Ce-Duox1/BLI-3 Generates Reactive Oxygen Species as a Protective Innate Immune Mechanism in Caenorhabditis elegans
Caenorhabditis elegans was recently developed as a model system to study both pathogen virulence mechanisms and host defense responses. We previously demonstrated that C. elegans produces reactive oxygen species (ROS) in response to exposure to the important gram-positive nosocomial pathogen Enteroc...
Saved in:
Published in | Infection and Immunity Vol. 77; no. 11; pp. 4983 - 4989 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Society for Microbiology
01.11.2009
American Society for Microbiology (ASM) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Caenorhabditis elegans was recently developed as a model system to study both pathogen virulence mechanisms and host defense responses. We previously demonstrated that C. elegans produces reactive oxygen species (ROS) in response to exposure to the important gram-positive nosocomial pathogen Enterococcus faecalis. We also presented evidence of oxidative stress and upregulation of stress responses after exposure to the pathogen. As in mammalian systems, this new work shows that production of ROS for innate immune functions occurs via an NADPH oxidase. Specifically, reducing expression of a dual oxidase, Ce-Duox1/BLI-3, causes a decrease in ROS production in response to E. faecalis. We also present evidence that reduction of expression of Ce-Duox1/BLI-3 increases susceptibility to this pathogen, specifically when expression is reduced in the intestine and the hypodermis. Ce-Duox1/BLI-3 was previously characterized as having a role in cuticle cross-linking. Two C. elegans mutants with point mutations in the peroxidase domain that exhibit severe cuticle defects were discovered to be unaffected in ROS production or pathogen susceptibility. These results demonstrate an important biological role for the peroxidase domain in cuticle cross-linking that is unrelated to ROS production. To further demonstrate the protective effects of the pathogen-induced ROS production, we show that antioxidants that scavenge ROS increase the sensitivity of the nematode to the infection, in stark contrast to their longevity-promoting effects under nonpathogenic conditions. In conclusion, we postulate that the generation of ROS by NADPH oxidases in the barrier epithelium is an ancient, highly conserved innate immune defense mechanism. |
---|---|
AbstractList | Classifications
Services
IAI
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
Spotlights in the Current Issue
IAI
About
IAI
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
Connect to IAI
IAI
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0019-9567
Online ISSN:
1098-5522
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
IAI
.asm.org, visit:
IAI
Caenorhabditis elegans was recently developed as a model system to study both pathogen virulence mechanisms and host defense responses. We previously demonstrated that C. elegans produces reactive oxygen species (ROS) in response to exposure to the important gram-positive nosocomial pathogen Enterococcus faecalis. We also presented evidence of oxidative stress and upregulation of stress responses after exposure to the pathogen. As in mammalian systems, this new work shows that production of ROS for innate immune functions occurs via an NADPH oxidase. Specifically, reducing expression of a dual oxidase, Ce-Duox1/BLI-3, causes a decrease in ROS production in response to E. faecalis. We also present evidence that reduction of expression of Ce-Duox1/BLI-3 increases susceptibility to this pathogen, specifically when expression is reduced in the intestine and the hypodermis. Ce-Duox1/BLI-3 was previously characterized as having a role in cuticle cross-linking. Two C. elegans mutants with point mutations in the peroxidase domain that exhibit severe cuticle defects were discovered to be unaffected in ROS production or pathogen susceptibility. These results demonstrate an important biological role for the peroxidase domain in cuticle cross-linking that is unrelated to ROS production. To further demonstrate the protective effects of the pathogen-induced ROS production, we show that antioxidants that scavenge ROS increase the sensitivity of the nematode to the infection, in stark contrast to their longevity-promoting effects under nonpathogenic conditions. In conclusion, we postulate that the generation of ROS by NADPH oxidases in the barrier epithelium is an ancient, highly conserved innate immune defense mechanism. Caenorhabditis elegans was recently developed as a model system to study both pathogen virulence mechanisms and host defense responses. We previously demonstrated that C. elegans produces reactive oxygen species (ROS) in response to exposure to the important gram-positive nosocomial pathogen Enterococcus faecalis . We also presented evidence of oxidative stress and upregulation of stress responses after exposure to the pathogen. As in mammalian systems, this new work shows that production of ROS for innate immune functions occurs via an NADPH oxidase. Specifically, reducing expression of a dual oxidase, Ce-Duox1/BLI-3, causes a decrease in ROS production in response to E. faecalis . We also present evidence that reduction of expression of Ce-Duox1/BLI-3 increases susceptibility to this pathogen, specifically when expression is reduced in the intestine and the hypodermis. Ce-Duox1/BLI-3 was previously characterized as having a role in cuticle cross-linking. Two C. elegans mutants with point mutations in the peroxidase domain that exhibit severe cuticle defects were discovered to be unaffected in ROS production or pathogen susceptibility. These results demonstrate an important biological role for the peroxidase domain in cuticle cross-linking that is unrelated to ROS production. To further demonstrate the protective effects of the pathogen-induced ROS production, we show that antioxidants that scavenge ROS increase the sensitivity of the nematode to the infection, in stark contrast to their longevity-promoting effects under nonpathogenic conditions. In conclusion, we postulate that the generation of ROS by NADPH oxidases in the barrier epithelium is an ancient, highly conserved innate immune defense mechanism. ABSTRACT Caenorhabditis elegans was recently developed as a model system to study both pathogen virulence mechanisms and host defense responses. We previously demonstrated that C. elegans produces reactive oxygen species (ROS) in response to exposure to the important gram-positive nosocomial pathogen Enterococcus faecalis . We also presented evidence of oxidative stress and upregulation of stress responses after exposure to the pathogen. As in mammalian systems, this new work shows that production of ROS for innate immune functions occurs via an NADPH oxidase. Specifically, reducing expression of a dual oxidase, Ce-Duox1/BLI-3, causes a decrease in ROS production in response to E. faecalis . We also present evidence that reduction of expression of Ce-Duox1/BLI-3 increases susceptibility to this pathogen, specifically when expression is reduced in the intestine and the hypodermis. Ce-Duox1/BLI-3 was previously characterized as having a role in cuticle cross-linking. Two C. elegans mutants with point mutations in the peroxidase domain that exhibit severe cuticle defects were discovered to be unaffected in ROS production or pathogen susceptibility. These results demonstrate an important biological role for the peroxidase domain in cuticle cross-linking that is unrelated to ROS production. To further demonstrate the protective effects of the pathogen-induced ROS production, we show that antioxidants that scavenge ROS increase the sensitivity of the nematode to the infection, in stark contrast to their longevity-promoting effects under nonpathogenic conditions. In conclusion, we postulate that the generation of ROS by NADPH oxidases in the barrier epithelium is an ancient, highly conserved innate immune defense mechanism. |
Author | Garsin, Danielle A Mohri-Shiomi, Akiko Chávez, Violeta |
AuthorAffiliation | Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas 77030 |
AuthorAffiliation_xml | – name: Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas 77030 |
Author_xml | – sequence: 1 fullname: Chávez, Violeta – sequence: 2 fullname: Mohri-Shiomi, Akiko – sequence: 3 fullname: Garsin, Danielle A |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22062283$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19687201$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAQRi1URLeFG2eIkOBEWtuJ4_iCVBYokRYVUXq2Js44a5Q4i50t7b_H7a4KnJAsWZ55emP7OyIHfvJIyHNGTxjj9Wlz1pxQWnGZU_WILBhVdS4E5wdkQSlTuRKVPCRHMf5Ix7Is6yfkkKmqlpyyBQlLzD9spxt2-n7V5EV2jh4DzBizbwhmdteYXdzc9uizyw0al-qQVvY1TDPu2o33ic-acdx6zL6gWYN3ccycz5aAfgpraDs3u5jhgD34-JQ8tjBEfLbfj8nVp4_fl5_z1cV5szxb5UYUcs6tQmE7kEIUlUUuJEMhTSnrrmVGtKUBawtQjAqjgHJWFspaJlOta01bVcUxebfzbrbtiJ1BPwcY9Ca4EcKtnsDpfzverXU_XWsuJRdMJsGbvSBMP7cYZz26aHAYwOO0jbqSlRJSVf8FOSs4LylL4NsdaMIUY0D7cBtG9V2aOqWp79PUVCX8xd8v-APv40vA6z0A0cBgA3jj4gPHeTLxukjcqx23dv36lwuoIY7apR-QMs3VpbqHXu4gC5OGPiTR1eXdFMoqxaQqi994zb7G |
CODEN | INFIBR |
CitedBy_id | crossref_primary_10_4161_viru_22700 crossref_primary_10_1111_gtc_12175 crossref_primary_10_1534_genetics_113_160606 crossref_primary_10_1053_j_gastro_2013_07_011 crossref_primary_10_1039_D0AY01732A crossref_primary_10_1016_j_redox_2018_05_007 crossref_primary_10_1371_journal_pgen_1004609 crossref_primary_10_1016_j_redox_2016_12_020 crossref_primary_10_1089_ars_2013_5602 crossref_primary_10_1097_01_MIB_0000442012_45038_0e crossref_primary_10_1371_journal_ppat_1008134 crossref_primary_10_15252_embr_201744880 crossref_primary_10_1128_AEM_01480_20 crossref_primary_10_1016_j_crmicr_2023_100181 crossref_primary_10_7554_eLife_19493 crossref_primary_10_1074_jbc_M110_170902 crossref_primary_10_1371_journal_ppat_1002673 crossref_primary_10_1089_ars_2020_8018 crossref_primary_10_1371_journal_pgen_1007944 crossref_primary_10_1002_ps_7546 crossref_primary_10_1016_j_celrep_2016_11_038 crossref_primary_10_1016_j_ecoenv_2024_116085 crossref_primary_10_1371_journal_pone_0137403 crossref_primary_10_1016_j_gene_2014_12_056 crossref_primary_10_1038_mi_2017_106 crossref_primary_10_1089_ars_2014_6210 crossref_primary_10_3390_ijms222312959 crossref_primary_10_1016_j_soilbio_2011_06_006 crossref_primary_10_1002_mbo3_756 crossref_primary_10_1016_j_exger_2012_12_011 crossref_primary_10_1021_acscentsci_3c00052 crossref_primary_10_1038_s42003_022_03381_1 crossref_primary_10_1371_journal_pone_0048768 crossref_primary_10_1128_mBio_02301_20 crossref_primary_10_1016_j_freeradbiomed_2013_11_023 crossref_primary_10_1053_j_gastro_2015_07_062 crossref_primary_10_1080_10715762_2016_1223296 crossref_primary_10_1111_j_1348_0421_2012_00509_x crossref_primary_10_1089_ars_2016_6751 crossref_primary_10_3389_fcell_2021_716406 crossref_primary_10_1371_journal_ppat_1005923 crossref_primary_10_1186_s12864_022_08952_4 crossref_primary_10_3390_antiox10020313 crossref_primary_10_1186_s12860_015_0079_z crossref_primary_10_4161_worm_23415 crossref_primary_10_1093_g3journal_jkaa055 crossref_primary_10_1016_j_redox_2021_102159 crossref_primary_10_1016_j_devcel_2020_06_019 crossref_primary_10_1172_JCI141676 crossref_primary_10_1242_dev_049189 crossref_primary_10_3390_antiox7100130 crossref_primary_10_1016_j_devcel_2014_08_002 crossref_primary_10_3389_fimmu_2019_00394 crossref_primary_10_1073_pnas_2020922118 crossref_primary_10_1038_srep45128 crossref_primary_10_1074_jbc_M113_538272 crossref_primary_10_1371_journal_pone_0058126 crossref_primary_10_1016_j_molmed_2009_10_003 crossref_primary_10_1080_21505594_2023_2204004 crossref_primary_10_1073_pnas_1815656116 crossref_primary_10_1146_annurev_pathol_012513_104651 crossref_primary_10_1098_rstb_2015_0299 crossref_primary_10_1534_genetics_115_185272 crossref_primary_10_1016_j_cell_2013_04_009 crossref_primary_10_1016_j_bbrc_2015_02_132 crossref_primary_10_1371_journal_pgen_1001084 crossref_primary_10_1534_g3_118_200586 crossref_primary_10_3389_fcell_2021_628991 crossref_primary_10_1111_j_1462_5822_2012_01824_x crossref_primary_10_1089_ars_2010_3215 crossref_primary_10_1242_jcs_202119 crossref_primary_10_1146_annurev_genet_111212_133352 crossref_primary_10_1155_2012_608478 crossref_primary_10_1128_MMBR_00146_20 crossref_primary_10_1007_s00253_012_4674_z crossref_primary_10_1016_j_coi_2020_08_002 crossref_primary_10_1016_j_micinf_2010_10_008 crossref_primary_10_1128_IAI_01614_13 crossref_primary_10_1007_s12275_018_7545_1 crossref_primary_10_1016_j_coi_2011_10_004 crossref_primary_10_1371_journal_pgen_1010740 crossref_primary_10_1016_j_tips_2016_01_006 crossref_primary_10_1128_mSphere_00433_20 crossref_primary_10_1371_journal_pone_0124091 crossref_primary_10_1016_j_jgg_2023_03_005 crossref_primary_10_1210_me_2011_1320 crossref_primary_10_1038_srep31713 crossref_primary_10_4161_worm_19767 crossref_primary_10_1002_etc_1706 crossref_primary_10_1128_IAI_00130_20 crossref_primary_10_1016_j_fct_2019_01_008 crossref_primary_10_1016_j_freeradbiomed_2014_05_006 crossref_primary_10_1016_j_zool_2016_05_013 crossref_primary_10_1371_journal_ppat_1002453 crossref_primary_10_1534_g3_114_015982 crossref_primary_10_5483_BMBRep_2018_51_6_111 crossref_primary_10_1016_j_jhazmat_2024_134356 crossref_primary_10_1371_journal_ppat_1003660 crossref_primary_10_1128_iai_00328_21 crossref_primary_10_21769_BioProtoc_3409 crossref_primary_10_1074_jbc_M113_522201 crossref_primary_10_1016_j_envres_2020_110209 |
Cites_doi | 10.1016/j.devcel.2008.12.015 10.1093/genetics/77.1.71 10.1096/fj.02-1104fje 10.1016/S0005-2760(96)00122-1 10.1016/j.cub.2008.02.079 10.1242/dmm.000265 10.1016/j.freeradbiomed.2007.03.028 10.1096/fj.08-120006 10.1073/pnas.191378698 10.1083/jcb.200103132 10.1074/jbc.M109.013581 10.1085/jgp.200509355 10.1016/j.pbb.2006.10.017 10.1073/pnas.041613098 10.1186/gb-2001-2-2-reports0002 10.1111/j.1462-5822.2005.00523.x 10.1074/jbc.M404983200 10.1093/genetics/152.2.783 10.1021/bi00532a023 10.1152/physrev.00044.2005 10.1038/nature01278 10.1165/rcmb.2002-0152OC 10.1126/science.1080147 10.1016/j.freeradbiomed.2008.10.041 10.1126/science.1073759 10.1016/j.mad.2004.11.012 10.1016/j.febslet.2005.08.002 10.1534/genetics.107.072587 10.1126/science.290.5492.809 10.1189/jlb.0404216 10.1371/journal.pbio.0000012 10.1126/science.1117311 10.1074/jbc.M707956200 10.1016/j.gene.2007.06.020 10.1016/S0306-3623(96)00474-0 10.1016/0304-4165(66)90152-8 10.1016/S0022-1759(96)00244-X 10.1074/jbc.C600095200 10.1016/j.cub.2004.05.050 10.1007/s12026-008-8071-8 |
ContentType | Journal Article |
Copyright | 2009 INIST-CNRS Copyright © 2009, American Society for Microbiology 2009 |
Copyright_xml | – notice: 2009 INIST-CNRS – notice: Copyright © 2009, American Society for Microbiology 2009 |
DBID | FBQ IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7T5 C1K H94 7X8 5PM |
DOI | 10.1128/IAI.00627-09 |
DatabaseName | AGRIS Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Immunology Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef AIDS and Cancer Research Abstracts Immunology Abstracts Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE AIDS and Cancer Research Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1098-5522 |
EndPage | 4989 |
ExternalDocumentID | 10_1128_IAI_00627_09 19687201 22062283 iai_77_11_4983 US201301691794 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI076406 – fundername: NIAID NIH HHS grantid: R01AI076406 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 18M 29I 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS 85S ABOCM ACGFO ADBBV AENEX AFMIJ AGCDD AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CS3 D0S DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 HYE HZ~ H~9 IH2 J5H KQ8 L7B MVM NEJ O9- OHT OK1 P2P RHF RHI RNS RPM RSF SJN TR2 TWZ UCJ UPT VH1 VQA W2D W8F WH7 WHG WOQ X7M XFK Y6R ZA5 ZGI ZXP ~KM 08R AAPBV AAUGY H13 IQODW AGVNZ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7T5 C1K H94 7X8 5PM |
ID | FETCH-LOGICAL-c537t-f9e5fda75536fe2571e57c478db1c5b4caff3a9105c9a021439ff17f3adbcb663 |
IEDL.DBID | RPM |
ISSN | 0019-9567 |
IngestDate | Tue Sep 17 21:27:13 EDT 2024 Sun Sep 29 08:08:22 EDT 2024 Fri Oct 25 22:42:37 EDT 2024 Thu Sep 12 18:19:03 EDT 2024 Sat Sep 28 08:35:22 EDT 2024 Sun Oct 22 16:07:48 EDT 2023 Wed May 18 15:27:11 EDT 2016 Wed Dec 27 19:18:12 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Natural immunity Reactive oxygen species Microbiology Mechanism |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c537t-f9e5fda75536fe2571e57c478db1c5b4caff3a9105c9a021439ff17f3adbcb663 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Editor: A. Camilli Present address: Division of Brain Function, Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan. |
OpenAccessLink | https://europepmc.org/articles/pmc2772517?pdf=render |
PMID | 19687201 |
PQID | 21322401 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | pubmed_primary_19687201 proquest_miscellaneous_67695796 proquest_miscellaneous_21322401 highwire_asm_iai_77_11_4983 pascalfrancis_primary_22062283 crossref_primary_10_1128_IAI_00627_09 fao_agris_US201301691794 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2772517 |
PublicationCentury | 2000 |
PublicationDate | 2009-11-01 |
PublicationDateYYYYMMDD | 2009-11-01 |
PublicationDate_xml | – month: 11 year: 2009 text: 2009-11-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Infection and Immunity |
PublicationTitleAlternate | Infect Immun |
PublicationYear | 2009 |
Publisher | American Society for Microbiology American Society for Microbiology (ASM) |
Publisher_xml | – name: American Society for Microbiology – name: American Society for Microbiology (ASM) |
References | e_1_3_2_26_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 (e_1_3_2_44_2) 1963; 90 e_1_3_2_32_2 e_1_3_2_10_2 (e_1_3_2_27_2) 2004; 4 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 (e_1_3_2_34_2) 2001; 7 |
References_xml | – ident: e_1_3_2_16_2 doi: 10.1016/j.devcel.2008.12.015 – ident: e_1_3_2_5_2 doi: 10.1093/genetics/77.1.71 – ident: e_1_3_2_12_2 doi: 10.1096/fj.02-1104fje – ident: e_1_3_2_15_2 doi: 10.1016/S0005-2760(96)00122-1 – volume: 90 start-page: 12 year: 1963 ident: e_1_3_2_44_2 publication-title: III. Cofactor requirements of Lactobacillus bactericidin. J. Immunol. – ident: e_1_3_2_36_2 doi: 10.1016/j.cub.2008.02.079 – ident: e_1_3_2_20_2 – ident: e_1_3_2_23_2 doi: 10.1242/dmm.000265 – ident: e_1_3_2_28_2 doi: 10.1016/j.freeradbiomed.2007.03.028 – ident: e_1_3_2_32_2 doi: 10.1096/fj.08-120006 – ident: e_1_3_2_10_2 doi: 10.1073/pnas.191378698 – ident: e_1_3_2_8_2 doi: 10.1083/jcb.200103132 – ident: e_1_3_2_29_2 doi: 10.1074/jbc.M109.013581 – ident: e_1_3_2_9_2 doi: 10.1085/jgp.200509355 – ident: e_1_3_2_6_2 doi: 10.1016/j.pbb.2006.10.017 – ident: e_1_3_2_2_2 doi: 10.1073/pnas.041613098 – ident: e_1_3_2_22_2 doi: 10.1186/gb-2001-2-2-reports0002 – ident: e_1_3_2_14_2 doi: 10.1111/j.1462-5822.2005.00523.x – ident: e_1_3_2_40_2 doi: 10.1074/jbc.M404983200 – ident: e_1_3_2_33_2 doi: 10.1093/genetics/152.2.783 – volume: 7 start-page: 1397 year: 2001 ident: e_1_3_2_34_2 publication-title: RNA – ident: e_1_3_2_35_2 doi: 10.1021/bi00532a023 – ident: e_1_3_2_3_2 doi: 10.1152/physrev.00044.2005 – ident: e_1_3_2_21_2 doi: 10.1038/nature01278 – ident: e_1_3_2_43_2 doi: 10.1165/rcmb.2002-0152OC – ident: e_1_3_2_11_2 doi: 10.1126/science.1080147 – ident: e_1_3_2_45_2 doi: 10.1016/j.freeradbiomed.2008.10.041 – ident: e_1_3_2_24_2 doi: 10.1126/science.1073759 – ident: e_1_3_2_26_2 doi: 10.1016/j.mad.2004.11.012 – ident: e_1_3_2_18_2 doi: 10.1016/j.febslet.2005.08.002 – ident: e_1_3_2_7_2 doi: 10.1534/genetics.107.072587 – ident: e_1_3_2_19_2 doi: 10.1126/science.290.5492.809 – ident: e_1_3_2_38_2 doi: 10.1189/jlb.0404216 – ident: e_1_3_2_41_2 doi: 10.1371/journal.pbio.0000012 – ident: e_1_3_2_17_2 doi: 10.1126/science.1117311 – ident: e_1_3_2_31_2 doi: 10.1074/jbc.M707956200 – ident: e_1_3_2_37_2 doi: 10.1016/j.gene.2007.06.020 – ident: e_1_3_2_4_2 doi: 10.1016/S0306-3623(96)00474-0 – ident: e_1_3_2_25_2 doi: 10.1016/0304-4165(66)90152-8 – ident: e_1_3_2_30_2 doi: 10.1016/S0022-1759(96)00244-X – ident: e_1_3_2_13_2 doi: 10.1074/jbc.C600095200 – volume: 4 start-page: 181 year: 2004 ident: e_1_3_2_27_2 publication-title: Nat. Rev. – ident: e_1_3_2_42_2 doi: 10.1016/j.cub.2004.05.050 – ident: e_1_3_2_39_2 doi: 10.1007/s12026-008-8071-8 |
SSID | ssj0014448 |
Score | 2.3841414 |
Snippet | Caenorhabditis elegans was recently developed as a model system to study both pathogen virulence mechanisms and host defense responses. We previously... Classifications Services IAI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit... ABSTRACT Caenorhabditis elegans was recently developed as a model system to study both pathogen virulence mechanisms and host defense responses. We previously... Caenorhabditis elegans was recently developed as a model system to study both pathogen virulence mechanisms and host defense responses. We previously... |
SourceID | pubmedcentral proquest crossref pubmed pascalfrancis highwire fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 4983 |
SubjectTerms | Animals Antioxidants Biological and medical sciences Caenorhabditis elegans Caenorhabditis elegans - immunology Caenorhabditis elegans Proteins - biosynthesis Caenorhabditis elegans Proteins - immunology Cuticles Defense mechanisms Dual Oxidases Enterococcus faecalis Epithelium Fundamental and applied biological sciences. Psychology Gram-Positive Bacterial Infections - immunology Hospitals Host Response and Inflammation Host-Parasite Interactions - immunology Hypodermis Immune response Immunity, Innate Infection Intestine Microbiology NAD(P)H oxidase NADPH Oxidases - biosynthesis NADPH Oxidases - immunology Nematoda Oxidative stress Pathogens Peroxidase Point mutation Reactive oxygen species Reactive Oxygen Species - immunology Virulence |
Title | Ce-Duox1/BLI-3 Generates Reactive Oxygen Species as a Protective Innate Immune Mechanism in Caenorhabditis elegans |
URI | http://iai.asm.org/content/77/11/4983.abstract https://www.ncbi.nlm.nih.gov/pubmed/19687201 https://search.proquest.com/docview/21322401 https://search.proquest.com/docview/67695796 https://pubmed.ncbi.nlm.nih.gov/PMC2772517 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51K4G4oFIeDYXFBzimSZx4nRzLQtUAC-WxUm-WnzQSm1T7kNp_33EepYvggpST4zhKZjz-RjPzDcBr9BBiiaY_tBluct_lKFRG-5yG3ORp6kwW-2rk2efJ6Tz7cM7Od4ANtTBt0r5W1VH9a3FUVxdtbuXlQkdDnlh0NptShIQs4dEIRqigg4vehw6yLOvNbxEi-OdDtjvNo_K49HlclIdxxxY6yTnt28EMR9LIyeYOWbDPlZQr_F2u63PxNyD6Zz7lnQPqZA8e9siSHHdf8Ah2bL0P97pek9f7cH_WR9Efw3Jqw3eb5iqJ3n4qw5R01NOIOck3K1v7R75cXaNmkbY7PY5LvMhZR-ngb5d1jfNJ6YtLLJlZXz5crRakqslU2rpZXkhlPFsS8W0t8DR8AvOT9z-mp2HfeyHULOXr0BWWOSM5Y-nEWdzXiWVcZzw3KtFMZVo6l0rEGkwX0vOupYVzCccxo7RCGPMUduumtgdAlFS5SmySSTwKWU6ViQ3CIq5TlzhtZABvht8vLjuKDdG6JjQXKDHRSkzERQAHKBshf6L1E_Pv1MdcPdUPWpQADgeBCblaiEpWgnNcQmRFngYw3pLh7VsoxaWpn_BqEKrA3eVDJrK2zWYlqHfW0QX99wyfIuzreQN41inB72_o1SsAvqUetxM8s_f2HVT4luG7V_Dn__3kITxow15t0eQL2F0vN_Yloqe1GsPo49d83O6ZG_JiGA8 |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RTwuCAqlodD6AMd0E8deJ8eyUG1gt1TQlXqzbMemkdik2ofU_nvGeZQuggtSTomTKJmHv9HMfAPwDiOESKHrDy1DI_dTjkJdGF_TkBZpkriCRb4beXo2HM_Y50t-uQW874VpivaNLo-rn_Pjqrxqaiuv52bQ14kNzqcjipCQx2KwDQ_QXiPWB-ld8oAx1jngLET4L_p6d5oO8pPcV3JREUYtX-gwFbQbCNNvSttO1ffogn21pFriD3PtpIu_QdE_KyrvbVGnz-Bphy3JSfsNz2HLVrvwsJ02ebsLj6ZdHv0FLEY2_Liub-LBh0keJqQln0bUSb5Z1XhA8vXmFnWLNPPp8bzCg5y3pA7-cl5VuJ7kvr3Ekqn1DcTlck7KioyUrerFldKF50sifrAF7ocvYXb66WI0DrvpC6HhiViFLrPcFUpwngydRcuOLReGibTQseGaGeVcohBtcJMpz7yWZM7FAs8V2mgEMnuwU9WV3QeilU51bGOmcDPkKdVFVCAwEiZxsTOFCuB9__vldUuyIZvghKYSJSYbickoC2AfZSPVD_R_cvad-qyrJ_tBnxLAQS8wqZZzWapSCoGPkCxLkwAON2R49xZK8dHULzjqhSrRvnzSRFW2Xi8l9eE6BqH_XuGLhH1HbwCvWiX4_Q2degUgNtTjboHn9t68girfcHx3Kv76v-88gsfji-lETvKzLwfwpEmCNS2Ub2BntVjbt4ilVvqwsZxfOLoacA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoERWXCsqjaaH1AY5pEsdZJ8eyZdVAt6yAlXqz_KSR2GS1D6n994ydpOwiuCDllDiJknl4RvPNNwi9gwwhFuD6Q0PByN2Uo1Bq5TANuc7T1Goau27k8fXgcko_3WQ3G6O-PGhfyeqs_jk7q6tbj62cz1TU48SiyXhIICTMEhbNtY120GOw2XjQJ-pdAYFS2jnhIoQUgPWYd5JH5Xnp0FyEhXHLGTrIGemGwvQb044VzQZlsENMiiX8NNtOu_hbOPonqnJjmxo9Q_tdfInP2-94jh6Z-gA9aSdO3h-gvXFXS3-BFkMTXqybuyT6cFWGKW4JqCHyxF-N8F4Qf7m7B_3CfkY9nBdw4ElL7OAul3UN63HpWkwMHhvXRFwtZ7iq8VCYulncCqkdZxJ2wy1gT3yJpqOP34eXYTeBIVRZylahLUxmtWBZlg6sAetOTMYUZbmWicokVcLaVEDEkalCOPa1tLA2YXBOSyUhmHmFduumNocISyFzmZiECtgQs5xIHWsIjphKbWKVFgF63_9-Pm-JNrhPUEjOQWLcS4zHRYAOQTZc_AAfyKffiKu8OsIf8CsBOu4FxsVyxitRccbgEZwWeRqgky0ZPryFEHg0cQtOe6FysDFXOBG1adZLTlzKDonov1c4oLDr6g3Q61YJfn9Dp14BYlvq8bDA8XtvXwG19zzfnZof_fedp2hvcjHiV-X152P01NfBfBflG7S7WqzNWwinVvLEG84vSZ0bgw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ce-Duox1%2FBLI-3+Generates+Reactive+Oxygen+Species+as+a+Protective+Innate+Immune+Mechanism+in+Caenorhabditis+elegans&rft.jtitle=Infection+and+Immunity&rft.au=Violeta+Ch%C3%A1vez&rft.au=Akiko+Mohri-Shiomi&rft.au=Danielle+A.+Garsin&rft.date=2009-11-01&rft.pub=American+Society+for+Microbiology&rft.issn=0019-9567&rft.eissn=1098-5522&rft.volume=77&rft.issue=11&rft.spage=4983&rft_id=info:doi/10.1128%2FIAI.00627-09&rft_id=info%3Apmid%2F19687201&rft.externalDBID=n%2Fa&rft.externalDocID=iai_77_11_4983 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-9567&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-9567&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-9567&client=summon |