5Khtllg5idOOmy9AEvjZH8HtbGaEQLaqhwq6H9fK3blTj0VFIPP7XCs_g3ofjcfXu9OztE9hGSKgixfEANhdfl-4pwq6FOQyC9RMvORrd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+evolution+of+aquaporins+and+silicon+influx+in+plants&rft.jtitle=Functional+ecology&rft.au=Deshmukh%2C+Rupesh&rft.au=B%C3%A9langer%2C+Richard+R.&rft.au=Hartley%2C+Sudan&rft.date=2016-08-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=30&rft.issue=8&rft.spage=1277&rft.epage=1285&rft_id=info:doi/10.1111%2F1365-2435.12570&rft.externalDBID=10.1111%252F1365-2435.12570&rft.externalDocID=FEC12570
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon