Ce-Duox1/BLI-3 Generates Reactive Oxygen Species as a Protective Innate Immune Mechanism in Caenorhabditis elegans

Caenorhabditis elegans was recently developed as a model system to study both pathogen virulence mechanisms and host defense responses. We previously demonstrated that C. elegans produces reactive oxygen species (ROS) in response to exposure to the important gram-positive nosocomial pathogen Enteroc...

Full description

Saved in:
Bibliographic Details
Published inInfection and Immunity Vol. 77; no. 11; pp. 4983 - 4989
Main Authors Chávez, Violeta, Mohri-Shiomi, Akiko, Garsin, Danielle A
Format Journal Article
LanguageEnglish
Published Washington, DC American Society for Microbiology 01.11.2009
American Society for Microbiology (ASM)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Caenorhabditis elegans was recently developed as a model system to study both pathogen virulence mechanisms and host defense responses. We previously demonstrated that C. elegans produces reactive oxygen species (ROS) in response to exposure to the important gram-positive nosocomial pathogen Enterococcus faecalis. We also presented evidence of oxidative stress and upregulation of stress responses after exposure to the pathogen. As in mammalian systems, this new work shows that production of ROS for innate immune functions occurs via an NADPH oxidase. Specifically, reducing expression of a dual oxidase, Ce-Duox1/BLI-3, causes a decrease in ROS production in response to E. faecalis. We also present evidence that reduction of expression of Ce-Duox1/BLI-3 increases susceptibility to this pathogen, specifically when expression is reduced in the intestine and the hypodermis. Ce-Duox1/BLI-3 was previously characterized as having a role in cuticle cross-linking. Two C. elegans mutants with point mutations in the peroxidase domain that exhibit severe cuticle defects were discovered to be unaffected in ROS production or pathogen susceptibility. These results demonstrate an important biological role for the peroxidase domain in cuticle cross-linking that is unrelated to ROS production. To further demonstrate the protective effects of the pathogen-induced ROS production, we show that antioxidants that scavenge ROS increase the sensitivity of the nematode to the infection, in stark contrast to their longevity-promoting effects under nonpathogenic conditions. In conclusion, we postulate that the generation of ROS by NADPH oxidases in the barrier epithelium is an ancient, highly conserved innate immune defense mechanism.
AbstractList Classifications Services IAI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue IAI About IAI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy Connect to IAI IAI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0019-9567 Online ISSN: 1098-5522 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to IAI .asm.org, visit: IAI       
Caenorhabditis elegans was recently developed as a model system to study both pathogen virulence mechanisms and host defense responses. We previously demonstrated that C. elegans produces reactive oxygen species (ROS) in response to exposure to the important gram-positive nosocomial pathogen Enterococcus faecalis. We also presented evidence of oxidative stress and upregulation of stress responses after exposure to the pathogen. As in mammalian systems, this new work shows that production of ROS for innate immune functions occurs via an NADPH oxidase. Specifically, reducing expression of a dual oxidase, Ce-Duox1/BLI-3, causes a decrease in ROS production in response to E. faecalis. We also present evidence that reduction of expression of Ce-Duox1/BLI-3 increases susceptibility to this pathogen, specifically when expression is reduced in the intestine and the hypodermis. Ce-Duox1/BLI-3 was previously characterized as having a role in cuticle cross-linking. Two C. elegans mutants with point mutations in the peroxidase domain that exhibit severe cuticle defects were discovered to be unaffected in ROS production or pathogen susceptibility. These results demonstrate an important biological role for the peroxidase domain in cuticle cross-linking that is unrelated to ROS production. To further demonstrate the protective effects of the pathogen-induced ROS production, we show that antioxidants that scavenge ROS increase the sensitivity of the nematode to the infection, in stark contrast to their longevity-promoting effects under nonpathogenic conditions. In conclusion, we postulate that the generation of ROS by NADPH oxidases in the barrier epithelium is an ancient, highly conserved innate immune defense mechanism.
Caenorhabditis elegans was recently developed as a model system to study both pathogen virulence mechanisms and host defense responses. We previously demonstrated that C. elegans produces reactive oxygen species (ROS) in response to exposure to the important gram-positive nosocomial pathogen Enterococcus faecalis . We also presented evidence of oxidative stress and upregulation of stress responses after exposure to the pathogen. As in mammalian systems, this new work shows that production of ROS for innate immune functions occurs via an NADPH oxidase. Specifically, reducing expression of a dual oxidase, Ce-Duox1/BLI-3, causes a decrease in ROS production in response to E. faecalis . We also present evidence that reduction of expression of Ce-Duox1/BLI-3 increases susceptibility to this pathogen, specifically when expression is reduced in the intestine and the hypodermis. Ce-Duox1/BLI-3 was previously characterized as having a role in cuticle cross-linking. Two C. elegans mutants with point mutations in the peroxidase domain that exhibit severe cuticle defects were discovered to be unaffected in ROS production or pathogen susceptibility. These results demonstrate an important biological role for the peroxidase domain in cuticle cross-linking that is unrelated to ROS production. To further demonstrate the protective effects of the pathogen-induced ROS production, we show that antioxidants that scavenge ROS increase the sensitivity of the nematode to the infection, in stark contrast to their longevity-promoting effects under nonpathogenic conditions. In conclusion, we postulate that the generation of ROS by NADPH oxidases in the barrier epithelium is an ancient, highly conserved innate immune defense mechanism.
ABSTRACT Caenorhabditis elegans was recently developed as a model system to study both pathogen virulence mechanisms and host defense responses. We previously demonstrated that C. elegans produces reactive oxygen species (ROS) in response to exposure to the important gram-positive nosocomial pathogen Enterococcus faecalis . We also presented evidence of oxidative stress and upregulation of stress responses after exposure to the pathogen. As in mammalian systems, this new work shows that production of ROS for innate immune functions occurs via an NADPH oxidase. Specifically, reducing expression of a dual oxidase, Ce-Duox1/BLI-3, causes a decrease in ROS production in response to E. faecalis . We also present evidence that reduction of expression of Ce-Duox1/BLI-3 increases susceptibility to this pathogen, specifically when expression is reduced in the intestine and the hypodermis. Ce-Duox1/BLI-3 was previously characterized as having a role in cuticle cross-linking. Two C. elegans mutants with point mutations in the peroxidase domain that exhibit severe cuticle defects were discovered to be unaffected in ROS production or pathogen susceptibility. These results demonstrate an important biological role for the peroxidase domain in cuticle cross-linking that is unrelated to ROS production. To further demonstrate the protective effects of the pathogen-induced ROS production, we show that antioxidants that scavenge ROS increase the sensitivity of the nematode to the infection, in stark contrast to their longevity-promoting effects under nonpathogenic conditions. In conclusion, we postulate that the generation of ROS by NADPH oxidases in the barrier epithelium is an ancient, highly conserved innate immune defense mechanism.
Author Garsin, Danielle A
Mohri-Shiomi, Akiko
Chávez, Violeta
AuthorAffiliation Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas 77030
AuthorAffiliation_xml – name: Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas 77030
Author_xml – sequence: 1
  fullname: Chávez, Violeta
– sequence: 2
  fullname: Mohri-Shiomi, Akiko
– sequence: 3
  fullname: Garsin, Danielle A
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22062283$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19687201$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQRi1URLeFG2eIkOBEWtuJ4_iCVBYokRYVUXq2Js44a5Q4i50t7b_H7a4KnJAsWZ55emP7OyIHfvJIyHNGTxjj9Wlz1pxQWnGZU_WILBhVdS4E5wdkQSlTuRKVPCRHMf5Ix7Is6yfkkKmqlpyyBQlLzD9spxt2-n7V5EV2jh4DzBizbwhmdteYXdzc9uizyw0al-qQVvY1TDPu2o33ic-acdx6zL6gWYN3ccycz5aAfgpraDs3u5jhgD34-JQ8tjBEfLbfj8nVp4_fl5_z1cV5szxb5UYUcs6tQmE7kEIUlUUuJEMhTSnrrmVGtKUBawtQjAqjgHJWFspaJlOta01bVcUxebfzbrbtiJ1BPwcY9Ca4EcKtnsDpfzverXU_XWsuJRdMJsGbvSBMP7cYZz26aHAYwOO0jbqSlRJSVf8FOSs4LylL4NsdaMIUY0D7cBtG9V2aOqWp79PUVCX8xd8v-APv40vA6z0A0cBgA3jj4gPHeTLxukjcqx23dv36lwuoIY7apR-QMs3VpbqHXu4gC5OGPiTR1eXdFMoqxaQqi994zb7G
CODEN INFIBR
CitedBy_id crossref_primary_10_4161_viru_22700
crossref_primary_10_1111_gtc_12175
crossref_primary_10_1534_genetics_113_160606
crossref_primary_10_1053_j_gastro_2013_07_011
crossref_primary_10_1039_D0AY01732A
crossref_primary_10_1016_j_redox_2018_05_007
crossref_primary_10_1371_journal_pgen_1004609
crossref_primary_10_1016_j_redox_2016_12_020
crossref_primary_10_1089_ars_2013_5602
crossref_primary_10_1097_01_MIB_0000442012_45038_0e
crossref_primary_10_1371_journal_ppat_1008134
crossref_primary_10_15252_embr_201744880
crossref_primary_10_1128_AEM_01480_20
crossref_primary_10_1016_j_crmicr_2023_100181
crossref_primary_10_7554_eLife_19493
crossref_primary_10_1074_jbc_M110_170902
crossref_primary_10_1371_journal_ppat_1002673
crossref_primary_10_1089_ars_2020_8018
crossref_primary_10_1371_journal_pgen_1007944
crossref_primary_10_1002_ps_7546
crossref_primary_10_1016_j_celrep_2016_11_038
crossref_primary_10_1016_j_ecoenv_2024_116085
crossref_primary_10_1371_journal_pone_0137403
crossref_primary_10_1016_j_gene_2014_12_056
crossref_primary_10_1038_mi_2017_106
crossref_primary_10_1089_ars_2014_6210
crossref_primary_10_3390_ijms222312959
crossref_primary_10_1016_j_soilbio_2011_06_006
crossref_primary_10_1002_mbo3_756
crossref_primary_10_1016_j_exger_2012_12_011
crossref_primary_10_1021_acscentsci_3c00052
crossref_primary_10_1038_s42003_022_03381_1
crossref_primary_10_1371_journal_pone_0048768
crossref_primary_10_1128_mBio_02301_20
crossref_primary_10_1016_j_freeradbiomed_2013_11_023
crossref_primary_10_1053_j_gastro_2015_07_062
crossref_primary_10_1080_10715762_2016_1223296
crossref_primary_10_1111_j_1348_0421_2012_00509_x
crossref_primary_10_1089_ars_2016_6751
crossref_primary_10_3389_fcell_2021_716406
crossref_primary_10_1371_journal_ppat_1005923
crossref_primary_10_1186_s12864_022_08952_4
crossref_primary_10_3390_antiox10020313
crossref_primary_10_1186_s12860_015_0079_z
crossref_primary_10_4161_worm_23415
crossref_primary_10_1093_g3journal_jkaa055
crossref_primary_10_1016_j_redox_2021_102159
crossref_primary_10_1016_j_devcel_2020_06_019
crossref_primary_10_1172_JCI141676
crossref_primary_10_1242_dev_049189
crossref_primary_10_3390_antiox7100130
crossref_primary_10_1016_j_devcel_2014_08_002
crossref_primary_10_3389_fimmu_2019_00394
crossref_primary_10_1073_pnas_2020922118
crossref_primary_10_1038_srep45128
crossref_primary_10_1074_jbc_M113_538272
crossref_primary_10_1371_journal_pone_0058126
crossref_primary_10_1016_j_molmed_2009_10_003
crossref_primary_10_1080_21505594_2023_2204004
crossref_primary_10_1073_pnas_1815656116
crossref_primary_10_1146_annurev_pathol_012513_104651
crossref_primary_10_1098_rstb_2015_0299
crossref_primary_10_1534_genetics_115_185272
crossref_primary_10_1016_j_cell_2013_04_009
crossref_primary_10_1016_j_bbrc_2015_02_132
crossref_primary_10_1371_journal_pgen_1001084
crossref_primary_10_1534_g3_118_200586
crossref_primary_10_3389_fcell_2021_628991
crossref_primary_10_1111_j_1462_5822_2012_01824_x
crossref_primary_10_1089_ars_2010_3215
crossref_primary_10_1242_jcs_202119
crossref_primary_10_1146_annurev_genet_111212_133352
crossref_primary_10_1155_2012_608478
crossref_primary_10_1128_MMBR_00146_20
crossref_primary_10_1007_s00253_012_4674_z
crossref_primary_10_1016_j_coi_2020_08_002
crossref_primary_10_1016_j_micinf_2010_10_008
crossref_primary_10_1128_IAI_01614_13
crossref_primary_10_1007_s12275_018_7545_1
crossref_primary_10_1016_j_coi_2011_10_004
crossref_primary_10_1371_journal_pgen_1010740
crossref_primary_10_1016_j_tips_2016_01_006
crossref_primary_10_1128_mSphere_00433_20
crossref_primary_10_1371_journal_pone_0124091
crossref_primary_10_1016_j_jgg_2023_03_005
crossref_primary_10_1210_me_2011_1320
crossref_primary_10_1038_srep31713
crossref_primary_10_4161_worm_19767
crossref_primary_10_1002_etc_1706
crossref_primary_10_1128_IAI_00130_20
crossref_primary_10_1016_j_fct_2019_01_008
crossref_primary_10_1016_j_freeradbiomed_2014_05_006
crossref_primary_10_1016_j_zool_2016_05_013
crossref_primary_10_1371_journal_ppat_1002453
crossref_primary_10_1534_g3_114_015982
crossref_primary_10_5483_BMBRep_2018_51_6_111
crossref_primary_10_1016_j_jhazmat_2024_134356
crossref_primary_10_1371_journal_ppat_1003660
crossref_primary_10_1128_iai_00328_21
crossref_primary_10_21769_BioProtoc_3409
crossref_primary_10_1074_jbc_M113_522201
crossref_primary_10_1016_j_envres_2020_110209
Cites_doi 10.1016/j.devcel.2008.12.015
10.1093/genetics/77.1.71
10.1096/fj.02-1104fje
10.1016/S0005-2760(96)00122-1
10.1016/j.cub.2008.02.079
10.1242/dmm.000265
10.1016/j.freeradbiomed.2007.03.028
10.1096/fj.08-120006
10.1073/pnas.191378698
10.1083/jcb.200103132
10.1074/jbc.M109.013581
10.1085/jgp.200509355
10.1016/j.pbb.2006.10.017
10.1073/pnas.041613098
10.1186/gb-2001-2-2-reports0002
10.1111/j.1462-5822.2005.00523.x
10.1074/jbc.M404983200
10.1093/genetics/152.2.783
10.1021/bi00532a023
10.1152/physrev.00044.2005
10.1038/nature01278
10.1165/rcmb.2002-0152OC
10.1126/science.1080147
10.1016/j.freeradbiomed.2008.10.041
10.1126/science.1073759
10.1016/j.mad.2004.11.012
10.1016/j.febslet.2005.08.002
10.1534/genetics.107.072587
10.1126/science.290.5492.809
10.1189/jlb.0404216
10.1371/journal.pbio.0000012
10.1126/science.1117311
10.1074/jbc.M707956200
10.1016/j.gene.2007.06.020
10.1016/S0306-3623(96)00474-0
10.1016/0304-4165(66)90152-8
10.1016/S0022-1759(96)00244-X
10.1074/jbc.C600095200
10.1016/j.cub.2004.05.050
10.1007/s12026-008-8071-8
ContentType Journal Article
Copyright 2009 INIST-CNRS
Copyright © 2009, American Society for Microbiology 2009
Copyright_xml – notice: 2009 INIST-CNRS
– notice: Copyright © 2009, American Society for Microbiology 2009
DBID FBQ
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7T5
C1K
H94
7X8
5PM
DOI 10.1128/IAI.00627-09
DatabaseName AGRIS
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
AIDS and Cancer Research Abstracts
Immunology Abstracts
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE

AIDS and Cancer Research Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1098-5522
EndPage 4989
ExternalDocumentID 10_1128_IAI_00627_09
19687201
22062283
iai_77_11_4983
US201301691794
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI076406
– fundername: NIAID NIH HHS
  grantid: R01AI076406
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
18M
29I
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
85S
ABOCM
ACGFO
ADBBV
AENEX
AFMIJ
AGCDD
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CS3
D0S
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
HYE
HZ~
H~9
IH2
J5H
KQ8
L7B
MVM
NEJ
O9-
OHT
OK1
P2P
RHF
RHI
RNS
RPM
RSF
SJN
TR2
TWZ
UCJ
UPT
VH1
VQA
W2D
W8F
WH7
WHG
WOQ
X7M
XFK
Y6R
ZA5
ZGI
ZXP
~KM
08R
AAPBV
AAUGY
H13
IQODW
AGVNZ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7T5
C1K
H94
7X8
5PM
ID FETCH-LOGICAL-c537t-f9e5fda75536fe2571e57c478db1c5b4caff3a9105c9a021439ff17f3adbcb663
IEDL.DBID RPM
ISSN 0019-9567
IngestDate Tue Sep 17 21:27:13 EDT 2024
Sun Sep 29 08:08:22 EDT 2024
Fri Oct 25 22:42:37 EDT 2024
Thu Sep 12 18:19:03 EDT 2024
Sat Sep 28 08:35:22 EDT 2024
Sun Oct 22 16:07:48 EDT 2023
Wed May 18 15:27:11 EDT 2016
Wed Dec 27 19:18:12 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Natural immunity
Reactive oxygen species
Microbiology
Mechanism
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-f9e5fda75536fe2571e57c478db1c5b4caff3a9105c9a021439ff17f3adbcb663
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Editor: A. Camilli
Present address: Division of Brain Function, Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan.
OpenAccessLink https://europepmc.org/articles/pmc2772517?pdf=render
PMID 19687201
PQID 21322401
PQPubID 23462
PageCount 7
ParticipantIDs pubmed_primary_19687201
proquest_miscellaneous_67695796
proquest_miscellaneous_21322401
highwire_asm_iai_77_11_4983
pascalfrancis_primary_22062283
crossref_primary_10_1128_IAI_00627_09
fao_agris_US201301691794
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2772517
PublicationCentury 2000
PublicationDate 2009-11-01
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Infection and Immunity
PublicationTitleAlternate Infect Immun
PublicationYear 2009
Publisher American Society for Microbiology
American Society for Microbiology (ASM)
Publisher_xml – name: American Society for Microbiology
– name: American Society for Microbiology (ASM)
References e_1_3_2_26_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
(e_1_3_2_44_2) 1963; 90
e_1_3_2_32_2
e_1_3_2_10_2
(e_1_3_2_27_2) 2004; 4
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
(e_1_3_2_34_2) 2001; 7
References_xml – ident: e_1_3_2_16_2
  doi: 10.1016/j.devcel.2008.12.015
– ident: e_1_3_2_5_2
  doi: 10.1093/genetics/77.1.71
– ident: e_1_3_2_12_2
  doi: 10.1096/fj.02-1104fje
– ident: e_1_3_2_15_2
  doi: 10.1016/S0005-2760(96)00122-1
– volume: 90
  start-page: 12
  year: 1963
  ident: e_1_3_2_44_2
  publication-title: III. Cofactor requirements of Lactobacillus bactericidin. J. Immunol.
– ident: e_1_3_2_36_2
  doi: 10.1016/j.cub.2008.02.079
– ident: e_1_3_2_20_2
– ident: e_1_3_2_23_2
  doi: 10.1242/dmm.000265
– ident: e_1_3_2_28_2
  doi: 10.1016/j.freeradbiomed.2007.03.028
– ident: e_1_3_2_32_2
  doi: 10.1096/fj.08-120006
– ident: e_1_3_2_10_2
  doi: 10.1073/pnas.191378698
– ident: e_1_3_2_8_2
  doi: 10.1083/jcb.200103132
– ident: e_1_3_2_29_2
  doi: 10.1074/jbc.M109.013581
– ident: e_1_3_2_9_2
  doi: 10.1085/jgp.200509355
– ident: e_1_3_2_6_2
  doi: 10.1016/j.pbb.2006.10.017
– ident: e_1_3_2_2_2
  doi: 10.1073/pnas.041613098
– ident: e_1_3_2_22_2
  doi: 10.1186/gb-2001-2-2-reports0002
– ident: e_1_3_2_14_2
  doi: 10.1111/j.1462-5822.2005.00523.x
– ident: e_1_3_2_40_2
  doi: 10.1074/jbc.M404983200
– ident: e_1_3_2_33_2
  doi: 10.1093/genetics/152.2.783
– volume: 7
  start-page: 1397
  year: 2001
  ident: e_1_3_2_34_2
  publication-title: RNA
– ident: e_1_3_2_35_2
  doi: 10.1021/bi00532a023
– ident: e_1_3_2_3_2
  doi: 10.1152/physrev.00044.2005
– ident: e_1_3_2_21_2
  doi: 10.1038/nature01278
– ident: e_1_3_2_43_2
  doi: 10.1165/rcmb.2002-0152OC
– ident: e_1_3_2_11_2
  doi: 10.1126/science.1080147
– ident: e_1_3_2_45_2
  doi: 10.1016/j.freeradbiomed.2008.10.041
– ident: e_1_3_2_24_2
  doi: 10.1126/science.1073759
– ident: e_1_3_2_26_2
  doi: 10.1016/j.mad.2004.11.012
– ident: e_1_3_2_18_2
  doi: 10.1016/j.febslet.2005.08.002
– ident: e_1_3_2_7_2
  doi: 10.1534/genetics.107.072587
– ident: e_1_3_2_19_2
  doi: 10.1126/science.290.5492.809
– ident: e_1_3_2_38_2
  doi: 10.1189/jlb.0404216
– ident: e_1_3_2_41_2
  doi: 10.1371/journal.pbio.0000012
– ident: e_1_3_2_17_2
  doi: 10.1126/science.1117311
– ident: e_1_3_2_31_2
  doi: 10.1074/jbc.M707956200
– ident: e_1_3_2_37_2
  doi: 10.1016/j.gene.2007.06.020
– ident: e_1_3_2_4_2
  doi: 10.1016/S0306-3623(96)00474-0
– ident: e_1_3_2_25_2
  doi: 10.1016/0304-4165(66)90152-8
– ident: e_1_3_2_30_2
  doi: 10.1016/S0022-1759(96)00244-X
– ident: e_1_3_2_13_2
  doi: 10.1074/jbc.C600095200
– volume: 4
  start-page: 181
  year: 2004
  ident: e_1_3_2_27_2
  publication-title: Nat. Rev.
– ident: e_1_3_2_42_2
  doi: 10.1016/j.cub.2004.05.050
– ident: e_1_3_2_39_2
  doi: 10.1007/s12026-008-8071-8
SSID ssj0014448
Score 2.3841414
Snippet Caenorhabditis elegans was recently developed as a model system to study both pathogen virulence mechanisms and host defense responses. We previously...
Classifications Services IAI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit...
ABSTRACT Caenorhabditis elegans was recently developed as a model system to study both pathogen virulence mechanisms and host defense responses. We previously...
Caenorhabditis elegans was recently developed as a model system to study both pathogen virulence mechanisms and host defense responses. We previously...
SourceID pubmedcentral
proquest
crossref
pubmed
pascalfrancis
highwire
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 4983
SubjectTerms Animals
Antioxidants
Biological and medical sciences
Caenorhabditis elegans
Caenorhabditis elegans - immunology
Caenorhabditis elegans Proteins - biosynthesis
Caenorhabditis elegans Proteins - immunology
Cuticles
Defense mechanisms
Dual Oxidases
Enterococcus faecalis
Epithelium
Fundamental and applied biological sciences. Psychology
Gram-Positive Bacterial Infections - immunology
Hospitals
Host Response and Inflammation
Host-Parasite Interactions - immunology
Hypodermis
Immune response
Immunity, Innate
Infection
Intestine
Microbiology
NAD(P)H oxidase
NADPH Oxidases - biosynthesis
NADPH Oxidases - immunology
Nematoda
Oxidative stress
Pathogens
Peroxidase
Point mutation
Reactive oxygen species
Reactive Oxygen Species - immunology
Virulence
Title Ce-Duox1/BLI-3 Generates Reactive Oxygen Species as a Protective Innate Immune Mechanism in Caenorhabditis elegans
URI http://iai.asm.org/content/77/11/4983.abstract
https://www.ncbi.nlm.nih.gov/pubmed/19687201
https://search.proquest.com/docview/21322401
https://search.proquest.com/docview/67695796
https://pubmed.ncbi.nlm.nih.gov/PMC2772517
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51K4G4oFIeDYXFBzimSZx4nRzLQtUAC-WxUm-WnzQSm1T7kNp_33EepYvggpST4zhKZjz-RjPzDcBr9BBiiaY_tBluct_lKFRG-5yG3ORp6kwW-2rk2efJ6Tz7cM7Od4ANtTBt0r5W1VH9a3FUVxdtbuXlQkdDnlh0NptShIQs4dEIRqigg4vehw6yLOvNbxEi-OdDtjvNo_K49HlclIdxxxY6yTnt28EMR9LIyeYOWbDPlZQr_F2u63PxNyD6Zz7lnQPqZA8e9siSHHdf8Ah2bL0P97pek9f7cH_WR9Efw3Jqw3eb5iqJ3n4qw5R01NOIOck3K1v7R75cXaNmkbY7PY5LvMhZR-ngb5d1jfNJ6YtLLJlZXz5crRakqslU2rpZXkhlPFsS8W0t8DR8AvOT9z-mp2HfeyHULOXr0BWWOSM5Y-nEWdzXiWVcZzw3KtFMZVo6l0rEGkwX0vOupYVzCccxo7RCGPMUduumtgdAlFS5SmySSTwKWU6ViQ3CIq5TlzhtZABvht8vLjuKDdG6JjQXKDHRSkzERQAHKBshf6L1E_Pv1MdcPdUPWpQADgeBCblaiEpWgnNcQmRFngYw3pLh7VsoxaWpn_BqEKrA3eVDJrK2zWYlqHfW0QX99wyfIuzreQN41inB72_o1SsAvqUetxM8s_f2HVT4luG7V_Dn__3kITxow15t0eQL2F0vN_Yloqe1GsPo49d83O6ZG_JiGA8
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RTwuCAqlodD6AMd0E8deJ8eyUG1gt1TQlXqzbMemkdik2ofU_nvGeZQuggtSTomTKJmHv9HMfAPwDiOESKHrDy1DI_dTjkJdGF_TkBZpkriCRb4beXo2HM_Y50t-uQW874VpivaNLo-rn_Pjqrxqaiuv52bQ14kNzqcjipCQx2KwDQ_QXiPWB-ld8oAx1jngLET4L_p6d5oO8pPcV3JREUYtX-gwFbQbCNNvSttO1ffogn21pFriD3PtpIu_QdE_KyrvbVGnz-Bphy3JSfsNz2HLVrvwsJ02ebsLj6ZdHv0FLEY2_Liub-LBh0keJqQln0bUSb5Z1XhA8vXmFnWLNPPp8bzCg5y3pA7-cl5VuJ7kvr3Ekqn1DcTlck7KioyUrerFldKF50sifrAF7ocvYXb66WI0DrvpC6HhiViFLrPcFUpwngydRcuOLReGibTQseGaGeVcohBtcJMpz7yWZM7FAs8V2mgEMnuwU9WV3QeilU51bGOmcDPkKdVFVCAwEiZxsTOFCuB9__vldUuyIZvghKYSJSYbickoC2AfZSPVD_R_cvad-qyrJ_tBnxLAQS8wqZZzWapSCoGPkCxLkwAON2R49xZK8dHULzjqhSrRvnzSRFW2Xi8l9eE6BqH_XuGLhH1HbwCvWiX4_Q2degUgNtTjboHn9t68girfcHx3Kv76v-88gsfji-lETvKzLwfwpEmCNS2Ub2BntVjbt4ilVvqwsZxfOLoacA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoERWXCsqjaaH1AY5pEsdZJ8eyZdVAt6yAlXqz_KSR2GS1D6n994ydpOwiuCDllDiJknl4RvPNNwi9gwwhFuD6Q0PByN2Uo1Bq5TANuc7T1Goau27k8fXgcko_3WQ3G6O-PGhfyeqs_jk7q6tbj62cz1TU48SiyXhIICTMEhbNtY120GOw2XjQJ-pdAYFS2jnhIoQUgPWYd5JH5Xnp0FyEhXHLGTrIGemGwvQb044VzQZlsENMiiX8NNtOu_hbOPonqnJjmxo9Q_tdfInP2-94jh6Z-gA9aSdO3h-gvXFXS3-BFkMTXqybuyT6cFWGKW4JqCHyxF-N8F4Qf7m7B_3CfkY9nBdw4ElL7OAul3UN63HpWkwMHhvXRFwtZ7iq8VCYulncCqkdZxJ2wy1gT3yJpqOP34eXYTeBIVRZylahLUxmtWBZlg6sAetOTMYUZbmWicokVcLaVEDEkalCOPa1tLA2YXBOSyUhmHmFduumNocISyFzmZiECtgQs5xIHWsIjphKbWKVFgF63_9-Pm-JNrhPUEjOQWLcS4zHRYAOQTZc_AAfyKffiKu8OsIf8CsBOu4FxsVyxitRccbgEZwWeRqgky0ZPryFEHg0cQtOe6FysDFXOBG1adZLTlzKDonov1c4oLDr6g3Q61YJfn9Dp14BYlvq8bDA8XtvXwG19zzfnZof_fedp2hvcjHiV-X152P01NfBfBflG7S7WqzNWwinVvLEG84vSZ0bgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ce-Duox1%2FBLI-3+Generates+Reactive+Oxygen+Species+as+a+Protective+Innate+Immune+Mechanism+in+Caenorhabditis+elegans&rft.jtitle=Infection+and+Immunity&rft.au=Violeta+Ch%C3%A1vez&rft.au=Akiko+Mohri-Shiomi&rft.au=Danielle+A.+Garsin&rft.date=2009-11-01&rft.pub=American+Society+for+Microbiology&rft.issn=0019-9567&rft.eissn=1098-5522&rft.volume=77&rft.issue=11&rft.spage=4983&rft_id=info:doi/10.1128%2FIAI.00627-09&rft_id=info%3Apmid%2F19687201&rft.externalDBID=n%2Fa&rft.externalDocID=iai_77_11_4983
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-9567&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-9567&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-9567&client=summon