Ultrashort echo time (UTE) imaging with bi-component analysis: Bound and free water evaluation of bovine cortical bone subject to sequential drying

Recent proton magnetic resonance (MR) spectroscopy studies have shown that cortical bone exists as different components which have distinct transverse relaxation times (T2s). However, cortical bone shows zero or near zero signal with all conventional MR sequences on clinical scanners and the differe...

Full description

Saved in:
Bibliographic Details
Published inBone (New York, N.Y.) Vol. 50; no. 3; pp. 749 - 755
Main Authors Biswas, Reni, Bae, Won, Diaz, Eric, Masuda, Koichi, Chung, Christine B., Bydder, Graeme M., Du, Jiang
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.03.2012
Elsevier
Subjects
Online AccessGet full text
ISSN8756-3282
1873-2763
1873-2763
DOI10.1016/j.bone.2011.11.029

Cover

Loading…
Abstract Recent proton magnetic resonance (MR) spectroscopy studies have shown that cortical bone exists as different components which have distinct transverse relaxation times (T2s). However, cortical bone shows zero or near zero signal with all conventional MR sequences on clinical scanners and the different water components cannot be assessed with this approach. In order to detect signal in this situation a two-dimensional (2D) non-slice selective ultrashort echo time (UTE) pulse sequence with a nominal TE of 8μs was used together with bi-component analysis to quantify bound and free water in bovine cortical bone at 3T. Total water concentration was quantified using a 3D UTE sequence together with a reference water phantom. 2D and 3D UTE imaging were performed on 14 bovine bone samples which were subjected to sequential air drying to evaluate free water loss, followed by oven drying to evaluate bound water loss. Sequential bone weight loss was measured concurrently using a precision balance. Bone porosity was measured with micro computed tomography (μCT) imaging. UTE measured free water loss was higher than the volume of cortical pores measured with μCT, but lower than the gravimetric bone water loss measured during air drying. UTE assessed bound water loss was about 82% of gravimetric bone water loss during oven drying. On average bovine cortical bone showed about 13% free water and 87% bound water. There was a high correlation (R=0.91; P<0.0001) between UTE MR measured free water loss and gravimetric bone weight loss during sequential air drying, and a significant correlation (R=0.69; P<0.01) between UTE bound water loss and gravimetric bone weight loss during oven drying. These results show that UTE bi-component analysis can reliably quantify bound and free water in cortical bone. The technique has potential applications for the in vivo evaluation of bone porosity and organic matrix. ► UTE MR techniques can measure bound and free water in cortical bone. ► UTE assessed free water loss correlates with gravimetric water loss in air-drying. ► UTE assessed bound water loss correlates with gravimetric water loss in oven-drying. ► The techniques have potential evaluating bone porosity and organic matrix in vivo.
AbstractList Recent proton magnetic resonance (MR) spectroscopy studies have shown that cortical bone exists as different components which have distinct transverse relaxation times (T2s). However, cortical bone shows zero or near zero signal with all conventional MR sequences on clinical scanners and the different water components cannot be assessed with this approach. In order to detect signal in this situation a two-dimensional (2D) non-slice selective ultrashort echo time (UTE) pulse sequence with a nominal TE of 8 μs was used together with bi-component analysis to quantify bound and free water in bovine cortical bone at 3T. Total water concentration was quantified using a 3D UTE sequence together with a reference water phantom. 2D and 3D UTE imaging were performed on 14 bovine bone samples which were subjected to sequential air drying to evaluate free water loss, followed by oven drying to evaluate bound water loss. Sequential bone weight loss was measured concurrently using a precision balance. Bone porosity was measured with micro computed tomography (μCT) imaging. UTE measured free water loss was higher than the volume of cortical pores measured with μCT, but lower than the gravimetric bone water loss measured during air drying. UTE assessed bound water loss was about 82% of gravimetric bone water loss during oven drying. On average bovine cortical bone showed about 13% free water and 87% bound water. There was a high correlation (R=0.91; P<0.0001) between UTE MR measured free water loss and gravimetric bone weight loss during sequential air drying, and a significant correlation (R=0.69; P<0.01) between UTE bound water loss and gravimetric bone weight loss during oven drying. These results show that UTE bi-component analysis can reliably quantify bound and free water in cortical bone. The technique has potential applications for the in vivo evaluation of bone porosity and organic matrix.Recent proton magnetic resonance (MR) spectroscopy studies have shown that cortical bone exists as different components which have distinct transverse relaxation times (T2s). However, cortical bone shows zero or near zero signal with all conventional MR sequences on clinical scanners and the different water components cannot be assessed with this approach. In order to detect signal in this situation a two-dimensional (2D) non-slice selective ultrashort echo time (UTE) pulse sequence with a nominal TE of 8 μs was used together with bi-component analysis to quantify bound and free water in bovine cortical bone at 3T. Total water concentration was quantified using a 3D UTE sequence together with a reference water phantom. 2D and 3D UTE imaging were performed on 14 bovine bone samples which were subjected to sequential air drying to evaluate free water loss, followed by oven drying to evaluate bound water loss. Sequential bone weight loss was measured concurrently using a precision balance. Bone porosity was measured with micro computed tomography (μCT) imaging. UTE measured free water loss was higher than the volume of cortical pores measured with μCT, but lower than the gravimetric bone water loss measured during air drying. UTE assessed bound water loss was about 82% of gravimetric bone water loss during oven drying. On average bovine cortical bone showed about 13% free water and 87% bound water. There was a high correlation (R=0.91; P<0.0001) between UTE MR measured free water loss and gravimetric bone weight loss during sequential air drying, and a significant correlation (R=0.69; P<0.01) between UTE bound water loss and gravimetric bone weight loss during oven drying. These results show that UTE bi-component analysis can reliably quantify bound and free water in cortical bone. The technique has potential applications for the in vivo evaluation of bone porosity and organic matrix.
Recent proton magnetic resonance (MR) spectroscopy studies have shown that cortical bone exists as different components which have distinct transverse relaxation times (T2s). However, cortical bone shows zero or near zero signal with all conventional MR sequences on clinical scanners and the different water components cannot be assessed with this approach. In order to detect signal in this situation a two-dimensional (2D) non-slice selective ultrashort echo time (UTE) pulse sequence with a nominal TE of 8 μs was used together with bi-component analysis to quantify bound and free water in bovine cortical bone at 3T. Total water concentration was quantified using a 3D UTE sequence together with a reference water phantom. 2D and 3D UTE imaging were performed on 14 bovine bone samples which were subjected to sequential air-drying to evaluate free water loss, followed by oven-drying to evaluate bound water loss. Sequential bone weight loss was measured concurrently using a precision balance. Bone porosity was measured with micro computed tomography (μCT) imaging. UTE measured free water loss was higher than the volume of cortical pores measured with μCT, but lower than the gravimetric bone water loss measured during air-drying. UTE assessed bound water loss was about 82% of gravimetric bone water loss during oven-drying. On average bovine cortical bone showed about 13% free water and 87% bound water. There was a high correlation (R = 0.91; P < 0.0001) between UTE MR measured free water loss and gravimetric bone weight loss during sequential air-drying, and a significant correlation (R = 0.69; P < 0.01) between UTE bound water loss and gravimetric bone weight loss during oven-drying. These results show that UTE bi-component analysis can reliably quantify bound and free water in cortical bone. The technique has potential applications for the in vivo evaluation of bone porosity and organic matrix.
Recent proton magnetic resonance (MR) spectroscopy studies have shown that cortical bone exists as different components which have distinct transverse relaxation times (T2s). However, cortical bone shows zero or near zero signal with all conventional MR sequences on clinical scanners and the different water components cannot be assessed with this approach. In order to detect signal in this situation a two-dimensional (2D) non-slice selective ultrashort echo time (UTE) pulse sequence with a nominal TE of 8μs was used together with bi-component analysis to quantify bound and free water in bovine cortical bone at 3T. Total water concentration was quantified using a 3D UTE sequence together with a reference water phantom. 2D and 3D UTE imaging were performed on 14 bovine bone samples which were subjected to sequential air drying to evaluate free water loss, followed by oven drying to evaluate bound water loss. Sequential bone weight loss was measured concurrently using a precision balance. Bone porosity was measured with micro computed tomography (μCT) imaging. UTE measured free water loss was higher than the volume of cortical pores measured with μCT, but lower than the gravimetric bone water loss measured during air drying. UTE assessed bound water loss was about 82% of gravimetric bone water loss during oven drying. On average bovine cortical bone showed about 13% free water and 87% bound water. There was a high correlation (R=0.91; P<0.0001) between UTE MR measured free water loss and gravimetric bone weight loss during sequential air drying, and a significant correlation (R=0.69; P<0.01) between UTE bound water loss and gravimetric bone weight loss during oven drying. These results show that UTE bi-component analysis can reliably quantify bound and free water in cortical bone. The technique has potential applications for the in vivo evaluation of bone porosity and organic matrix. ► UTE MR techniques can measure bound and free water in cortical bone. ► UTE assessed free water loss correlates with gravimetric water loss in air-drying. ► UTE assessed bound water loss correlates with gravimetric water loss in oven-drying. ► The techniques have potential evaluating bone porosity and organic matrix in vivo.
Abstract Recent proton magnetic resonance (MR) spectroscopy studies have shown that cortical bone exists as different components which have distinct transverse relaxation times (T2s). However, cortical bone shows zero or near zero signal with all conventional MR sequences on clinical scanners and the different water components cannot be assessed with this approach. In order to detect signal in this situation a two-dimensional (2D) non-slice selective ultrashort echo time (UTE) pulse sequence with a nominal TE of 8 μs was used together with bi-component analysis to quantify bound and free water in bovine cortical bone at 3T. Total water concentration was quantified using a 3D UTE sequence together with a reference water phantom. 2D and 3D UTE imaging were performed on 14 bovine bone samples which were subjected to sequential air drying to evaluate free water loss, followed by oven drying to evaluate bound water loss. Sequential bone weight loss was measured concurrently using a precision balance. Bone porosity was measured with micro computed tomography (μCT) imaging. UTE measured free water loss was higher than the volume of cortical pores measured with μCT, but lower than the gravimetric bone water loss measured during air drying. UTE assessed bound water loss was about 82% of gravimetric bone water loss during oven drying. On average bovine cortical bone showed about 13% free water and 87% bound water. There was a high correlation (R = 0.91; P < 0.0001) between UTE MR measured free water loss and gravimetric bone weight loss during sequential air drying, and a significant correlation (R = 0.69; P < 0.01) between UTE bound water loss and gravimetric bone weight loss during oven drying. These results show that UTE bi-component analysis can reliably quantify bound and free water in cortical bone. The technique has potential applications for the in vivo evaluation of bone porosity and organic matrix.
Author Bae, Won
Chung, Christine B.
Masuda, Koichi
Bydder, Graeme M.
Biswas, Reni
Diaz, Eric
Du, Jiang
AuthorAffiliation 2 Department of Orthopedic Surgery, University of California, San Diego
1 Department of Radiology, University of California, San Diego
AuthorAffiliation_xml – name: 1 Department of Radiology, University of California, San Diego
– name: 2 Department of Orthopedic Surgery, University of California, San Diego
Author_xml – sequence: 1
  givenname: Reni
  surname: Biswas
  fullname: Biswas, Reni
  organization: Department of Radiology, University of California, San Diego, CA, USA
– sequence: 2
  givenname: Won
  surname: Bae
  fullname: Bae, Won
  organization: Department of Radiology, University of California, San Diego, CA, USA
– sequence: 3
  givenname: Eric
  surname: Diaz
  fullname: Diaz, Eric
  organization: Department of Radiology, University of California, San Diego, CA, USA
– sequence: 4
  givenname: Koichi
  surname: Masuda
  fullname: Masuda, Koichi
  organization: Department of Orthopedic Surgery, University of California, San Diego, CA, USA
– sequence: 5
  givenname: Christine B.
  surname: Chung
  fullname: Chung, Christine B.
  organization: Department of Radiology, University of California, San Diego, CA, USA
– sequence: 6
  givenname: Graeme M.
  surname: Bydder
  fullname: Bydder, Graeme M.
  organization: Department of Radiology, University of California, San Diego, CA, USA
– sequence: 7
  givenname: Jiang
  surname: Du
  fullname: Du, Jiang
  email: jiangdu@ucsd.edu
  organization: Department of Radiology, University of California, San Diego, CA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27153537$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22178540$$D View this record in MEDLINE/PubMed
BookMark eNp9UstuEzEUtVARTQs_wAJ5g4DFBD9mPDNdIEFVHlIlFjQSO8vjsROHiZ3anlT5Dn6YOzTlJVHJkmXfc8-5j3OCjnzwBqGnlMwpoeL1et7Bx5wRSudwCGsfoBltal6wWvAjNGvqShScNewYnaS0JoTwtqaP0DFjtG6qkszQ98WQo0qrEDM2ehVwdhuDXy6uLl5ht1FL55f4xuUV7lyhw2YLgj5j5dWwTy6d4Xdh9D28e2yjMfhGZROx2alhVNkFj4PFXdg5b7AGCafVgKeicRq7tdEZ54CTuR6B1EGoj3sQfIweWjUk8-Rwn6LF-4ur84_F5ecPn87fXha64nUubENK2ulKiI621jSiYZoK2wrecyIqbllHTFUJ1beksZ2lVd1qTqhVShtGFT9Fb255t2O3Mb2GIqIa5DZC43Evg3Ly74h3K7kMO8lLwSvCgeDFgSAG6CFluXFJm2FQ3oQxyZbRktVlSwH57E-pXxp3iwDA8wNAJRiSjcprl37jalpx6BpwzS1Ox5BSNFZql3-OGip0g6RETt6QazmNWU7ekHDAG5DK_km9Y7836TAjA4vYOROlHpyf9vjN7E1ahzGCF5KkMjFJ5JfJcpPjKBBy0X4FgrP_E8g-uPvUfwAHmOmq
CitedBy_id crossref_primary_10_1002_advs_202300959
crossref_primary_10_1016_j_jmr_2012_12_011
crossref_primary_10_1016_j_bone_2023_116743
crossref_primary_10_1007_s11914_023_00856_w
crossref_primary_10_13104_imri_2019_23_3_202
crossref_primary_10_1002_nbm_3169
crossref_primary_10_1002_mrm_28140
crossref_primary_10_1007_s00330_018_5419_x
crossref_primary_10_1371_journal_pone_0173995
crossref_primary_10_1097_RCT_0000000000000307
crossref_primary_10_1097_RLI_0000000000000916
crossref_primary_10_1016_j_forsciint_2024_112223
crossref_primary_10_7498_aps_62_088701
crossref_primary_10_1002_anse_202300057
crossref_primary_10_1016_j_neuroimage_2013_10_053
crossref_primary_10_1002_mrm_26648
crossref_primary_10_1002_mrm_26846
crossref_primary_10_1038_s41598_019_45897_3
crossref_primary_10_3389_fendo_2020_567417
crossref_primary_10_1016_j_bone_2023_116676
crossref_primary_10_1148_radiol_15141850
crossref_primary_10_1371_journal_pone_0181750
crossref_primary_10_3390_bioengineering12010016
crossref_primary_10_1002_mrm_26592
crossref_primary_10_1002_nbm_3994
crossref_primary_10_3389_fendo_2025_1510010
crossref_primary_10_1002_jemt_24011
crossref_primary_10_1016_j_jmbbm_2018_12_031
crossref_primary_10_1002_jmri_24758
crossref_primary_10_1002_mrm_24296
crossref_primary_10_1063_5_0086459
crossref_primary_10_3389_fendo_2020_555756
crossref_primary_10_1002_mrm_24497
crossref_primary_10_1016_j_bone_2024_117173
crossref_primary_10_1002_jmri_28032
crossref_primary_10_1016_j_bonr_2021_101161
crossref_primary_10_1002_mrm_26277
crossref_primary_10_1016_j_saa_2020_118229
crossref_primary_10_1002_nbm_3436
crossref_primary_10_1007_s00723_016_0839_8
crossref_primary_10_1016_j_bone_2014_06_004
crossref_primary_10_1016_j_mri_2020_04_014
crossref_primary_10_1016_j_pnmrs_2019_07_001
crossref_primary_10_3389_fendo_2023_1148345
crossref_primary_10_3390_tomography11020012
crossref_primary_10_1016_j_bone_2015_07_024
crossref_primary_10_1155_2019_8597423
crossref_primary_10_1002_jbmr_2470
crossref_primary_10_1002_nbm_2906
crossref_primary_10_3389_fendo_2022_801930
crossref_primary_10_1055_s_0043_1776431
crossref_primary_10_1148_radiol_2016160780
crossref_primary_10_2463_mrms_mp_2015_0171
crossref_primary_10_1016_j_bone_2019_03_013
crossref_primary_10_1002_mrm_28528
crossref_primary_10_1002_mrm_28648
crossref_primary_10_1002_nbm_3107
crossref_primary_10_1002_nbm_3228
crossref_primary_10_1002_nbm_3305
crossref_primary_10_1002_nbm_3547
crossref_primary_10_1002_nbm_4878
crossref_primary_10_1002_mrm_25651
crossref_primary_10_1007_s11914_016_0307_2
crossref_primary_10_1118_1_4862838
crossref_primary_10_3389_fpls_2020_01035
crossref_primary_10_1002_mrm_24769
crossref_primary_10_1007_s11307_019_01345_2
crossref_primary_10_1055_s_0040_1710355
crossref_primary_10_1002_mrm_27715
crossref_primary_10_1186_s41747_023_00418_w
crossref_primary_10_1002_mrm_27718
crossref_primary_10_1002_jbmr_2580
crossref_primary_10_1002_jmri_25104
crossref_primary_10_1364_BOE_557218
crossref_primary_10_1118_1_4819944
crossref_primary_10_1148_radiol_2015140336
crossref_primary_10_1002_nbm_3533
crossref_primary_10_1002_mrm_28272
crossref_primary_10_1002_mrm_26292
crossref_primary_10_1002_mrm_29484
crossref_primary_10_1016_j_bone_2016_03_007
crossref_primary_10_1016_j_bone_2015_10_006
crossref_primary_10_1148_radiol_14132585
crossref_primary_10_1016_j_jbiomech_2023_111454
crossref_primary_10_1016_j_bone_2024_117031
crossref_primary_10_1007_s00330_015_3804_2
crossref_primary_10_1148_radiol_221810
crossref_primary_10_1002_nbm_3579
crossref_primary_10_1148_radiol_12111883
crossref_primary_10_1016_j_bone_2020_115774
Cites_doi 10.1002/mrm.22433
10.1002/nbm.1066
10.1148/radiol.2482071995
10.1016/S0021-9290(98)00161-4
10.1016/j.mri.2003.05.005
10.1016/j.jmr.2010.09.013
10.1016/j.mri.2008.09.003
10.1016/S8756-3282(97)00227-5
10.1016/j.mri.2005.02.017
10.1002/nbm.1179
10.2106/00004623-196648010-00014
10.1002/mrm.21771
10.1002/mrm.10512
10.1016/j.bone.2005.03.014
10.1002/mrm.22682
10.1016/S0006-3495(02)75417-9
10.2106/00004623-197557010-00013
10.1088/0957-0233/18/3/022
10.1359/jbmr.2001.16.7.1308
10.1002/mrm.21926
10.2106/00004623-195739010-00015
10.1007/s10439-005-8965-8
10.1016/j.bone.2007.09.049
10.2106/00004623-199308000-00009
10.1016/j.mri.2010.11.003
10.1016/0021-9290(88)90186-8
10.1002/mrm.10728
10.1016/j.bone.2010.02.020
10.1007/BF02012759
10.1016/0026-2862(82)90064-4
10.1097/00004728-200311000-00001
10.1359/JBMR.0301227
10.1016/S0736-0266(02)00157-2
10.1002/mrm.22459
10.1016/S0730-725X(03)00129-2
10.1007/BF02409497
10.1002/mrm.1910350315
ContentType Journal Article
Copyright 2011 Elsevier Inc.
Elsevier Inc.
2014 INIST-CNRS
Copyright © 2011 Elsevier Inc. All rights reserved.
2012 Elsevier Inc. All rights reserved. 2012
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: Elsevier Inc.
– notice: 2014 INIST-CNRS
– notice: Copyright © 2011 Elsevier Inc. All rights reserved.
– notice: 2012 Elsevier Inc. All rights reserved. 2012
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.bone.2011.11.029
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1873-2763
EndPage 755
ExternalDocumentID PMC3463503
22178540
27153537
10_1016_j_bone_2011_11_029
1_s2_0_S875632821101369X
S875632821101369X
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: R21 AR057901
– fundername: NIAMS NIH HHS
  grantid: K01 AR059764
– fundername: NIAMS NIH HHS
  grantid: 1R21AR057901-01A1
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABGSF
ABJNI
ABLJU
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEB
HMK
HMO
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OF0
OR.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
WUQ
X7M
Z5R
ZGI
ZMT
~02
~G-
1RT
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAYXX
AGRNS
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c537t-f8041bc566b19fe8682c16f963d30653f2b0e556ad908fbf1579c301faace21a3
ISSN 8756-3282
1873-2763
IngestDate Thu Aug 21 18:45:40 EDT 2025
Fri Jul 11 07:08:24 EDT 2025
Sat May 31 02:07:38 EDT 2025
Wed Apr 02 07:24:35 EDT 2025
Tue Jul 01 03:41:20 EDT 2025
Thu Apr 24 23:08:59 EDT 2025
Sun Feb 23 10:19:35 EST 2025
Tue Aug 26 18:03:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Ultrashort TE
Bi-component analysis
Free water
Porosity
T2
Bound water
Water
Human
Bovine
Vertebrata
Mammalia
Morphology
Echo time
Artiodactyla
Ungulata
Cortical bone
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2011 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c537t-f8041bc566b19fe8682c16f963d30653f2b0e556ad908fbf1579c301faace21a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3463503
PMID 22178540
PQID 921427491
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3463503
proquest_miscellaneous_921427491
pubmed_primary_22178540
pascalfrancis_primary_27153537
crossref_citationtrail_10_1016_j_bone_2011_11_029
crossref_primary_10_1016_j_bone_2011_11_029
elsevier_clinicalkeyesjournals_1_s2_0_S875632821101369X
elsevier_clinicalkey_doi_10_1016_j_bone_2011_11_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-01
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle Bone (New York, N.Y.)
PublicationTitleAlternate Bone
PublicationYear 2012
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Hanus, Gillis (bb0200) 1984; 59
Wehrli, Fernandez-Seara (bb0055) 2005; 33
Graham, Stanchev, Bronskill (bb0160) 1996; 35
Timmins, Wall (bb0030) 1977; 23
Techawiboonwong, Song, Wehrli (bb0070) 2008; 21
Mankin, Thrasher (bb0235) 1975; 57
Fernandez-Seara, Wehrli, Takahashi, Wehrli (bb0115) 2004; 19
Nyman, Ni, Nicolella, Wang (bb0105) 2008; 42
Cao, Ackerman, Hrovat, Graham, Glimcher, Wu (bb0090) 2008; 60
Ni, Nyman, Wang, De Los Santos, Nicolella (bb0100) 2007; 18
Fantazinni, Brown, Borgia (bb0190) 2003; 21
Elliott, Robinson (bb0025) 1957; 39
Mueller, Trias, Ray (bb0035) 1966; 48
Diab, Vashishth (bb0210) 2005; 37
Woessner (bb0195) 1980; 39
Du, Carl, Bydder, Takahashi, Chung, Bydder (bb0080) 2010; 207
Cowin (bb0045) 1999; 32
Horch, Nyman, Gochberg, Dortch, Does (bb0120) 2010; 64
Martin, Burr (bb0215) 1989
Lees (bb0005) 1981; 33
Du, Corbeil, Znamirowski, Angle, Peterson, Bydder (bb0145) 2011; 65
Cao, Nazarian, Ackerman, Snyder, Rosenberg, Nazarian (bb0095) 2010; 46
Techawiboonwong, Song, Leonard, Wehrli (bb0075) 2008; 248
Du, Bydder, Takahashi, Carl, Chung, Bydder (bb0140) 2011; 29
Whittall, MacKay (bb0155) 1989; 84
Bousson, Meunier, Bergot, Vicaut, Rocha, Morais (bb0220) 2001; 16
Nyman, Roy, Shen, Rae, Tyler, Wang (bb0050) 2006; 39
Diaz, Chung, Bae, Statum, Znamirowski, Bydder (bb0175) March 11, 2011
Robinson, Elliot (bb0020) 1957; 39
bb0010
Wu, Ackerman, Chesler, Graham, Wang, Glimcher (bb0085) 2003; 50
Yeni, Brown, Norman (bb0065) 1998; 22
Robson, Gatehouse, Bydder, Bydder (bb0125) 2003; 27
Fernandez-Seara, Wehrli, Wehrli (bb0150) 2002; 82
Anastasiou, Hall (bb0165) 2004; 22
Neuman, Neuman (bb0015) 1958
Bothakur, Reddy, Wehrli (bb0185) 1998
Wang, Ni (bb0110) 2003; 21
Schaffler, Burr (bb0225) 1988; 21
Wehrli, Song, Saha, Wright (bb0060) 2006; 19
McCalden, McGeough, Barker, Court-Brown (bb0205) 1993; 75
Morris, Lopez-Curto, Hughes, An, Bassingthwaighte, Kelly (bb0040) 1982; 32
Du, Pak, Znamirowski, Statum, Takahashi, Chung (bb0135) 2009; 27
Reichert, Robson, Gatehouse, He, Chappell, Holmes (bb0130) 2005; 23
Carl, Bydder, Du, Takahashi, Han (bb0230) 2010; 64
Reiter, Lin, Fishbein, Spencer (bb0180) 2009; 61
Sijbers, den Dekker (bb0170) 2004; 51
Lees (10.1016/j.bone.2011.11.029_bb0005) 1981; 33
Techawiboonwong (10.1016/j.bone.2011.11.029_bb0075) 2008; 248
Bousson (10.1016/j.bone.2011.11.029_bb0220) 2001; 16
Mankin (10.1016/j.bone.2011.11.029_bb0235) 1975; 57
Schaffler (10.1016/j.bone.2011.11.029_bb0225) 1988; 21
Ni (10.1016/j.bone.2011.11.029_bb0100) 2007; 18
Fantazinni (10.1016/j.bone.2011.11.029_bb0190) 2003; 21
Diab (10.1016/j.bone.2011.11.029_bb0210) 2005; 37
Neuman (10.1016/j.bone.2011.11.029_bb0015) 1958
Hanus (10.1016/j.bone.2011.11.029_bb0200) 1984; 59
Mueller (10.1016/j.bone.2011.11.029_bb0035) 1966; 48
Cowin (10.1016/j.bone.2011.11.029_bb0045) 1999; 32
Morris (10.1016/j.bone.2011.11.029_bb0040) 1982; 32
Techawiboonwong (10.1016/j.bone.2011.11.029_bb0070) 2008; 21
Woessner (10.1016/j.bone.2011.11.029_bb0195) 1980; 39
McCalden (10.1016/j.bone.2011.11.029_bb0205) 1993; 75
Du (10.1016/j.bone.2011.11.029_bb0135) 2009; 27
Elliott (10.1016/j.bone.2011.11.029_bb0025) 1957; 39
Nyman (10.1016/j.bone.2011.11.029_bb0050) 2006; 39
Anastasiou (10.1016/j.bone.2011.11.029_bb0165) 2004; 22
Diaz (10.1016/j.bone.2011.11.029_bb0175) 2011
Horch (10.1016/j.bone.2011.11.029_bb0120) 2010; 64
Du (10.1016/j.bone.2011.11.029_bb0080) 2010; 207
Robson (10.1016/j.bone.2011.11.029_bb0125) 2003; 27
Wehrli (10.1016/j.bone.2011.11.029_bb0055) 2005; 33
Timmins (10.1016/j.bone.2011.11.029_bb0030) 1977; 23
Sijbers (10.1016/j.bone.2011.11.029_bb0170) 2004; 51
Wehrli (10.1016/j.bone.2011.11.029_bb0060) 2006; 19
Cao (10.1016/j.bone.2011.11.029_bb0090) 2008; 60
Wang (10.1016/j.bone.2011.11.029_bb0110) 2003; 21
Graham (10.1016/j.bone.2011.11.029_bb0160) 1996; 35
Cao (10.1016/j.bone.2011.11.029_bb0095) 2010; 46
Du (10.1016/j.bone.2011.11.029_bb0145) 2011; 65
Whittall (10.1016/j.bone.2011.11.029_bb0155) 1989; 84
Bothakur (10.1016/j.bone.2011.11.029_bb0185) 1998
Martin (10.1016/j.bone.2011.11.029_bb0215) 1989
Robinson (10.1016/j.bone.2011.11.029_bb0020) 1957; 39
Fernandez-Seara (10.1016/j.bone.2011.11.029_bb0150) 2002; 82
Reichert (10.1016/j.bone.2011.11.029_bb0130) 2005; 23
Du (10.1016/j.bone.2011.11.029_bb0140) 2011; 29
Yeni (10.1016/j.bone.2011.11.029_bb0065) 1998; 22
Fernandez-Seara (10.1016/j.bone.2011.11.029_bb0115) 2004; 19
Wu (10.1016/j.bone.2011.11.029_bb0085) 2003; 50
Reiter (10.1016/j.bone.2011.11.029_bb0180) 2009; 61
Carl (10.1016/j.bone.2011.11.029_bb0230) 2010; 64
Nyman (10.1016/j.bone.2011.11.029_bb0105) 2008; 42
References_xml – volume: 22
  start-page: 79
  year: 1998
  end-page: 84
  ident: bb0065
  article-title: Influence of bone composition and apparent density on fracture toughness of the human femur and tibia
  publication-title: Bone
– volume: 37
  start-page: 96
  year: 2005
  end-page: 102
  ident: bb0210
  article-title: Effects of damage morphology on cortical bone fragility
  publication-title: Bone
– volume: 57
  start-page: 76
  year: 1975
  end-page: 80
  ident: bb0235
  article-title: Water content and binding in normal and osteoarthritic human cartilage
  publication-title: J Bone Joint Surg
– volume: 27
  start-page: 825
  year: 2003
  end-page: 846
  ident: bb0125
  article-title: Magnetic resonance: an introduction to ultrashort TE (UTE) imaging
  publication-title: J Comput Assist Tomogr
– volume: 39
  start-page: 297
  year: 1980
  end-page: 308
  ident: bb0195
  article-title: An NMR investigation into the range of the surface effect on the rotation of water molecules
  publication-title: J Magn Reson
– volume: 39
  start-page: 167
  year: 1957
  end-page: 188
  ident: bb0020
  article-title: The water content of bone
  publication-title: J Bone Joint Surg
– volume: 32
  start-page: 188
  year: 1982
  end-page: 200
  ident: bb0040
  article-title: Fluid spaces in canine bone and marrow
  publication-title: Microvasc Res
– volume: 19
  start-page: 289
  year: 2004
  end-page: 296
  ident: bb0115
  article-title: Water content measured by proton-deuteron exchange NMR predicts bone mineral density and mechanical properties
  publication-title: J Bone Miner Res
– volume: 21
  start-page: 13
  year: 1988
  end-page: 16
  ident: bb0225
  article-title: Stiffness of compact bone: effects of porosity and density
  publication-title: J Biomech
– volume: 65
  start-page: 1013
  year: 2011
  end-page: 1020
  ident: bb0145
  article-title: Direct imaging and quantification of carotid plaque calcification
  publication-title: Magn Reson Med
– volume: 16
  start-page: 1308
  year: 2001
  end-page: 1317
  ident: bb0220
  article-title: Distribution of intracortical porosity in human midfemoral cortex by age and gender
  publication-title: J Bone Miner Res
– year: 1989
  ident: bb0215
  article-title: The microscopic structure of bone
  publication-title: Structure, function, and adaptation of compact bone
– ident: bb0010
  article-title: American Society for Bone and Mineral Research ASBMR Bone Curriculum 2004
– volume: 21
  start-page: 312
  year: 2003
  end-page: 319
  ident: bb0110
  article-title: Determination of cortical bone porosity and pore size distribution using a low field pulsed NMR approach
  publication-title: J Orthop Res
– volume: 29
  start-page: 470
  year: 2011
  end-page: 482
  ident: bb0140
  article-title: Short T2 contrast with three-dimensional ultrashort echo time imaging
  publication-title: Magn Reson Imaging
– volume: 19
  start-page: 731
  year: 2006
  end-page: 764
  ident: bb0060
  article-title: Quantitative MRI for the assessment of bone structure and function
  publication-title: NMR Biomed
– volume: 32
  start-page: 217
  year: 1999
  end-page: 238
  ident: bb0045
  article-title: Bone poroelasticity
  publication-title: J Biomech
– volume: 21
  start-page: 227
  year: 2003
  end-page: 234
  ident: bb0190
  article-title: Bone tissue and porous media: common features and differences studied by NMR relaxation
  publication-title: Magn Reson Imaging
– volume: 39
  start-page: 167
  year: 1957
  end-page: 188
  ident: bb0025
  article-title: The water content of bone. I. The mass of water, inorganic crystals, organic matrix, and CO2 space components in a unit volume of the dog bone
  publication-title: J Bone Joint Surg Am
– volume: 51
  start-page: 586
  year: 2004
  end-page: 594
  ident: bb0170
  article-title: Maximum likelihood estimation of signal amplitude and noise variance from MR data
  publication-title: Magn Reson Med
– year: 1998
  ident: bb0185
  article-title: NMR studies of exchangeable hydrogen in bone
  publication-title: Proceedings of the 6th Annual Meeting of ISMRM, Sydney, Australia
– volume: 27
  start-page: 557
  year: 2009
  end-page: 564
  ident: bb0135
  article-title: Magic angle effect in magnetic resonance imaging of the Achilles tendon and enthesis
  publication-title: Magn Reson Imaging
– volume: 42
  start-page: 193
  year: 2008
  end-page: 199
  ident: bb0105
  article-title: Measurements of mobile and bound water by nuclear magnetic resonance correlate with mechanical properties of bone
  publication-title: Bone
– volume: 64
  start-page: 481
  year: 2010
  end-page: 490
  ident: bb0230
  article-title: Optimization of RF excitation to maximize signal and T2 contrast of tissues with rapid transverse relaxation
  publication-title: Magn Reson Med
– volume: 46
  start-page: 1582
  year: 2010
  end-page: 1590
  ident: bb0095
  article-title: Quantitative 31P NMR spectroscopy and 1H MRI measurements of bone mineral and matrix density differentiate metabolic bone diseases in rat models
  publication-title: Bone
– volume: 207
  start-page: 304
  year: 2010
  end-page: 311
  ident: bb0080
  article-title: Qualitative and quantitative ultrashort echo time (UTE) imaging of cortical bone
  publication-title: J Magn Reson
– volume: 50
  start-page: 59
  year: 2003
  end-page: 68
  ident: bb0085
  article-title: Density of organic matrix of native mineralized bone measured by water- and fat-suppressed proton projection MRI
  publication-title: Magn Reson Med
– volume: 33
  start-page: 79
  year: 2005
  end-page: 86
  ident: bb0055
  article-title: Nuclear magnetic resonance studies of bone water
  publication-title: Ann Biomed Eng
– volume: 60
  start-page: 1433
  year: 2008
  end-page: 1443
  ident: bb0090
  article-title: Quantitative bone matrix density measurement by water- and fat-suppressed proton projection MRI (WASPI) with polymer calibration phantoms
  publication-title: Magn Reson Med
– volume: 64
  start-page: 680
  year: 2010
  end-page: 687
  ident: bb0120
  article-title: Characterization of 1H NMR signal in human cortical bone for magnetization resonance imaging
  publication-title: Magn Reson Med
– volume: 22
  start-page: 67
  year: 2004
  end-page: 80
  ident: bb0165
  article-title: Optimization of T2 and M0 measurements of bi-exponential systems
  publication-title: Magn Reson Imaging
– year: March 11, 2011
  ident: bb0175
  article-title: Ultrashort echo time spectroscopic imaging (UTESI): an efficient method for quantifying bound and free water
  publication-title: NMR Biomed
– volume: 82
  start-page: 522
  year: 2002
  end-page: 529
  ident: bb0150
  article-title: Diffusion of exchangeable water in cortical bone studies by nuclear magnetic resonance
  publication-title: Biophys J
– volume: 35
  start-page: 370
  year: 1996
  end-page: 378
  ident: bb0160
  article-title: Criteria for analysis of multicomponent tissue T2 relaxation data
  publication-title: Magn Reson Med
– volume: 39
  start-page: 931
  year: 2006
  end-page: 938
  ident: bb0050
  article-title: The influence of water removal on the strength and toughness of cortical bone
  publication-title: J Biochem
– volume: 59
  start-page: 437
  year: 1984
  end-page: 445
  ident: bb0200
  article-title: Relaxation of water absorbed on the surface of silica power
  publication-title: J Magn Reson
– start-page: 101
  year: 1958
  ident: bb0015
  article-title: Skeletal dynamics the chemical dynamics of bone mineral
– volume: 18
  start-page: 715
  year: 2007
  end-page: 723
  ident: bb0100
  article-title: Assessment of water distribution changes in human cortical bone by nuclear magnetic resonance
  publication-title: Meas Sci Technol
– volume: 61
  start-page: 803
  year: 2009
  end-page: 809
  ident: bb0180
  article-title: Multicomponent T2 relaxation analysis in cartilage
  publication-title: Magn Reson Med
– volume: 21
  start-page: 59
  year: 2008
  end-page: 70
  ident: bb0070
  article-title: In vivo MRI of submillisecond T2 species with two-dimensional and three-dimensional radial sequences and applications to the measurement of cortical bone water
  publication-title: NMR Biomed
– volume: 75
  start-page: 1193
  year: 1993
  end-page: 1205
  ident: bb0205
  article-title: Age-related changes in the tensile properties of cortical bone: the relative importance of changes in porosity, mineralization and microstructure
  publication-title: J Bone Joint Surg Am
– volume: 33
  start-page: 591
  year: 1981
  end-page: 602
  ident: bb0005
  article-title: A mixed pacing model for bone collagen
  publication-title: Calcif Tissue Int
– volume: 248
  start-page: 824
  year: 2008
  end-page: 833
  ident: bb0075
  article-title: Cortial bone water: in vivo quantification with ultrashort echo-time MR imaging
  publication-title: Radiology
– volume: 84
  start-page: 134
  year: 1989
  end-page: 152
  ident: bb0155
  article-title: Quantitative interpretation of NMR relaxation data
  publication-title: J Magn Reson
– volume: 23
  start-page: 611
  year: 2005
  end-page: 618
  ident: bb0130
  article-title: Magnetic resonance imaging of cortical bone with ultrashort TE (UTE) pulse sequences
  publication-title: Magn Reson Imaging
– volume: 23
  start-page: 1
  year: 1977
  end-page: 5
  ident: bb0030
  article-title: Bone water
  publication-title: Calcif Tissue Res
– volume: 48
  start-page: 140
  year: 1966
  end-page: 148
  ident: bb0035
  article-title: Bone density and composition: age-related and pathological changes in water and mineral content
  publication-title: J Bone Joint Surg Am
– year: 2011
  ident: 10.1016/j.bone.2011.11.029_bb0175
  article-title: Ultrashort echo time spectroscopic imaging (UTESI): an efficient method for quantifying bound and free water
  publication-title: NMR Biomed
– volume: 64
  start-page: 481
  year: 2010
  ident: 10.1016/j.bone.2011.11.029_bb0230
  article-title: Optimization of RF excitation to maximize signal and T2 contrast of tissues with rapid transverse relaxation
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22433
– volume: 39
  start-page: 931
  year: 2006
  ident: 10.1016/j.bone.2011.11.029_bb0050
  article-title: The influence of water removal on the strength and toughness of cortical bone
  publication-title: J Biochem
– volume: 19
  start-page: 731
  year: 2006
  ident: 10.1016/j.bone.2011.11.029_bb0060
  article-title: Quantitative MRI for the assessment of bone structure and function
  publication-title: NMR Biomed
  doi: 10.1002/nbm.1066
– volume: 248
  start-page: 824
  year: 2008
  ident: 10.1016/j.bone.2011.11.029_bb0075
  article-title: Cortial bone water: in vivo quantification with ultrashort echo-time MR imaging
  publication-title: Radiology
  doi: 10.1148/radiol.2482071995
– volume: 32
  start-page: 217
  year: 1999
  ident: 10.1016/j.bone.2011.11.029_bb0045
  article-title: Bone poroelasticity
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(98)00161-4
– volume: 22
  start-page: 67
  year: 2004
  ident: 10.1016/j.bone.2011.11.029_bb0165
  article-title: Optimization of T2 and M0 measurements of bi-exponential systems
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2003.05.005
– volume: 207
  start-page: 304
  year: 2010
  ident: 10.1016/j.bone.2011.11.029_bb0080
  article-title: Qualitative and quantitative ultrashort echo time (UTE) imaging of cortical bone
  publication-title: J Magn Reson
  doi: 10.1016/j.jmr.2010.09.013
– volume: 27
  start-page: 557
  issue: 4
  year: 2009
  ident: 10.1016/j.bone.2011.11.029_bb0135
  article-title: Magic angle effect in magnetic resonance imaging of the Achilles tendon and enthesis
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2008.09.003
– volume: 22
  start-page: 79
  year: 1998
  ident: 10.1016/j.bone.2011.11.029_bb0065
  article-title: Influence of bone composition and apparent density on fracture toughness of the human femur and tibia
  publication-title: Bone
  doi: 10.1016/S8756-3282(97)00227-5
– volume: 23
  start-page: 611
  year: 2005
  ident: 10.1016/j.bone.2011.11.029_bb0130
  article-title: Magnetic resonance imaging of cortical bone with ultrashort TE (UTE) pulse sequences
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2005.02.017
– year: 1998
  ident: 10.1016/j.bone.2011.11.029_bb0185
  article-title: NMR studies of exchangeable hydrogen in bone
– volume: 21
  start-page: 59
  year: 2008
  ident: 10.1016/j.bone.2011.11.029_bb0070
  article-title: In vivo MRI of submillisecond T2 species with two-dimensional and three-dimensional radial sequences and applications to the measurement of cortical bone water
  publication-title: NMR Biomed
  doi: 10.1002/nbm.1179
– volume: 48
  start-page: 140
  year: 1966
  ident: 10.1016/j.bone.2011.11.029_bb0035
  article-title: Bone density and composition: age-related and pathological changes in water and mineral content
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/00004623-196648010-00014
– volume: 60
  start-page: 1433
  year: 2008
  ident: 10.1016/j.bone.2011.11.029_bb0090
  article-title: Quantitative bone matrix density measurement by water- and fat-suppressed proton projection MRI (WASPI) with polymer calibration phantoms
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21771
– volume: 59
  start-page: 437
  year: 1984
  ident: 10.1016/j.bone.2011.11.029_bb0200
  article-title: Relaxation of water absorbed on the surface of silica power
  publication-title: J Magn Reson
– volume: 50
  start-page: 59
  year: 2003
  ident: 10.1016/j.bone.2011.11.029_bb0085
  article-title: Density of organic matrix of native mineralized bone measured by water- and fat-suppressed proton projection MRI
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10512
– volume: 37
  start-page: 96
  year: 2005
  ident: 10.1016/j.bone.2011.11.029_bb0210
  article-title: Effects of damage morphology on cortical bone fragility
  publication-title: Bone
  doi: 10.1016/j.bone.2005.03.014
– volume: 65
  start-page: 1013
  year: 2011
  ident: 10.1016/j.bone.2011.11.029_bb0145
  article-title: Direct imaging and quantification of carotid plaque calcification
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22682
– volume: 82
  start-page: 522
  year: 2002
  ident: 10.1016/j.bone.2011.11.029_bb0150
  article-title: Diffusion of exchangeable water in cortical bone studies by nuclear magnetic resonance
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(02)75417-9
– volume: 57
  start-page: 76
  year: 1975
  ident: 10.1016/j.bone.2011.11.029_bb0235
  article-title: Water content and binding in normal and osteoarthritic human cartilage
  publication-title: J Bone Joint Surg
  doi: 10.2106/00004623-197557010-00013
– volume: 18
  start-page: 715
  year: 2007
  ident: 10.1016/j.bone.2011.11.029_bb0100
  article-title: Assessment of water distribution changes in human cortical bone by nuclear magnetic resonance
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/18/3/022
– volume: 16
  start-page: 1308
  year: 2001
  ident: 10.1016/j.bone.2011.11.029_bb0220
  article-title: Distribution of intracortical porosity in human midfemoral cortex by age and gender
  publication-title: J Bone Miner Res
  doi: 10.1359/jbmr.2001.16.7.1308
– volume: 61
  start-page: 803
  year: 2009
  ident: 10.1016/j.bone.2011.11.029_bb0180
  article-title: Multicomponent T2 relaxation analysis in cartilage
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21926
– volume: 39
  start-page: 167
  year: 1957
  ident: 10.1016/j.bone.2011.11.029_bb0020
  article-title: The water content of bone
  publication-title: J Bone Joint Surg
  doi: 10.2106/00004623-195739010-00015
– volume: 33
  start-page: 79
  year: 2005
  ident: 10.1016/j.bone.2011.11.029_bb0055
  article-title: Nuclear magnetic resonance studies of bone water
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-005-8965-8
– volume: 42
  start-page: 193
  year: 2008
  ident: 10.1016/j.bone.2011.11.029_bb0105
  article-title: Measurements of mobile and bound water by nuclear magnetic resonance correlate with mechanical properties of bone
  publication-title: Bone
  doi: 10.1016/j.bone.2007.09.049
– volume: 75
  start-page: 1193
  year: 1993
  ident: 10.1016/j.bone.2011.11.029_bb0205
  article-title: Age-related changes in the tensile properties of cortical bone: the relative importance of changes in porosity, mineralization and microstructure
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/00004623-199308000-00009
– volume: 29
  start-page: 470
  year: 2011
  ident: 10.1016/j.bone.2011.11.029_bb0140
  article-title: Short T2 contrast with three-dimensional ultrashort echo time imaging
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2010.11.003
– volume: 21
  start-page: 13
  year: 1988
  ident: 10.1016/j.bone.2011.11.029_bb0225
  article-title: Stiffness of compact bone: effects of porosity and density
  publication-title: J Biomech
  doi: 10.1016/0021-9290(88)90186-8
– volume: 51
  start-page: 586
  year: 2004
  ident: 10.1016/j.bone.2011.11.029_bb0170
  article-title: Maximum likelihood estimation of signal amplitude and noise variance from MR data
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10728
– volume: 46
  start-page: 1582
  year: 2010
  ident: 10.1016/j.bone.2011.11.029_bb0095
  article-title: Quantitative 31P NMR spectroscopy and 1H MRI measurements of bone mineral and matrix density differentiate metabolic bone diseases in rat models
  publication-title: Bone
  doi: 10.1016/j.bone.2010.02.020
– volume: 23
  start-page: 1
  year: 1977
  ident: 10.1016/j.bone.2011.11.029_bb0030
  article-title: Bone water
  publication-title: Calcif Tissue Res
  doi: 10.1007/BF02012759
– volume: 32
  start-page: 188
  year: 1982
  ident: 10.1016/j.bone.2011.11.029_bb0040
  article-title: Fluid spaces in canine bone and marrow
  publication-title: Microvasc Res
  doi: 10.1016/0026-2862(82)90064-4
– volume: 27
  start-page: 825
  year: 2003
  ident: 10.1016/j.bone.2011.11.029_bb0125
  article-title: Magnetic resonance: an introduction to ultrashort TE (UTE) imaging
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/00004728-200311000-00001
– year: 1989
  ident: 10.1016/j.bone.2011.11.029_bb0215
  article-title: The microscopic structure of bone
– volume: 84
  start-page: 134
  year: 1989
  ident: 10.1016/j.bone.2011.11.029_bb0155
  article-title: Quantitative interpretation of NMR relaxation data
  publication-title: J Magn Reson
– volume: 19
  start-page: 289
  year: 2004
  ident: 10.1016/j.bone.2011.11.029_bb0115
  article-title: Water content measured by proton-deuteron exchange NMR predicts bone mineral density and mechanical properties
  publication-title: J Bone Miner Res
  doi: 10.1359/JBMR.0301227
– volume: 39
  start-page: 167
  issue: A
  year: 1957
  ident: 10.1016/j.bone.2011.11.029_bb0025
  article-title: The water content of bone. I. The mass of water, inorganic crystals, organic matrix, and CO2 space components in a unit volume of the dog bone
  publication-title: J Bone Joint Surg Am
– volume: 21
  start-page: 312
  year: 2003
  ident: 10.1016/j.bone.2011.11.029_bb0110
  article-title: Determination of cortical bone porosity and pore size distribution using a low field pulsed NMR approach
  publication-title: J Orthop Res
  doi: 10.1016/S0736-0266(02)00157-2
– volume: 64
  start-page: 680
  year: 2010
  ident: 10.1016/j.bone.2011.11.029_bb0120
  article-title: Characterization of 1H NMR signal in human cortical bone for magnetization resonance imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22459
– volume: 21
  start-page: 227
  year: 2003
  ident: 10.1016/j.bone.2011.11.029_bb0190
  article-title: Bone tissue and porous media: common features and differences studied by NMR relaxation
  publication-title: Magn Reson Imaging
  doi: 10.1016/S0730-725X(03)00129-2
– volume: 33
  start-page: 591
  year: 1981
  ident: 10.1016/j.bone.2011.11.029_bb0005
  article-title: A mixed pacing model for bone collagen
  publication-title: Calcif Tissue Int
  doi: 10.1007/BF02409497
– start-page: 101
  year: 1958
  ident: 10.1016/j.bone.2011.11.029_bb0015
  article-title: Skeletal dynamics the chemical dynamics of bone mineral
– volume: 35
  start-page: 370
  year: 1996
  ident: 10.1016/j.bone.2011.11.029_bb0160
  article-title: Criteria for analysis of multicomponent tissue T2 relaxation data
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910350315
– volume: 39
  start-page: 297
  year: 1980
  ident: 10.1016/j.bone.2011.11.029_bb0195
  article-title: An NMR investigation into the range of the surface effect on the rotation of water molecules
  publication-title: J Magn Reson
SSID ssj0003971
Score 2.3924842
Snippet Recent proton magnetic resonance (MR) spectroscopy studies have shown that cortical bone exists as different components which have distinct transverse...
Abstract Recent proton magnetic resonance (MR) spectroscopy studies have shown that cortical bone exists as different components which have distinct transverse...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 749
SubjectTerms Animals
Bi-component analysis
Biological and medical sciences
Bone and Bones - chemistry
Bound water
Cattle
Desiccation
Echo-Planar Imaging - instrumentation
Echo-Planar Imaging - methods
Free water
Fundamental and applied biological sciences. Psychology
Orthopedics
Phantoms, Imaging
Porosity
Ultrashort TE
Vertebrates: anatomy and physiology, studies on body, several organs or systems
Water - analysis
Title Ultrashort echo time (UTE) imaging with bi-component analysis: Bound and free water evaluation of bovine cortical bone subject to sequential drying
URI https://www.clinicalkey.com/#!/content/1-s2.0-S875632821101369X
https://www.clinicalkey.es/playcontent/1-s2.0-S875632821101369X
https://www.ncbi.nlm.nih.gov/pubmed/22178540
https://www.proquest.com/docview/921427491
https://pubmed.ncbi.nlm.nih.gov/PMC3463503
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGkBASQrDBKJfJDwiBqky5NglvAzZNaBsStKJvlu3YaqYtmZpU0_bAf0D8Yc6J46YdZVxeqjbN1efLufn4O4S8dFWQSRGFjgZb6YSR0A7nvnACkDWXKbj4IS4UPjoeHIzCj-NovLb2faFqaVaLHXm1cl3J_0gVtoFccZXsP0h2flLYAN9BvvAJEobPv5Lx6LSe8moCHnRfgRprGsU3SdThHkb7-ZlpQdTkWkXuYPl4WZiickNFgvkAgY2VmjkEPVWqf8GRNrEjAUdvUmDaAcvapybzLeAs_WomMIeDzqupx64x-Z5NL60xtFPFpfFjr_f8WchBvMurC7Ow7LMq8i652iRbv3aFAh9yfmWVd5dKr2aZWddW5nKSL6YxsB7E1nG1mjeJA8e32k6t2Naqa8NT28IyWNC9seE-_cUmmPTEyQ6OjeFsRdrW9hmXCLiPP7H90eEhG-6Nh7fIbR8iD2yKsfOtqxoC962J4e2dteuwTMng9Sv8zte5d84rkJY2rVNWxTbXS3QXfJ7hA3K_DVborkHeQ7Kmig2yuVvwujy7pK9oUz7czMtskDtHbZXGJvnR4ZIiLinikr4GVL6hLSYpYpIuYpJaTL6lDSLhd0YRkbRBJO0QSUtNDSKpRSTFMaEtImld0g6R1CDyERnt7w3fHzht8w9HRkFcOxqJsYSEaEN4qVbJIPGlN9BgL7IA-ZS1L1wVRQOepW6iBaiaOJVgrTTnUvkeDx6T9QKu_YRQ340imUZSKp2GOnM5F2B6wjAJVZyI2OsRz4qJyZYZHxu0nDJbAnnC8DEYihZCZgai7ZH-_Jhzwwtz496BlT6zK57BRjOA6I1HxauOUlWrgirmscpnLvuSxNEg8BNM5njBIB33yPYSxOa36Mfg4cD49gi1mGNgT3CSkBeqnFUsRQ5GeJVgVLYMBLuDfS9OIMKD-1oC53wHpKpf_qfIJw1lfRBCYOMGT_982WfkbqcenpP1ejpTL8Dvr8V28yb-BLC1BsE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrashort+echo+time+%28UTE%29+imaging+with+bi-component+analysis%3A+bound+and+free+water+evaluation+of+bovine+cortical+bone+subject+to+sequential+drying&rft.jtitle=Bone+%28New+York%2C+N.Y.%29&rft.au=Biswas%2C+Reni&rft.au=Bae%2C+Won&rft.au=Diaz%2C+Eric&rft.au=Masuda%2C+Koichi&rft.date=2012-03-01&rft.issn=1873-2763&rft.eissn=1873-2763&rft.volume=50&rft.issue=3&rft.spage=749&rft_id=info:doi/10.1016%2Fj.bone.2011.11.029&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F87563282%2FS8756328212X00024%2Fcov150h.gif