Molecular evolution of aquaporins and silicon influx in plants
Summary Silicon (Si), although mostly ignored by plant nutritionists and ecologists, is now gaining more attention because of its beneficial role in plant fitness under stress environment imposed by a diverse range of biotic and abiotic factors. Si appears to systematically confer benefits to plants...
Saved in:
Published in | Functional ecology Vol. 30; no. 8; pp. 1277 - 1285 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Wiley
01.08.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0269-8463 1365-2435 |
DOI | 10.1111/1365-2435.12570 |
Cover
Abstract | Summary
Silicon (Si), although mostly ignored by plant nutritionists and ecologists, is now gaining more attention because of its beneficial role in plant fitness under stress environment imposed by a diverse range of biotic and abiotic factors. Si appears to systematically confer benefits to plants as long as a given species can absorb the element. Here, we review recent developments regarding the molecular mechanisms, evolution, regulation and structural specificity of influx transporter proteins involved in Si uptake by plants.
Si absorption is facilitated by specific nodulin 26‐like intrinsic proteins (NIPs). The Si transporter NIPs have evolved a unique amino acid selective filter (SF), which is one of the required features to regulate the influx of Si. While Si accumulation in plants requires the dual action of both an influx transporter and an efflux transporter, it appears that the presence of the former is the indispensable key for a plant to be able to absorb Si.
Based on sequence analyses and comparisons, influx transporters appear to have conserved features across all species that allow to discriminate between plants that are Si competent or not. While it is unclear how and why plants have acquired or lost this trait, genomic data now offer a reliable tool to predict with accuracy which plant species are predisposed to benefit from Si. This will undoubtedly result in a better understanding of Si role in many fundamental aspects of ecology regarding plant fitness under stress.
Lay Summary |
---|---|
AbstractList | Silicon (Si), although mostly ignored by plant nutritionists and ecologists, is now gaining more attention because of its beneficial role in plant fitness under stress environment imposed by a diverse range of biotic and abiotic factors. Si appears to systematically confer benefits to plants as long as a given species can absorb the element. Here, we review recent developments regarding the molecular mechanisms, evolution, regulation and structural specificity of influx transporter proteins involved in Si uptake by plants.Si absorption is facilitated by specific nodulin 26‐like intrinsic proteins (NIPs). The Si transporter NIPs have evolved a unique amino acid selective filter (SF), which is one of the required features to regulate the influx of Si. While Si accumulation in plants requires the dual action of both an influx transporter and an efflux transporter, it appears that the presence of the former is the indispensable key for a plant to be able to absorb Si.Based on sequence analyses and comparisons, influx transporters appear to have conserved features across all species that allow to discriminate between plants that are Si competent or not. While it is unclear how and why plants have acquired or lost this trait, genomic data now offer a reliable tool to predict with accuracy which plant species are predisposed to benefit from Si. This will undoubtedly result in a better understanding of Si role in many fundamental aspects of ecology regarding plant fitness under stress. Silicon (Si), although mostly ignored by plant nutritionists and ecologists, is now gaining more attention because of its beneficial role in plant fitness under stress environment imposed by a diverse range of biotic and abiotic factors. Si appears to systematically confer benefits to plants as long as a given species can absorb the element. Here, we review recent developments regarding the molecular mechanisms, evolution, regulation and structural specificity of influx transporter proteins involved in Si uptake by plants. Si absorption is facilitated by specific nodulin 26‐like intrinsic proteins ( NIP s). The Si transporter NIP s have evolved a unique amino acid selective filter ( SF ), which is one of the required features to regulate the influx of Si. While Si accumulation in plants requires the dual action of both an influx transporter and an efflux transporter, it appears that the presence of the former is the indispensable key for a plant to be able to absorb Si. Based on sequence analyses and comparisons, influx transporters appear to have conserved features across all species that allow to discriminate between plants that are Si competent or not. While it is unclear how and why plants have acquired or lost this trait, genomic data now offer a reliable tool to predict with accuracy which plant species are predisposed to benefit from Si. This will undoubtedly result in a better understanding of Si role in many fundamental aspects of ecology regarding plant fitness under stress. Summary Silicon (Si), although mostly ignored by plant nutritionists and ecologists, is now gaining more attention because of its beneficial role in plant fitness under stress environment imposed by a diverse range of biotic and abiotic factors. Si appears to systematically confer benefits to plants as long as a given species can absorb the element. Here, we review recent developments regarding the molecular mechanisms, evolution, regulation and structural specificity of influx transporter proteins involved in Si uptake by plants. Si absorption is facilitated by specific nodulin 26‐like intrinsic proteins (NIPs). The Si transporter NIPs have evolved a unique amino acid selective filter (SF), which is one of the required features to regulate the influx of Si. While Si accumulation in plants requires the dual action of both an influx transporter and an efflux transporter, it appears that the presence of the former is the indispensable key for a plant to be able to absorb Si. Based on sequence analyses and comparisons, influx transporters appear to have conserved features across all species that allow to discriminate between plants that are Si competent or not. While it is unclear how and why plants have acquired or lost this trait, genomic data now offer a reliable tool to predict with accuracy which plant species are predisposed to benefit from Si. This will undoubtedly result in a better understanding of Si role in many fundamental aspects of ecology regarding plant fitness under stress. Lay Summary Summary Silicon (Si), although mostly ignored by plant nutritionists and ecologists, is now gaining more attention because of its beneficial role in plant fitness under stress environment imposed by a diverse range of biotic and abiotic factors. Si appears to systematically confer benefits to plants as long as a given species can absorb the element. Here, we review recent developments regarding the molecular mechanisms, evolution, regulation and structural specificity of influx transporter proteins involved in Si uptake by plants. Si absorption is facilitated by specific nodulin 26-like intrinsic proteins (NIPs). The Si transporter NIPs have evolved a unique amino acid selective filter (SF), which is one of the required features to regulate the influx of Si. While Si accumulation in plants requires the dual action of both an influx transporter and an efflux transporter, it appears that the presence of the former is the indispensable key for a plant to be able to absorb Si. Based on sequence analyses and comparisons, influx transporters appear to have conserved features across all species that allow to discriminate between plants that are Si competent or not. While it is unclear how and why plants have acquired or lost this trait, genomic data now offer a reliable tool to predict with accuracy which plant species are predisposed to benefit from Si. This will undoubtedly result in a better understanding of Si role in many fundamental aspects of ecology regarding plant fitness under stress. 1. Silicon (Si), although mostly ignored by plant nutritionists and ecologists, is now gaining more attention because of its beneficial role in plant fitness under stress environment imposed by a diverse range of biotic and abiotic factors. Si appears to systematically confer benefits to plants as long as a given species can absorb the element. Here, we review recent developments regarding the molecular mechanisms, evolution, regulation and structural specificity of influx transporter proteins involved in Si uptake by plants. 2. Si absorption is facilitated by specific nodulin 26-like intrinsic proteins (NIPs). The Si transporter NIPs have evolved a unique amino acid selective filter (SF), which is one of the required features to regulate the influx of Si. While Si accumulation in plants requires the dual action of both an influx transporter and an efflux transporter, it appears that the presence of the former is the indispensable key for a plant to be able to absorb Si. 3. Based on sequence analyses and comparisons, influx transporters appear to have conserved features across all species that allow to discriminate between plants that are Si competent or not. While it is unclear how and why plants have acquired or lost this trait, genomic data now offer a reliable tool to predict with accuracy which plant species are predisposed to benefit from Si. This will undoubtedly result in a better understanding of Si role in many fundamental aspects of ecology regarding plant fitness under stress. Lay Summary |
Author | Deshmukh, Rupesh Bélanger, Richard R. |
Author_xml | – sequence: 1 givenname: Rupesh surname: Deshmukh fullname: Deshmukh, Rupesh – sequence: 2 givenname: Richard R. surname: Bélanger fullname: Bélanger, Richard R. |
BookMark | eNqNkUtLAzEURoNUsD7WroQBN25G855kI0ipD6i40XXITDOQEpM2mfHx783Y2kUXajYXknNukvsdgpEP3gBwiuAlyusKEc5KTAm7RJhVcA-MtzsjMIaYy1JQTg7AYUoLCKFkGI_B9WNwpumdjoV5C67vbPBFaAu96vUyROtTof28SNbZJp9Y37r-I5di6bTv0jHYb7VL5mRTj8DL7fR5cl_Onu4eJjezsmFEwJLAOYZaNrSlnPNayqqqG6INQVQaUWNaEwQhwpprgVgrBJKy1nBOKyMJxJAcgYt132UMq96kTr3a1BiXH2FCnxQShHNKeMX_gaI8HiYIy-j5DroIffT5IwqTilJIBSW_UbkXEaKSaKDYmmpiSCmaVjW208M4u6itUwiqISY1hKKGUNR3TNm72vGW0b7q-PmLsbnp3Trz-ReubqeTH-9s7S1SF-LWo4IJjLPwBUhyqmM |
CODEN | FECOE5 |
CitedBy_id | crossref_primary_10_1007_s11104_022_05463_9 crossref_primary_10_3389_fpls_2017_01334 crossref_primary_10_3390_biom11081103 crossref_primary_10_1016_j_plgene_2024_100453 crossref_primary_10_3389_fpls_2022_842832 crossref_primary_10_1038_srep46137 crossref_primary_10_1007_s11104_021_05076_8 crossref_primary_10_3390_plants8030071 crossref_primary_10_1111_1365_2435_12713 crossref_primary_10_1111_1365_2435_12711 crossref_primary_10_1007_s11738_018_2765_x crossref_primary_10_1016_j_plaphy_2021_11_010 crossref_primary_10_7717_peerj_10053 crossref_primary_10_1007_s11104_022_05395_4 crossref_primary_10_1111_aab_12666 crossref_primary_10_1007_s12633_022_02220_6 crossref_primary_10_1080_09064710_2021_1984564 crossref_primary_10_3389_fpls_2017_01858 crossref_primary_10_1111_oik_10030 crossref_primary_10_1007_s11104_020_04588_z crossref_primary_10_1016_j_plaphy_2024_108529 crossref_primary_10_1016_j_soilbio_2017_05_008 crossref_primary_10_3390_jmse11091645 crossref_primary_10_3390_plants10050885 crossref_primary_10_3390_ijms25094582 crossref_primary_10_1007_s11104_018_3650_5 crossref_primary_10_1111_nph_14867 crossref_primary_10_1111_nph_15559 crossref_primary_10_1016_j_hpj_2021_02_003 crossref_primary_10_1007_s11104_022_05400_w crossref_primary_10_3390_agronomy9070388 crossref_primary_10_1016_j_jhazmat_2020_124598 crossref_primary_10_1111_gcb_13971 crossref_primary_10_1111_1365_2435_12692 crossref_primary_10_1007_s12633_022_02251_z crossref_primary_10_1007_s11104_022_05385_6 crossref_primary_10_1093_jxb_eraa291 crossref_primary_10_1371_journal_pone_0243172 crossref_primary_10_1016_j_plaphy_2021_02_023 crossref_primary_10_3390_plants12112190 crossref_primary_10_1016_j_plaphy_2021_04_021 crossref_primary_10_14720_abs_62_1_15735 crossref_primary_10_3390_agronomy9100637 crossref_primary_10_1007_s13562_018_0484_4 crossref_primary_10_1007_s11104_017_3357_z crossref_primary_10_1007_s11104_024_06506_z crossref_primary_10_1016_j_jare_2024_05_027 crossref_primary_10_1038_s41598_017_02877_9 crossref_primary_10_1007_s00344_022_10776_1 crossref_primary_10_1093_pcp_pcab145 crossref_primary_10_1007_s11105_020_01235_w crossref_primary_10_1007_s13593_018_0496_4 crossref_primary_10_1007_s12633_021_01270_6 crossref_primary_10_3389_fpls_2022_1030620 crossref_primary_10_3389_fpls_2020_01065 crossref_primary_10_1016_j_plaphy_2021_04_013 crossref_primary_10_1007_s11104_022_05298_4 crossref_primary_10_3390_plants9060799 crossref_primary_10_3390_agronomy11030525 crossref_primary_10_1016_j_ygeno_2019_02_005 crossref_primary_10_1093_jxb_eraa448 crossref_primary_10_1186_s13068_018_1166_0 crossref_primary_10_3390_ijms22147269 crossref_primary_10_1016_j_chemosphere_2020_128645 crossref_primary_10_1016_j_rhisph_2020_100229 crossref_primary_10_1098_rsbl_2020_0608 crossref_primary_10_3390_ijms21249485 crossref_primary_10_3389_fpls_2016_00744 crossref_primary_10_1016_j_envpol_2021_118606 crossref_primary_10_1007_s12633_022_02254_w crossref_primary_10_1093_aob_mcy009 crossref_primary_10_1111_gcbb_12635 crossref_primary_10_1016_j_scienta_2021_110856 crossref_primary_10_1007_s13744_020_00775_w crossref_primary_10_1111_nph_16217 crossref_primary_10_1016_j_plaphy_2022_01_033 crossref_primary_10_1111_1365_2435_13565 crossref_primary_10_3390_ijms22137182 crossref_primary_10_1007_s12633_023_02302_z crossref_primary_10_1093_jxb_eraa342 crossref_primary_10_1098_rspb_2021_2536 crossref_primary_10_1007_s13562_021_00738_1 crossref_primary_10_1007_s12633_023_02806_8 crossref_primary_10_1039_D1EN01132D crossref_primary_10_1186_s12898_018_0208_6 crossref_primary_10_1111_1365_2435_13295 crossref_primary_10_3390_plants8040081 crossref_primary_10_5194_bg_17_6475_2020 crossref_primary_10_1007_s00299_024_03250_7 crossref_primary_10_1016_j_sjbs_2017_11_049 crossref_primary_10_1038_s41438_021_00681_1 crossref_primary_10_1002_pld3_163 crossref_primary_10_1007_s00442_021_04978_9 crossref_primary_10_1017_S0007485319000798 crossref_primary_10_1016_j_jare_2023_04_020 crossref_primary_10_3390_ijms22147689 crossref_primary_10_1016_j_cropro_2023_106296 crossref_primary_10_1016_j_plaphy_2021_03_033 crossref_primary_10_1051_e3sconf_202123203022 crossref_primary_10_1080_14620316_2023_2272153 crossref_primary_10_1111_1365_2435_12893 crossref_primary_10_2174_0118743315257272230921044537 crossref_primary_10_2174_18743315_v16_e221117_2022_HT14_3623_3 crossref_primary_10_1016_j_jbiotec_2020_09_026 crossref_primary_10_1016_j_jplph_2016_06_011 crossref_primary_10_2174_1389203720666181102095910 crossref_primary_10_14295_bjs_v3i7_586 crossref_primary_10_1016_j_plaphy_2021_06_039 crossref_primary_10_1007_s42729_022_00952_3 crossref_primary_10_1590_1678_4499_20210147 crossref_primary_10_1016_j_sajb_2024_05_046 crossref_primary_10_1080_01904167_2019_1589500 crossref_primary_10_3389_fpls_2017_01199 crossref_primary_10_1007_s42729_022_01106_1 crossref_primary_10_1111_ppl_13416 crossref_primary_10_1007_s42360_023_00659_0 crossref_primary_10_3389_fpls_2020_520161 crossref_primary_10_1016_j_plaphy_2021_07_005 crossref_primary_10_1111_pce_15260 crossref_primary_10_3390_agronomy9110733 crossref_primary_10_3390_ijms21114183 crossref_primary_10_3389_fpls_2016_01802 crossref_primary_10_3389_fpls_2017_00948 crossref_primary_10_3390_molecules23081895 crossref_primary_10_1007_s00442_018_4244_x crossref_primary_10_3390_plants12050995 crossref_primary_10_3389_fpls_2017_00949 crossref_primary_10_3390_agronomy10030450 crossref_primary_10_1111_1365_2435_12706 crossref_primary_10_3389_fpls_2016_01896 crossref_primary_10_1111_1365_2435_12704 crossref_primary_10_1186_s12870_017_1216_y |
Cites_doi | 10.1073/pnas.91.1.11 10.1016/j.plaphy.2013.10.025 10.1111/j.1365-313X.2012.05082.x 10.1021/bi982110c 10.1094/PHYTO.2003.93.5.535 10.1038/nature04590 10.1007/978-3-642-14369-4_1 10.1016/j.plantsci.2006.05.001 10.1016/S0065-2113(08)60734-8 10.1023/A:1022842421926 10.1104/pp.125.3.1206 10.2135/cropsci2004.0505 10.1038/385688b0 10.1007/s00018-008-7580-x 10.1111/j.1365-313X.2012.05005.x 10.1371/journal.pone.0079052 10.1094/Phyto-81-84 10.1016/j.bbamem.2009.03.009 10.1111/j.1365-313X.2008.03728.x 10.1016/0885-5765(92)90053-X 10.1016/S0928-3420(01)80005-7 10.1105/tpc.109.067884 10.3389/fpls.2014.00478 10.1139/b91-020 10.1007/s00018-007-7163-2 10.1111/1365-2435.12365 10.1093/jxb/err158 10.1093/pcp/pci172 10.1146/annurev.arplant.50.1.641 10.1007/s00438-014-0874-9 10.1111/mpp.12213 10.1016/S1369-5266(03)00041-4 10.1016/j.femsle.2005.06.034 10.1007/s11103-011-9737-5 10.1021/bi0511888 10.1016/S0928-3420(01)80012-4 10.1093/pcp/pcn110 10.1094/PHYTO.1998.88.5.396 10.1186/1471-2229-9-134 10.1093/aob/mci255 10.1111/tpj.12904 10.1007/s11434-010-4031-5 10.1111/j.1469-8137.2009.02985.x 10.1186/1471-2229-10-142 10.1093/oxfordjournals.aob.a087212 10.1007/s11103-012-9892-3 10.1111/tpj.12026 10.1371/journal.pone.0055506 10.1016/j.biotechadv.2010.11.002 10.1146/annurev.arplant.59.032607.092734 10.1016/j.tplants.2006.06.007 10.1016/j.tplants.2015.04.007 10.1038/nrm1469 10.1186/1471-2229-10-256 10.1038/nature05964 10.1111/j.1365-313X.2011.04483.x 10.1094/PD-79-0329 10.1007/s11103-013-0087-3 10.3389/fpls.2015.00035 10.1186/1471-2229-8-45 10.2183/pjab.87.377 10.1093/nar/15.2.813 10.1016/j.plantsci.2011.01.019 10.1016/S0928-3420(01)80014-8 |
ContentType | Journal Article |
Copyright | 2015 The Authors. © 2015 British Ecological Society 2015 The Authors. Functional Ecology © 2015 British Ecological Society Functional Ecology © 2016 British Ecological Society |
Copyright_xml | – notice: 2015 The Authors. © 2015 British Ecological Society – notice: 2015 The Authors. Functional Ecology © 2015 British Ecological Society – notice: Functional Ecology © 2016 British Ecological Society |
DBID | AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
DOI | 10.1111/1365-2435.12570 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts CrossRef Entomology Abstracts Ecology Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 1285 |
ExternalDocumentID | 4158149561 10_1111_1365_2435_12570 FEC12570 48582224 |
Genre | reviewArticle |
GroupedDBID | .3N .GA 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAISJ AAKGQ AAMMB AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABLJU ABPLY ABPVW ABSQW ABTLG ABXSQ ACAHQ ACCZN ACFBH ACGFO ACGFS ACHIC ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUPB AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGUYK AGXDD AHBTC AHXOZ AIAGR AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW ZCA ZZTAW ~02 ~IA ~KM ~WT .Y3 31~ 42X 53G AAHHS ABEFU ABTAH ACCFJ ACCMX ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX GTFYD HF~ HGD HGLYW HQ2 HTVGU JSODD MVM VOH WRC ZY4 AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
ID | FETCH-LOGICAL-c5380-30d20a9c4f4666b9977bc3ae3149e8b24b310012a6a815f88199ba0d47e930203 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 |
IngestDate | Fri Jul 11 18:27:23 EDT 2025 Fri Jul 11 06:24:42 EDT 2025 Fri Jul 25 08:42:48 EDT 2025 Fri Jul 25 05:14:00 EDT 2025 Tue Jul 01 01:15:44 EDT 2025 Thu Apr 24 22:50:11 EDT 2025 Wed Jan 22 16:43:05 EST 2025 Thu Jul 03 22:17:02 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5380-30d20a9c4f4666b9977bc3ae3149e8b24b310012a6a815f88199ba0d47e930203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.12570 |
PQID | 1813887913 |
PQPubID | 1066355 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1836643676 proquest_miscellaneous_1815705835 proquest_journals_2374404843 proquest_journals_1813887913 crossref_citationtrail_10_1111_1365_2435_12570 crossref_primary_10_1111_1365_2435_12570 wiley_primary_10_1111_1365_2435_12570_FEC12570 jstor_primary_48582224 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2016 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: August 2016 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Functional ecology |
PublicationYear | 2016 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2010; 55 2010; 10 1995; 79 2011; 62 2008; 8 2004; 5 2006; 171 2003; 93 2013; 8 1998; 88 2012; 72 2012; 71 2009; 57 2014; 5 2003; 249 2001 2009; 50 2015; 83 2003; 6 1997; 385 1967; 19 2006; 440 2011; 66 2008; 65 1999; 50 2007; 64 2007; 1 2007; 67 2011; 29 1992; 41 2014; 289 2009; 1788 2006; 96 2015; 6 2007; 448 2015; 16 2009; 21 2011 2006; 11 2013; 83 1986; 58 2011; 75 1991; 81 2008; 59 2002; 3 1992 2012; 79 2005; 44 2001; 125 2005; 45 1987; 15 2005; 46 1991; 69 2015; 29 2015; 20 2013; 73 1999; 38 2001; 8 2005; 249 2005; 96 2009; 9 2011; 87 2011; 180 2009; 184 1994; 91 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Quigley F. (e_1_2_10_55_1) 2002; 3 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 Cote‐Beaulieu C. (e_1_2_10_12_1) 2006; 96 Blomhard C. (e_1_2_10_7_1) 1992 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Wu J.R. (e_1_2_10_69_1) 2007; 1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Biradar H. (e_1_2_10_6_1) 2007; 67 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
References_xml | – volume: 8 start-page: 1 year: 2001 end-page: 15 article-title: Silicon in plants: Facts vs. concepts publication-title: Studies in Plant Science – volume: 67 start-page: 105 year: 2007 end-page: 109 article-title: Identification of QTL associated with silicon and zinc content in rice ( L.) and their role in blast disease resistance publication-title: The Indian Journal of Genetics and Plant Breeding – volume: 171 start-page: 441 year: 2006 end-page: 448 article-title: Genetic dissection of silicon uptake ability in rice ( L.) publication-title: Plant Science – volume: 184 start-page: 289 year: 2009 end-page: 302 article-title: A look inside: localization patterns and functions of intracellular plant aquaporins publication-title: New Phytologist – volume: 57 start-page: 810 year: 2009 end-page: 818 article-title: HvLsi1 is a silicon influx transporter in barley publication-title: The Plant Journal – year: 2001 – volume: 29 start-page: 199 year: 2011 end-page: 209 article-title: Genomic resources in horticultural crops: status, utility and challenges publication-title: Biotechnology Advances – volume: 15 start-page: 813 year: 1987 end-page: 824 article-title: Nodulin‐26, a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment publication-title: Nucleic Acids Research – volume: 69 start-page: 140 year: 1991 end-page: 146 article-title: Distribution of silicon in cucumber leaves during infection by powdery mildew fungus ( ) publication-title: Canadian Journal of Botany – volume: 55 start-page: 3283 year: 2010 end-page: 3287 article-title: Fine mapping of qHUS6. 1, a quantitative trait locus for silicon content in rice ( L.) publication-title: Chinese Science Bulletin – volume: 289 start-page: 1131 year: 2014 end-page: 1145 article-title: Genome‐wide identification and characterization of aquaporin genes (AQPs) in Chinese cabbage ( ssp. pekinensis) publication-title: Molecular Genetics and Genomics – volume: 65 start-page: 3049 year: 2008 end-page: 3057 article-title: Functions and transport of silicon in plants publication-title: Cellular and Molecular Life Sciences – volume: 59 start-page: 595 year: 2008 end-page: 624 article-title: Plant aquaporins: membrane channels with multiple integrated functions publication-title: Annual Review of Plant Biology – volume: 93 start-page: 535 year: 2003 end-page: 546 article-title: Ultrastructural and cytochemical aspects of silicon‐mediated rice blast resistance publication-title: Phytopathology – volume: 180 start-page: 746 year: 2011 end-page: 756 article-title: Calcium and silicon mineralization in land plants: transport, structure and function publication-title: Plant Science – volume: 75 start-page: 413 year: 2011 end-page: 430 article-title: Plant aquaporins with non‐aqua functions: deciphering the signature sequences publication-title: Plant Molecular Biology – volume: 6 start-page: 268 year: 2003 end-page: 272 article-title: Got silicon? The non‐essential beneficial plant nutrient publication-title: Current Opinion in Plant Biology – volume: 8 start-page: 45 year: 2008 article-title: Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens publication-title: BMC Plant Biology – volume: 29 start-page: 151 year: 2015 end-page: 153 article-title: Round and round in cycles? Silicon‐based plant defences and vole population dynamics publication-title: Functional Ecology – volume: 44 start-page: 16826 year: 2005 end-page: 16834 article-title: Distinct transport selectivity of two structural subclasses of the nodulin‐like intrinsic protein family of plant aquaglyceroporin channels publication-title: Biochemistry – volume: 91 start-page: 11 year: 1994 end-page: 17 article-title: The anomaly of silicon in plant biology publication-title: Proceedings of the National Academy of Sciences – volume: 440 start-page: 688 year: 2006 end-page: 691 article-title: A silicon transporter in rice publication-title: Nature – volume: 46 start-page: 1568 year: 2005 end-page: 1577 article-title: Identification of 33 rice aquaporin genes and analysis of their expression and function publication-title: Plant and Cell Physiology – volume: 41 start-page: 411 year: 1992 end-page: 425 article-title: Silicon induced resistance in cucumber plants against Pythium ultimum publication-title: Physiological and Molecular Plant Pathology – volume: 20 start-page: 435 year: 2015 end-page: 442 article-title: A cooperated system of silicon transport in plants publication-title: Trends in Plant Science – volume: 73 start-page: 143 year: 2013 end-page: 153 article-title: The fate of duplicated genes in a polyploid plant genome publication-title: The Plant Journal – volume: 249 start-page: 1 year: 2005 end-page: 6 article-title: Silicon and plant disease resistance against pathogenic fungi publication-title: FEMS Microbiology Letters – volume: 3 start-page: 1 year: 2002 end-page: 17 article-title: From genome to function: the Arabidopsis aquaporins publication-title: Genome Biology – volume: 79 start-page: 35 year: 2012 end-page: 46 article-title: Cloning, functional characterization and heterologous expression of , a wheat silicon transporter gene publication-title: Plant Molecular Biology – volume: 96 start-page: 1027 year: 2005 end-page: 1046 article-title: Phylogenetic variation in the silicon composition of plants publication-title: Annals of Botany – volume: 21 start-page: 2133 year: 2009 end-page: 2142 article-title: Identification and characterization of maize and barley Lsi2‐like silicon efflux transporters reveals a distinct silicon uptake system from that in rice publication-title: The Plant Cell Online – volume: 6 start-page: 35 year: 2015 article-title: Defending the leaf surface: intra‐and inter‐specific differences in silicon deposition in grasses in response to damage and silicon supply publication-title: Frontiers in Plant Science – start-page: 17 year: 1992 – volume: 8 start-page: e55506 year: 2013 article-title: Developmental and environmental regulation of Aquaporin gene expression across Populus species: divergence or redundancy? publication-title: PLoS ONE – volume: 58 start-page: 343 year: 1986 end-page: 351 article-title: The effect of silicon in cucumber plants grown in recirculating nutrient solution publication-title: Annals of Botany – volume: 87 start-page: 377 year: 2011 article-title: Transport of silicon from roots to panicles in plants publication-title: Proceedings of the Japan Academy. Series B, Physical and Biological Sciences – volume: 11 start-page: 392 year: 2006 end-page: 397 article-title: Silicon uptake and accumulation in higher plants publication-title: Trends in Plant Science – volume: 385 start-page: 688 year: 1997 article-title: A gene family of silicon transporters publication-title: Nature – volume: 50 start-page: 5 year: 2009 end-page: 12 article-title: Identification of maize silicon influx transporters publication-title: Plant and Cell Physiology – volume: 1 start-page: 001 year: 2007 article-title: Mapping of QTLs for Silicon Contents in the Stem and Flag Leaf Recombinant Inbred Rice Population publication-title: Scientia Agricultura Sinica – volume: 8 start-page: e79052 year: 2013 article-title: Genome‐wide identification and expression analysis of aquaporins in tomato publication-title: PLoS ONE – volume: 249 start-page: 383 year: 2003 end-page: 387 article-title: Genotypic variation in silicon concentration of barley grain publication-title: Plant and Soil – volume: 125 start-page: 1206 year: 2001 end-page: 1215 article-title: Aquaporins constitute a large and highly divergent protein family in maize publication-title: Plant Physiology – volume: 72 start-page: 320 year: 2012 end-page: 330 article-title: Discovery of a multigene family of aquaporin silicon transporters in the primitive plant publication-title: The Plant Journal – volume: 96 start-page: 155 year: 2006 end-page: 161 article-title: Absorption of aqueous inorganic and organic silicon compounds by wheat and their effect on powdery mildew publication-title: Phytopathology – volume: 448 start-page: 209 year: 2007 end-page: 212 article-title: An efflux transporter of silicon in rice publication-title: Nature – volume: 45 start-page: 1345 year: 2005 end-page: 1352 article-title: Genetic dissection of silicon content in different organs of rice publication-title: Crop Science – volume: 81 start-page: 84 year: 1991 end-page: 88 article-title: Effects of soluble silicon on the parasitic fitness of Sphaerotheca fuliginea on publication-title: Phytopathology – volume: 8 start-page: 149 year: 2001 end-page: 158 article-title: Plant genotype, silicon concentration, and silicon‐related responses publication-title: Studies in Plant Science – volume: 1788 start-page: 1213 year: 2009 end-page: 1228 article-title: Aquaporins are multifunctional water and solute transporters highly divergent in living organisms publication-title: Biochimica et Biophysica Acta (BBA)‐Biomembranes – volume: 73 start-page: 392 year: 2013 end-page: 404 article-title: Genome‐wide analysis and expression profiling of the aquaporins publication-title: Plant Physiology and Biochemistry – volume: 83 start-page: 489 year: 2015 end-page: 500 article-title: A precise spacing between NPA domains of aquaporins is essential for silicon permeability in plants publication-title: The Plant Journal – volume: 9 start-page: 134 year: 2009 article-title: Genome‐wide analysis of major intrinsic proteins in the tree plant : characterization of XIP subfamily of aquaporins from evolutionary perspective publication-title: BMC Plant Biology – volume: 38 start-page: 347 year: 1999 end-page: 353 article-title: Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties publication-title: Biochemistry – volume: 62 start-page: 4391 year: 2011 end-page: 4398 article-title: The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic publication-title: Journal of Experimental Botany – volume: 50 start-page: 641 year: 1999 end-page: 664 article-title: Silicon publication-title: Annual Review of Plant Biology – volume: 19 start-page: 107 year: 1967 end-page: 149 article-title: Silica in soils, plants, and animals publication-title: Advances in Agronomy – volume: 79 start-page: 329 year: 1995 end-page: 336 article-title: Soluble silicon: its role in crop and disease management of greenhouse crops publication-title: Plant Disease – volume: 10 start-page: 256 year: 2010 article-title: Functional divergence of the NIP III subgroup proteins involved altered selective constraints and positive selection publication-title: BMC Plant Biology – volume: 16 start-page: 572 year: 2015 end-page: 582 article-title: Silicon‐mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)‐dependent defence pathway publication-title: Molecular Plant Pathology – volume: 5 start-page: 687 year: 2004 end-page: 698 article-title: From structure to disease: the evolving tale of aquaporin biology publication-title: Nature Reviews Molecular Cell Biology – volume: 10 start-page: 142 year: 2010 article-title: Identification of the family of aquaporin genes and their expression in upland cotton ( L.) publication-title: BMC Plant Biology – volume: 83 start-page: 303 year: 2013 end-page: 315 article-title: Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice publication-title: Plant Molecular Biology – volume: 66 start-page: 231 year: 2011 end-page: 240 article-title: Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation publication-title: The Plant Journal – start-page: 3 year: 2011 end-page: 36 – volume: 88 start-page: 396 year: 1998 end-page: 401 article-title: Silicon‐mediated accumulation of flavonoid phytoalexins in cucumber publication-title: Phytopathology – volume: 5 start-page: 478 year: 2014 article-title: Silicon, endophytes and secondary metabolites as grass defenses against mammalian herbivores publication-title: Frontiers in Plant Science – volume: 64 start-page: 2413 year: 2007 end-page: 2421 article-title: Aquaporins with selectivity for unconventional permeants publication-title: Cellular and Molecular Life Sciences – volume: 71 start-page: 492 year: 2012 end-page: 502 article-title: Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolution publication-title: The Plant Journal – ident: e_1_2_10_21_1 doi: 10.1073/pnas.91.1.11 – ident: e_1_2_10_64_1 doi: 10.1016/j.plaphy.2013.10.025 – ident: e_1_2_10_29_1 doi: 10.1111/j.1365-313X.2012.05082.x – ident: e_1_2_10_17_1 doi: 10.1021/bi982110c – volume: 3 start-page: 1 year: 2002 ident: e_1_2_10_55_1 article-title: From genome to function: the Arabidopsis aquaporins publication-title: Genome Biology – ident: e_1_2_10_58_1 doi: 10.1094/PHYTO.2003.93.5.535 – ident: e_1_2_10_45_1 doi: 10.1038/nature04590 – ident: e_1_2_10_5_1 doi: 10.1007/978-3-642-14369-4_1 – ident: e_1_2_10_68_1 doi: 10.1016/j.plantsci.2006.05.001 – ident: e_1_2_10_37_1 doi: 10.1016/S0065-2113(08)60734-8 – ident: e_1_2_10_44_1 doi: 10.1023/A:1022842421926 – ident: e_1_2_10_8_1 doi: 10.1104/pp.125.3.1206 – ident: e_1_2_10_13_1 doi: 10.2135/cropsci2004.0505 – ident: e_1_2_10_33_1 doi: 10.1038/385688b0 – ident: e_1_2_10_41_1 doi: 10.1007/s00018-008-7580-x – ident: e_1_2_10_16_1 doi: 10.1111/j.1365-313X.2012.05005.x – ident: e_1_2_10_56_1 doi: 10.1371/journal.pone.0079052 – volume: 1 start-page: 001 year: 2007 ident: e_1_2_10_69_1 article-title: Mapping of QTLs for Silicon Contents in the Stem and Flag Leaf Recombinant Inbred Rice Population publication-title: Scientia Agricultura Sinica – ident: e_1_2_10_48_1 doi: 10.1094/Phyto-81-84 – ident: e_1_2_10_27_1 doi: 10.1016/j.bbamem.2009.03.009 – ident: e_1_2_10_10_1 doi: 10.1111/j.1365-313X.2008.03728.x – ident: e_1_2_10_9_1 doi: 10.1016/0885-5765(92)90053-X – ident: e_1_2_10_23_1 doi: 10.1016/S0928-3420(01)80005-7 – ident: e_1_2_10_50_1 doi: 10.1105/tpc.109.067884 – start-page: 17 volume-title: Annual Report year: 1992 ident: e_1_2_10_7_1 – volume: 96 start-page: 155 year: 2006 ident: e_1_2_10_12_1 article-title: Absorption of aqueous inorganic and organic silicon compounds by wheat and their effect on powdery mildew publication-title: Phytopathology – ident: e_1_2_10_36_1 doi: 10.3389/fpls.2014.00478 – ident: e_1_2_10_61_1 doi: 10.1139/b91-020 – ident: e_1_2_10_67_1 doi: 10.1007/s00018-007-7163-2 – ident: e_1_2_10_31_1 doi: 10.1111/1365-2435.12365 – ident: e_1_2_10_52_1 doi: 10.1093/jxb/err158 – ident: e_1_2_10_60_1 doi: 10.1093/pcp/pci172 – ident: e_1_2_10_22_1 doi: 10.1146/annurev.arplant.50.1.641 – ident: e_1_2_10_63_1 doi: 10.1007/s00438-014-0874-9 – ident: e_1_2_10_65_1 doi: 10.1111/mpp.12213 – ident: e_1_2_10_57_1 doi: 10.1016/S1369-5266(03)00041-4 – ident: e_1_2_10_24_1 doi: 10.1016/j.femsle.2005.06.034 – ident: e_1_2_10_35_1 doi: 10.1007/s11103-011-9737-5 – ident: e_1_2_10_66_1 doi: 10.1021/bi0511888 – volume: 67 start-page: 105 year: 2007 ident: e_1_2_10_6_1 article-title: Identification of QTL associated with silicon and zinc content in rice (Oryza sativa L.) and their role in blast disease resistance publication-title: The Indian Journal of Genetics and Plant Breeding – ident: e_1_2_10_18_1 doi: 10.1016/S0928-3420(01)80012-4 – ident: e_1_2_10_49_1 doi: 10.1093/pcp/pcn110 – ident: e_1_2_10_25_1 doi: 10.1094/PHYTO.1998.88.5.396 – ident: e_1_2_10_30_1 doi: 10.1186/1471-2229-9-134 – ident: e_1_2_10_34_1 doi: 10.1093/aob/mci255 – ident: e_1_2_10_20_1 doi: 10.1111/tpj.12904 – ident: e_1_2_10_28_1 doi: 10.1007/s11434-010-4031-5 – ident: e_1_2_10_70_1 doi: 10.1111/j.1469-8137.2009.02985.x – ident: e_1_2_10_54_1 doi: 10.1186/1471-2229-10-142 – ident: e_1_2_10_2_1 doi: 10.1093/oxfordjournals.aob.a087212 – ident: e_1_2_10_53_1 doi: 10.1007/s11103-012-9892-3 – ident: e_1_2_10_59_1 doi: 10.1111/tpj.12026 – ident: e_1_2_10_11_1 doi: 10.1371/journal.pone.0055506 – ident: e_1_2_10_62_1 doi: 10.1016/j.biotechadv.2010.11.002 – ident: e_1_2_10_47_1 doi: 10.1146/annurev.arplant.59.032607.092734 – ident: e_1_2_10_40_1 doi: 10.1016/j.tplants.2006.06.007 – ident: e_1_2_10_42_1 doi: 10.1016/j.tplants.2015.04.007 – ident: e_1_2_10_38_1 doi: 10.1038/nrm1469 – ident: e_1_2_10_39_1 doi: 10.1186/1471-2229-10-256 – ident: e_1_2_10_46_1 doi: 10.1038/nature05964 – ident: e_1_2_10_51_1 doi: 10.1111/j.1365-313X.2011.04483.x – ident: e_1_2_10_4_1 doi: 10.1094/PD-79-0329 – ident: e_1_2_10_19_1 doi: 10.1007/s11103-013-0087-3 – ident: e_1_2_10_32_1 doi: 10.3389/fpls.2015.00035 – ident: e_1_2_10_14_1 doi: 10.1186/1471-2229-8-45 – ident: e_1_2_10_43_1 doi: 10.2183/pjab.87.377 – ident: e_1_2_10_26_1 doi: 10.1093/nar/15.2.813 – ident: e_1_2_10_3_1 doi: 10.1016/j.plantsci.2011.01.019 – ident: e_1_2_10_15_1 doi: 10.1016/S0928-3420(01)80014-8 |
SSID | ssj0009522 |
Score | 2.5257485 |
Snippet | Summary
Silicon (Si), although mostly ignored by plant nutritionists and ecologists, is now gaining more attention because of its beneficial role in plant... Silicon (Si), although mostly ignored by plant nutritionists and ecologists, is now gaining more attention because of its beneficial role in plant fitness... Summary Silicon (Si), although mostly ignored by plant nutritionists and ecologists, is now gaining more attention because of its beneficial role in plant... 1. Silicon (Si), although mostly ignored by plant nutritionists and ecologists, is now gaining more attention because of its beneficial role in plant fitness... |
SourceID | proquest crossref wiley jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1277 |
SubjectTerms | Abiotic factors absorption Amino acids aquaporin Aquaporins Conserved sequence ecology Efflux environmental factors Evolution Fitness Molecular evolution Molecular modelling nodulin 26‐like intrinsic proteins phylogeny Plant nutrition Plant species Protein transport Proteins Reproductive fitness Reviews sequence analysis Silicon Species transporter transporters |
Title | Molecular evolution of aquaporins and silicon influx in plants |
URI | https://www.jstor.org/stable/48582224 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.12570 https://www.proquest.com/docview/1813887913 https://www.proquest.com/docview/2374404843 https://www.proquest.com/docview/1815705835 https://www.proquest.com/docview/1836643676 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSyMxFA4iCL6sum6xXpYIPvgyZSbJpDMvgmiLLKwPouDbcJLJgGyZVqeV3f31e04y062yF8SnhiZpm8s550vzzXcYO5EUdGNdRdoBREqUeQTCqWgY27KSNs6c8Szfa311p77cpx2bkJ6FCfoQyz_cyDK8vyYDB9OsGHngZ2G0HySUiQ29ML5D6vmXN2JFdjfcIwidRxhpZSvuQ1yeV_1fxKVATXwBOlehq4894y1mul8dKCffBou5GdifrwQd3zWsbfahRab8PGylHbbm6o9sI-Sq_IGlkW1LvdHvh-OwQ-sdml129rXLtcvdc7ul-bTi8LiAGRH9Gg51yZuHCW6_mj9QfpTv-MJnE2LjfGJ349HtxVXU5meILLpJdN9xKWLIraoUHoJMjlDSWAlO4qnLZUYoQ7cHiQANWZJWGYKP3EBcqqHLJd2A9th6Pa3dHuNDAZBZGVfaSxgCaFElskS06apSZGmfDbrVKWwrXk45NCZFd4iheSto3go_b312uuwwC7odf2_a88u9bKeylGCT6rPDbv2L1rKbAhGRRMecJ_KP1UJ6xcVMYfXxshpNlu5hoHbThf8I_NoUse-_2kiNYFEPNQ7d75f_DaMYjy58Yf-tHQ7YJsJAHWiNh2x9_rRwRwi15uazt6ZfFZUYDw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8x0DReYF8VhTI8aQ97SZXYjpu8IKHSqjDgYQKJt8hxHAlRpWVtp42_njs7KQXtQ9OeYsl2Etv38Tv7fAfwSZDSDVUZKKt1IHmRBppbGfRCU5TChInNnZfvhRpdydPr-HrlLoyPD7HccCPOcPKaGJw2pFe43DtoobrvRpSK7QVsSIQbZIAdf-UrgXf9SQJXaYC6VtThfcib59kLnmgm75z4BHauglenfYbbYJr_9k4nt93FPO-a-2chHf9vYK9hqwan7MhT0xtYs9VbeOnTVf7E0sDUpdbg8X4cdqgFxOwdHJ436XaZ_V5TNZuUTN8t9JR8_WZMVwWb3YyRAit2QylSfuCDTcfkkPMeroaDy_4oqFM0BAYlJUrwsOChTo0sJdpBeYpoMjdCW4GGl01yLnM6QIi4VjqJ4jJB_JHmOixkz6aCDkFbsF5NKrsDrMe1TowIS-WiGGqteBmJAgGnLQuexG3oNsuTmTp-OaXRGGeNHUPzltG8ZW7e2vB52WHqQ3f8vmnLrfeynUxiQk6yDZ2GALKauWcZgiKBsjmNxC-ruXBBFxOJ1R-X1ci1dBSjKztZuFfgZ2OEv39qIxTiRdVTOHRHMH8bRjYc9F1h9187HMCr0eX5WXZ2cvFlDzYRFSrv5diB9fm3hd1H5DXPPzjWegC2Ihwu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTaC9bOOjWmEMI_HAS6rEdtzkBQltrTY-JoSYxFtkO7Y0rUoLbRHsr-fOTko3wRDiKZb8kfjj7n6Of74DeCHI6KbKJ8ppnUhel4nmTibD1NZe2LRwJrB8z9TJuXzzOe_YhHQXJvqHWP1wI8kI-poEfFb7NSGP_Cy09oOMIrHdgS2pEE8QLvrI1_zuxoMErsoETa1ovfsQmedGA9cMU-QmXkOd69g1GJ_xLpjusyPn5HKwXJiBvbrh0fG_-rUHOy00Za_jWroPG655AHdjsMofmBrZNtUb_bodhxVa9TB_CK_ed8F2mfvWrmk29Ux_WeoZMf3mTDc1m19McP017IICpHzHB5tNiI7zCM7Ho09HJ0kboCGxqCdRf6c1T3VppZe4CzIlYkljhXYCt12uMFwaOj7IuFa6yHJfIPoojU5rOXSloCPQHmw208btAxtyrQsrUq-CD0OtFfeZqBFuOl_zIu_DoJudyrbeyymIxqTqdjE0bhWNWxXGrQ8vVxVm0XHHn4v2wnSvyskiJ9wk-3DQzX_Viva8QkgkUDOXmfhtNhfB5WIhMfv5Khtllg5idOOmy9AEvjZH8HtbGaEQLaqhwq6H9fK3blTj0VFIPP7XCs_g3ofjcfXu9OztE9hGSKgixfEANhdfl-4pwq6FOQyC9RMvORrd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+evolution+of+aquaporins+and+silicon+influx+in+plants&rft.jtitle=Functional+ecology&rft.au=Deshmukh%2C+Rupesh&rft.au=B%C3%A9langer%2C+Richard+R.&rft.au=Hartley%2C+Sudan&rft.date=2016-08-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=30&rft.issue=8&rft.spage=1277&rft.epage=1285&rft_id=info:doi/10.1111%2F1365-2435.12570&rft.externalDBID=10.1111%252F1365-2435.12570&rft.externalDocID=FEC12570 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |